1
|
Geremia N, Marino A, De Vito A, Giovagnorio F, Stracquadanio S, Colpani A, Di Bella S, Madeddu G, Parisi SG, Stefani S, Nunnari G. Rare or Unusual Non-Fermenting Gram-Negative Bacteria: Therapeutic Approach and Antibiotic Treatment Options. Antibiotics (Basel) 2025; 14:306. [PMID: 40149115 PMCID: PMC11939765 DOI: 10.3390/antibiotics14030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Non-fermenting Gram-negative bacteria (NFGNB) are a heterogeneous group of opportunistic pathogens increasingly associated with healthcare-associated infections. While Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia are well known, rarer species such as Burkholderia cepacia complex, Achromobacter spp., Chryseobacterium spp., Elizabethkingia spp., Ralstonia spp., and others pose emerging therapeutic challenges. Their intrinsic and acquired resistance mechanisms limit effective treatment options, making targeted therapy essential. Objectives: This narrative review summarizes the current understanding of rare and unusual NFGNB, their clinical significance, resistance profiles, and evidence-based therapeutic strategies. Methods: A literature review was conducted using PubMed, Scopus, and Web of Science to identify relevant studies on the epidemiology, antimicrobial resistance, and treatment approaches to rare NFGNB. Results: Rare NFGNB exhibits diverse resistance mechanisms, including β-lactamase production, efflux pumps, and porin modifications. Treatment selection depends on species-specific susceptibility patterns, but some cornerstones can be individuated. Novel β-lactam/β-lactamase inhibitors and combination therapy approaches are being explored for multidrug-resistant isolates. However, clinical data remain limited. Conclusions: The increasing incidence of rare NFGNB requires heightened awareness and a tailored therapeutic approach. Given the paucity of clinical guidelines, antimicrobial stewardship and susceptibility-guided treatment are crucial in optimizing patient outcomes.
Collapse
Affiliation(s)
- Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy;
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy;
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.D.V.); (A.C.); (G.M.)
| | - Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (S.S.)
| | - Agnese Colpani
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.D.V.); (A.C.); (G.M.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34129 Trieste, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.D.V.); (A.C.); (G.M.)
| | | | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (S.S.)
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy;
| |
Collapse
|
2
|
Karunarathne PH, Bridges C, Remisoski L, Crane M, Casanova CS, Kinne SN, Castillo Bahena AL, Gil M, Padillo L, Querido G, Mielke J, McClelland M, Conrad D, Quinn RA. Linking volatile metabolites from bacterial pathogens to exhaled breath condensate of people with cystic fibrosis. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 39976612 DOI: 10.1099/mic.0.001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Obtaining sputum samples from people with cystic fibrosis (pwCF) for microbiology has become challenging due to the positive clinical effects of the cystic fibrosis transmembrane conductance regulator modulator therapy, elexacaftor-tezacaftor-ivacaftor (ETI). Although ETI improves lung function and reduces sputum production, recent data shows that bacterial pathogens persist, making continued monitoring of infection important. As an alternative to sputum sampling, this study developed a non-invasive technique called 'Cough Breath' (CB) to identify volatile organic compounds (VOCs) in exhaled breath condensate (EBC) and link them to cystic fibrosis (CF) bacterial pathogens using purge and trap GC-MS. The CB culturing approach was able to isolate pathogens from expectorated particulates simultaneously with EBC collection; however, culturing positivity was low, with 6% of samples collected (n=47) positive for either Pseudomonas aeruginosa or Staphylococcus aureus. From EBC, we identified VOCs matching those uniquely produced by P. aeruginosa (7), S. aureus (12), Achromobacter xylosoxidans (8) and Granulicatella adiacens (2); however, the overall detection rate was also low. Expanding to VOCs produced across multiple pathogens identified 30 frequently detected in the EBC of pwCF, including 2,3-pentanedione, propyl pyruvate, oxalic acid diallyl ester, methyl isobutyl ketone, methyl nitrate, 2-propenal, acetonitrile, acetoin and 2,3-butanedione. Comparing isolate volatilomes and EBC samples from the same pwCF enhanced detection rates with key VOCs, such as 2,3-pentanedione (86%) and propyl pyruvate (83%), in P. aeruginosa isolates. Further investigation showed that VOC production differed across strains and at different growth phases, creating variability that may explain the overall low EBC detection rate. Although this study successfully cultured CF pathogens from cough particulates and matched their unique VOCs in EBC samples, our results indicate that microbial volatiles more generally indicative of infection, such as 2,3-pentanedione, may have the most utility in aiding diagnostics in pwCF on ETI who have reduced sputum production in the clinic.
Collapse
Affiliation(s)
- P Hansani Karunarathne
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lacy Remisoski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Madisen Crane
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Claudia Soria Casanova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | | | - Marissa Gil
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lienwil Padillo
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gabriel Querido
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jenna Mielke
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Doug Conrad
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Naseem R, Howe N, Williams CJ, Pretorius S, Green K. What diagnostic tests are available for respiratory infections or pulmonary exacerbations in cystic fibrosis: A scoping literature review. Respir Investig 2024; 62:817-831. [PMID: 39024929 DOI: 10.1016/j.resinv.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
A scoping review methodological framework formed the basis of this review. A search of two electronic databases captured relevant literature published from 2013. 1184 articles were screened, 200 of which met inclusion criteria. Included studies were categorised as tests for either respiratory infections OR pulmonary exacerbations. Data were extracted to ascertain test type, sample type, and indication of use for each test type. For infection, culture is the most common testing method, particularly for bacterial infections, whereas PCR is utilised more for the diagnosis of viral infections. Spirometry tests, indicating lung function, facilitate respiratory infection diagnoses. There is no clear definition of what an exacerbation is in persons with CF. A clinical checklist with risk criteria can determine if a patient is experiencing an exacerbation event, however the diagnosis is clinician-led and will vary between individuals. Fuchs criteria are one of the most frequently used tests to assess signs and symptoms of exacerbation in persons with CF. This scoping review highlights the development of home monitoring tests to facilitate earlier and easier diagnoses, and the identification of novel biomarkers for indication of infections/exacerbations as areas of current research and development. Research is particularly prevalent regarding exhaled breath condensate and volatile organic compounds as an alternative sampling/biomarker respectively for infection diagnosis. Whilst there are a wide range of tests available for diagnosing respiratory infections and/or exacerbations, these are typically used clinically in combination to ensure a rapid, accurate diagnosis which will ultimately benefit both the patient and clinician.
Collapse
Affiliation(s)
- Raasti Naseem
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Nicola Howe
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | - Cameron J Williams
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Sara Pretorius
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Kile Green
- NIHR Newcastle HealthTech Research Centre in Diagnostic and Technology Evaluation, Fourth floor William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
4
|
Crabbé A. Intracellular Pseudomonas aeruginosa: An Overlooked Reservoir in the Lungs of People with Cystic Fibrosis? Am J Respir Crit Care Med 2024; 209:1421-1423. [PMID: 38498854 PMCID: PMC11208970 DOI: 10.1164/rccm.202402-0388ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology Ghent University Ghent, Belgium
| |
Collapse
|
5
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
6
|
Cholon DM, Greenwald MA, Higgs MG, Quinney NL, Boyles SE, Meinig SL, Minges JT, Chaubal A, Tarran R, Ribeiro CMP, Wolfgang MC, Gentzsch M. A Novel Co-Culture Model Reveals Enhanced CFTR Rescue in Primary Cystic Fibrosis Airway Epithelial Cultures with Persistent Pseudomonas aeruginosa Infection. Cells 2023; 12:2618. [PMID: 37998353 PMCID: PMC10670530 DOI: 10.3390/cells12222618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.
Collapse
Affiliation(s)
- Deborah M. Cholon
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Matthew A. Greenwald
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew G. Higgs
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Quinney
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Susan E. Boyles
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Suzanne L. Meinig
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Pharmaceutical Product Development (PPD), Thermo Fisher Scientific, Morrisville, NC 27560, USA
| | - John T. Minges
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Ashlesha Chaubal
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
| | - Robert Tarran
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Genetic, Department of Internal Medicine, Environmental and Inhalational Disease, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carla M. P. Ribeiro
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Division of Pulmonary Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (D.M.C.); (M.A.G.)
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Scott AJ, Ellis SR, Hofstaedter CE, Heeren RM, Ernst RK. Spatial lipidomics reveals biased phospholipid remodeling in acute Pseudomonas lung infection. iScience 2023; 26:107700. [PMID: 37680478 PMCID: PMC10480615 DOI: 10.1016/j.isci.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the whole-lung phospholipid response using mass spectrometry imaging (MSI) and spatial lipidomics. Using a histology-driven analysis, we isolated airways and parenchyma from both mock- and Pa-infected lungs and used systems biology tools to identify enriched metabolic pathways from the differential phospholipid identities. Infection was associated with a set of 26 ions, with 11 unique to parenchyma and 6 unique to airways. Acyl remodeling was differentially enriched in infected parenchyma as the predominant biological function. These functions correlated with markers of polymorphonuclear (PMN) cell influx, a defining feature of the lung response to Pa infection, implicating enzymes active in phospholipid remodeling.
Collapse
Affiliation(s)
- Alison J. Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging (M4i) Institute, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
9
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
10
|
Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, Maes T, Bracke KR, Crabbé A. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Front Immunol 2023; 14:1176044. [PMID: 37168857 PMCID: PMC10164748 DOI: 10.3389/fimmu.2023.1176044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Aurélie Crabbé,
| |
Collapse
|
11
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
12
|
Aiyer A, Manos J. The Use of Artificial Sputum Media to Enhance Investigation and Subsequent Treatment of Cystic Fibrosis Bacterial Infections. Microorganisms 2022; 10:microorganisms10071269. [PMID: 35888988 PMCID: PMC9318996 DOI: 10.3390/microorganisms10071269] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
In cystic fibrosis (CF), mutations in the CF transmembrane conductance regulator protein reduce ionic exchange in the lung, resulting in thicker mucus, which impairs mucociliary function, airway inflammation and infection. The mucosal and nutritional environment of the CF lung is inadequately mimicked by commercially available growth media, as it lacks key components involved in microbial pathogenesis. Defining the nutritional composition of CF sputum has been a long-term goal of in vitro research into CF infections to better elucidate bacterial growth and infection pathways. This narrative review highlights the development of artificial sputum medium, from a viable in vitro method for understanding bacterial mechanisms utilised in CF lung, to uses in the development of antimicrobial treatment regimens and examination of interactions at the epithelial cell surface and interior by the addition of host cell layers. The authors collated publications based on a PubMed search using the key words: “artificial sputum media” and “cystic fibrosis”. The earliest iteration of artificial sputum media were developed in 1997. Formulations since then have been based either on published data or chemically derived from extracted sputum. Formulations contain combinations of mucin, extracellular DNA, iron, amino acids, and lipids. A valuable advantage of artificial sputum media is the ability to standardise media composition according to experimental requirements.
Collapse
|
13
|
Staphylococcus aureus in Non-Cystic Fibrosis Bronchiectasis: Prevalence and Genomic Basis of High Inoculum Beta-Lactam Resistance. Ann Am Thorac Soc 2022; 19:1285-1293. [PMID: 35213810 DOI: 10.1513/annalsats.202108-965oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale The pathobiology of Staphylococcus aureus in non-cystic fibrosis bronchiectasis (nCFB) is poorly defined. When present at high density or "inoculum", some methicillin-sensitive S. aureus (MSSA) can inefficiently degrade anti-Staphylococcal beta-lactam antibiotics via BlaZ penicillinases (termed, the inoculum effect). Given the high burden of organisms in bronchiectatic airways, this is particularly relevant. Objectives Drawing from a prospectively-collected biobank, we sought to understand the prevalence, natural history, potential for transmission, and antibiotic resistance profiles amongst nCFB-derived MSSA isolates. Methods All individuals attending a regional consultancy nCFB clinic with sputum collected between 1981-2017 were considered, and those with ≥1 S. aureus-positive culture comprised the cohort. Each individual's most recent biobank isolate was subjected to whole genome sequencing (including the blaZ gene), antibacterial susceptibility testing, and comparative beta-lactam testing at standard (5 x 105CFU/mL) and high (5 x 107CFU/mL) inoculum to assess for the inoculum, and pronounced inoculum effect (IE and pIE, respectively). Results Seventy-four of 209 (35.4%) individuals had ≥1 sputum sample(s) with S. aureus (68 MSSA, 6 MRSA). Those with S. aureus infection were more likely to be female. Amongst 60/74 MSSA isolates subjected to WGS, no evidence of transmission was identified, although specific MLST types were prevalent including ST-1, ST-15, ST-30, and ST-45. Antibiotic resistance was uncommon except for macrolides (~20%). Amongst the 60 MSSA, prevalence of IE and pIE, respectively, were observed to be drug specific; meropenem (0%, 0%), cefepime (3%, 5%), ceftazidime (8%, 0%), cloxacillin (12%, 0%), cefazolin (23%, 0%) and piperacillin-tazobactam (37%, 17%). The cefazolin IE associated with blaZ type A (p<0.01) and ST-30 (p<0.01), whereas the piperacillin-tazobactam IE associated with type C blaZ (p<0.001) and ST-15 (p<0.05). Conclusions S. aureus infection was common, although no evidence of transmission was apparent in our nCFB cohort. While routine susceptibility testing did not identify significant resistance, inoculum-related resistance was found to be relevant for commonly used nCFB antibiotics including cefazolin and piperacillin-tazobactam. Given previous associations between IEs and negative patient outcomes, further work is warranted to understand how this phenotype impacts nCFB disease progression.
Collapse
|
14
|
Lv Q, Elders BBLJ, Warris A, Caudri D, Ciet P, Tiddens HAWM. Aspergillus-related lung disease in people with cystic fibrosis: can imaging help us to diagnose disease? Eur Respir Rev 2021; 30:30/162/210103. [PMID: 34789463 DOI: 10.1183/16000617.0103-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023] Open
Abstract
In people with cystic fibrosis (PwCF), viscous sputum and dysfunction of the mucociliary escalator leads to early and chronic infections. The prevalence of Aspergillus fumigatus in sputum is high in PwCF and the contribution of A. fumigatus to the progression of structural lung disease has been reported. However, overall, relatively little is known about the contribution of A. fumigatus to CF lung disease. More knowledge is needed to aid clinical decisions on whether to start antifungal treatment. In this review, we give an overview of A. fumigatus colonisation and infection in PwCF and the different types of pulmonary disease caused by it. Furthermore, we discuss the current evidence for structural lung damage associated with A. fumigatus in PwCF on chest computed tomography and magnetic resonance imaging. We conclude that radiological outcomes to identify disease caused by A. fumigatus can be important for clinical studies and management.
Collapse
Affiliation(s)
- Qianting Lv
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Bernadette B L J Elders
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Daan Caudri
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands .,Dept of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Bashir G, Bhat JI, Mohammad S, Fomda BA, Bali NK, Altaf I. Airway Microbiology in Children with Cystic Fibrosis: A Prospective Cohort Study from Northern India. J Trop Pediatr 2021; 67:6294507. [PMID: 34100087 DOI: 10.1093/tropej/fmab030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The objective of this study is to find the organism profile and antimicrobial susceptibility patterns in children with cystic fibrosis (CF). DESIGN Prospective cohort study. SETTING Hospital-based study. INTERVENTION Sputum cultures/throat swabs were collected from the study population. Relevant details like anthropometry, systemic examination findings and investigations were entered in a pre-designed format. Sputum culture was subjected to microbiological analysis at the hospital microbiology laboratory. MAIN OUTCOME MEASURE Prevalence of positive sputum/cough swab culture in CF patients, their organism profile and antibiotic sensitivity. RESULTS A total of 63 patients were enrolled in the study. A total of 136 organisms were grown in our study population. Thirteen different organisms were isolated, which included five gram-positive bacteria, six gram-negative bacteria, eight Candida spp. and one filamentous. Antibiotic sensitivity profile of the Pseudomonas aeruginosa showed excellent sensitivity to all the aminoglycosides, piperacillin-tazobacteum and polymixin, similarly methicillin-sensitive Staphylococcus aureus, methicillin-resistant S. aureus and Enterococcus spp. were uniformly sensitive to vancomycin, linezolid and teicoplanin. Fungal isolates showed 100% sensitivity to all the antifungals tested including azoles and amphotericin B. CONCLUSION We observed 61% of culture positivity for different organisms in our study. Staphylococcus aureus and P. aeruginosa were the most frequently isolated organisms. Pseudomonas aeruginosa isolates were largely sensitive to aminoglycosides, carbapenems and polymixin. We found an unusually higher incidence of enterococcal infection in our study cohort with few vancomycin-resistant isolates.
Collapse
Affiliation(s)
- Gulnaz Bashir
- Department of Microbiology, SKIMS, Soura, Jammu and Kashmir 190011, India
| | - Javeed Iqbal Bhat
- Department of Pediatrics, SKIMS, Soura, Jammu and Kashmir 190011, India
| | - Sozia Mohammad
- Department of Microbiology, SKIMS, Soura, Jammu and Kashmir 190011, India
| | - Bashir Ahmad Fomda
- Department of Microbiology, SKIMS, Soura, Jammu and Kashmir 190011, India
| | - Nargis K Bali
- Department of Microbiology, SKIMS, Soura, Jammu and Kashmir 190011, India
| | - Insha Altaf
- Department of Microbiology, SKIMS, Soura, Jammu and Kashmir 190011, India
| |
Collapse
|
16
|
Moriano A, Serra DO, Hoard A, Montaña S, Degrossi J, Bonomo RA, Papp-Wallace KM, Ramirez MS. Staphylococcus aureus Potentiates the Hemolytic Activity of Burkholderia cepacia Complex (Bcc) Bacteria. Curr Microbiol 2021; 78:1864-1870. [PMID: 33770213 PMCID: PMC10026353 DOI: 10.1007/s00284-021-02458-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Polymicrobial lung infections in individuals with Cystic Fibrosis (CF) contribute to the complexity of this disease and are a major cause of morbidity and mortality in the CF community. The microorganisms most commonly associated with severe airway infections in individuals with CF are the opportunistic pathogens S. aureus, P. aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc), particularly B. cenocepacia and B. multivorans. Three Bcc strains, two S. aureus wild-type strains, and two derivative mutants were used to investigate the interplay between S. aureus and Bcc with a focus on the hemolytic activity of Bcc. Our results revealed that extracellular products from S. aureus potentiated the hemolysis of Bcc strains. Moreover, this effect was influenced by the composition of the medium in which S. aureus is grown. These findings contribute towards the understanding of the impact of interactions between S. aureus and Bcc and their possible implications in the context of co-infections by these pathogens in individuals with CF.
Collapse
Affiliation(s)
- Alessandro Moriano
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Amparo Hoard
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sabrina Montaña
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Jose Degrossi
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Robert A Bonomo
- Research Service Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Krisztina M Papp-Wallace
- Research Service Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Maria Soledad Ramirez
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
17
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Felton E, Burrell A, Chaney H, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Hahn A. Inflammation in children with cystic fibrosis: contribution of bacterial production of long-chain fatty acids. Pediatr Res 2021; 90:99-108. [PMID: 33654282 PMCID: PMC8370878 DOI: 10.1038/s41390-021-01419-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) affects >70,000 people worldwide, yet the microbiologic trigger for pulmonary exacerbations (PExs) remains unknown. The objective of this study was to identify changes in bacterial metabolic pathways associated with clinical status. METHODS Respiratory samples were collected at hospital admission for PEx, end of intravenous (IV) antibiotic treatment, and follow-up from 27 hospitalized children with CF. Bacterial DNA was extracted and shotgun DNA sequencing was performed. MetaPhlAn2 and HUMAnN2 were used to evaluate bacterial taxonomic and pathway relative abundance, while DESeq2 was used to evaluate differential abundance based on clinical status. RESULTS The mean age of study participants was 10 years; 85% received combination IV antibiotic therapy (beta-lactam plus a second agent). Long-chain fatty acid (LCFA) biosynthesis pathways were upregulated in follow-up samples compared to end of treatment: gondoate (p = 0.012), oleate (p = 0.048), palmitoleate (p = 0.043), and pathways of fatty acid elongation (p = 0.012). Achromobacter xylosoxidans and Escherichia sp. were also more prevalent in follow-up compared to PEx (p < 0.001). CONCLUSIONS LCFAs may be associated with persistent infection of opportunistic pathogens. Future studies should more closely investigate the role of LCFA production by lung bacteria in the transition from baseline wellness to PEx in persons with CF. IMPACT Increased levels of LCFAs are found after IV antibiotic treatment in persons with CF. LCFAs have previously been associated with increased lung inflammation in asthma. This is the first report of LCFAs in the airway of persons with CF. This research provides support that bacterial production of LCFAs may be a contributor to inflammation in persons with CF. Future studies should evaluate LCFAs as predictors of future PExs.
Collapse
Affiliation(s)
- Erin Felton
- grid.253615.60000 0004 1936 9510School of Medicine and Health Sciences, George Washington University, Washington, DC USA
| | - Aszia Burrell
- grid.239560.b0000 0004 0482 1586Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC USA
| | - Hollis Chaney
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Iman Sami
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Anastassios C. Koumbourlis
- grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Pulmonary and Sleep Medicine, Children’s National Hospital, Washington, DC USA
| | - Robert J. Freishtat
- grid.239560.b0000 0004 0482 1586Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC USA ,grid.253615.60000 0004 1936 9510Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC USA ,grid.239560.b0000 0004 0482 1586Division of Emergency Medicine, Children’s National Hospital, Washington, DC USA
| | - Keith A. Crandall
- grid.253615.60000 0004 1936 9510Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA. .,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Division of Infectious Disease, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
19
|
Millar BC, Maguire M, Moore RE, Murphy A, McCaughan J, Stirling J, Moore JE. Steam disinfection of toothbrushes from patients with cystic fibrosis: Evidence-based recommendations. Pediatr Pulmonol 2020; 55:3012-3020. [PMID: 32729958 DOI: 10.1002/ppul.24994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Patients with cystic fibrosis have increased morbidity/mortality due to chronic respiratory infections, which primarily originate from the environment. Infection prevention and control emphasize the importance of cleaning and disinfection of respiratory devices, however, there is a paucity of guidance on toothbrush hygiene, which have been shown to be a source of cystic fibrosis (CF) pathogens. METHODS This study examined steam disinfection of toothbrushes contaminated with clinically significant CF isolates (n = 80; Gram positive = 33; Gram negative = 32, and non-tuberculous mycobacteria = 6) and yeasts (n = 9), as well as oral streptococci (n = 26) and environmental Pseudomonas aeruginosa (n = 12). RESULTS Steam disinfection eradicated all organisms tested, as well as all organisms in CF sputum applied to toothbrushes. CONCLUSIONS Steam disinfection offers a relatively simple, cheap and available method of eliminating non-spore-forming CF pathogens on toothbrushes. Toothbrushes should be thoroughly rinsed after each use before steam disinfection, to remove plaque, epithelial cells, and residual toothpaste. Toothbrushes should be steam disinfected after each use employing a baby bottle steam disinfector, adhering to manufacturers' operating instructions and stored in the disinfector until next used within 12 to 24 hours. Toothbrushes should be replaced every 3 to 4 months, or sooner if the bristles look worn out, as well as every time a pulmonary exacerbation occurs or every time the patient is treated for a pulmonary/throat infection. Steam disinfection of toothbrushes is crucial when the patient is undergoing eradication regimes for P. aeruginosa and methicillin-resistant Staphylococcus aureus, so that the patient does not become reinfected from this source, thereby aiding eradication and enhancing patient safety.
Collapse
Affiliation(s)
- Beverley C Millar
- Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK.,School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Mollie Maguire
- School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Rachel E Moore
- Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK.,School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Alan Murphy
- Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK
| | - John McCaughan
- Department of Medical Microbiology, The Royal Group of Hospital, Belfast, Northern Ireland, UK
| | - Jonathan Stirling
- Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK
| | - John E Moore
- Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Belfast, Northern Ireland, UK.,School of Medicine, Dentistry and Biomedical Science, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Varela MC, Roch M, Taglialegna A, Long SW, Saavedra MO, Rose WE, Davis JJ, Hoffman LR, Hernandez RE, Rosato RR, Rosato AE. Carbapenems drive the collateral resistance to ceftaroline in cystic fibrosis patients with MRSA. Commun Biol 2020; 3:599. [PMID: 33093601 PMCID: PMC7582194 DOI: 10.1038/s42003-020-01313-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Chronic airways infection with methicillin-resistant Staphylococcus aureus (MRSA) is associated with worse respiratory disease cystic fibrosis (CF) patients. Ceftaroline is a cephalosporin that inhibits the penicillin-binding protein (PBP2a) uniquely produced by MRSA. We analyzed 335 S. aureus isolates from CF sputum samples collected at three US centers between 2015-2018. Molecular relationships demonstrated that high-level resistance of preceding isolates to carbapenems were associated with subsequent isolation of ceftaroline resistant CF MRSA. In vitro evolution experiments showed that pre-exposure of CF MRSA to meropenem with further selection with ceftaroline implied mutations in mecA and additional mutations in pbp1 and pbp2, targets of carbapenems; no effects were achieved by other β-lactams. An in vivo pneumonia mouse model showed the potential therapeutic efficacy of ceftaroline/meropenem combination against ceftaroline-resistant CF MRSA infections. Thus, the present findings highlight risk factors and potential therapeutic strategies offering an opportunity to both prevent and address antibiotic resistance in this patient population.
Collapse
Affiliation(s)
- Maria Celeste Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Melanie Roch
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Scott W Long
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew Ojeda Saavedra
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Warren E Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - James J Davis
- Argonne National Laboratory (DOE), Lemont, IL, USA
- Computation Institute, University of Chicago, Chicago, IL, USA
| | - Lucas R Hoffman
- Department of Pediatrics and Department of Microbiology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Rafael E Hernandez
- Department of Pediatrics and Department of Microbiology, University of Washington, Seattle, WA, USA
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA.
- Riverside University Health System-Medical Center, 26520 Cactus Avenue, Moreno Valley, CA, 92555, USA.
| |
Collapse
|
21
|
Bertelsen A, Elborn SJ, Schock BC. Toll like Receptor signalling by Prevotella histicola activates alternative NF-κB signalling in Cystic Fibrosis bronchial epithelial cells compared to P. aeruginosa. PLoS One 2020; 15:e0235803. [PMID: 33031374 PMCID: PMC7544055 DOI: 10.1371/journal.pone.0235803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Stuart J. Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Imperial College London, London, United Kingdom
| | - Bettina C. Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Lattanzi C, Messina G, Fainardi V, Tripodi MC, Pisi G, Esposito S. Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: An Update on the Newest Diagnostic Tools and Therapeutic Approaches. Pathogens 2020; 9:E716. [PMID: 32878014 PMCID: PMC7559707 DOI: 10.3390/pathogens9090716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF), the most common autosomal-recessive genetic disease in the Caucasian population, is characterized by frequent respiratory infections and progressive lung disease. Fungal species are commonly found in patients with CF, and among them, Aspergillus fumigatus is the most frequently isolated. While bacteria, particularly Pseudomonas aeruginosa, have a well-established negative effect on CF lung disease, the impact of fungal infections remains unclear. In patients with CF, inhalation of Aspergillus conidia can cause allergic bronchopulmonary aspergillosis (ABPA), a Th2-mediated lung disease that can contribute to disease progression. Clinical features, diagnostic criteria and treatment of ABPA are still a matter of debate. Given the consequences of a late ABPA diagnosis or the risk of ABPA overdiagnosis, it is imperative that the diagnostic criteria guidelines are reviewed and standardized. Along with traditional criteria, radiological features are emerging as tools for further classification as well as novel immunological tests. Corticosteroids, itraconazole and voriconazole continue to be the bedrock of ABPA therapy, but other molecules, such as posaconazole, vitamin D, recombinant INF-γ and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators, have been showing positive results. However, few studies have been conducted recruiting CF patients, and more research is needed to improve the prevention and the classification of clinical manifestations as well as to personalize treatment. Early recognition and early treatment of fungal infections may be fundamental to prevent progression of CF disease. The aim of this narrative review is to give an update on ABPA in children with CF.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.L.); (G.M.); (V.F.); (M.C.T.); (G.P.)
| |
Collapse
|
23
|
Stachowiak Z, Wojsyk-Banaszak I, Jończyk-Potoczna K, Narożna B, Langwiński W, Kycler Z, Sobkowiak P, Bręborowicz A, Szczepankiewicz A. MiRNA Expression Profile in the Airways is Altered during Pulmonary Exacerbation in Children with Cystic Fibrosis-A Preliminary Report. J Clin Med 2020; 9:jcm9061887. [PMID: 32560275 PMCID: PMC7356328 DOI: 10.3390/jcm9061887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate immune response and inflammation. We assumed that miRNAs may be involved in the immune response during cystic fibrosis pulmonary exacerbations (CFPE) and that altered expression profile in the airways and blood may underlie clinical outcomes in CF pediatric patients. Methods: We included 30 pediatric patients diagnosed with cystic fibrosis. The biologic material (blood, sputum, exhaled breath condensate) was collected during pulmonary exacerbation and in stable condition. The miRNA expression profile from blood and sputum (n = 6) was done using the next-generation sequencing. For validation, selected four miRNAs were analyzed by qPCR in exosomes from sputum supernatant and exhaled breath condensate (n = 24). NGS analysis was done in Base Space, correlations of gene expression with clinical data were done in Statistica. Results: The miRNA profiling showed that four miRNAs (miR-223, miR-451a, miR-27b-3p, miR-486-5p) were significantly altered during pulmonary exacerbation in CF patients in sputum but did not differ significantly in blood. MiRNA differently expressed in exhaled breath condensate (EBC) and sputum showed correlation with clinical parameters in CFPE. Conclusion: MiRNA expression profile changes in the airways during pulmonary exacerbation in CF pediatric patients. We suggest that miRNA alterations during CFPE are restricted to the airways and strongly correlate with clinical outcome.
Collapse
Affiliation(s)
- Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Z.S.); (B.N.); (W.L.)
| | - Irena Wojsyk-Banaszak
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (I.W.-B.); (Z.K.); (P.S.); (A.B.)
| | | | - Beata Narożna
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Z.S.); (B.N.); (W.L.)
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Z.S.); (B.N.); (W.L.)
| | - Zdzisława Kycler
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (I.W.-B.); (Z.K.); (P.S.); (A.B.)
| | - Paulina Sobkowiak
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (I.W.-B.); (Z.K.); (P.S.); (A.B.)
| | - Anna Bręborowicz
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (I.W.-B.); (Z.K.); (P.S.); (A.B.)
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Z.S.); (B.N.); (W.L.)
- Correspondence: ; Tel.: +48-618-547-643
| |
Collapse
|
24
|
Izydorczyk C, Waddell B, Edwards BD, Greysson-Wong J, Surette MG, Somayaji R, Rabin HR, Conly JM, Church DL, Parkins MD. Epidemiology of E. coli in Cystic Fibrosis Airways Demonstrates the Capacity for Persistent Infection but Not Patient-Patient Transmission. Front Microbiol 2020; 11:475. [PMID: 32265892 PMCID: PMC7100150 DOI: 10.3389/fmicb.2020.00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli is frequently isolated from the respiratory secretions of cystic fibrosis (CF) patients yet is not considered a classical CF pathogen. Accordingly, little is known about the natural history of this organism in the CF airways, as well as the potential for patient-to-patient transmission. Patients attending the Calgary Adult CF Clinic (CACFC) between January 1983 and December 2016 with at least one E. coli-positive sputum culture were identified by retrospective review. Annual E. coli isolates from the CACFC biobank from each patient were typed by pulsed-field gel electrophoresis (PFGE) and isolates belonging to shared pulsotypes were sequenced. Single nucleotide polymorphism (SNP) and phylogenetic analysis were used to investigate the natural history of E. coli infection and identify potential transmission events. Forty-five patients with E. coli-positive sputum cultures were identified. Most patients had a single infection episode with a single pulsotype, while replacement of an initial pulsotype with a second was observed in three patients. Twenty-four had E. coli recovered from their sputum more than once and 18 patients had persistent infections (E. coli carriage >6 months with ≥3 positive cultures). Shared pulsotypes corresponded to known extraintestinal pathogenic E. coli strains: ST-131, ST-73, and ST-1193. Phylogenetic relationships and SNP distances among isolates within shared pulsotypes were consistent with independent acquisition of E. coli by individual patients. Most recent common ancestor date estimates of isolates between patients were inconsistent with patient-to-patient transmission. E. coli infection in CF is a dynamic process that appears to be characterized by independent acquisition within our patient population and carriage of unique sets of strains over time by individual patients.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brett D. Edwards
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jasper Greysson-Wong
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Deirdre L. Church
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
25
|
Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front Immunol 2020; 11:385. [PMID: 32231665 PMCID: PMC7082326 DOI: 10.3389/fimmu.2020.00385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
26
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
27
|
Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, Mazer B, Radzioch D. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros 2019; 18:349-356. [DOI: 10.1016/j.jcf.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
28
|
Oliveira MS, Matsunaga NY, Rodrigues MLE, Morcillo AM, de Oliveira Ribeiro MAG, Ribeiro AF, de Fátima C P Servidoni M, Nogueira RJN, Pereira MC, Ribeiro JD, Toro AADC. Lung disease and vitamin D levels in cystic fibrosis infants and preschoolers. Pediatr Pulmonol 2019; 54:563-574. [PMID: 30663283 DOI: 10.1002/ppul.24260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Vitamin D acts on the immune system and lung response. Patients with cystic fibrosis (CF) may be deficient in this vitamin. The aims of the study were to evaluate vitamin D levels and severity of lung disease in infants and preschoolers diagnosed with CF, and to compare them to a group of children without pancreatic insufficiency (PI). METHODS Patients with CF up to 4 years old were included, and compared to an age-matched group of children without diagnosis of CF. CF group had medical records and High Resolution Thorax Computed Tomography (HRCCT) evaluated in order to verify the severity of lung disease. Information on demographic data, sun exposure habits, supplemental vitamin D therapy, and on the season at the time of vitamin D sampling were collected for both groups. RESULTS This study included 45 patients in the CF group and 102 in the non-CF group, with no differences in age (P = 0.327) between them. There was no association between vitamin D levels and markers of lung disease in the CF group. The non-CF group had lower daily sun exposure (P = 0.034), and lower supplementation than the CF group (P < 0.001). Supplementation and seasonality were the determinant variables for vitamin D levels, which were lower for non-supplemented children and for assessments during fall/winter. CONCLUSION There was no association between lung disease severity and vitamin D levels in CF group. Supplementation and seasonality were associated to higher vitamin levels.
Collapse
Affiliation(s)
- Marina S Oliveira
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Natasha Y Matsunaga
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - André M Morcillo
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Antônio F Ribeiro
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | - José Dirceu Ribeiro
- School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
29
|
Akil N, Muhlebach MS. Biology and management of methicillin resistant Staphylococcus aureus in cystic fibrosis. Pediatr Pulmonol 2018; 53:S64-S74. [PMID: 30073802 DOI: 10.1002/ppul.24139] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus is one of the earliest bacteria isolated from the respiratory tract in people with cystic fibrosis (CF). Its methicillin resistant form, MRSA, has gained attention due to the rapid increase in the last decades and worse outcomes with chronic infection. In the United States, prevalence of MRSA in CF is around 27%, but is much lower (3-18%) in most other countries. Methicillin is typically genetically encoded by the mecA gene, which encodes for an alternative penicillin binding protein (PRBa). This PRBa has low affinity to β-lactams, thereby enabling growth of S. aureus in the presence of penicillinase resistant penicillins and most other β-lactams. Non-mecA positive strains of MRSA, so-called borderline resistant (BORSA) have also been described. In addition to production of toxins, the virulence of S. aureus is conferred by its adaptability allowing persistence in face of antibiotic therapies and host defense. These adaptive growth mechanisms include small colony variants, biofilms, and growth under anaerobic conditions. Several reports have described successful eradication of MRSA, yet only two randomized trials of eradication during early infection have been conducted. A list of MRSA specific antibiotics with dosing relevant to CF patients is presented here. Many of these require special dosing in people with CF. Novel antibiotics are in trials for skin and soft tissue infections and it is unclear if and when those might be available for lung infections. Thus the best strategies for MRSA would be primary prevention.
Collapse
Affiliation(s)
- Nour Akil
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne S Muhlebach
- Division of Pulmonology, Department of Pediatrics, University of NC at Chapel Hill, Chapel Hill, North Carolina.,Marisco Lung Institute, University of NC at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Mucins trigger dispersal of Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2018; 4:23. [PMID: 30323945 PMCID: PMC6180003 DOI: 10.1038/s41522-018-0067-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Mucus is a biological gel that lines all wet epithelia in the body, including the mouth, lungs, and digestive tract, and has evolved to protect the body from pathogenic infection. However, microbial pathogenesis is often studied in mucus-free environments that lack the geometric constraints and microbial interactions in physiological three-dimensional mucus gels. We developed fluid-flow and static test systems based on purified mucin polymers, the major gel-forming constituents of the mucus barrier, to understand how the mucus barrier influences bacterial virulence, particularly the integrity of Pseudomonas aeruginosa biofilms, which can become resistant to immune clearance and antimicrobial agents. We found that mucins separate the cells in P. aeruginosa biofilms and disperse them into suspension. Other viscous polymer solutions did not match the biofilm disruption caused by mucins, suggesting that mucin-specific properties mediate the phenomenon. Cellular dispersion depended on functional flagella, indicating a role for swimming motility. Taken together, our observations support a model in which host mucins are key players in the regulation of microbial virulence. These mucins should be considered in studies of mucosal pathogenesis and during the development of novel strategies to treat biofilms. Biofilms are an important survival strategy for pathogenic bacteria including Pseudomonas aeruginosa and whilst mucins play a role the regulation of microbial virulence, microbial pathogenesis on mucosal tissues is often studied in mucin-free contexts. Here, Katharina Ribbeck and colleagues at the Massachusetts Institute of Technology used native purified mucin polymers and examined their effects on the integrity of Pseudomonas aeruginosa biofilms. The mucins dissolved the biofilms by separating the bacteria, which was not observed in other viscous alternative substances examined, but this did rely on functional bacterial motility. Here the authors provide evidence that mucins are involved in suppressing bacterial virulence and should be included in systems used to assess bacterial pathogenesis on mucosal tissues.
Collapse
|
31
|
Harun SN, Wainwright CE, Grimwood K, Hennig S. Aspergillus and progression of lung disease in children with cystic fibrosis. Thorax 2018; 74:125-131. [DOI: 10.1136/thoraxjnl-2018-211550] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 11/03/2022]
Abstract
BackgroundThe impact of Aspergillus on lung disease in young children with cystic fibrosis is uncertain.AimsTo determine if positive respiratory cultures of Aspergillus species are associated with: (1) increased structural lung injury at age 5 years; (2) accelerated lung function decline between ages 5 years and 14 years and (3) to identify explanatory variables.MethodsA cross-sectional analysis of association between Aspergillus positive bronchoalveolar lavage (BAL) cultures and chest high-resolution CT (HRCT) scan findings at age 5 years in subjects from the Australasian Cystic Fibrosis Bronchoalveolar Lavage (ACFBAL) study was performed. A non-linear mixed-effects disease progression model was developed using FEV1% predicted measurements at age 5 years from the ACFBAL study and at ages 6–14 years for these subjects from the Australian Cystic Fibrosis Data Registry.ResultsPositive Aspergillus BAL cultures at age 5 years were significantly associated with increased HRCT scores for air trapping (OR 5.53, 95% CI 2.35 to 10.82). However, positive Aspergillus cultures were not associated with either FEV1% predicted at age 5 years or FEV1% predicted by age following adjustment for body mass index z-score and hospitalisation secondary to pulmonary exacerbations. Lung function demonstrated a non-linear decline in this population.ConclusionIn children with cystic fibrosis, positive Aspergillus BAL cultures at age 5 years were associated contemporaneously with air trapping but not bronchiectasis. However, no association was observed between positive Aspergillus BAL cultures on FEV1% predicted at age 5 years or with lung function decline between ages 5 years and 14 years.
Collapse
|
32
|
Mucins: the frontline defence of the lung. Biochem Soc Trans 2018; 46:1099-1106. [PMID: 30154090 PMCID: PMC6195635 DOI: 10.1042/bst20170402] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Mucus plays a vital role in protecting the lungs from environmental factors, but conversely, in muco-obstructive airway disease, mucus becomes pathologic. In its protective role, mucus entraps microbes and particles removing them from the lungs via the co-ordinated beating of motile cilia. This mechanism of lung defence is reliant upon a flowing mucus gel, and the major macromolecular components that determine the rheological properties of mucus are the polymeric mucins, MUC5AC and MUC5B. These large O-linked glycoproteins have direct roles in maintaining lung homeostasis. MUC5B is essential for interaction with the ciliary clearance system and MUC5AC is up-regulated in response to allergic inflammatory challenge. Mucus with abnormal biophysical properties is a feature of muco-obstructive respiratory disease and can result from many different mechanisms including alterations in mucin polymer assembly, mucin concentration and the macromolecular form in mucus, as well as changes in airway surface hydration, pH and ion composition. The abnormal mucus results in defective lung protection via compromised ciliary clearance, leading to infection and inflammation.
Collapse
|
33
|
de Vries JJV, Chang AB, Marchant JM. Comparison of bronchoscopy and bronchoalveolar lavage findings in three types of suppurative lung disease. Pediatr Pulmonol 2018; 53:467-474. [PMID: 29405664 DOI: 10.1002/ppul.23952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/30/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Endobronchial suppuration is present in children with protracted bacterial bronchitis (PBB), bronchiectasis, and cystic fibrosis (CF). However, no studies have directly compared bronchoscopy and bronchoalveolar lavage (BAL) findings across these conditions within a single center using the same techniques and with shared community pathogens. AIM To determine; (i) the bronchoscopic findings and BAL microbiology and cellularity among children with these conditions and; (ii) the relationship between bacterial pathogens, airway cellularity and aberrant macroscopic bronchoscopic findings. METHODS We retrospectively reviewed all bronchoscopy data (undertaken over 6.5-years) from our center in children (<6 years; n = 316) meeting definitions of PBB (n = 125), bronchiectasis (n = 138), and CF (n = 53). RESULTS The children's median age was 26-months (Interquartile range (IQR) = 16-43). Children with PBB and bronchiectasis had higher rates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae infection, whereas children with CF had frequent Pseudomonas aeruginosa and Staphylococcus aureus infections. Novel findings include detection of cytomegalovirus and Epstein-Barr virus (EBV) (by polymerase chain reaction) in children with PBB (26%, 17%, respectively) and bronchiectasis (27%, 29%). Median airway neutrophil percentage was significantly higher in CF (68%; IQR = 42-83) compared to PBB (36%; IQR = 18-68) and bronchiectasis (22%; IQR = 8-64) (P < 0.0001), despite lower rates of infection. Presence of malacia did not significantly impact on infection or inflammation. CONCLUSION In this first study to directly compare bronchoscopic data among young children with PBB, bronchiectasis, and CF, microbiological patterns of airway infections and neutrophilia varied. Our findings of cytomegalovirus and EBV detection in children with PBB and bronchiectasis require confirmation and further evaluation.
Collapse
Affiliation(s)
- Jorrit J V de Vries
- Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands.,Children's Centre of Health Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anne B Chang
- Children's Centre of Health Research, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Respiratory and Sleep Medicine, Children's Health Queensland, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia.,Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Julie M Marchant
- Children's Centre of Health Research, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Respiratory and Sleep Medicine, Children's Health Queensland, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus (S. aureus) is well known for its ability to cause life-threatening infections. On the other hand, this bacterium can thrive as a commensal on and in human tissues without causing much problems. How big a threat is S. aureus actually? Furthermore, commensalism is associated with biofilms, where can we find them, and which natural and artificial components activate biofilm formation? RECENT FINDINGS Recent findings on S. aureus carriage on skin, mucosa, and in wounds indicate the presence of large numbers of S. aureus, yet its abundance can be without major implications for the host. S. aureus is often present in biofilms, together with other microorganisms, which can stimulate biofilm formation of S. aureus, in addition medicine including antibiotics can do the same. SUMMARY S. aureus can cause devastating infections, but when we take into consideration the ubiquitous presence of S. aureus, the risk seems to be relatively low. S. aureus forms biofilms in response to the 'hazards' on the human body, and signal to do so can come from various sources. All this has to be taken into consideration when we treat a patient as this might have enormous impact on the outcome.
Collapse
|
35
|
Bactericidal and Fungicidal Activity of N-Chlorotaurine Is Enhanced in Cystic Fibrosis Sputum Medium. Antimicrob Agents Chemother 2017; 61:AAC.02527-16. [PMID: 28223376 DOI: 10.1128/aac.02527-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/11/2017] [Indexed: 02/06/2023] Open
Abstract
Lung infections with multiresistant pathogens are a major problem among patients suffering from cystic fibrosis (CF). N-Chlorotaurine (NCT), a microbicidal active chlorine compound with no development of resistance, is well tolerated upon inhalation. The aim of this study was to investigate the in vitro bactericidal and fungicidal activity of NCT in artificial sputum medium (ASM), which mimics the composition of CF mucus. The medium was inoculated with bacteria (Staphylococcus aureus, including some methicillin-resistant S. aureus [MRSA] strains, Pseudomonas aeruginosa, and Escherichia coli) or spores of fungi (Aspergillus fumigatus, Aspergillus terreus, Candida albicans, Scedosporium apiospermum, Scedosporium boydii, Lomentospora prolificans, Scedosporium aurantiacum, Scedosporium minutisporum, Exophiala dermatitidis, and Geotrichum sp.), to final concentrations of 107 to 108 CFU/ml. NCT was added at 37°C, and time-kill assays were performed. At a concentration of 1% (10 mg/ml, 55 mM) NCT, bacteria and spores were killed within 10 min and 15 min, respectively, to the detection limit of 102 CFU/ml (reduction of 5 to 6 log10 units). Reductions of 2 log10 units were still achieved with 0.1% (bacteria) and 0.3% (fungi) NCT, largely within 10 to 30 min. Measurements by means of iodometric titration showed oxidizing activity for 1, 30, 60, and >60 min at concentrations of 0.1%, 0.3%, 0.5%, and 1.0% NCT, respectively, which matches the killing test results. NCT demonstrated broad-spectrum microbicidal activity in the milieu of CF mucus at concentrations ideal for clinical use. The microbicidal activity of NCT in ASM was even stronger than that in buffer solution; this was particularly pronounced for fungi. This finding can be explained largely by the formation, through transhalogenation, of monochloramine, which rapidly penetrates pathogens.
Collapse
|
36
|
Firmida MC, Marques EA, Leão RS, Pereira RHV, Rodrigues ERA, Albano RM, Folescu TW, Bernardo V, Daltro P, Capone D, Lopes AJ. Achromobacter xylosoxidans infection in cystic fibrosis siblings with different outcomes: Case reports. Respir Med Case Rep 2017; 20:98-103. [PMID: 28138423 PMCID: PMC5256675 DOI: 10.1016/j.rmcr.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction The clinical relevance of Achromobacter xylosoxidans infection in cystic fibrosis (CF) remains controversial. This emerging agent in CF has been associated with increased lung inflammation, more frequent exacerbations and more severe lung disease. We describe a pair of CF siblings chronically colonized by the same multilocus genotype of A. xylosoxidans with different clinical courses, and assess whether this species may have developed any virulence traits and antimicrobial resistance that could have contributed to their singular outcomes. Case presentation Two siblings were positive for the F508del and Y1092X mutations, and were chronically colonized by Pseudomonas aeruginosa and Staphylococcus aureus. The female patient had a more severe CF phenotype and faster clinical deterioration than her brother. Her pulmonary function and computed tomography scan lesions were worse than those of her brother, and both parameters progressively declined. She died at 14 years of age, when he was 18. All isolates of A. xylosoxidans were biofilm producers. Achromobacter xylosoxidans showed less swarming motility in the female patient. Conclusions Biofilm production and diminution of motility allow persistence. Only swarming motility differed between the isolates recovered from the two siblings, but this finding is not sufficient to explain the different clinical outcomes despite their similar genotypes. Modifier genes, unknown environmental factors and female gender can partially explain differences between these siblings. We were unable to correlate any microbiological findings with their clinical courses, and more translational studies are necessary to decrease the gap of knowledge between laboratory and clinical data to promote better clinical interventions.
Collapse
Affiliation(s)
- Mônica Cássia Firmida
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 3º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil; Bacteriology Laboratory, University Hospital Pedro Ernesto, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, 1º andar, Vila Isabel, 20551-030, Rio de Janeiro, Brazil
| | - Robson Souza Leão
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 3º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil; Bacteriology Laboratory, University Hospital Pedro Ernesto, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, 1º andar, Vila Isabel, 20551-030, Rio de Janeiro, Brazil
| | - Rosana Helena Vicente Pereira
- Department of Microbiology, Immunology and Parasitology, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 3º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| | - Elenice Rosa Aguiar Rodrigues
- Bacteriology Laboratory, University Hospital Pedro Ernesto, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, 1º andar, Vila Isabel, 20551-030, Rio de Janeiro, Brazil
| | - Rodolpho Mattos Albano
- Department of Biochemistry, School of Medical Sciences, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, 4º andar, Vila Isabel, 20551-030, Rio de Janeiro, Brazil
| | - Tania Wrobel Folescu
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil; Department of Pediatric Pulmonology, Fernandes Figueira Institute, Av. Rui Barbosa, 716, Flamengo, Rio de Janeiro, Brazil
| | - Vagner Bernardo
- Department of Biochemistry, School of Medical Sciences, State University of Rio de Janeiro, Boulevard 28 de Setembro, 77, 4º andar, Vila Isabel, 20551-030, Rio de Janeiro, Brazil
| | - Pedro Daltro
- Department of Radiology, Fernandes Figueira Institute, Av. Rui Barbosa, 716, Flamengo, Rio de Janeiro, Brazil
| | - Domenico Capone
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Av. Prof. Manoel de Abreu, 444, 2º andar, Vila Isabel, 20550-170, Rio de Janeiro, Brazil
| |
Collapse
|