1
|
Ma X, Chen N, Zeng P, He Y, Zhang T, Lu Y, Li Z, Xu J, You J, Zheng Y, Wang L, Luo M, Wu J. Hypericum Perforatum-Derived Exosomes-Like Nanovesicles: A Novel Natural Photosensitizer for Effective Tumor Photodynamic Therapy. Int J Nanomedicine 2025; 20:1529-1541. [PMID: 39925681 PMCID: PMC11806729 DOI: 10.2147/ijn.s510339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/25/2025] [Indexed: 02/11/2025] Open
Abstract
Background Natural photosensitizers hold potential for photodynamic therapy (PDT) but are often limited by poor visible light absorption. Plant-derived exosome-like nanovesicles offer an innovative platform for enhancing photosensitizer performance. Methods Hypericum perforatum-derived nanovesicles (HPDENs) were characterized using electron microscopy, dynamic light scattering, and proteomic and miRNA sequencing. High-performance liquid chromatography confirmed hypericin content. PDT efficacy was assessed in vitro and in vivo. Results HPDENs exhibited robust photosensitizing properties, generating reactive oxygen species (ROS) through both Type I and Type II pathways upon light activation. In vitro, HPDENs showed light dose-dependent cytotoxicity against human melanoma cells, characterized by elevated ROS production and apoptosis induction. In vivo, HPDEN-mediated PDT significantly suppressed tumor growth and induced extensive tumor necrosis, with no observable toxicity to major organs. Conclusion HPDENs represent a novel plant-derived photosensitizer with dual ROS generation pathways and significant therapeutic efficacy, providing a promising platform for enhancing photodynamic therapy.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ni Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peiyuan Zeng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yuqian He
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Tao Zhang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yu Lu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ziyu Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jin Xu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
2
|
von Hellfeld R, Christie C, Derous D, Morimoto J. Super food or super toxic? Turmeric and spirulina as culprits for the toxic effects of food dyes in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104600. [PMID: 38145823 DOI: 10.1016/j.jinsphys.2023.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Prolonged exposure to food dyes, even for those considered safe for consumption, are known to have toxic effects. However, we lack a proper understanding of the underlying compounds that are responsible for the observed toxicity. Here, we tested the toxic effects of three common commercially available natural food dyes (red, green, blue), and their main ingredients (turmeric and spirulina), on Drosophila melanogaster oviposition, larval development, and larval foraging behaviour. Larval development and egg-to-adult survival was significantly impacted by blue and green dyes. These effects were recapitulated when flies were fed with increasing concentrations of turmeric and spirulina, suggesting that turmeric is a toxic component of the food dye. Red dye, which contains neither turmeric or spirulina, had little impact on fly health and behaviour. Green and blue food dyes decreased egg laying, an effect similar to that observed in increasing concentrations of turmeric and, to a lesser extent, spirulina. When given a choice, larvae preferred to feed as follows: control > red > blue > green diet patches, a pattern inversely correlating with the previously observed toxicity. Our results show that, despite turmeric being often considered a super food, it can have toxic effects that the impact health of organisms.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Craig Christie
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK
| | - Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK; Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3FX, UK; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 82590-300, Brazil.
| |
Collapse
|
3
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Gan S, Wu Y, Zhang X, Zheng Z, Zhang M, Long L, Liao J, Chen W. Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels 2023; 9:gels9040286. [PMID: 37102898 PMCID: PMC10137920 DOI: 10.3390/gels9040286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Phototherapeutic agent-based phototherapies activated by light have proven to be safe modalities for the treatment of various malignant tumor indications. The two main modalities of phototherapies include photothermal therapy, which causes localized thermal damage to target lesions, and photodynamic therapy, which causes localized chemical damage by generated reactive oxygen species (ROS). Conventional phototherapies suffer a major shortcoming in their clinical application due to their phototoxicity, which primarily arises from the uncontrolled distribution of phototherapeutic agents in vivo. For successful antitumor phototherapy, it is essential to ensure the generation of heat or ROS specifically occurs at the tumor site. To minimize the reverse side effects of phototherapy while improving its therapeutic performance, extensive research has focused on developing hydrogel-based phototherapy for tumor treatment. The utilization of hydrogels as drug carriers allows for the sustained delivery of phototherapeutic agents to tumor sites, thereby limiting their adverse effects. Herein, we summarize the recent advancements in the design of hydrogels for antitumor phototherapy, offer a comprehensive overview of the latest advances in hydrogel-based phototherapy and its combination with other therapeutic modalities for tumor treatment, and discuss the current clinical status of hydrogel-based antitumor phototherapy.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
6
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
7
|
Photodynamic and antibacterial studies of template-assisted Fe 2O 3-TiO 2 nanocomposites. Photodiagnosis Photodyn Ther 2022; 40:103064. [PMID: 35963529 DOI: 10.1016/j.pdpdt.2022.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Fe2O3-TiO2 (FT) nanocomposites were successfully synthesized by template-assisted precipitation reaction using Polyvinylpyrrolidone-Polyethylene glycol (PVP-PEG), Tween-80 (T-80) and Cetyltrimethylammomium bromide (CTAB) as templates. The prepared nanocomposites were characterized by XRD, SEM, EDX, UV-DRS, FT-IR, and FT-Raman spectroscopic analysis. The photohemolysis studies were done in human erythrocytes and the cell viability studies were done in HeLa cell lines under the irradiation of an LED light source. The photodynamic studies were performed under two different experimental conditions, such as varying concentrations as well as a time of irradiation. The nanocomposites exhibit significant photodynamic activity via the generation of reactive oxygen species (ROS) under the light source. The results show that the PVP-PEG-assisted Fe2O3-TiO2 (FT-PVP-PEG) nanocomposite has more potential for photodynamic activity in the presence of an LED light source. Also, the antibacterial effect of the samples was investigated against gram-negative bacteria (Escherichia coli). Among all nanocomposites, FT-PVP-PEG shows remarkable antibacterial activity against E. coli. Moreover, the template-assisted nanocomposites protect the biomolecules from the toxicity generated by the magnetic nanoparticles (NPs). The template-assisted FT nanocomposites for the field of photodynamic activity have been experimentally shown for the first time.
Collapse
|
8
|
Sun B, Guo X, Feng M, Cao S, Yang H, Wu H, van Stevendaal MHME, Oerlemans RAJF, Liang J, Ouyang Y, van Hest JCM. Responsive Peptide Nanofibers with Theranostic and Prognostic Capacity. Angew Chem Int Ed Engl 2022; 61:e202208732. [PMID: 36574602 PMCID: PMC9544150 DOI: 10.1002/anie.202208732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) is a highly promising therapeutic modality for cancer treatment. The development of stimuli-responsive photosensitizer nanomaterials overcomes certain limitations in clinical PDT. Herein, we report the rational design of a highly sensitive PEGylated photosensitizer-peptide nanofiber (termed PHHPEG6 NF) that selectively aggregates in the acidic tumor and lysosomal microenvironment. These nanofibers exhibit acid-induced enhanced singlet oxygen generation, cellular uptake, and PDT efficacy in vitro, as well as fast tumor accumulation, long-term tumor imaging capacity and effective PDT in vivo. Moreover, based on the prolonged presence of the fluorescent signal at the tumor site, we demonstrate that PHHPEG6 NFs can also be applied for prognostic monitoring of the efficacy of PDT in vivo, which would potentially guide cancer treatment. Therefore, these multifunctional PHHPEG6 NFs allow control over the entire PDT process, from visualization of photosensitizer accumulation, via actual PDT to the assessment of the efficacy of the treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Xiaoping Guo
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Mei Feng
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Shoupeng Cao
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Haowen Yang
- Laboratory of ImmunoengineeringDepartment of Biomedical EngineeringInstitute for Complex Molecular SystemsEindhoven University of Technology5600 MBEindhovenThe Netherlands
| | - Hanglong Wu
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Marleen H. M. E. van Stevendaal
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Roy A. J. F. Oerlemans
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| | - Jinning Liang
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Yiqiang Ouyang
- Laboratory Animal CenterGuangxi Medical UniversityNanningGuangxi 530021China
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute of Complex Molecular SystemsEindhoven University of TechnologyHelix, P. O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
9
|
Effect of intermittency factor on singlet oxygen and PGE2 formation in azulene-mediated photodynamic therapy: A preliminary study. Biochem Biophys Rep 2022; 31:101290. [PMID: 35677631 PMCID: PMC9168118 DOI: 10.1016/j.bbrep.2022.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs. Different intermittency factors can stimulate ROS formation differently. Relative high intermittency factor with azulene induces high ROS formation. Relative high intermittency factor with low energy density inhibits PGE2 production. Azulene-based photodynamic therapy suppresses inflammation.
Collapse
|
10
|
van Hest J, Sun B, Guo X, Feng M, Cao S, Yang H, Wu H, van Stevendaal MH, Oerlemans RA, Liang J, Ouyang Y. Responsive Peptide Nanofibers with Theranostic and Prognostic Capacity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jan van Hest
- Eindhoven University of Technology Department of Bio-medical engineering and Chemical engineering & Chemistry building 14, Helix (STO 3.39) Het Kranenveld 5600 MB Eindhoven NETHERLANDS
| | - Bingbing Sun
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Xiaoping Guo
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Mei Feng
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Shoupeng Cao
- Eindhoven University of Technology: Technische Universiteit Eindhoven biomedical engineering NETHERLANDS
| | - Haowen Yang
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Hanglong Wu
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | | | - Roy A.J.F. Oerlemans
- Eindhoven University of Technology: Technische Universiteit Eindhoven Biomedical Engineering NETHERLANDS
| | - Jinning Liang
- Guangxi Medical University Laboratory Animal Center CHINA
| | - Yiqiang Ouyang
- Guangxi Medical University Laboratory Animal Center CHINA
| |
Collapse
|
11
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
12
|
Liu X, Zhang H. New Generation of Photosensitizers Based on Inorganic Nanomaterials. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2451:213-244. [PMID: 35505021 DOI: 10.1007/978-1-0716-2099-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advance of nanomaterials and nanotechnology has offered new possibilities for photodynamic therapy (PDT). Large amount of different kinds of sensitizers and targeting moieties can now be loaded in nanometer's volume, which not only results in the improvement of the efficacy of PDT, but also enables the control of image-guided PDT with unprecedented precision and variation. This chapter shall overview the recently most studied inorganic nanomaterials for PDT.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China.,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Sciences , Changchun, China
| | - Hong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China. .,Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Abstract
The aim of this review paper is to concentrate on the use and application of photonics in dentistry. More than one hundred review and research articles were comprehensively analysed in terms of applications of photonics in dentistry, including surgical applications, as well as dental biomaterials, diagnosis and treatments. In biomedical engineering, various fields, such as biology, chemistry, material and physics, come together in to tackle a disease/disorder either as a diagnostic tool or an option for treatment. Engineers believe that biophotonics is the application of photonics in medicine, whereas photonics is simply a technology for creating and connecting packets of light energy, known as photons. This review paper provides a comprehensive discussion of its main elements, such as photoelasticity, interferometry techniques, optical coherence tomography, different types of lasers, carbon nanotubes, graphene and quantum dots.
Collapse
|
14
|
Biological Evaluation of Photodynamic Effect Mediated by Nanoparticles with Embedded Porphyrin Photosensitizer. Int J Mol Sci 2022; 23:ijms23073588. [PMID: 35408948 PMCID: PMC8998438 DOI: 10.3390/ijms23073588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Clinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects. In this in vitro study, the photodynamic effect of TPP photosensitizers embedded in polystyrene nanoparticles was observed on the non-tumor NIH3T3 cell line and HeLa and G361 tumor cell lines. The efficacy was evaluated by viability assay, while reactive oxygen species production, changes in membrane mitochondrial potential, and morphological changes before and after treatment were imaged by atomic force microscopy. The tested nanoparticles with embedded TPP were found to become cytotoxic only after activation by blue light (414 nm) due to the production of reactive oxygen species. The photodynamic effect observed in this evaluation was significantly higher in both tumor lines than the effect observed in the non-tumor line, and the resulting phototoxicity depended on the concentration of photosensitizer and irradiation time.
Collapse
|
15
|
A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line. Saudi J Biol Sci 2022; 29:154-160. [PMID: 35002403 PMCID: PMC8717146 DOI: 10.1016/j.sjbs.2021.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 12/19/2022] Open
Abstract
Iron oxides have become increasingly popular for their use as a diagnostic and therapeutic tool in oncology. This study aimed to improve pharmacological valuable of Fe3O4, which may be use to diagnosis colorectal cancers (CRC). Here, we have developed chitosan (CS) coated Fe3O4 through a cost-effective procedure. First, we determined the characterization of OA-C-Fe3O4 by FTIR, UV–Vis spectra, and TEM. Then, we evaluated the photodynamic therapeutic (PDT) activity of OA-C-Fe3O4 in human colorectal carcinoma cell lines (HCT 116). Current results revealed that the light-induced enhanced reactive oxygen species (ROS) activity of the nanoparticles (NPs) and caused cell death via the activity of caspase 9/3. The in vitro magnetic resonance imaging (MRI) experiments in (HCT 116) and human embryonic kidney cells (HEK 293) illustrated that nanohybrid is an effective MRI contrasting agents for the diagnosis of colorectal cancer.
Collapse
|
16
|
Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods Mol Biol 2022; 2451:261-283. [PMID: 35505023 DOI: 10.1007/978-1-0716-2099-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.
Collapse
Affiliation(s)
- Thiago Teixeira Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Zhu S, Song Y, Pei J, Xue F, Cui X, Xiong X, Li C. The application of photodynamic inactivation to microorganisms in food. Food Chem X 2021; 12:100150. [PMID: 34761205 PMCID: PMC8566761 DOI: 10.1016/j.fochx.2021.100150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Nowadays, food safety issues have drawn increased attention due to the continual occurrence of infectious diseases caused by foodborne pathogens, which is an important factor causing food safety hazard. Meanwhile, the emergence of an increasing number of antibiotic-resistant pathogens is a worrisome phenomenon. Therefore, it is imperative to find new technologies with low-cost to inactivate pathogenic microorganisms and prevent cross-contamination. Compared with traditional preservatives, photodynamic inactivation (PDI) has emerged as a novel and promising strategy to eliminate foodborne pathogens with advantages such as non-toxic and low microbial resistance, which also meets the demand of current consumers for green treatment. Over the past few years, reports of using this technology for food safety have increased rapidly. This review summarizes recent progresses in the development of photodynamic inactivation of foodborne microorganisms. The mechanisms, factors influencing PDI and the application of different photosensitizers (PSs) in different food substrates are reviewed.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliu Pei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaowen Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
18
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
19
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
20
|
Liu Z, Xie Z, Li W, Wu X, Jiang X, Li G, Cao L, Zhang D, Wang Q, Xue P, Zhang H. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology 2021; 19:160. [PMID: 34051801 PMCID: PMC8164771 DOI: 10.1186/s12951-021-00903-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive or minimally-invasive treatment which applies photosensitizers (PSs) to create reactive oxygen species (ROS) exposed to light trigger to destroy cancer cells. PDT can activate host anti-tumor immune responses but not powerful enough to kill metastatic tumors. Because of its carrier advantage, imaging, and therapeutic function together with enhanced permeability and retention (EPR) effect, nano-materials have already been used in photo-immunotherapy. Herein, photodynamic immunotherapy (PDIT) based on nanotechnology seems to be a hopeful new form of cancer therapy. In this article, we firstly summarize the recent development in photodynamic immunotherapy based on nanotechnology. ![]()
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongjian Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Wenting Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xinqiang Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiwen Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collaborative Innovation Centre for Optoelectronic Science & Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China. .,Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
21
|
Khan AA, Alanazi AM, Alsaif N, Al-anazi M, Sayed AY, Bhat MA. Potential cytotoxicity of silver nanoparticles: Stimulation of autophagy and mitochondrial dysfunction in cardiac cells. Saudi J Biol Sci 2021; 28:2762-2771. [PMID: 34025162 PMCID: PMC8117033 DOI: 10.1016/j.sjbs.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
In the present study, we elucidated the potential cytotoxicity of AgNPs in H9c2 rat cardiomyoblasts and assessed the underlying toxicological manifestations responsible for their toxicity thereof. The results indicated that the exposure of AgNPs to H9c2 cardiac cells decreased cell viability in a dose-dependent manner and caused cell cycle arrest followed by induction of apoptosis. The AgNPs treated cardiac cells showed a generation of reactive oxygen species (ROS) and mitochondrial dysfunction where mitochondrial ATP was reduced and the expression of AMPK1α increased. AgNPs also induced ROS-mediated autophagy in H9c2 cells. There was a significant time-dependent increase in intracellular levels of Atg5, Beclin1, and LC3BII after exposure to AgNPs, signifying the autophagic response in H9c2 cells. More importantly, the addition of N-acetyl-L-cysteine (NAC) inhibited autophagy and significantly reduced the cytotoxicity of AgNPs in H9c2 cells. The study highlights the prospective toxicity of AgNPs on cardiac cells, collectively signifying a potential health risk.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Al-anazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Y.A. Sayed
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Al-Kheraif AA, Khan AA, AlMufareh NA, Divakar DD, Dewan H, Al-Jadani S, Alrahimi J, Hassoubah S, Allemailem KS. Photodynamic antimicrobial chemotherapy through photosensitizers loaded poly-l-glycolic acid on Candida albicans in denture lining material: Release, biological and hardness study. Photodiagnosis Photodyn Ther 2021; 33:102134. [PMID: 33307237 DOI: 10.1016/j.pdpdt.2020.102134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
AIM The aim of this in-vitro study was to formulate poly-l-glycolic acid nanoparticles loaded with methylene blue (PLGA-MB) and to characterize their physicochemical features, photosensitizer-release kinetics and antimicrobial efficacy against Candida albicans (C. albicans) after incorporating in polymethyl methacrylate (PMMA) denture lining materials. MATERIAL AND METHODS MB-PLGA nanoparticles were synthesized according to the modified nanoprecipitation method. The morphological characterization of the nanoparticles was studied under scanning and transmission electron microscope. Particle size, surface charge, polydispersity index (PDI) and MB release were evaluated. The effect of 660 nm semiconductor AlGaInP diode laser on C. albicans was studied in vitro. The PMMA was weighed and PLGA free and PLGA-MB were added in the lining material according to the weight percentage as 2.0 wt.% and 5.0 wt.% and tested for the diameter of the inhibition zones of C. albicans growth and shore A hardness. RESULTS Homogenous spherical nanoparticles with round morphology with size ranging between 60-80 nm were observed while PLGA-MB were seen to have irregular structure within the nanoparticle under TEM. PLGA-Free was larger in size than the loaded PLGA (∼62 nm) that evidenced reduction in size by adding the MB photosensitizer. PDI recordings reduced from 0.198 for the PLGA-Free nanoparticles to 0.164 for the PLGA-MB nanoparticles. The entrapment efficiency of MB inside PLGA showed an average percentage of ∼75 % uptake that resulted in the overall loading of ∼15 %. An overall inhibition of 78 %, 41 % and 28 % of C. albicans growth was seen with a concentration of 0.1, 0.5 and 1.0 μg/mL, respectively. The application of PLGA nanoparticles loaded with MB evidenced >75 % of C. albicans. MB incorporation did not lead to a clinically relevant change on shore A hardness. CONCLUSION PLGA loaded with MB is believed to have promising target therapy against C. albicans in denture soft lining materials in terms of PACT in vitro. The synergistic association between PLGA and MB proved enhanced antifungal activity. PLGA-MB could be an important tool in nanobiotechnology and photodynamic therapy for novel formulations with higher antimicrobial efficacy and improved drug delivery from denture soft lining materials.
Collapse
Affiliation(s)
- Abdulaziz A Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh 11433, Saudi Arabia.
| | - Aftab Ahmed Khan
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh 11433, Saudi Arabia
| | - Nawaf Abdulrahman AlMufareh
- Specialist in Department of Pediatric Dentistry & Children with Special Health Care Needs, Ministry of Health, Riyadh, 62523, Saudi Arabia
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P. O. Box: 10219, Riyadh 11433, Saudi Arabia
| | - Harisha Dewan
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeedah Al-Jadani
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Jehan Alrahimi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahira Hassoubah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Synthesis of Graphene Quantum Dots Decorated With Se, Eu and Ag As Photosensitizer and Study of Their Potential to Use in Photodynamic Therapy. J Fluoresc 2021; 31:551-557. [PMID: 33464456 DOI: 10.1007/s10895-020-02674-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
GQDs decorated with europium (Eu), silver (Ag) and selenium (Se) at molar ratios of 0.1%, 0.3% and 0.5% were produced for the first time at different temperatures of 180 °C, 200 °C and 220 °C. Surface passivation was carried out with polyethylene glycol (PEG) to increase the intensity of photoluminescence (PL) of the produced samples. The prepared quantum dots were characterized by X-Ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmission electron microscopy (TEM), PL and ultraviolet-visible spectroscopy. GQDs synthesized at 180 °C and decorated with Se (0.3%) had maximum PL intensity along with long lasted afterglow over 90 min compared with other samples. Excitation wavelength at 360 nm produced maximum emission at 600-900 nm and resulted in high singlet oxygen (1O 2) generation which makes it a good candidate for photodynamic therapy applications.
Collapse
Affiliation(s)
- M Roeinfard
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - M Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
- Physics Department, University of Kashan, Kashan, Iran.
| | - M Darroudi
- Modern Science and Technology Department, University of Medical Sciences, Mashhad, Iran
- Nuclear Medicine Research Center, University of Medical Sciences, Mashhad, Iran
| | - A Khorsand Zak
- Nanotechnology Laboratory, University of Esfarayen, Esfarayen, Iran
| | - E Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Physics Department, University of Kashan, Kashan, Iran
| |
Collapse
|
24
|
Kulkarni MB, Goel S. Microfluidic devices for synthesizing nanomaterials—a review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abcca6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Chelminiak-Dudkiewicz D, Rybczynski P, Smolarkiewicz-Wyczachowski A, Mlynarczyk DT, Wegrzynowska-Drzymalska K, Ilnicka A, Goslinski T, Marszałł MP, Ziegler-Borowska M. Photosensitizing potential of tailored magnetite hybrid nanoparticles functionalized with levan and zinc (II) phthalocyanine. APPLIED SURFACE SCIENCE 2020; 524:146602. [PMID: 32382204 PMCID: PMC7204711 DOI: 10.1016/j.apsusc.2020.146602] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 05/08/2023]
Abstract
Phototherapies, including photodynamic therapy (PDT), have been widely used in the treatment of various diseases, especially for cancer. However, there is still a lack of effective, safe photosensitizers that would be well tolerated by patients. The combination of several methods (like phototherapy and hyperthermia) constitutes a modern therapeutic approach, which demands new materials based on components that are non-toxic without irradiation. Therefore, this study presents the synthesis and properties of novel, advanced nanomaterials in which the advantage features of the magnetic nanoparticles and photoactive compounds were combined. The primary purpose of this work was the synthesis of magnetic nanoparticles coated with biocompatible and antitumor polysaccharide - levan, previously unknown from scientific literature, and the deposition of potent photosensitizer - zinc(II) phthalocyanine on their surface. In order to better characterize the nature of the coating covering the magnetic core, the atomic force microscope analysis, a contact angle measurement, and the mechanical properties of pure levan and its blend with zinc(II) phthalocyanine films were investigated. This magnetic nanomaterial revealed the ability to generate singlet oxygen upon exposure to light. Finally, preliminary toxicity of obtained nanoparticles was tested using the Microtox® test - with and without irradiation.
Collapse
Affiliation(s)
| | - Patryk Rybczynski
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | | | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | | | - Anna Ilnicka
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Michał P. Marszałł
- Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, dr A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
26
|
Pucelik B, Sułek A, Dąbrowski JM. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213340] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17:657-674. [DOI: 10.1038/s41571-020-0410-2] [Citation(s) in RCA: 723] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
|
28
|
Cramer GM, Moon EK, Cengel KA, Busch TM. Photodynamic Therapy and Immune Checkpoint Blockade
†. Photochem Photobiol 2020; 96:954-961. [DOI: 10.1111/php.13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Gwendolyn M. Cramer
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Edmund K. Moon
- Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Keith A. Cengel
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Theresa M. Busch
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
29
|
Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Preparation and characterization of selenium‐decorated graphene quantum dots with high afterglow for application in photodynamic therapy. LUMINESCENCE 2020; 35:891-896. [DOI: 10.1002/bio.3798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022]
Affiliation(s)
- M. Roeinfard
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Zahedifar
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Darroudi
- Modern Science and Technology DepartmentUniversity of Medical Sciences Mashhad I.R. Iran
- Nuclear Medicine Research CenterUniversity of Medical Sciences Mashhad I.R. Iran
| | - A. Khorsand Zak
- Nanotechnology LaboratoryEsfarayen University of Technology Esfarayen I.R. Iran
| | - E. Sadeghi
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| |
Collapse
|
30
|
Liu Y, Xu C, Teng L, Liu HW, Ren TB, Xu S, Lou X, Guo H, Yuan L, Zhang XB. pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chem Commun (Camb) 2020; 56:1956-1959. [DOI: 10.1039/c9cc09790b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A pH activated photodynamic/photothermal sensitizer applicable to tumor ablation.
Collapse
|
31
|
Ghosn Y, Kamareddine MH, Tawk A, Elia C, El Mahmoud A, Terro K, El Harake N, El-Baba B, Makdessi J, Farhat S. Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia. Technol Cancer Res Treat 2019; 18:1533033819853241. [PMID: 31138064 PMCID: PMC6542119 DOI: 10.1177/1533033819853241] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative disease where cells of myeloid linage display a t(9;22) chromosomal translocation leading to the formation of the BCR/ABL fusion gene and the continuous activation of tyrosine kinases. This malignancy has a peak incidence at 45 to 85 years, accounting for 15% of all leukemias in adults. Controlling the activity of tyrosine kinase became the main strategy in chronic myeloid leukemia treatment, with imatinib being placed at the forefront of current treatment protocols. New approaches in future anticancer therapy are emerging with nanomedicine being gradually implemented. Setting through a thorough survey of published literature, this review discusses the use of inorganic nanoparticles in chronic myeloid leukemia therapy. After an introduction on the basics of chronic myeloid leukemia, a description of the current treatment modalities of chronic myeloid leukemia and drug-resistance mechanisms is presented. This is followed by a general view on the applications of nanostrategies in medicine and then a detailed breakdown of inorganic nanocarriers and their uses in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Youssef Ghosn
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | | | - Antonios Tawk
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- 2 Faculty of Engineering, Chemical Engineering, University of Balamand, El-Koura, Lebanon
| | - Ahmad El Mahmoud
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Khodor Terro
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Nadia El Harake
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Bachar El-Baba
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- 3 Department of Hematology - Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- 4 Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
32
|
Walter AB, Simpson J, Jenkins JL, Skaar EP, Jansen ED. Optimization of optical parameters for improved photodynamic therapy of Staphylococcus aureus using endogenous coproporphyrin III. Photodiagnosis Photodyn Ther 2019; 29:101624. [PMID: 31866531 DOI: 10.1016/j.pdpdt.2019.101624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND It has recently been shown that endogenous photosensitization of Gram-positive bacteria is achieved through the accumulation of the heme precursor coproporphyrin III and not protoporphyrin IX, as was previously assumed. As previous studies have operated under this assumption, the efficacy of optimal targeting of the absorption peaks of coproporphyrin III has not been explored. METHODS Staphylococcus aureus was endogenously photosensitized through the addition of either the small molecule VU0038882, aminolevulinic acid, or both. The efficacy of five different LEDs whose wavelengths target different coproporphyrin III absorption peaks were determined in vitro. Based on these in vitro measurements, the effectiveness of utilizing these LEDs to treat a skin infection was predicted using a Monte Carlo simulation to estimate the fluence rates and resulting bacterial reductions as a function of depth. RESULTS Optimal targeting of the Soret band provided a 4.7-log improvement as compared to previously utilized wavelengths. Activation of the Q-bands was found to provide similar cytotoxic effects but required significantly larger doses of light. Despite near sterilization in vitro, it was predicted that Soret band targeted light would only provide at least a 2 log-reduction up to 430 μm into the skin while Q-band targeted light could remain effective up to 1 mm in depth. Multiplexing these different wavelengths was found to provide a further 0.5-1.0 log-reduction in bacterial viability. CONCLUSIONS Accurate targeting of coproporphyrin III has shown that endogenous photodynamic therapy has the potential to be further developed into an effective treatment of skin and soft tissue infections caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Alec B Walter
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA
| | - Jocelyn Simpson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Logan Jenkins
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
33
|
Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int J Biol Macromol 2019; 156:1584-1599. [PMID: 31790741 DOI: 10.1016/j.ijbiomac.2019.11.210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The novelty of the present work looks in the synthesis of aqueous dispersed selenium nanoparticles (Se NPs) using gamma rays with the aid of various natural macromolecules such as citrus pectin (CP), sodium alginate (Alg), chitosan (CS) and aqueous extract of fermented fenugreek powder (AEFFP) using Pleurotus ostreatus for investigating their impact in vitro toward carcinoma cell. The synthesized Se NPs were characterized by XRD, UV-Vis., DLS, HRTEM, SEM, EDX and FTIR. Nucleation and growth mechanisms were also discussed. The factorial design was applied to examine the importance of multiple parameters on Se NPs production with a special focus on temperature and gamma rays influences. FTIR spectrum exhibited the existence of several functional groups in Se NPs-capping macromolecules. Results revealed that Se NPs' size was dramatically-influenced by the type of stabilizer, precursors concentration, pH and the absorbed gamma rays dose. The current research reported the promising antitumor application of Se NPs against Ehrlich Ascites Carcinoma (EAC) and human Colon Adenocarcinoma (CACO) in vitro. The proliferation of EAC was significantly-hindered by Se NPs-CS (38.0 μg/ml) at 60 kGy (IC50 = 23.12%) and Se NPs-AEFFP (19.00 μg/ml) at 15 kGy (IC50 = 7.21%). Also, Se NPs control the generation of CACO cells, IC50 was recorded as 25.32% for Se NPs-CS (38.0 μg/ml) and 8.57% for Se NPs-AEFFP (19.00 μg/ml).
Collapse
|
34
|
Theranostic nanocomplex of gold-decorated upconversion nanoparticles for optical imaging and temperature-controlled photothermal therapy. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Ramírez-García G, De la Rosa E, López-Luke T, Panikar SS, Salas P. Controlling trapping states on selective theranostic core@shell (NaYF 4:Yb,Tm@TiO 2-ZrO 2) nanocomplexes for enhanced NIR-activated photodynamic therapy against breast cancer cells. Dalton Trans 2019; 48:9962-9973. [PMID: 31074748 DOI: 10.1039/c9dt00482c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic and immune therapies are innovative medical strategies against cancer, and their integration with upconversion nanoparticles (UCNPs) can improve the diagnosis and treatment of the disease. The UCNPs convert the deep penetrating near-infrared (NIR) light into higher energy emissions, allowing the imaging and detection of malignant cells and the simultaneous energy transfer for activation of the photosensitizers. In this work, the UCNPs were coated with a photocatalytic TiO2/ZrO2 shell and an increase of oxygen defects (VO) was observed as a result of the partial substitution of Ti4+ by Zr4+ ions in the crystalline lattice of TiO2. Such defects act as trapping states improving charge separation and then reducing the recombination rate of the electron-hole pairs (e-/h+) generated upon resonant energy transfer from the donor (UCNPs) to acceptors (shell). The overall results are the enhancement of both ROS production and the emission band centered at 801 nm which is useful for tracking cells at the deep tissue level. However, an excess of those defects produces deleterious effects on both processes as a result of charge migration. The specificity against HER2 positive breast cancer was provided by bioconjugation with the monoclonal antibody trastuzumab. After administration of the synthesized NaYF4:Yb,Tm@TiO2/ZrO2-trastuzumab theranostic nanocomplex doped with an optimal ZrO2 molar concentration (25%) and subsequent exposure to 975 nm light (0.71 W cm-2) during 5 minutes, HER2-positive SKBr3 breast cancer cells were suppressed with 88% drop of the cell viability, 28% higher than UCNPs decorated with a pure TiO2 shell.
Collapse
Affiliation(s)
- Gonzalo Ramírez-García
- Cátedras CONACyT-Centro de Investigación en Química Aplicada, COITTEC, Saltillo, Coahuila 25294, Mexico.
| | - Elder De la Rosa
- Universidad De La Salle Bajío, Campus Campestre, León, Guanajuato 37150, Mexico.
| | - Tzarara López-Luke
- Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58030, Mexico
| | - Sandeep S Panikar
- Universidad De La Salle Bajío, Campus Campestre, León, Guanajuato 37150, Mexico. and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ, A.C.), Medical and Pharmaceutical Biotechnology Department. 800, Av. Normalistas, Guadalajara, Jalisco 44270, Mexico
| | - Pedro Salas
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico
| |
Collapse
|
36
|
Girichev GV, Tverdova NV, Giricheva NI, Savelyev DS, Ol'shevskaya VA, Ageeva TA, Zaitsev AV, Koifman OI. Geometric and electronic structures of 5,10,15,20-tetraphenylporphyrinato Palladium(II) and Zinc(II): Phenomenon of Pd(II) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Ramírez-García G, Panikar SS, López-Luke T, Piazza V, Honorato-Colin MA, Camacho-Villegas T, Hernández-Gutiérrez R, De la Rosa E. An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. NANOSCALE 2018; 10:10154-10165. [PMID: 29785440 DOI: 10.1039/c8nr01512k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy represents a very attractive therapeutic tool considered to be effective, minimally invasive and minimally toxic. However, conventional photodynamic therapy actually has two main constraints: the limited penetration depth of visible light needed for its activation, and the lack of selectivity. Considering this, this work reports the synthesis and evaluation of a novel nanoconjugate for imaging and selective photodynamic therapy against HER2-positive breast cancer, a particularly aggressive form of the disease. It was demonstrated that upon 975 nm near infrared light exposure, the red emission of the NaYF4:Yb,Er up-conversion nanoparticles (UCNPs) can be used for optical imaging and simultaneously represent the source for the excitation of a covalently bound zinc tetracarboxyphenoxy phthalocyanine (ZnPc), a photosensitizer that in turn transfers energy to ground state molecular oxygen to produce cytotoxic singlet oxygen. The specificity of our nanoconjugates was achieved by immunoconjugation with Trastuzumab (Tras), a specific monoclonal antibody for selective detection and treatment of HER2-overexpressing malignant breast cancer cells. Selective tracking of SKBR-3 HER2-positive cells was verified by confocal microscopy analysis, and the photodynamic therapy effect was considerably improved when Trastuzumab was incorporated into the nanoconjugate, the UCNPs-ZnPc-Tras being practically inert in the absence of infrared light exposure but reducing the HER2-positive cell viability up to 21% upon 5 min of the irradiation. This theranostic nanoconjugate represents a valuable alternative for HER2-positive breast cancer imaging and selective photodynamic therapy.
Collapse
Affiliation(s)
- Gonzalo Ramírez-García
- Centro de Investigaciones en Óptica, Nanophotonics and Advanced Materials Lab., A.P. 1-948, León, Guanajuato 37150, México.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tamai K, Mizushima T, Wu X, Inoue A, Ota M, Yokoyama Y, Miyoshi N, Haraguchi N, Takahashi H, Nishimura J, Hata T, Matsuda C, Doki Y, Mori M, Yamamoto H. Photodynamic Therapy Using Indocyanine Green Loaded on Super Carbonate Apatite as Minimally Invasive Cancer Treatment. Mol Cancer Ther 2018; 17:1613-1622. [PMID: 29654066 DOI: 10.1158/1535-7163.mct-17-0788] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/26/2017] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
Minimally invasive treatment is getting more and more important in an aging society. The purpose of this study was to explore the possibility of ICG loaded on super carbonate apatite (sCA) nanoparticles as a novel photodynamic therapy (PDT) against cancers. Using colon cancer cells, ICG uptake and anti-tumor effects were examined between the treatments of ICG and sCA-ICG. Reactive oxygen species (ROS) production and temperature rise were also evaluated to explore the underlying mechanism. Atomic force microscopy revealed that the size of sCA-ICG ranged from 10 to 20 nm. In aqueous solution with 0.5% albumin, the temperature increase after laser irradiation was 27.1°C and 23.1°C in sCA-ICG and ICG, respectively (control DW: 5.7°C). A significant increase in ROS generation was noted in cell cultures treated with sCA-ICG plus irradiation compared with those treated with ICG plus irradiation (P < 0.01). Uptake of ICG in the tumor cells significantly increased in sCA-ICG compared with ICG in vitro and in vivo The fluorescence signals of ICG in the tumor, liver, and kidney faded away in both treatments by 24 hours. Finally, the HT29 tumors treated with sCA-ICG followed by irradiation exhibited drastic tumor growth retardation (P < 0.01), whereas irradiation of tumors after injection of ICG did not inhibit tumor growth. This study shows that sCA is a useful vehicle for ICG-based PDT. Quick withdrawal of ICG from normal organs is unique to sCA-ICG and contrasts with the other nanoparticles remaining in normal organs for a long time. Mol Cancer Ther; 17(7); 1613-22. ©2018 AACR.
Collapse
Affiliation(s)
- Koki Tamai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Xin Wu
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Minori Ota
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita city, Osaka, Japan. .,Division of Health Sciences, Department of Molecular Pathology, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
39
|
Scalfi-Happ C, Zhu Z, Graefe S, Wiehe A, Ryabova A, Loschenov V, Wittig R, Steiner RW. Chlorin Nanoparticles for Tissue Diagnostics and Photodynamic Therapy. Photodiagnosis Photodyn Ther 2018; 22:106-114. [PMID: 29567384 DOI: 10.1016/j.pdpdt.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Organic crystalline nanoparticles (NPs) are not fluorescent due to the crystalline structure of the flat molecules organized in layers. In earlier experiments with Aluminum Phthalocyanine (AlPc)-derived NPs, the preferential uptake and dissolution by macrophages was demonstrated [3]. Therefore, inflamed tissue or cancer tissue with accumulated macrophages may exhibit specific fluorescence in contrast to healthy tissue which does not fluoresce. The present study addresses the photobiological effects of NP generated from Temoporfin (mTHPC), a clinically utilized photosensitizer belonging to the chlorin family. METHODS In-vitro investigations addressing uptake, dissolution and phototoxicity of mTHPC NP vs. the liposomal mTHPC formulation Foslip were performed using J774A.1 macrophages and L929 fibroblasts. For total NP uptake analysis, the cells were lysed, the nanoparticles dissolved and the fluorescence quantified. The intracellular molecular dissolution was measured by flow cytometry. Fluorescence microscopy served for controlling intracellular localization of the dissolved fluorescing molecules. Reaction mechanisms after PDT (mitochondrial activity, apoptosis) were analyzed using fluorescent markers in cell-based assays and flow cytometry. RESULTS Organic crystalline NP of different size were produced from mTHPC raw material. NP were internalized more efficiently in J774A.1 macrophages when compared to L929 fibroblasts, whereas uptake and fluorescence of Foslip was similar between the cell lines. NP dissolution correlated with internalization levels for larger particles in the range of 200-500 nm. Smaller particles (45 nm in diameter) were taken up at high levels in macrophages, but were not dissolved efficiently, resulting in comparatively low intracellular fluorescence. Whereas Foslip was predominantly localized in membranes, NP-mediated fluorescence also co-localized with acidic vesicles, suggesting endocytosis/phagocytosis as a major uptake mechanism. In macrophages, phototoxicity of NPs was stronger than in fibroblasts, even exceeding Foslip when administered in identical amounts. In both cell lines, phototoxicity correlated with mitochondrial depolarization and enhanced activation of caspase 3. CONCLUSIONS Due to their preferential uptake/dissolution in macrophages, mTHPC NP may have potential for the diagnosis and photodynamic treatment of macrophage-associated disorders such as inflammation and cancer.
Collapse
Affiliation(s)
- Claudia Scalfi-Happ
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany.
| | - Zhenxin Zhu
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Susanna Graefe
- Biolitec Research GmbH, Otto-Schott-Straße 15, 07745 Jena, Germany
| | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Straße 15, 07745 Jena, Germany
| | - Anastasia Ryabova
- Natural Science Center of A.M. Prokhorov General Physics Institute, RAS, Vavilovstr. 38, 119991 Moscow, Russia; Biospec JSC, Krimskiy val. 8, 119049 Moscow, Russia
| | - Victor Loschenov
- Natural Science Center of A.M. Prokhorov General Physics Institute, RAS, Vavilovstr. 38, 119991 Moscow, Russia; Biospec JSC, Krimskiy val. 8, 119049 Moscow, Russia; National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Rainer Wittig
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Rudolf W Steiner
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany; National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| |
Collapse
|
40
|
Lanzilotto A, Kyropoulou M, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. J Biol Inorg Chem 2018; 23:109-122. [PMID: 29218642 PMCID: PMC5756573 DOI: 10.1007/s00775-017-1514-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/12/2017] [Indexed: 11/28/2022]
Abstract
A new water-soluble photocatalyst for singlet oxygen generation is presented. Its absorption extends to the red part of the spectrum, showing activity up to irradiation at 660 nm. Its efficiency has been compared to that of a commercial analogue (Rose Bengal) for the oxidation of L-methionine. The quantitative and selective oxidation was promising enough to encapsulate the photocatalyst in polymersomes. The singlet oxygen generated in this way can diffuse and remain active for the oxidation of L-methionine outside the polymeric compartment. These results made us consider the use of these polymersomes for antimicrobial applications. E. coli colonies were subjected to oxidative stress using the photocatalyst-polymersome conjugates and nearly all the colonies were damaged upon extensive irradiation while under the same red LED light irradiation, liquid cultures in the absence of porphyrin or porphyrin-loaded polymersomes were unharmed.
Collapse
Affiliation(s)
- Angelo Lanzilotto
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland.
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058, Basel, Switzerland.
| |
Collapse
|
41
|
Gao T, Bi A, Yang S, Liu Y, Kong X, Zeng W. Applications of Nanoparticles Probes for Prostate Cancer Imaging and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1096:99-115. [PMID: 30324350 DOI: 10.1007/978-3-319-99286-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is the most common type of cancer in men with high morbidity and mortality. However, the current treatment with drugs often leads to chemotherapy resistance. It is known that the multi-disciplines research on molecular imaging is very helpful for early diagnosing, staging, restaging and precise treatment of PCa. In the past decades, the tumor-specific targeted drugs were developed for the clinic to treat prostate cancer. Among them, the emerging nanotechnology has brought about many exciting novel diagnosis and treatments systems for PCa. Nanotechnology can greatly enhance the treatment activity of PCa and provide novel theranostics platform by utilizing the unique physical/chemical properties, targeting strategy, or by loading with imaging/therapeutic agents. Herein, this chapter focuses on state-of-art advances in imaging and diagnosing PCa with nanomaterials and highlights the approaches used for functionalization of the targeted biomolecules, and in the treatment for various aspects of PCa with multifunctional nanoparticles, nanoplatforms and nanodelivery system.
Collapse
Affiliation(s)
- Tang Gao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Shuiqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Molecular Imaging Research Center, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China. .,Molecular Imaging Research Center, Central South University, Changsha, China.
| |
Collapse
|
42
|
Hosseinzadeh R, Khorsandi K, Jahanshiri M. Combination photodynamic therapy of human breast cancer using salicylic acid and methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:198-203. [PMID: 28499173 DOI: 10.1016/j.saa.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/29/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of combination therapy with methylene blue (MB) assisted photodynamic therapy (PDT) and salicylic acid (SA) as chemo-therapy anticancer agent. The binding of salicylic acid to methylene blue was studied using spectrophotometric method. The results show the 1:2 complex formation between SA and MB. The binding constants and related Gibbs free energies o are obtained (Kb1=183.74, Kb2=38.13 and ∆Gb1°=12.92kJ·mol-1, ∆Gb2°=9.02kJ·mol-1). The spectrophotometric results show the improvement in solubilization and reduction prevention for SA and MB in the complex form. These results are in agreements with cellular experiments. The dark toxicity measurements represent the improve efficacy of chemotherapy using combination of SA and MB. The photodynamic therapy results (using red LED as light source (630nm; power density: 30mWcm-2)) show that the cancer cell killing efficiency of MB increases in the combination with SA due to reduction prevention and stabilization of monomeric form of MB.
Collapse
|
43
|
Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 19:212-220. [DOI: 10.1016/j.pdpdt.2017.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/01/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
|
44
|
Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. NANOPHOTONICS 2017; 6:853-879. [PMID: 29226063 PMCID: PMC5720168 DOI: 10.1515/nanoph-2016-0189] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Collapse
Affiliation(s)
- Nasim Kashef
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Tan G, Wang Q, Zhang H, Cheng J, Wang Z, Qu F, Guo C, Jin Y. The in vitro photodynamic activity, photophysical and photochemical research of a novel chlorophyll-derived photosensitizer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Natesan S, Krishnaswami V, Ponnusamy C, Madiyalakan M, Woo T, Palanisamy R. Hypocrellin B and nano silver loaded polymeric nanoparticles: Enhanced generation of singlet oxygen for improved photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:935-946. [PMID: 28532114 DOI: 10.1016/j.msec.2017.03.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
A nanoparticulate photodynamic approach was employed with an objective to achieve enhanced production of singlet oxygen (1O2), for the management of posterior segment eye diseases like age related macular degeneration. The hypocrellin B (HB) loaded poly lactide-co-glycolide nanoparticle formulations were incorporated with nano silver (HBS-NPs). The optimized HBS-NPs contained 2.60±0.06mg/mL of HB and showed (i) 135.6 to 828.2nm size range, and (ii) negative zeta potential with a narrow polydispersity index. The DSC thermograms suggested the amorphous nature of HB inside the HBS-NPs. With the average encapsulation efficiency of 92.9±1.79%, the drug release from the HBS-NPs followed a biphasic pattern with an initial burst of 3.50% during first 8h followed by a sustained release of 47.82% within 3days. The interaction between nano silver and HB as assessed by the increase in spectral intensity of Raman spectrum demonstrates that HB may be attached over the nano silver. Generation of reactive oxygen species (ROS) by HBS-NPs was significantly higher than that of HB/HB-NPs. The singlet oxygen generating efficiency assessed using EPR spectrometer follows the order of nano silver>HB-NPs>pure HB drug solution>HBS-NPs. The HBS-NPs had a concentration and time dependent phototoxicity on A549 (human adeno lung carcinoma) cells in the presence of light providing a superior phototoxic effect (82.2% at 50μM) at 2h irradiation. The CAM treated with HBS-NPs showed a significant anti-angiogenic effect compared to a blank formulation. In vivo biodistribution studies revealed that intravenous administration of HBS-NPs lead into significant exposure to the posterior segment of the eye. This proof of principle study demonstrates that HB based nanoparticles may be a valuable new tool for application in ocular photodynamic therapy for the treatment of AMD in future.
Collapse
Affiliation(s)
- Subramanian Natesan
- Laboratory for Lipid Based Systems, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamilnadu, India.
| | - Venkateshwaran Krishnaswami
- Laboratory for Lipid Based Systems, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamilnadu, India
| | - Chandrasekar Ponnusamy
- Laboratory for Lipid Based Systems, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamilnadu, India
| | | | | | - Rajaguru Palanisamy
- Department of Biotechnology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
47
|
Hosseinzadeh R, Khorsandi K. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis Photodyn Ther 2017; 18:284-294. [PMID: 28300724 DOI: 10.1016/j.pdpdt.2017.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/04/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of current study was to use methylene blue-curcumin ion pair nanoparticles and single dyes as photosensitizer for comparison of photodynamic therapy (PDT) efficacy on MDA-MB-231 cancer cells, also various light sources effect on activation of photosensitizer (PS) was considered. METHOD Ion pair nanoparticles were synthesized using opposite charge ions precipitation and lyophilized. The PDT experiments were designed and the effect of PSs and light sources (Red LED (630nm; power density: 30mWcm-2) and blue LED (465nm; power density: 34mWcm-2)) on the human breast cancer cell line were examined. The effect of PS concentration (0-75μg.mL-1), incubation time, irradiation time and light sources, and priority in irradiation of blue or red lights were determined. RESULTS The results show that the ion pairing of methylene blue and curcumin enhance the photodynamic activity of both dyes and the cytotoxicity of ion pair nanoparticles on the MDA-231 breast cancer cell line. Blue and red LED light sources were used for photo activation of photosensitizers. The results demonstrated that both dyes can activate using red light LED better than blue light LED for singlet oxygen producing. CONCLUSION Nano scale ion pair precipitating of methylene blue-curcumin enhanced the cell penetrating and subsequently cytotoxicity of both dyes together.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Medical Laser Research Center, ACECR, Tehran, Iran; Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
48
|
Penha CB, Bonin E, da Silva AF, Hioka N, Zanqueta ÉB, Nakamura TU, de Abreu Filho BA, Campanerut-Sá PAZ, Mikcha JMG. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.07.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Dabrzalska M, Janaszewska A, Zablocka M, Mignani S, Majoral JP, Klajnert-Maculewicz B. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity. Molecules 2017; 22:E345. [PMID: 28241491 PMCID: PMC6155338 DOI: 10.3390/molecules22030345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/01/2017] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.
Collapse
Affiliation(s)
- Monika Dabrzalska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Maria Zablocka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45 Rue Des Saints Pères, 75006 Paris, France.
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination CNRS, 205 Route de Narbonne, 31077 Toulouse CEDEX 4, France.
- Institut National Polytechnique de Toulouse, Université de Toulouse, UPS, 31077 Toulouse CEDEX 4, France.
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
- Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
| |
Collapse
|
50
|
Gulzar A, Yang P, He F, Xu J, Yang D, Xu L, Jan MO. Bioapplications of graphene constructed functional nanomaterials. Chem Biol Interact 2017; 262:69-89. [DOI: 10.1016/j.cbi.2016.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|