1
|
Lin S, Wang Y. Enhancing therapeutic antibody production through amino acid-induced pH shift in Protein A affinity chromatography. Front Bioeng Biotechnol 2025; 13:1567923. [PMID: 40256782 PMCID: PMC12006759 DOI: 10.3389/fbioe.2025.1567923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Protein aggregation, denaturation, and loss of potency often occur during Protein A chromatography due to the harsh acidic conditions required for antibody elution. This study presents a pH shift-based elution strategy that effectively mitigates these issues by introducing amino acid-based elution buffers to create a milder elution environment and increase the final elution pH. By optimizing the combination of pre-elution and elution buffers, the elution pool pH was increased up to 7.2, significantly enhancing protein stability. Among various elution buffers tested, amino acids with non-polar or polar uncharged side chains-such as leucine, glycine, and serine-exhibited the most effective pH transition, resulting in 0.5-2.9 units pH shifts. Additionally, the use of 50 mM Bis-Tris, pH 7.2 as a pre-elution buffer demonstrated the highest capacity for stabilizing pH shifts. The scalability of this approach was validated using a 10 cm diameter column, where yields remained comparable to small-scale experiments, and elution pool stability was able to be maintained for 72 h at 26°C. These findings establish pH-shifting elution as a scalable, cost-effective method for improving the recovery and stability of low pH-unstable therapeutic antibodies in Protein A chromatography.
Collapse
Affiliation(s)
- Senzhu Lin
- Downstream Process Development (DSPD), WuXi Biologics, Shanghai, China
| | | |
Collapse
|
2
|
Zimmermann I, Eilts F, Galler AS, Bayer J, Hober S, Berensmeier S. Immobilizing calcium-dependent affinity ligand onto iron oxide nanoparticles for mild magnetic mAb separation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00864. [PMID: 39691100 PMCID: PMC11647653 DOI: 10.1016/j.btre.2024.e00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024]
Abstract
Current downstream processing of monoclonal antibodies (mAbs) is limited in throughput and requires harsh pH conditions for mAb elution from Protein A affinity ligands. The use of an engineered calcium-dependent ligand (ZCa) in magnetic separation applications promises improvements due to mild elution conditions, fast processability, and process integration prospects. In this work, we synthesized and evaluated three magnetic nanoparticle types immobilized with the cysteine-tagged ligand ZCa-cys. Ligand homodimers were physically immobilized onto bare iron oxide nanoparticles (MNP) and MNP coated with tetraethyl orthosilicate (MNP@TEOS). In contrast, ZCa-cys was covalently and more site-directedly immobilized onto MNP coated with (3-glycidyloxypropyl)trimethoxysilane (MNP@GPTMS) via a preferential cysteine-mediated epoxy ring opening reaction. Both coated MNP showed suitable characteristics, with MNP@TEOS@ZCa-cys demonstrating larger immunoglobulin G (IgG) capacity (196 mg g -1) and the GPTMS-coated particles showing faster magnetic attraction and higher IgG recovery (88 %). The particles pave the way for the development of calcium-dependent magnetic separation processes.
Collapse
Affiliation(s)
- Ines Zimmermann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Friederike Eilts
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Anna-Sophia Galler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Jonas Bayer
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, 85748 Garching, Germany
| |
Collapse
|
3
|
Pargas-Ferrer E, Chang SLL, García K, Azaharez E, Palacio J, Mena MC, Boggiano-Ayo T. Strategy to mitigate aggregation during Protein A chromatography and low pH virus inactivation for a nivolumab biosimilar candidate. J Chromatogr A 2025; 1743:465698. [PMID: 39837187 DOI: 10.1016/j.chroma.2025.465698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Protein A chromatography represents the most prevalent methodology for the capture of monoclonal antibodies. The use of a low pH elution buffer from Protein A has been observed to contribute to product aggregation, particularly in the case of IgG4 antibodies, such as nivolumab. This paper presents a well-defined strategy for addressing this issue. Initial experiments were conducted at scale-down Protein A affinity chromatography to evaluate the use of glycine-HCL and sodium citrate as elution buffers at pH values of 3.25, 3.5, and 3.75. Subsequently, a scale-down screening was conducted to assess the efficacy of various additives in Protein A elution. These included 10 % (w/v) mannitol, 50 mM histidine, 50 mM sucrose, 10 % (v/v) sorbitol, 50 mM arginine, 50 mM trehalose, 0.02 % (v/v) polysorbate 80, 1.5 M urea, and 1 M MgCl2. The three most stabilizing additives were evaluated at the laboratory scale, and the one that demonstrated the greatest ability to maintain the minimum high molecular weight aggregate over time was selected. Lastly, the selected additive was subjected to testing at elevated IgG concentrations during purification. Nivolumab exhibits a markedly pH-dependent propensity for aggregation, and the relative efficacy of glycine-HCL and sodium citrate in mitigating anti-PD1 aggregation within the pH range of 3.25 to 3.75 is subject to variation. The use of buffer 100 mM sodium citrate, pH 3.5 was found to be beneficial. All additives evaluated contribute to reducing nivolumab aggregation, albeit in different ways and to varying degrees of effectiveness. Elution buffer with mannitol, polysorbate 80, or MgCl₂ resulted in a monomer control ratio of approximately twice that observed in the absence of additives. However, the stabilizing role of mannitol was confirmed to be particularly significant, as the ratio of aggregation formed at a low pH was reduced to ≤ 2 % from 15 % in all evaluated scales and at different protein concentrations, while maintaining high biological activity.
Collapse
Affiliation(s)
- Elizabeth Pargas-Ferrer
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Sum Lai Lozada Chang
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Katia García
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Ernesto Azaharez
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Julio Palacio
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Midalys Cabrera Mena
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Tammy Boggiano-Ayo
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| |
Collapse
|
4
|
Goodarzi MM, Jalalirad R. Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review. Biotechnol Bioeng 2025; 122:5-29. [PMID: 39290077 DOI: 10.1002/bit.28846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed-mode chromatography (MMC) resins for launching selective, orthogonal, non-affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step-by-step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product-related impurities (e.g., aggregates, charge variants, fragments), host-related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| |
Collapse
|
5
|
Wang X, Ingavat N, Liew JM, Dzulkiflie N, Loh HP, Kok YJ, Bi X, Yang Y, Zhang W. Effects of molecule hydrophobicity and structural flexibility of appended bispecific antibody on Protein A chromatography. J Chromatogr A 2024; 1731:465206. [PMID: 39053253 DOI: 10.1016/j.chroma.2024.465206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Appended bispecific antibody (aBsAb) with two single chain variable fragments (scFv) linked at the c-terminus of its heavy chains is one of the promising formats in bispecific therapeutics. The presence of hydrophobic and flexible scFv fragments render aBsAb molecules higher molecule hydrophobicity and structural flexibility compared to monoclonal antibody (mAb), thus making its purification more challenging. We set out to investigate how the unique molecular properties of aBsAb affect its performance on Protein A chromatography. We showed that aBsAb has a high propensity for chromatography-induced aggregation due to its high molecule hydrophobicity, and this couldn't be improved by the addition of common chaotropic salts. Moreover, the presence of chaotropic salts, such as arginine hydrochloride (Arg-HCl), retarded aBsAb elution during Protein A chromatography rather than facilitating which was widely observed in mAb Protein A elution. Nevertheless, we were able to overcome the aggregation issue by optimizing elution condition and improved aBsAb purity from 29 % to 93 % in Protein A eluate with a high molecular weight (HMW) species of less than 5 %. We also showed that the high molecular flexibility of aBsAb leads to different hydrodynamic sizes of the aBsAb molecule post Protein A elution, neutralization, and re-acidification, which are pH dependent. This is different from mAbs where their sizes do not change post neutralization even with re-exposure to acid. The above unique observations of aBsAb in Protein A chromatography were clearly explained from the perspectives of its high molecular hydrophobicity and structural flexibility.
Collapse
Affiliation(s)
- Xinhui Wang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nattha Ingavat
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jia Min Liew
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Han Ping Loh
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yee Jiun Kok
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xuezhi Bi
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
6
|
Wysor SK, Synoground BF, Harcum SW, Marcus RK. In-line buffer exchange in the coupling of Protein A chromatography with weak cation exchange chromatography for the determination of charge variants of immunoglobulin G derived from chinese hamster ovary cell cultures. J Chromatogr A 2024; 1718:464722. [PMID: 38359690 DOI: 10.1016/j.chroma.2024.464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Benjamin F Synoground
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Sarah W Harcum
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
7
|
Sirisereephap K, Tamura H, Lim JH, Surboyo MDC, Isono T, Hiyoshi T, Rosenkranz AL, Sato-Yamada Y, Domon H, Ikeda A, Hirose T, Sunazuka T, Yoshiba N, Okada H, Terao Y, Maeda T, Tabeta K, Chavakis T, Hajishengallis G, Maekawa T. A novel macrolide-Del-1 axis to regenerate bone in old age. iScience 2024; 27:108798. [PMID: 38261928 PMCID: PMC10797555 DOI: 10.1016/j.isci.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Aging is associated with increased susceptibility to chronic inflammatory bone loss disorders, such as periodontitis, in large part due to the impaired regenerative potential of aging tissues. DEL-1 exerts osteogenic activity and promotes bone regeneration. However, DEL-1 expression declines with age. Here we show that systemically administered macrolide antibiotics and a non-antibiotic erythromycin derivative, EM-523, restore DEL-1 expression in 18-month-old ("aged") mice while promoting regeneration of bone lost due to naturally occurring age-related periodontitis. These compounds failed to induce bone regeneration in age-matched DEL-1-deficient mice. Consequently, these drugs promoted DEL-1-dependent functions, including alkaline phosphatase activity and osteogenic gene expression in the periodontal tissue while inhibiting osteoclastogenesis, leading to net bone growth. Macrolide-treated aged mice exhibited increased skeletal bone mass, suggesting that this treatment may be pertinent to systemic bone loss disorders. In conclusion, we identified a macrolide-DEL-1 axis that can regenerate bone lost due to aging-related disease.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hikaru Tamura
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meircurius Dwi Condro Surboyo
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Andrea L. Rosenkranz
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yurie Sato-Yamada
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
8
|
Wang FAS, Fan Y, Chung WK, Dutta A, Fiedler E, Haupts U, Peyser J, Kuriyel R. Evaluation of mild pH elution protein A resins for antibodies and Fc-fusion proteins. J Chromatogr A 2024; 1713:464523. [PMID: 38041974 DOI: 10.1016/j.chroma.2023.464523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Protein A affinity chromatography is widely used as a capture step for monoclonal antibodies (mAb) and molecules that possess an Fc-domain, such as fusion proteins and bispecific antibodies. However, the use of low pH (3.0-4.0) to elute the molecule and achieve acceptable yield (>85 %) can lead to product degradation (e.g. fragmentation, aggregation) for molecules sensitive to low pH. In this paper, we describe a comprehensive evaluation of two protein A resins with ligands designed to elute at a milder pH as a result of modified sequences in their Fc and VH3 binding regions. One of the evaluated resins has been made commercially available by Purolite and named Praesto Jetted A50 HipH. Results demonstrated that Jetted A50 HipH could elute the Fc-fusion protein and most mAbs evaluated with an elution pH at or above 4.6. Elution and wash optimization determined run conditions for high recovery (>90 % monomer yield), reduction of high molecular weight (HMW) species (>50 %), and significant host cell protein (HCP) clearance at the mildest elution pH possible. For a pH-stable mAb and a pH-sensitive fusion protein, cell culture material was purified with optimized conditions and demonstrated the mild elution pH resins' ability to purify product with acceptable yield, comparable or better impurity clearance, and significantly milder native eluate pH compared to traditional resins. The benefits of the mild elution pH resins were clearly exemplified for the pH-sensitive protein, where a milder elution buffer and native eluate pH resulted in only 2 % HMW in the eluate that remained stable over 48 h. In contrast, a traditional protein A resin requiring low pH elution led to eluate HMW levels of 8 %, which increased to 16 % over the same hold time. Additionally, these resins have high dynamic binding capacity and allow the use of traditional HCP washes. Therefore, Jetted A50 HipH is an ideal candidate for a platform protein A resin and provides flexibility for pH-sensitive proteins and stable mAbs, while preserving product quality, recovery, and seamless integration into a downstream process.
Collapse
Affiliation(s)
| | - Yamin Fan
- Process Biochemistry, Biogen, Cambridge, MA 02142, USA
| | | | - Amit Dutta
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| | | | | | - Jamie Peyser
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| | - Ralf Kuriyel
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| |
Collapse
|
9
|
Hada S, Burlakoti U, Kim KH, Han JS, Kim MJ, Kim NA, Jeong SH. A comprehensive evaluation of arginine and its derivatives as protein formulation stabilizers. Int J Pharm 2023; 647:123545. [PMID: 37871869 DOI: 10.1016/j.ijpharm.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
Arginine and its derivatives (such as arginine ethyl ester and acetyl arginine) have varying degrees of protein aggregation suppressor effect across different protein solutions. To understand this performance ambiguity, we evaluated the activity of arginine, acetyl arginine, and arginine ethyl ester for aggregation suppressor effect against human intravenous immunoglobulin G (IgG) solution at pH 4.8. Both arginine and its cationic derivative arginine ethyl ester in their hydrochloride salt forms significantly reduced the colloidal and conformational stability (reduced kd and Tm) of IgG. Consequently, the monomer content was decreased with an increase in subvisible particulates after agitation or thermal stress. Furthermore, compared to arginine, arginine ethyl ester with one more cationic charge and hydrochloride salt form readily precipitated IgG at temperatures higher than 25 °C. On the contrary, acetyl arginine, which mostly exists in a neutral state at pH 4.8, efficiently suppressed the formation of subvisible particles retaining a high amount of monomer owing to its higher colloidal and conformational stability. Concisely, the charged state of additives significantly impacts protein stability. This study demonstrated that contrary to popular belief, arginine and its derivatives may either enhance or suppress protein aggregation depending on their net charge and concentration.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Urmila Burlakoti
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ji Soo Han
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min Ji Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
10
|
Horie S, Mishiro K, Nishino M, Domae I, Wakasugi M, Matsunaga T, Kunishima M. Epitope-Based Specific Antibody Modifications. Bioconjug Chem 2023; 34:2022-2033. [PMID: 37861691 DOI: 10.1021/acs.bioconjchem.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Modified antibodies have essential roles in analytic, diagnostic, and therapeutic uses, and thus, these antibodies are required to have optimal physical and biological properties. Consequently, the development of methods for site-selective antibody modification is crucial. Herein, we used epitope-based affinity labeling to introduce a Fab region-selective antibody modification method. Although labeling that exploits the high affinity between an antibody and its epitope may appear straightforward, it remains challenging probably because of the loss of target affinity caused by modification around the epitope-binding site. By thoroughly screening the modifying agent structure, reaction conditions, and purification methods, we developed an efficient method for the selective modification of the Fab region of the antibody while maintaining the high affinity for the epitope.
Collapse
Affiliation(s)
- Saki Horie
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mio Nishino
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Inori Domae
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
11
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Calcium-dependent affinity ligands for the purification of antibody fragments at neutral pH. J Chromatogr A 2023; 1694:463902. [PMID: 36871527 DOI: 10.1016/j.chroma.2023.463902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The emerging formats of antibody fragments for biotherapeutics suffer from inadequate purification methods, delaying the advances of innovative therapies. One of the top therapeutic candidates, the single-chain variable fragment (scFv), requires the development of individual purification protocols dependent on the type of scFv. The available approaches that are based on selective affinity chromatography but do not involve the use of a purification tag, such as Protein L and Protein A chromatography, require acidic elution buffers. These elution conditions can cause the formation of aggregates and thereby greatly compromise the yield, which can be a major problem for scFvs that are generally unstable molecules. Due to the costly and time-consuming production of biological drugs, like antibody fragments, we have engineered novel purification ligands that elute the scFvs in a calcium-dependent manner. The developed ligands are equipped with new, selective binding surfaces and were shown to efficiently elute all captured scFv at neutral pH with the use of a calcium chelator. Further, two of three ligands were proven not to bind to the CDRs of the scFv, indicating potential for use as generic affinity ligands to a range of different scFvs. Multimerization and optimization of the most promising ligand led to a 3-fold increase in binding capacity for the hexamer compared to the monomer, in addition to highly selective and efficient purification of a scFv with >95% purity in a single purification step. This calcium-dependent ligand could revolutionize the scFv industry, greatly facilitating the purification procedure and improving the quality of the final product.
Collapse
|
13
|
Arakawa T, Tomioka Y, Nakagawa M, Sakuma C, Kurosawa Y, Ejima D, Tsumoto K, Akuta T. Non-Affinity Purification of Antibodies. Antibodies (Basel) 2023; 12:antib12010015. [PMID: 36810520 PMCID: PMC9944463 DOI: 10.3390/antib12010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Currently, purification of antibodies is mainly carried out using a platform technology composed primarily of Protein A chromatography as a capture step, regardless of the scale. However, Protein A chromatography has a number of drawbacks, which are summarized in this review. As an alternative, we propose a simple small-scale purification protocol without Protein A that uses novel agarose native gel electrophoresis and protein extraction. For large-scale antibody purification, we suggest mixed-mode chromatography that can in part mimic the properties of Protein A resin, focusing on 4-Mercapto-ethyl-pyridine (MEP) column chromatography.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, San Diego, CA 92130, USA
- Correspondence:
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Daisuke Ejima
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Sayama 350-1332, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| |
Collapse
|
14
|
Moreira AS, Bezemer S, Faria TQ, Detmers F, Hermans P, Sierkstra L, Coroadinha AS, Peixoto C. Implementation of Novel Affinity Ligand for Lentiviral Vector Purification. Int J Mol Sci 2023; 24:3354. [PMID: 36834764 PMCID: PMC9966744 DOI: 10.3390/ijms24043354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sandra Bezemer
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Tiago Q. Faria
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Frank Detmers
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Pim Hermans
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | | | - Ana Sofia Coroadinha
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
15
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Ren J, Xiong H, Huang C, Ji F, Jia L. An engineered peptide tag-specific nanobody for immunoaffinity chromatography application enabling efficient product recovery at mild conditions. J Chromatogr A 2022; 1676:463274. [DOI: 10.1016/j.chroma.2022.463274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
17
|
Luo H, Du Q, Qian C, Mlynarczyk M, Pabst TM, Damschroder M, Hunter AK, Wang WK. Formation of Transient Highly-Charged mAb Clusters Strengthens Interactions with Host Cell Proteins and Results in Poor Clearance of Host Cell Proteins by Protein A Chromatography. J Chromatogr A 2022; 1679:463385. [DOI: 10.1016/j.chroma.2022.463385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
|
18
|
UV/Vis-based process analytical technology to improve monoclonal antibody and host cell protein separation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Nakauchi Y, Nishinami S, Murakami Y, Ogura T, Kano H, Shiraki K. Opalescence Arising from Network Assembly in Antibody Solution. Mol Pharm 2022; 19:1160-1167. [PMID: 35274955 DOI: 10.1021/acs.molpharmaceut.1c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opalescence of therapeutic antibody solutions is one of the concerns in drug formulation. However, the mechanistic insights into the opalescence of antibody solutions remain unclear. Here, we investigated the assembly states of antibody molecules as a function of antibody concentration. The solutions of bovine gamma globulin and human immunoglobulin G at around 100 mg/mL showed the formation of submicron-scale network assemblies. The network assembly resulted in the appearance of opalescence with a transparent blue color without the precipitates of antibodies. Furthermore, the addition of trehalose and arginine, previously known to act as protein stabilizers and protein aggregation suppressors, was able to suppress the opalescence arising from the network assembly. These results will provide an important information for evaluating and improving protein formulations.
Collapse
Affiliation(s)
- Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Yusuke Murakami
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Toshihiko Ogura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Hideaki Kano
- Department of Chemistry, Kyusyu University, 744, Motooka, Nishi-ku, Fukuoka-shi 819-0395, Fukuoka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
20
|
Nishinami S, Arakawa T, Shiraki K. Classification of protein solubilizing additives by fluorescence assay. Int J Biol Macromol 2022; 203:695-702. [PMID: 35090940 DOI: 10.1016/j.ijbiomac.2022.01.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Aromatic interaction plays a crucial role in controlling protein interaction by additives. Here we investigated the interaction of protein salting-in (solubilizing) additives with tryptophan (Trp), tyrosine (Tyr), indole, and proteins based on their fluorescence spectra. Five salting-in additives, i.e., arginine (Arg), urea, guanidine (Gdn), ethylene glycol (EG), and magnesium chloride (MgCl2), showed different effects on the fluorescence properties of Trp and Tyr. Arg significantly reduced fluorescence intensity of Trp and Tyr, as was the case for glycine to a lesser extent. MgCl2 and calcium chloride (CaCl2) showed little effect on the aromatic fluorescence spectra. Gdn also showed little effect on the aromatic fluorescence spectra of Trp and Tyr even at high concentrations. EG increased the aromatic fluorescence intensity of Trp and Tyr with blue-shifted emission wavelength. Urea enhanced fluorescence of Trp and Tyr without altering emission wavelength. These results indicate that the protein solubilizing additives interact with aromatic groups differently.
Collapse
Affiliation(s)
- Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, San Diego, CA 92130, United States
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
21
|
Roshankhah R, Chen G, Xu Y, Butani N, Durocher Y, Pelton R, Ghosh R. Purification of monoclonal antibody using cation exchange z2 laterally-fed membrane chromatography – A potential alternative to protein A affinity chromatography. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Oki S, Nishinami S, Nakauchi Y, Ogura T, Shiraki K. Arginine and its Derivatives Suppress the Opalescence of an Antibody Solution. J Pharm Sci 2021; 111:1126-1132. [PMID: 34843741 DOI: 10.1016/j.xphs.2021.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Opalescence is a problem concerned with the stability of an antibody solution. It occurs when a high concentration of a protein is present. Arginine (Arg) is a versatile aggregation suppressor of proteins, which is among the candidates that suppress opalescence in antibody solutions. Here, we investigated the effect of various types of small molecular additives on opalescence to reveal the mechanism of Arg in preventing opalescence in antibody solution. As expected, Arg suppressed the opalescence of the immunoglobulin G (IgG) solution. Arg also concentration dependently inhibited the formation of microstructures in IgG molecules. Interestingly, the intrinsic fluorescence spectra of highly concentrated IgG solutions differed from those having low concentrations, even though IgG retained a distinct tertiary structure. Arginine ethylester was more effective in suppressing the opalescence of IgG solutions than Arg, whereas lysine and γ-guanidinobutyric acid were less effective. These results indicated that positively charged groups of both α-amine and guanidinium actively influence Arg as an additive for suppressing opalescence. Diols, which are the suppressors of the liquid-liquid phase separation of proteins were also effective in suppressing the opalescence. These results therefore provide insight into the control of opalescence of antibody solutions at high concentrations using solution additives.
Collapse
Affiliation(s)
- Shogo Oki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
23
|
Sánchez-Trasviña C, Flores-Gatica M, Enriquez-Ochoa D, Rito-Palomares M, Mayolo-Deloisa K. Purification of Modified Therapeutic Proteins Available on the Market: An Analysis of Chromatography-Based Strategies. Front Bioeng Biotechnol 2021; 9:717326. [PMID: 34490225 PMCID: PMC8417561 DOI: 10.3389/fbioe.2021.717326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 02/02/2023] Open
Abstract
Proteins, which have inherent biorecognition properties, have long been used as therapeutic agents for the treatment of a wide variety of clinical indications. Protein modification through covalent attachment to different moieties improves the therapeutic's pharmacokinetic properties, affinity, stability, confers protection against proteolytic degradation, and increases circulation half-life. Nowadays, several modified therapeutic proteins, including PEGylated, Fc-fused, lipidated, albumin-fused, and glycosylated proteins have obtained regulatory approval for commercialization. During its manufacturing, the purification steps of the therapeutic agent are decisive to ensure the quality, effectiveness, potency, and safety of the final product. Due to the robustness, selectivity, and high resolution of chromatographic methods, these are recognized as the gold standard in the downstream processing of therapeutic proteins. Moreover, depending on the modification strategy, the protein will suffer different physicochemical changes, which must be considered to define a purification approach. This review aims to deeply analyze the purification methods employed for modified therapeutic proteins that are currently available on the market, to understand why the selected strategies were successful. Emphasis is placed on chromatographic methods since they govern the purification processes within the pharmaceutical industry. Furthermore, to discuss how the modification type strongly influences the purification strategy, the purification processes of three different modified versions of coagulation factor IX are contrasted.
Collapse
Affiliation(s)
- Calef Sánchez-Trasviña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Miguel Flores-Gatica
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Daniela Enriquez-Ochoa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| |
Collapse
|
24
|
Stange C, Hafiz S, Korpus C, Skudas R, Frech C. Influence of excipients in Protein A chromatography and virus inactivation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122848. [PMID: 34274642 DOI: 10.1016/j.jchromb.2021.122848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023]
Abstract
The purification of monoclonal antibodies and Fc fusion proteins consist of several unit operations operated commonly as a platform approach, starting with Protein A chromatography. The first capture step, the following low pH virus inactivation, and subsequent ion exchange chromatography steps are mostly able to remove any impurities, like host cell proteins, aggregates, and viruses. The changes in pH and conductivity during these steps can lead to additional unwanted product species like aggregates. In this study, excipients with stabilizing abilities, like polyols, were used as buffer system additives to study their impact on several aspects during Protein A chromatography, low pH virus inactivation, and cation exchange chromatography. The results show that excipients, like PEG4000, influence antibody elution behavior, as well as host-cell protein elution behavior in a pH-gradient setup. Sugar excipients, like Sucrose, stabilize the antibody during low pH virus inactivation. All excipients tested show no negative impact on virus inactivation and dynamic binding capacity in a subsequent cation exchange chromatography step. This study indicates that excipients and, possibly excipient combinations, can have a beneficial effect on purification without harming subsequent downstream processing steps.
Collapse
Affiliation(s)
- Carolin Stange
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
| | - Supriyadi Hafiz
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | - Romas Skudas
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Christian Frech
- Institute for Biochemistry, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany.
| |
Collapse
|
25
|
Onogi S, Lee SH, Fruehauf KR, Shea KJ. Abiotic Stimuli-Responsive Protein Affinity Reagent for IgG. Biomacromolecules 2021; 22:2641-2648. [PMID: 34009976 DOI: 10.1021/acs.biomac.1c00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an approach for the discovery of protein affinity reagents (PARs). Abiotic synthetic hydrogel copolymers can be "tuned" for selective protein capture by the type and ratios of functional monomers included in their polymerization and by the polymerization conditions (i.e., pH). By screening libraries of hydrogel nanoparticles (NPs) containing charged and hydrophobic groups against a protein target (IgG), a stimuli-responsive PAR is selected. The robust carbon backbone synthetic copolymer is rapidly synthesized in the chemistry laboratory from readily available monomers. The production of the PAR does not require living cells and is free from biological contamination. The capture and release of the protein by the copolymer NP is reversible. IgG is sequestered from human serum at pH 6.5 and following a wash step, the purified protein is released by elevating the pH to 7.3. The binding and release of the protein occur without denaturation. The abiotic material functions as a selective PAR for the F(ab')2 domain of IgG for pull-down and immunoprecipitation experiments and for isolation and purification of proteins from complex biological mixtures.
Collapse
Affiliation(s)
- Shunsuke Onogi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Tsukuba Research Laboratories, JSR Corporation, Ibaraki 305-0841, Japan
| | - Shih-Hui Lee
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Krista R Fruehauf
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Abstract
Monoclonal antibodies are proteinaceous in nature and are subject to instability issues. Stability testing of monoclonal antibodies is a critical regulatory requirement in their development and commercialization as therapeutic biological molecules. This article reviews the numerous drug manufacturing processes such as: upstream processing, downstream purification and aseptic filling along with physical and chemical factors such as protein concentration, structure, pH, temperature, light, agitation, deamidation, oxidation, glycation leading to instabilities in monoclonal antibodies and it spotlights the variety of analytical techniques employed to investigate and generate information on stability studies and henceforth, helps in developing the stability-indicating methods. In addition, this paper aims to discuss the ICH regulatory guideline (s) for the stability assessment of biological products (Drug Substance and Drug Product).
Collapse
Affiliation(s)
- Harleen Kaur
- Analytical Sciences, Aurobindo Biologics, Hyderabad, India
| |
Collapse
|
27
|
Chen SW, Tan D, Yang YS, Zhang W. Investigation of the effect of salt additives in Protein L affinity chromatography for the purification of tandem single-chain variable fragment bispecific antibodies. MAbs 2021; 12:1718440. [PMID: 31983280 PMCID: PMC6999846 DOI: 10.1080/19420862.2020.1718440] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tandem single-chain variable fragment (scFv) bispecific antibodies (bsAb) are one of the most promising bsAb formats reported thus far. Yet, because of their increased aggregation propensity, high impurity content due to low expression level, smaller size and lack of the Fc region, it is challenging to isolate these products with high yield and purity within a limited number of purification steps in a scalable fashion. A robust purification process that is able to circumvent these issues is therefore of critical importance to allow effective isolation of this group of antibodies. We investigated the addition of sodium chloride (NaCl), calcium chloride (CaCl2), and L-arginine monohydrochloride (Arg·HCl) to the elution buffer of Protein L affinity chromatography, and propose here a novel mechanism for the modification of Protein L binding avidity that can lead to enhanced high molecular weight (HMW)-monomer separation, a preferential strengthening effect of the HMW-Protein L interaction compared to the monomer-Protein L interaction. In particular, we found Arg·HCl to be the most effective salt additive in terms of purity and recovery. The mechanism we propose is different from the widely reported chaotropic effect exerted by salt additives observed in Protein A chromatography. We also demonstrate here that a final eluate containing <1% HMW species and <100 ppm host cell proteins can be obtained within a two-step process with an overall yield of 65%, highlighting the promising suitability of Protein L affinity chromatography for the purification of kappa light chain-containing tandem scFv bsAb.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Darryl Tan
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Yuan Sheng Yang
- Animal Cell Technology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
28
|
Osuofa J, Henn D, Zhou J, Forsyth A, Husson SM. High-capacity multimodal anion-exchange membranes for polishing of therapeutic proteins. Biotechnol Prog 2021; 37:e3129. [PMID: 33475239 DOI: 10.1002/btpr.3129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
This contribution reports on a study using Purexa™-MQ multimodal anion-exchange (AEX) membranes for protein polishing at elevated solution conductivities. Dynamic binding capacities (DBC10 ) of bovine serum albumin (BSA), human immunoglobulins, and salmon sperm DNA (ss-DNA) are reported for various salt types, salt concentrations, flowrates, and pH. Using 1 mg/ml BSA, DBC10 values for Purexa™-MQ were >90 mg/ml at conductivities up to 15 mS/cm. The membranes maintained a high, salt-tolerant BSA DBC10 of 89.8 ± 2.7 (SD) over the course of 100 bind-elute cycles. Polishing studies with acidic and basic monoclonal antibodies at >2 kg/L loads showed that Purexa™-MQ had higher clearance of host cell proteins and aggregate species at high conductivity (13 mS/cm) and in the presence of phosphate than other commercial AEX media. Purexa™-MQ also had a high ss-DNA DBC10 of 50 mg/ml at conductivities up to 15 mS/cm, markedly outperforming other commercial products. In addition to the effectiveness of Purexa™-MQ for protein polishing at elevated solution conductivities, its unusually high binding capacity for ss-DNA indicates potential applications for plasmid DNA purification.
Collapse
Affiliation(s)
- Joshua Osuofa
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Daniel Henn
- Purilogics, LLC, Greenville, South Carolina, USA
| | | | - Anna Forsyth
- Purilogics, LLC, Greenville, South Carolina, USA
| | - Scott M Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
29
|
Imura Y, Tagawa T, Miyamoto Y, Nonoyama S, Sumichika H, Fujino Y, Yamanouchi M, Miki H. Washing with alkaline solutions in protein A purification improves physicochemical properties of monoclonal antibodies. Sci Rep 2021; 11:1827. [PMID: 33469121 PMCID: PMC7815873 DOI: 10.1038/s41598-021-81366-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Protein A affinity chromatography has been widely used for both laboratory scale purification and commercial manufacturing of monoclonal antibodies and Fc-fusion proteins. Protein A purification is specific and efficient. However, there still remain several issues to be addressed, such as incomplete clearance of impurities including host cell proteins, DNA, aggregates, etc. In addition, the effects of wash buffers in protein A purification on the physicochemical characteristics of antibodies have yet to be fully understood. Here we found a new purification protocol for monoclonal antibodies that can improve physicochemical properties of monoclonal antibodies simply by inserting an additional wash step with a basic buffer after the capture step to the conventional protein A purification. The effects of the alkaline wash on monoclonal antibodies were investigated in terms of physicochemical characteristics, yields, and impurity clearance. The simple insertion of an alkaline wash step resulted in protection of antibodies from irreversible aggregation, reduction in free thiols and impurities, an improvement in colloidal and storage stability, and enhanced yields. This new procedure is widely applicable to protein A affinity chromatography of monoclonal antibodies.
Collapse
Affiliation(s)
- Yuichi Imura
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan. .,Development Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA.
| | - Toshiaki Tagawa
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yuya Miyamoto
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| | - Satoshi Nonoyama
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hiroshi Sumichika
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yasuhiro Fujino
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.,Research Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA
| | - Masaya Yamanouchi
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hideo Miki
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| |
Collapse
|
30
|
Amritkar V, Adat S, Tejwani V, Rathore A, Bhambure R. Engineering Staphylococcal Protein A for high-throughput affinity purification of monoclonal antibodies. Biotechnol Adv 2020; 44:107632. [DOI: 10.1016/j.biotechadv.2020.107632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
|
31
|
Development of a Prototype Lateral Flow Immunoassay for Rapid Detection of Staphylococcal Protein A in Positive Blood Culture Samples. Diagnostics (Basel) 2020; 10:diagnostics10100794. [PMID: 33036348 PMCID: PMC7601020 DOI: 10.3390/diagnostics10100794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bloodstream infection (BSI) is a major cause of mortality in hospitalized patients worldwide. Staphylococcus aureus is one of the most common pathogens found in BSI. The conventional workflow is time consuming. Therefore, we developed a lateral flow immunoassay (LFIA) for rapid detection of S. aureus-protein A in positive blood culture samples. A total of 90 clinical isolates including 58 S. aureus and 32 non-S. aureus were spiked in simulated blood samples. The antigens were extracted by a simple boiling method and diluted before being tested using the developed LFIA strips. The results were readable by naked eye within 15 min. The sensitivity of the developed LFIA was 87.9% (51/58) and the specificity was 93.8% (30/32). When bacterial colonies were used in the test, the LFIA provided higher sensitivity and specificity (94.8% and 100%, respectively). The detection limit of the LFIA was 107 CFU/mL. Initial evaluation of the LFIA in 20 positive blood culture bottles from hospitals showed 95% agreement with the routine methods. The LFIA is a rapid, simple and highly sensitive method. No sophisticated equipment is required. It has potential for routine detection particularly in low resource settings, contributing an early diagnosis that facilitates effective treatment and reduces disease progression.
Collapse
|
32
|
Saito S, Namisaki H, Hiraishi K, Takahashi N, Iida S. Engineering a human IgG2 antibody stable at low pH. Protein Sci 2020; 29:1186-1195. [PMID: 32142185 DOI: 10.1002/pro.3852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid-induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti-2,4-dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti-DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain-namely, F300Y, V309L, and T339A (IgG2_YLA)-reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen-binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.
Collapse
Affiliation(s)
- Seiji Saito
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Hiroshi Namisaki
- Open Innovation Department, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Keiko Hiraishi
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Nobuaki Takahashi
- Research Functions Unit, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | - Shigeru Iida
- Antibody & Biologics Research Laboratories, R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| |
Collapse
|
33
|
Mazigi O, Schofield P, Langley DB, Christ D. Protein A superantigen: structure, engineering and molecular basis of antibody recognition. Protein Eng Des Sel 2019; 32:359-366. [PMID: 31641749 DOI: 10.1093/protein/gzz026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus interacts with the human immune system through the production of secreted factors. Key among these is protein A, a B-cell superantigen capable of interacting with both antibody Fc and VH regions. Here, we review structural and molecular features of this important example of naturally occurring bacterial superantigens, as well as engineered variants and their application in biotechnology.
Collapse
Affiliation(s)
- Ohan Mazigi
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, Sydney, NSW 2010, Australia
| | - Peter Schofield
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, Sydney, NSW 2010, Australia
| | - David B Langley
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
34
|
Brämer C, Tünnermann L, Gonzalez Salcedo A, Reif OW, Solle D, Scheper T, Beutel S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography. MEMBRANES 2019; 9:E159. [PMID: 31783640 PMCID: PMC6950724 DOI: 10.3390/membranes9120159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/20/2023]
Abstract
Monoclonal antibodies are conquering the biopharmaceutical market because they can be used to treat a variety of diseases. Therefore, it is very important to establish robust and optimized processes for their production. In this article, the first step of chromatography (Protein A chromatography) in monoclonal antibody purification was optimized with a focus on the critical elution step. Therefore, different buffers (citrate, glycine, acetate) were tested for chromatographic performance and product quality. Membrane chromatography was evaluated because it promises high throughputs and short cycle times. The membrane adsorber Sartobind® Protein A 2 mL was used to accelerate the purification procedure and was further used to perform a continuous chromatographic run with a four-membrane adsorber-periodic counter-current chromatography (4MA-PCCC) system. It was found that citrate buffer at pH 3.5 and 0.15 M NaCl enabled the highest recovery of >95% and lowest total aggregate content of 0.26%. In the continuous process, the capacity utilization of the membrane adsorber was increased by 20%.
Collapse
Affiliation(s)
- Chantal Brämer
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Lisa Tünnermann
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Alina Gonzalez Salcedo
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Oscar-Werner Reif
- Sartorius Stedim Biotech, August-Spindler-Straße 11, 37079 Göttingen, Germany;
| | - Dörte Solle
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Thomas Scheper
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Callinstraße 5, 30167 Hannover, Germany (L.T.); (A.G.S.); (D.S.); (T.S.)
| |
Collapse
|
35
|
Lopez E, Scott NE, Wines BD, Hogarth PM, Wheatley AK, Kent SJ, Chung AW. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Front Immunol 2019; 10:2415. [PMID: 31681303 PMCID: PMC6797627 DOI: 10.3389/fimmu.2019.02415] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Evaluating the biophysical and functional nature of IgG is key to defining correlates of protection in infectious disease, and autoimmunity research cohorts, as well as vaccine efficacy trials. These studies often require small quantities of IgG to be purified from plasma for downstream analysis with high throughput immunoaffinity formats which elute IgG at low-pH, such as Protein G and Protein A. Herein we sought to compare Protein G purification of IgG with an immunoaffinity method which elutes at physiological pH (Melon Gel). Critical factors impacting Fc functionality with the potential to significantly influence FcγR binding, such as IgG subclass distribution, N-glycosylation, aggregation, and IgG conformational changes were investigated and compared. We observed that transient exposure of IgG to the low-pH elution buffer, used during the Protein G purification process, artificially enhanced recognition of Fcγ Receptors (FcγRs) as demonstrated by Surface Plasmon Resonance (SPR), FcγR dimer ELISA, and a functional cell-based assay. Furthermore, low-pH exposed IgG caused conformational changes resulting in increased aggregation and hydrophobicity; factors likely to contribute to the observed enhanced interaction with FcγRs. These results highlight that methods employed to purify IgG can significantly alter FcγR-binding behavior and biological activity and suggest that the IgG purification approach selected may be a previously overlooked factor contributing to the poor reproducibility across current assays employed to evaluate Fc-mediated antibody effector functions.
Collapse
Affiliation(s)
- Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Central Clinical School, Alfred Health, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
36
|
Shibata C, Iwashita K, Shiraki K. Selective separation method of aggregates from IgG solution by aqueous two-phase system. Protein Expr Purif 2019; 161:57-62. [PMID: 31054316 DOI: 10.1016/j.pep.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 11/17/2022]
Abstract
Aggregation of immunoglobulin G (IgG) is a serious concern that results in immunogenicity in pharmaceutical applications. Removal of the small and soluble aggregates in protein solutions through a simple method remains challenging. Here we show that an aqueous two-phase system (ATPS) can be used for the elimination of soluble aggregates from IgG solution. Polyethylene glycol (PEG) and dextran (DEX) were selected as components of the ATPS. As expected, IgG monomers were partitioned into the top or bottom phases of ATPS. Interestingly, almost all the small and soluble aggregates of IgG were extracted to the interface between top and bottom phases, rather than in the liquid phases. The partitioning of monomers and aggregates of IgG can be attributed to the solubility of these protein states in PEG and DEX. Thus, ATPS using PEG and DEX can be employed for the simple removal method of soluble aggregates from IgG solution.
Collapse
Affiliation(s)
- Chika Shibata
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kazuki Iwashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
37
|
Hirano A, Shiraki K, Kameda T. Effects of Arginine on Multimodal Chromatography: Experiments and Simulations. Curr Protein Pept Sci 2018; 20:40-48. [DOI: 10.2174/1389203718666171024115407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/01/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022]
Abstract
Multimodal or mixed-mode chromatography can be used to separate various proteins, including
antibodies. The separation quality and efficiency have been improved by the addition of solutes, especially
arginine. This review summarizes the mechanism underlying the effects of arginine on protein
elution in multimodal chromatography with neutral, anionic or cationic resin ligands; the mechanism has
been investigated using experiments and molecular dynamics simulations. Arginine is effective in facilitating
protein elution compared to salts and protein denaturants such as guanidine and urea. The unique
elution effect of arginine can be explained by the interplay among arginine, proteins and the resin
ligands. Arginine exhibits multiple binding modes for the ligands and further affinity for protein aromatic
residues through its guanidinium group. These properties make arginine versatile for protein elution
in multimodal chromatography. Taking into account that arginine is an aggregation suppressor for
proteins but not a protein denaturant, arginine is a promising protein-eluting reagent for multimodal
chromatography.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kentaro Shiraki
- Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| |
Collapse
|
38
|
Oki S, Nishinami S, Shiraki K. Arginine suppresses opalescence and liquid–liquid phase separation in IgG solutions. Int J Biol Macromol 2018; 118:1708-1712. [DOI: 10.1016/j.ijbiomac.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/07/2023]
|
39
|
Senga Y, Honda S. Suppression of Aggregation of Therapeutic Monoclonal Antibodies during Storage by Removal of Aggregation Precursors Using a Specific Adsorbent of Non-Native IgG Conformers. Bioconjug Chem 2018; 29:3250-3261. [PMID: 30264991 DOI: 10.1021/acs.bioconjchem.8b00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quality of preparations of therapeutic IgG molecules, widely used for the treatment of various diseases, should be maintained during storage and administration. Nevertheless, recent studies demonstrate that IgG aggregation is one of the most critical immunogenicity risk factors that compromises safety and efficacy of therapeutic IgG molecules in the clinical setting. During the IgG manufacturing process, 0.22-μm membrane filters are commonly used to remove aggregates. However, particles with a diameter below 0.22 μm (small aggregates) are not removed from the final product. The residual species may grow into large aggregates during the storage period. In the current study, we devised a strategy to suppress IgG aggregate growth by removing aggregation precursors using the artificial protein AF.2A1. This protein efficiently binds the Fc region of non-native IgG conformers generated under chemical and physical stresses. Magnetic beads conjugated with AF.2A1 were used to remove non-native monomers and aggregates from solutions of native IgG and from native IgG solutions spiked with stressed IgG. The time-dependent growth of aggregates after the removal treatment was monitored. The removal of aggregation precursors, i.e., non-native monomers and nanometer aggregates (<100 nm), suppressed the aggregate growth. The presented findings demonstrate that a removal treatment with a specific adsorbent of non-native IgG conformers enables long-term stable storage of therapeutic IgG molecules and will facilitate mitigation of the immunogenicity of IgG preparations.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
40
|
Protein Engineering Allows for Mild Affinity-based Elution of Therapeutic Antibodies. J Mol Biol 2018; 430:3427-3438. [DOI: 10.1016/j.jmb.2018.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023]
|
41
|
Dimasi N, Fleming R, Wu H, Gao C. Molecular engineering strategies and methods for the expression and purification of IgG1-based bispecific bivalent antibodies. Methods 2018; 154:77-86. [PMID: 30102989 DOI: 10.1016/j.ymeth.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, bispecific antibodies (BisAbs) have emerged as novel pharmaceutical candidates owing to their ability to engage two disease mediators simultaneously, thus providing a possible alternative therapeutic approach in complex diseases such as cancer and inflammation. Here we provide an overview of the molecular design, recombinant expression in mammalian cells and purification of BisAbs based on full-length IgG-scFv formats. Practical considerations and strategies to optimize transient expression and purification are also discussed.
Collapse
Affiliation(s)
- N Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA.
| | - R Fleming
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - H Wu
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - C Gao
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA.
| |
Collapse
|
42
|
Hall T, Kelly GM, Emery WR. Use of mobile phase additives for the elution of bispecific and monoclonal antibodies from phenyl based hydrophobic interaction chromatography resins. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:20-30. [PMID: 30130673 DOI: 10.1016/j.jchromb.2018.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/21/2018] [Indexed: 11/19/2022]
Abstract
Hydrophobic interaction chromatography (HIC) is routinely used in the purification of biopharmaceuticals such as antibodies. However, hydrophobic proteins can be difficult to elute resulting in low recovery of product thereby complicating early phase process development and potentially excluding the use of HIC resins for their manufacture. Mobile phase additives such as hexylene glycol and arginine facilitate protein elution from resins including HIC; therefore, these additives were evaluated toward the recovery and purification of bispecific and monoclonal antibodies from Phenyl Sepharose HP and Capto Phenyl ImpRes resins. The influences of gradient versus step elution as well as superficial linear velocity on product quality were evaluated. Improved protein recovery and reduction of both soluble product aggregate and host cell protein were observed for the tested antibodies with both hexylene glycol and arginine. Furthermore, the impact of salt removal from the HIC load on protein-resin binding was examined providing opportunities to minimize processing time. This method was successfully scaled using a Phenyl Sepharose HP (5 cm i.d. × 20.0 cm) and Capto Phenyl ImpRes (3.2 cm i.d. × 21.4 cm) column demonstrating potential for manufacturing purposes.
Collapse
Affiliation(s)
- Troii Hall
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0001, USA.
| | - Gerard M Kelly
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0001, USA.
| | - Warren R Emery
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285-0001, USA.
| |
Collapse
|
43
|
Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY, Brancucci NMB, Mohring F, Mushunje AT, Huang X, Christensen PR, Nosten F, Bozdech Z, Russell B, Moon RW, Marti M, Preiser PR, Bártfai R, Voss TS. Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host Microbe 2018; 23:407-420.e8. [PMID: 29503181 PMCID: PMC5853956 DOI: 10.1016/j.chom.2018.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.
Collapse
Affiliation(s)
- Sabine A Fraschka
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nicolas M B Brancucci
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Annals T Mushunje
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford OX3 7FZ, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthias Marti
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands.
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
44
|
Glycan profile of CHO derived IgM purified by highly efficient single step affinity chromatography. Anal Biochem 2017; 539:162-166. [DOI: 10.1016/j.ab.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/28/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022]
|
45
|
Arakawa T, Tokunaga M, Maruyama T, Shiraki K. Two Elution Mechanisms of MEP Chromatography. Curr Protein Pept Sci 2017; 20:28-33. [PMID: 29150920 DOI: 10.2174/1389203718666171117105132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022]
Abstract
MEP (mercapto-ethyl-pyridine) HyperCel is one of the hydrophobic charge induction chromatography (HCIC) resins. Under normal operation, proteins are bound to the MEP resin at neutral pH, at which MEP is not charged, mostly via hydrophobic interaction. MEP has a pyridine group, whose pK is 4.8, and hence is positively charged at acidic pH range. Based on the binding mechanism (i.e., hydrophobic interaction) and the induced positive charge at acidic pH, there may be two ways to elute the bound proteins. One way is to bring the pH down to protonate both MEP resin and the bound protein, leading to charge repulsion and thereby elution. Another way is to use hydrophobic interaction modifiers, which are often used in hydrophobic interaction chromatography, to reduce hydrophobic interaction. Here, we summarize such two possible elution approaches.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, A Division of KBI Biopharma, 6042 Cornerstone Court West, San Diego, CA 92121, United States
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Takuya Maruyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305- 8573, Japan
| |
Collapse
|
46
|
Huang X, Zhang K, Deng M, Exterkate RA, Liu C, Zhou X, Cheng L, ten Cate JM. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol 2017; 82:256-262. [DOI: 10.1016/j.archoralbio.2017.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
47
|
Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr Purif 2017; 134:96-103. [DOI: 10.1016/j.pep.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
|
48
|
Parimal S, Garde S, Cramer SM. Effect of guanidine and arginine on protein–ligand interactions in multimodal cation‐exchange chromatography. Biotechnol Prog 2017; 33:435-447. [DOI: 10.1002/btpr.2419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/30/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Siddharth Parimal
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute110 8th StreetTroy NY12180
| | - Shekhar Garde
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute110 8th StreetTroy NY12180
| | - Steven M. Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute110 8th StreetTroy NY12180
| |
Collapse
|
49
|
Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes. Int J Biol Macromol 2017; 95:1153-1158. [DOI: 10.1016/j.ijbiomac.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022]
|
50
|
Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography. J Chromatogr A 2017; 1488:57-67. [PMID: 28159365 DOI: 10.1016/j.chroma.2017.01.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 11/20/2022]
Abstract
Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS.
Collapse
|