1
|
Tu T, Wang Q, Dong R, Liu X, Penttinen L, Hakulinen N, Tian J, Zhang W, Wang Y, Luo H, Yao B, Huang H. Achieving thermostability of a phytase with resistance up to 100 °C. J Biol Chem 2024; 300:107992. [PMID: 39547510 DOI: 10.1016/j.jbc.2024.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.90 Å), a variant with enhanced expression levels derived from Yersinia intermedia, to improve its thermostability. Among the 144 variants experimentally verified, 29 exhibited significantly improved thermostability with higher t1/2 values at 65 °C. Further combination and superposition led to APPAmut9 with an accumulation of five additional pairs of disulfide bonds and six single-point mutation sites, leading to an enhancement in its thermostability with a t1/2 value of 256.7 min at 65 °C, which was more than 75-fold higher than that of APPAmut4 (3.4 min). APPAmut9 exhibited a T50 value of 96 °C, representing a substantial increase of 40.9 °C compared to APPAmut4. Notably, approximately 70% of enzyme activity remained intact after exposure to boiling water at 100 °C for a holding period of 5 min. Significantly, these advantageous modifications were strategically positioned away from the catalytic pocket where enzymatic reactions occur to ensure minimal compromise on catalytic efficiency between APPAmut9 (11,500 ± 1100/mM/s) and APPAmut4 (12,300 ± 1600/mM/s). This study demonstrates the feasibility of engineering phytases with resistance to boiling using rational design strategies.
Collapse
Affiliation(s)
- Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qian Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruyue Dong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leena Penttinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, Isa NM, Leow TC. Functional expression, purification, biochemical and biophysical characterizations, and molecular dynamics simulation of a histidine acid phosphatase from Saccharomyces cerevisiae. World J Microbiol Biotechnol 2024; 40:171. [PMID: 38630327 DOI: 10.1007/s11274-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Zahra Binti Jamaludin
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
3
|
Kiribayeva A, Silayev D, Akishev Z, Baltin K, Aktayeva S, Ramankulov Y, Khassenov B. An impact of N-glycosylation on biochemical properties of a recombinant α-amylase from Bacillus licheniformis. Heliyon 2024; 10:e28064. [PMID: 38515717 PMCID: PMC10956057 DOI: 10.1016/j.heliyon.2024.e28064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.
Collapse
Affiliation(s)
- Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Dmitriy Silayev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
4
|
Dotsenko A, Rozhkova A, Zorov I, Korotkova O, Sinitsyn A. Enhancement of activity and thermostability of Aspergillus niger ATCC 10864 phytase A through rational design. Biochem Biophys Res Commun 2022; 634:55-61. [DOI: 10.1016/j.bbrc.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/02/2022]
|
5
|
Lu JL, Jia P, Feng SW, Wang YT, Zheng J, Ou SN, Wu ZH, Liao B, Shu WS, Liang JL, Li JT. Remarkable effects of microbial factors on soil phosphorus bioavailability: A country-scale study. GLOBAL CHANGE BIOLOGY 2022; 28:4459-4471. [PMID: 35452151 DOI: 10.1111/gcb.16213] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Low soil phosphorus (P) bioavailability causes the widespread occurrence of P-limited terrestrial ecosystems around the globe. Exploring the factors influencing soil P bioavailability at large spatial scales is critical for managing these ecosystems. However, previous studies have mostly focused on abiotic factors. In this study, we explored the effects of microbial factors on soil P bioavailability of terrestrial ecosystems using a country-scale sampling effort. Our results showed that soil microbial biomass carbon (MBC) and acid phosphatase were important predictors of soil P bioavailability of agro- and natural ecosystems across China although they appeared less important than total soil P. The two microbial factors had a positive effect on soil P bioavailability of both ecosystem types and were able to mediate the effects of several abiotic factors (e.g., mean annual temperature). Meanwhile, we revealed that soil phytase could affect soil P bioavailability at the country scale via ways similar to those of soil MBC and acid phosphatase, a pattern being more pronounced in agroecosystems than in natural ecosystems. Moreover, we obtained evidence for the positive effects of microbial genes encoding these enzymes on soil P bioavailability at the country scale although their effect sizes varied between the two ecosystem types. Taken together, this study demonstrated the remarkable effects of microbial factors on soil P bioavailability at a large spatial scale, highlighting the importance to consider microbial factors in managing the widespread P-limited terrestrial ecosystems.
Collapse
Affiliation(s)
- Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Yu-Tao Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Gordeeva TL, Borshchevskaya LN, Kalinina AN, Bulushova NV, Syneoky SP, Voronin SP, Kashirskaya MD. New Recombinant Phytase from Kosakoniasacchari: Characteristics and Biotechnological Potential. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820070042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abstract
Resistance to high temperature, acidic pH and proteolytic degradation during the pelleting process and in the digestive tract are important features of phytases as animal feed. The integration of insights from structural and in silico analyses into factors affecting thermostability, acid stability, proteolytic stability, catalytic efficiency and specific activity, as well as N-glycosylation, could improve the limitations of marginal stable biocatalysts with trade-offs between stability and activity. Synergistic mutations give additional benefits to single substitutions. Rigidifying the flexible loops or inter-molecular interactions by reinforcing non-bonded interactions or disulfide bonds, based on structural and roof mean square fluctuation (RMSF) analyses, are contributing factors to thermostability. Acid stability is normally achieved by targeting the vicinity residue at the active site or at the neighboring active site loop or the pocket edge adjacent to the active site. Extending the positively charged surface, altering protease cleavage sites and reducing the affinity of protease towards phytase are among the reported contributing factors to improving proteolytic stability. Remodeling the active site and removing steric hindrance could enhance phytase activity. N-glycosylation conferred improved thermostability, proteases degradation and pH activity. Hence, the integration of structural and computational biology paves the way to phytase tailoring to overcome the limitations of marginally stable phytases to be used in animal feeds.
Collapse
|
8
|
Expression and Characterization of an Alginate Lyase and Its Thermostable Mutant in Pichia pastoris. Mar Drugs 2020; 18:md18060305. [PMID: 32545157 PMCID: PMC7345639 DOI: 10.3390/md18060305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 01/25/2023] Open
Abstract
Alginate is one of the most abundant polysaccharides in algae. Alginate lyase degrades alginate through a β-elimination mechanism to produce alginate oligosaccharides with special bioactivities. Improving enzyme activity and thermal stability can promote the application of alginate lyase in the industrial preparation of alginate oligosaccharides. In this study, the recombinant alginate lyase cAlyM and its thermostable mutant 102C300C were expressed and characterized in Pichia pastoris. The specific activities of cAlyM and 102C300C were 277.1 U/mg and 249.6 U/mg, respectively. Both enzymes showed maximal activity at 50 °C and pH 8.0 and polyG preference. The half-life values of 102C300C at 45 °C and 50 °C were 2.6 times and 11.7 times the values of cAlyM, respectively. The degradation products of 102C300C with a lower degree of polymerization contained more guluronate. The oligosaccharides with a polymerization degree of 2–4 were the final hydrolytic products. Therefore, 102C300C is potentially valuable in the production of alginate oligosaccharides with specific M/G ratio and molecular weights.
Collapse
|
9
|
Kanwal M, Razzaq A, Maqbool A. Characterization of Phytase Transgenic Wheat under Salt Stress. BIOL BULL+ 2019. [DOI: 10.1134/s106235901904006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mrudula Vasudevan U, Jaiswal AK, Krishna S, Pandey A. Thermostable phytase in feed and fuel industries. BIORESOURCE TECHNOLOGY 2019; 278:400-407. [PMID: 30709763 DOI: 10.1016/j.biortech.2019.01.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Phytase with wide ranging biochemical properties has long been utilized in a multitude of industries, even so, thermostability plays a crucial factor in choosing the right phytase in a few of the sectors. Mesophilic phytases are not considered to be a viable option in the feed industry owing to its limited stability in the required feed processing temperature. In the recent past, inclusion of thermostable phytase in fuel ethanol production from starch based raw material has been demonstrated with economic benefits. Therefore, considerable emphasis has been placed on using complementary approaches such as mining of extremophilic microbial wealth, encapsulation and using enzyme engineering for obtaining stable phytase variants. This article means to give an insight on role of thermostable phytases in feed and fuel industries and methods for its development, highlighting molecular determinants of thermostability.
Collapse
Affiliation(s)
- Ushasree Mrudula Vasudevan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Cathal Brugha Street, Dublin 1, Ireland
| | - Shyam Krishna
- MIMS Research Foundation, Calicut 673 007, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| |
Collapse
|
11
|
Trabelsi S, Sahnoun M, Elgharbi F, Ameri R, Ben Mabrouk S, Mezghani M, Hmida-Sayari A, Bejar S. Aspergillus oryzae S2 AmyA amylase expression in Pichia pastoris: production, purification and novel properties. Mol Biol Rep 2018; 46:921-932. [PMID: 30535895 DOI: 10.1007/s11033-018-4548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
A synthetic cDNA-AmyA gene was cloned and successfully expressed in Pichia pastoris as a His-tagged enzyme under the methanol inducible AOX1 promoter. High level of extracellular amylase production of 72 U/mL was obtained after a 72 h induction by methanol. As expected, the recombinant strain produced only the AmyA isoform since the host is a protease deficient strain. Besides, the purified r-AmyA showed a molecular mass of 54 kDa, the same pH optimum equal to 5.6 but a higher thermoactivity of 60 °C against 50 °C for the native enzyme. Unlike AmyA which maintained 50% of its activity after a 10-min incubation at 60 °C, r-AmyA reached 45 min. The higher thermoactivity and thermostability could be related to the N-glycosylation. The r-AmyA activity was enhanced by 46% and 45% respectively in the presence of 4 mM Fe2+ and Mg2+ ions. This enzyme was more efficient in bread-making since such ions were reported to have a positive impact on the nutriment quality and the rheological characteristics of the wheat flour dough. The thermoactivity/thermostability as well as the iron and magnesium activations could also be ascribed to the presence of an additional C-terminal loop containing the His tag.
Collapse
Affiliation(s)
- Sahar Trabelsi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Mouna Sahnoun
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Fatma Elgharbi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Rihab Ameri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Monia Mezghani
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Aïda Hmida-Sayari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sidi Mansour Road Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
12
|
Troshagina DS, Suleimanova AD, Itkina DL, Sharipova MR. Cloning of Phytase Genes from Pantoea Sp. 3.5.1 and Bacillus ginsengihumi M2.11 in Pichia pastoris. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0563-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Rogers JR, McHugh SM, Lin YS. Predictions for α-Helical Glycopeptide Design from Structural Bioinformatics Analysis. J Chem Inf Model 2017; 57:2598-2611. [DOI: 10.1021/acs.jcim.7b00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Julia R. Rogers
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean M. McHugh
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
14
|
Abd Wahid MA, Megat Mohd Noor MJ, Goto M, Sugiura N, Othman N, Zakaria Z, Ahmad Mohammed T, Jusoh A, Hara H. Recombinant protein expression of Moringa oleifera lectin in methylotrophic yeast as active coagulant for sustainable high turbid water treatment. Biosci Biotechnol Biochem 2017; 81:1642-1649. [PMID: 28585494 DOI: 10.1080/09168451.2017.1329617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
Collapse
Affiliation(s)
- Muhamad Azhar Abd Wahid
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| | - Megat Johari Megat Mohd Noor
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| | - Masafumi Goto
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| | - Norio Sugiura
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia.,b Graduate School of Life and Environmental Science , University of Tsukuba , Tsukuba , Japan
| | - Nor'azizi Othman
- c Department of Mechanical Precision Engineering , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| | - Zuriati Zakaria
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| | | | - Ahmad Jusoh
- e Department of Ocean Engineering , Universiti Malaysia Terengganu , Kuala Terengganu , Malaysia
| | - Hirofumi Hara
- a Department of Environmental Engineering and Green Technology , Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
15
|
Molecular advancements in the development of thermostable phytases. Appl Microbiol Biotechnol 2017; 101:2677-2689. [PMID: 28233043 DOI: 10.1007/s00253-017-8195-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Since the discovery of phytic acid in 1903 and phytase in 1907, extensive research has been carried out in the field of phytases, the phytic acid degradatory enzymes. Apart from forming backbone enzyme in the multimillion dollar-based feed industry, phytases extend a multifaceted role in animal nutrition, industries, human physiology, and agriculture. The utilization of phytases in industries is not effectively achieved most often due to the loss of its activity at high temperatures. The growing demand of thermostable phytases with high residual activity could be addressed by the combinatorial use of efficient phytase sources, protein engineering techniques, heterologous expression hosts, or thermoprotective coatings. The progress in phytase research can contribute to its economized production with a simultaneous reduction of various environmental problems such as eutrophication, greenhouse gas emission, and global warming. In the current review, we address the recent advances in the field of various natural as well as recombinant thermotolerant phytases, their significance, and the factors contributing to their thermotolerance.
Collapse
|
16
|
Ranjan B, Satyanarayana T. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications. Mol Biotechnol 2016; 58:137-47. [PMID: 26758064 DOI: 10.1007/s12033-015-9909-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
17
|
Characteristics and applications of recombinant thermostable amylopullulanase of Geobacillus thermoleovorans secreted by Pichia pastoris. Appl Microbiol Biotechnol 2016; 101:2357-2369. [DOI: 10.1007/s00253-016-8025-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022]
|
18
|
Kim EJ, Lee JH, Lee SG, Han SJ. Improving thermal hysteresis activity of antifreeze protein from recombinant Pichia pastoris by removal of N-glycosylation. Prep Biochem Biotechnol 2016; 47:299-304. [DOI: 10.1080/10826068.2016.1244682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon, South Korea
- Department of Polar Sciences, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon, South Korea
- Department of Polar Sciences, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sung Gu Lee
- Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon, South Korea
- Department of Polar Sciences, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Se Jong Han
- Division of Life Sciences, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon, South Korea
- Department of Polar Sciences, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
19
|
Abid N, Khatoon A, Maqbool A, Irfan M, Bashir A, Asif I, Shahid M, Saeed A, Brinch-Pedersen H, Malik KA. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 2016; 26:109-122. [PMID: 27687031 DOI: 10.1007/s11248-016-9983-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 11/26/2022]
Abstract
Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.
Collapse
Affiliation(s)
- Nabeela Abid
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Asia Khatoon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box No. 577, Faisalabad, Pakistan
| | - Asma Maqbool
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Irfan
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Aftab Bashir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box No. 577, Faisalabad, Pakistan
| | - Irsa Asif
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Shahid
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Asma Saeed
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore, 54600, Pakistan
| | - Henrik Brinch-Pedersen
- Department of Plant Biology, Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg, 4200, Slagelse, Denmark
| | - Kauser A Malik
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan.
| |
Collapse
|
20
|
Yang H, Zhu Q, Zhou N, Tian Y. Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World J Microbiol Biotechnol 2016; 32:176. [PMID: 27628336 DOI: 10.1007/s11274-016-2135-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Prolyl aminopeptidases are specific exopeptidases that catalyze the hydrolysis of the N-terminus proline residue of peptides and proteins. In the present study, the prolyl aminopeptidase gene (pap) from Aspergillus oryzae JN-412 was optimized through the codon usage of Pichia pastoris. Both the native and optimized pap genes were inserted into the expression vector pPIC9 K and were successfully expressed in P. pastoris. Additionally, the activity of the intracellular enzyme expressed by the recombinant optimized pap gene reached 61.26 U mL(-1), an activity that is 2.1-fold higher than that of the native gene. The recombinant enzyme was purified by one-step elution through Ni-affinity chromatography. The optimal temperature and pH of the purified PAP were 60 °C and 7.5, respectively. Additionally, the recombinant PAP was recovered at a yield greater than 65 % at an extremely broad range of pH values from 6 to 10 after treatment at 50 °C for 6 h. The molecular weight of the recombinant PAP decreased from 50 kDa to 48 kDa after treatment with a deglycosylation enzyme, indicating that the recombinant PAP was completely glycosylated. The glycosylated PAP exhibited high thermo-stability. Half of the activity remained after incubation at 50 °C for 50 h, whereas the remaining activity of PAP expressed in E. coli was only 10 % after incubation at 50 °C for 1 h. PAP could be activated by the appropriate salt concentration and exhibited salt tolerance against NaCl at a concentration up to 5 mol L(-1).
Collapse
Affiliation(s)
- Hongyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiang Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaping Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
21
|
Maller A, de Quadros TCO, Junqueira OM, Graña AL, de Lima Montaldi AP, Alarcon RF, Jorge JA, de Lourdes T M Polizeli M. Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler. SPRINGERPLUS 2016; 5:1418. [PMID: 27625972 PMCID: PMC4996818 DOI: 10.1186/s40064-016-3082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/15/2016] [Indexed: 11/10/2022]
Abstract
Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation.
Collapse
Affiliation(s)
- Alexandre Maller
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, A. Bandeirantes, 3900, Ribeirão Preto, SP 14040-901 Brazil
| | - Thays Cristina Oliveira de Quadros
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP 16050-680 Brazil
| | - Otto M Junqueira
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP 16050-680 Brazil
| | - Alfredo Lora Graña
- FATEC Indústria de Nutrição e Saúde Animal LTDA, Arujá, SP 07400-000 Brazil
| | - Ana Paula de Lima Montaldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP 16050-680 Brazil
| | - Ricardo Fernandes Alarcon
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - João Atílio Jorge
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| | - Maria de Lourdes T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 Brazil
| |
Collapse
|
22
|
Pal Roy M, Mazumdar D, Dutta S, Saha SP, Ghosh S. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli. PLoS One 2016; 11:e0145745. [PMID: 26808559 PMCID: PMC4726635 DOI: 10.1371/journal.pone.0145745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
Abstract
The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS) with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg-1, respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.
Collapse
Affiliation(s)
- Moushree Pal Roy
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Deepika Mazumdar
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Subhabrata Dutta
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Shyama Prasad Saha
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Shilpi Ghosh
- Department of Biotechnology, University of North Bengal, Siliguri, India
- * E-mail:
| |
Collapse
|
23
|
Greppi A, Krych Ł, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N, Cocolin L, Jespersen L. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 2015; 205:81-9. [PMID: 25910031 DOI: 10.1016/j.ijfoodmicro.2015.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity.
Collapse
Affiliation(s)
- Anna Greppi
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy.
| | - Łukasz Krych
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| | - Antonella Costantini
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - Kalliopi Rantsiou
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - D Joseph Hounhouigan
- Département de Nutrition et Sciences Alimentaires, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Benin
| | - Nils Arneborg
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| | - Luca Cocolin
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Grugliasco, Torino, Italy
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|