1
|
Peel E, Gonsalvez A, Hogg CJ, Belov K. Marsupial cathelicidins: characterization, antimicrobial activity and evolution in this unique mammalian lineage. Front Immunol 2025; 16:1524092. [PMID: 40255401 PMCID: PMC12006171 DOI: 10.3389/fimmu.2025.1524092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/07/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Cathelicidins are a family of antimicrobial peptides well-known for their antimicrobial and immunomodulatory functions in eutherian mammals such as humans. However, cathelicidins in marsupials, the other major lineage of mammals, have received little attention despite lineage-specific gene expansions resulting in a large and diverse peptide repertoire. Methods We characterized cathelicidins across the marsupial family tree and investigated genomic organisation and evolutionary relationships amongst mammals. Ancestral sequence reconstruction was used to predict ancestral marsupial cathelicidins, which, alongside extant peptides, were synthesized and screened for antimicrobial activity. Results We identified 130 cathelicidin genes amongst 14 marsupial species representing 10 families, with gene expansions identified in all species. Cathelicidin genes were encoded in a highly syntenic region of the genome amongst all mammals, although the number of gene clusters differed amongst lineages (eutherians one, marsupials two, and monotremes three). 32 extant and ancestral marsupial cathelicidins displayed rapid, potent, and/or broad-spectrum antibacterial and antifungal activity. Phylogenetic analysis revealed that marsupial and monotreme cathelicidin repertoires may reflect both mammals and birds, as they encode non-classical cathelicidins found only in birds, as well as multiple copies of neutrophil granule protein and classic cathelicidins found only in eutherian mammals. Conclusion This study sheds light on the evolutionary history of mammalian cathelicidins and highlights the potential of wildlife for novel bioactive peptide discovery.
Collapse
Affiliation(s)
- Emma Peel
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Adele Gonsalvez
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Carolyn J. Hogg
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Katherine Belov
- Australian Research Council (ARC) Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
3
|
Li C, Cai Y, Luo L, Tian G, Wang X, Yan A, Wang L, Wu S, Wu Z, Zhang T, Chen W, Zhang Z. TC-14, a cathelicidin-derived antimicrobial peptide with broad-spectrum antibacterial activity and high safety profile. iScience 2024; 27:110404. [PMID: 39092176 PMCID: PMC11292558 DOI: 10.1016/j.isci.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Cathelicidins, a major class of antimicrobial peptides (AMPs), hold considerable potential for antimicrobial drug development. In the present study, we identified a novel cathelicidin AMP (TC-33) derived from the Chinese tree shrew. Despite TC-33 demonstrating weak antimicrobial activity, the novel peptide TC-14, developed based on its active region, exhibited a 432-fold increase in antimicrobial activity over the parent peptide. Structural analysis revealed that TC-14 adopted an amphipathic α-helical conformation. The bactericidal mechanism of TC-14 involved targeting and disrupting the bacterial membrane, leading to rapid membrane permeabilization and rupture. Furthermore, TC-14 exhibited a high-safety profile, as evidenced by the absence of cytotoxic and hemolytic activities, as well as high biocompatibility and safety in vivo. Of note, its potent antimicrobial activity provided significant protection in a murine model of skin infection. Overall, this study presents TC-14 as a promising drug candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Lin Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming 650118, Yunnan, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650031, Yunnan, China
| |
Collapse
|
4
|
Alves PM, Barrias CC, Gomes P, Martins MCL. How can biomaterial-conjugated antimicrobial peptides fight bacteria and be protected from degradation? Acta Biomater 2024; 181:98-116. [PMID: 38697382 DOI: 10.1016/j.actbio.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.
Collapse
Affiliation(s)
- Pedro M Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
6
|
Zhang M, Yan X, Wang CB, Liu WQ, Wang Y, Jing H, Wang B, Yang K, Chen ZY, Luan YY, Wang GH. Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109467. [PMID: 38423489 DOI: 10.1016/j.fsi.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-β (IL-1β) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1β, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yu-Yu Luan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
7
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep 2024; 41:331-346. [PMID: 37743806 DOI: 10.1039/d3np00031a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented via alterations to their amino acid sequences or structural adjustments. Given the vast reservoir of marine life forms and their distinctive ecosystems, marine AMPs stand as a burgeoning focal point in the quest for alternative peptide templates extracted from natural sources. Advances in identification and characterization techniques have accelerated the discoveries of marine AMPs, thereby stimulating AMP customization, optimization, and synthesis research endeavours. This review presents an overview of recent discoveries related to the intriguing qualities of marine AMPs. Emphasis will be placed upon post-translational modifications (PTMs) of marine AMPs and how they may impact functionality and potency. Additionally, this review considers ways in which marine PTM might support larger-scale, heterologous AMP manufacturing initiatives, providing insights into translational applications of these important biomolecules.
Collapse
Affiliation(s)
- Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chunyuan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Bhattacharjya S, Zhang Z, Ramamoorthy A. LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases. Biomolecules 2024; 14:320. [PMID: 38540740 PMCID: PMC10968335 DOI: 10.3390/biom14030320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/β defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhizhuo Zhang
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
10
|
Cai Y, Wang X, Zhang T, Yan A, Luo L, Li C, Tian G, Wu Z, Wang X, Shen D, Han Y, Zhang Z. Rational Design of a Potent Antimicrobial Peptide Based on the Active Region of a Gecko Cathelicidin. ACS Infect Dis 2024; 10:951-960. [PMID: 38315114 DOI: 10.1021/acsinfecdis.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The emergence of multidrug-resistant (MDR) bacteria presents a significant challenge to public health, increasing the risk of infections that are resistant to current antibiotic treatment. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics in the prevention of MDR bacterial infections. In the present study, we identified a novel cathelicidin AMP from Gekko japonicus, which exhibited broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimal inhibitory concentrations ranging from 2.34 to 4.69 μg/mL. To improve its potential therapeutic application, a series of peptides was synthesized based on the active region of the gecko-derived cathelicidin. The lead peptide (RH-16) showed an antimicrobial activity comparable to that of the parent peptide. Structural characterization revealed that RH-16 adopted an amphipathic α-helical conformation. Furthermore, RH-16 demonstrated neither hemolytic nor cytotoxic activity but effectively killed a wide range of clinically isolated, drug-resistant bacteria. The antimicrobial activity of RH-16 was attributed to the nonspecific targeting of bacterial membranes, leading to rapid bacterial membrane permeabilization and rupture. RH-16 also retained its antibacterial activity in plasma and exhibited mild toxicity in vivo. Notably, RH-16 offered robust protection against skin infection in a murine model. Therefore, this newly identified cathelicidin AMP may be a strong candidate for future pharmacological development targeting multidrug resistance. The use of a rational design approach for isolating the minimal antimicrobial unit may accelerate the transition of natural AMPs to clinically applicable antibacterial agents.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Lin Luo
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Chenxi Li
- Third Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan 650118, China
| | - Gengzhou Tian
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650223, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Dong Shen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
11
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
12
|
von Beck T, Navarrete K, Arce NA, Gao M, Dale GA, Davis-Gardner ME, Floyd K, Mena Hernandez L, Mullick N, Vanderheiden A, Skountzou I, Kuchipudi SV, Saravanan R, Li R, Skolnick J, Suthar MS, Jacob J. A wild boar cathelicidin peptide derivative inhibits severe acute respiratory syndrome coronavirus-2 and its drifted variants. Sci Rep 2023; 13:14650. [PMID: 37670110 PMCID: PMC10480232 DOI: 10.1038/s41598-023-41850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a clear threat to humanity. It has infected over 200 million and killed 4 million people worldwide, and infections continue with no end in sight. To control the pandemic, multiple effective vaccines have been developed, and global vaccinations are in progress. However, the virus continues to mutate. Even when full vaccine coverage is achieved, vaccine-resistant mutants will likely emerge, thus requiring new annual vaccines against drifted variants analogous to influenza. A complimentary solution to this problem could be developing antiviral drugs that inhibit SARS CoV-2 and its drifted variants. Host defense peptides represent a potential source for such an antiviral as they possess broad antimicrobial activity and significant diversity across species. We screened the cathelicidin family of peptides from 16 different species for antiviral activity and identified a wild boar peptide derivative that inhibits SARS CoV-2. This peptide, which we named Yongshi and means warrior in Mandarin, acts as a viral entry inhibitor. Following the binding of SARS-CoV-2 to its receptor, the spike protein is cleaved, and heptad repeats 1 and 2 multimerize to form the fusion complex that enables the virion to enter the cell. A deep learning-based protein sequence comparison algorithm and molecular modeling suggest that Yongshi acts as a mimetic to the heptad repeats of the virus, thereby disrupting the fusion process. Experimental data confirm the binding of Yongshi to the heptad repeat 1 with a fourfold higher affinity than heptad repeat 2 of SARS-CoV-2. Yongshi also binds to the heptad repeat 1 of SARS-CoV-1 and MERS-CoV. Interestingly, it inhibits all drifted variants of SARS CoV-2 that we tested, including the alpha, beta, gamma, delta, kappa and omicron variants.
Collapse
Affiliation(s)
- Troy von Beck
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Karla Navarrete
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nicholas A Arce
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Gordon A Dale
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Meredith E Davis-Gardner
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Katharine Floyd
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Luis Mena Hernandez
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Nikita Mullick
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Abigail Vanderheiden
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Ioanna Skountzou
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rathi Saravanan
- Centre of Regulatory Excellence (CoRE), Duke-NUS Medical School, Level 6, 8 College Road, Singapore, 169857, Singapore
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA, 30332, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshy Jacob
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
13
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
14
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
15
|
Wang X, He L, Huang Z, Zhao Q, Fan J, Tian Y, Huang A. Isolation, identification and characterization of a novel antimicrobial peptide from Moringa oleifera seeds based on affinity adsorption. Food Chem 2023; 398:133923. [DOI: 10.1016/j.foodchem.2022.133923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
|
16
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. Life (Basel) 2022; 12:1533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Carrera-Aubesart A, Defaus S, Pérez-Peinado C, Sandín D, Torrent M, Jiménez MÁ, Andreu D. Examining Topoisomers of a Snake-Venom-Derived Peptide for Improved Antimicrobial and Antitumoral Properties. Biomedicines 2022; 10:2110. [PMID: 36140211 PMCID: PMC9495681 DOI: 10.3390/biomedicines10092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022] Open
Abstract
Ctn[15-34], the C-terminal section of crotalicidin (Ctn), a cathelicidin from a South American pit viper, is an antimicrobial and antitumoral peptide with remarkably longer stability in human serum than the parent Ctn. In this work, a set of topoisomers of both Ctn and Ctn[15-34], including the retro, enantio, and retroenantio versions, were synthesized and tested to investigate the structural requirements for activity. All topoisomers were as active as the cognate sequences against Gram-negative bacteria and tumor cells while slightly more toxic towards normal cells. More importantly, the enhanced serum stability of the D-amino-acid-containing versions suggests that such topoisomers must be preferentially considered as future antimicrobial and anticancer peptide leads.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Sira Defaus
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Daniel Sandín
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Ángeles Jiménez
- Institute of Physical Chemistry “Rocasolano” (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| |
Collapse
|
18
|
Mardirossian M, Rubini M, Adamo MFA, Scocchi M, Saviano M, Tossi A, Gennaro R, Caporale A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules 2021; 26:7401. [PMID: 34885985 PMCID: PMC8659048 DOI: 10.3390/molecules26237401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
The 3D structure and surface characteristics of proteins and peptides are crucial for interactions with receptors or ligands and can be modified to some extent to modulate their biological roles and pharmacological activities. The introduction of halogen atoms on the side-chains of amino acids is a powerful tool for effecting this type of tuning, influencing both the physico-chemical and structural properties of the modified polypeptides, helping to first dissect and then rationally modify features that affect their mode of action. This review provides examples of the influence of different types of halogenation in amino acids that replace native residues in proteins and peptides. Examples of synthetic strategies for obtaining halogenated amino acids are also provided, focusing on some representative compounds and their biological effects. The role of halogenation in native and designed antimicrobial peptides (AMPs) and their mimetics is then discussed. These are in the spotlight for the development of new antimicrobial drugs to counter the rise of antibiotic-resistant pathogens. AMPs represent an interesting model to study the role that natural halogenation has on their mode of action and also to understand how artificially halogenated residues can be used to rationally modify and optimize AMPs for pharmaceutical purposes.
Collapse
Affiliation(s)
- Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, 1, 34125 Trieste, Italy
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Mauro F. A. Adamo
- Department of Chemistry, Centre for Synthesis and Chemical Biology (CSCB), RCSI, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Michele Saviano
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola, 122, 70126 Bari, Italy;
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5, Q Building, 34127 Trieste, Italy; (M.S.); (A.T.); (R.G.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), c/o Area Science Park, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
19
|
Marine Transcriptomics Analysis for the Identification of New Antimicrobial Peptides. Mar Drugs 2021; 19:md19090490. [PMID: 34564152 PMCID: PMC8468504 DOI: 10.3390/md19090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) participate in the immune system to avoid infection, are present in all living organisms and can be used as drugs. Fish express numerous AMP families including defensins, cathelicidins, liver-expressed antimicrobial peptides (LEAPs), histone-derived peptides, and piscidins (a fish-specific AMP family). The present study demonstrates for the first time the occurrence of several AMPs in lionfish (Pterois volitans). Using the lionfish transcriptome, we identified four transcript sequences encoding cysteine-rich AMPs and two new transcripts encoding piscidin-like peptides. These AMPs are described for the first time in a species of the Scorpaenidae family. A functional approach on new pteroicidins was carried out to determine antimicrobial sequences and potential uses, with a view to using some of these AMPs for human health or in aquaculture.
Collapse
|
20
|
Kataoka C, Kashiwada S. Ecological Risks Due to Immunotoxicological Effects on Aquatic Organisms. Int J Mol Sci 2021; 22:8305. [PMID: 34361068 PMCID: PMC8347160 DOI: 10.3390/ijms22158305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
The immunotoxic effects of some anthropogenic pollutants on aquatic organisms are among the causes of concern over the presence of these pollutants in the marine environment. The immune system is part of an organism's biological defense necessarily for homeostasis. Thus, the immunotoxicological impacts on aquatic organisms are important to understand the effects of pollutant chemicals in the aquatic ecosystem. When aquatic organisms are exposed to pollutant chemicals with immunotoxicity, it results in poor health. In addition, aquatic organisms are exposed to pathogenic bacteria, viruses, parasites, and fungi. Exposure to pollutant chemicals has reportedly caused aquatic organisms to show various immunotoxic symptoms such as histological changes of lymphoid tissue, changes of immune functionality and the distribution of immune cells, and changes in the resistance of organisms to infection by pathogens. Alterations of immune systems by contaminants can therefore lead to the deaths of individual organisms, increase the general risk of infections by pathogens, and probably decrease the populations of some species. This review introduced the immunotoxicological impact of pollutant chemicals in aquatic organisms, including invertebrates, fish, amphibians, and marine mammals; described typical biomarkers used in aquatic immunotoxicological studies; and then, discussed the current issues on ecological risk assessment and how to address ecological risk assessment through immunotoxicology. Moreover, the usefulness of the population growth rate to estimate the immunotoxicological impact of pollution chemicals was proposed.
Collapse
Affiliation(s)
- Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shosaku Kashiwada
- Department of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan;
- Research Centre for Life and Environmental Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
21
|
Tong J, Zhang Z, Wu Q, Huang Z, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Antibacterial peptides from seafood: A promising weapon to combat bacterial hazards in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Wang T, Zou C, Wen N, Liu X, Meng Z, Feng S, Zheng Z, Meng Q, Wang C. The effect of structural modification of antimicrobial peptides on their antimicrobial activity, hemolytic activity, and plasma stability. J Pept Sci 2021; 27:e3306. [PMID: 33554385 DOI: 10.1002/psc.3306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
In this article, a series of modifications were made on an antimicrobial peptide F2,5,12 W, including altering the amino acid sequence, introducing cysteine and other typical amino acids, developing peptide dimers via disulfide bonds, and conjugating with mPEG, in order to enhance the antimicrobial activity, plasma stability, and reduce the hemolytic activity of peptides. The results showed that mPEG conjugation could significantly improve the plasma stability and reduce the hemolytic activity of peptides, while the antimicrobial activity decreased meanwhile. However, altering the sequence of the peptide without changing its amino acid composition had little impact on its antimicrobial activity and plasma stability. The introduction of cysteine enhanced the plasma stability of peptides conspicuously, but at the same time, the increased hydrophobicity of peptides increased their hemolysis. The antimicrobial mechanism and cytotoxicity of the peptides with relatively high antimicrobial activity were also studied. In general, this study provided some ideas for the rational design and structure optimization of antimicrobial peptides.
Collapse
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cunbin Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingdong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
23
|
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, Valery C. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13:35-69. [PMID: 33495702 PMCID: PMC7817352 DOI: 10.1007/s12551-021-00784-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The global public health threat of antimicrobial resistance has led the scientific community to highly engage into research on alternative strategies to the traditional small molecule therapeutics. Here, we review one of the most popular alternatives amongst basic and applied research scientists, synthetic antimicrobial peptides. The ease of peptide chemical synthesis combined with emerging engineering principles and potent broad-spectrum activity, including against multidrug-resistant strains, has motivated intense scientific focus on these compounds for the past decade. This global effort has resulted in significant advances in our understanding of peptide antimicrobial activity at the molecular scale. Recent evidence of molecular targets other than the microbial lipid membrane, and efforts towards consensus antimicrobial peptide motifs, have supported the rise of molecular engineering approaches and design tools, including machine learning. Beyond molecular concepts, supramolecular chemistry has been lately added to the debate; and helped unravel the impact of peptide self-assembly on activity, including on biofilms and secondary targets, while providing new directions in pharmaceutical formulation through taking advantage of peptide self-assembled nanostructures. We argue that these basic research advances constitute a solid basis for promising industry translation of rationally designed synthetic peptide antimicrobials, not only as novel drugs against multidrug-resistant strains but also as components of emerging antimicrobial biomaterials. This perspective is supported by recent developments of innovative peptide-based and peptide-carrier nanobiomaterials that we also review.
Collapse
Affiliation(s)
- Priscila Cardoso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- School of Science, RMIT University, Melbourne, Australia
| | - Hugh Glossop
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | - Celine Valery
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
24
|
Zong X, Fu J, Xu B, Wang Y, Jin M. Interplay between gut microbiota and antimicrobial peptides. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:389-396. [PMID: 33364454 PMCID: PMC7750803 DOI: 10.1016/j.aninu.2020.09.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Wang Y, Wang M, Shan A, Feng X. Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications. Poult Sci 2020; 99:6434-6445. [PMID: 33248558 PMCID: PMC7704953 DOI: 10.1016/j.psj.2020.09.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDP) are multifunctional effectors of the innate immune system, which has antimicrobial and pleiotropic immunomodulatory functions. Although there is a very sophisticated superposition of adaptive immune systems in vertebrates, this system is still essential. As an important family of HDP, cathelicidins are also known for their broad-spectrum antibacterial activity against bacteria, fungi, and enveloped viruses. It has been found in humans and other species, including cattle, pigs, sheep, goats, chickens, rabbits, and some kind of fish. Among them, cathelicidins in birds were described for the first time in 2005. This review focuses on the structure, biological activities, expression, and regulation of avian cathelicidin, especially main effects of host defense cathelicidin on potential therapeutic applications. According to the results obtained both in vitro and in vivo, good perspectives have been opened for cathelicidin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of cathelicidin as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
26
|
Anooja V, Anju M, Athira P, Neelima, Archana K, Radhakrishnan C, Philip R. Structural, functional and phylogenetic analysis of a beta defensin gene from the Whipfin silverbiddy, Gerres filamentosus (Cuvier, 1829). GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Simora RMC, Li S, Abass NY, Terhune JS, Dunham RA. Cathelicidins enhance protection of channel catfish, Ictalurus punctatus, and channel catfish ♀ × blue catfish, Ictalurus furcatus ♂ hybrid catfish against Edwarsiella ictaluri infection. JOURNAL OF FISH DISEASES 2020; 43:1553-1562. [PMID: 32929767 DOI: 10.1111/jfd.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Cathelicidins are a class of antimicrobial peptides (AMPs) known to possess rapid and direct antimicrobial activities against a variety of microorganisms. Recently identified cathelicidins derived from alligator and sea snake were found to be more effective in inhibiting microbial growth than other AMPs previously characterized. The ability of these two cathelicidins along with the peptides, cecropin and pleurocidin, to protect channel catfish (Ictalurus punctatus, Rafinesque) and hybrid catfish (I. punctatus ♀ × blue catfish, Ictalurus furcatus, Valenciennes ♂) against Edwardsiella ictaluri, one of the most prevalent pathogens affecting commercial catfish industry, was investigated. Cathelicidin-injected fish (50 µg ml-1 fish-1 ) that were simultaneously challenged with E. ictaluri through bath immersion at a concentration of ~1 × 106 CFU/ml had increased survival rates compared with other peptide treatments and the infected control. Bacterial numbers were also reduced in the liver and kidney of channel catfish and hybrid catfish in the cathelicidin treatments 24 hr post-infection. After 8 days of challenge, serum was collected to determine immune-related parameters such as bactericidal activity, lysozyme, serum protein, albumin and globulin. These immune-related parameters were significantly elevated in fish injected with the two cathelicidins as compared to other peptide treatments. These results indicate that cathelicidins derived from alligator and sea snake can stimulate immunity and enhance the resistance to E. ictaluri infection in channel catfish and hybrid catfish.
Collapse
Affiliation(s)
- Rhoda Mae C Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, Philippines
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Nermeen Y Abass
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Department of Agricultural Botany, Faculty of Agriculture Saba-Basha, Alexandria University, Alexandria City, Egypt
| | - Jeffery S Terhune
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
28
|
Alford MA, Baquir B, Santana FL, Haney EF, Hancock REW. Cathelicidin Host Defense Peptides and Inflammatory Signaling: Striking a Balance. Front Microbiol 2020; 11:1902. [PMID: 32982998 PMCID: PMC7481365 DOI: 10.3389/fmicb.2020.01902] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Host-defense peptides (HDPs) are vital components of innate immunity in all vertebrates. While their antibacterial activity toward bacterial cells was the original focus for research, their ability to modulate immune and inflammatory processes has emerged as one of their major functions in the host and as a promising approach from which to develop novel therapeutics targeting inflammation and innate immunity. In this review, with particular emphasis on the cathelicidin family of peptides, the roles of natural HDPs are examined in managing immune activation, cellular recruitment, cytokine responses, and inflammation in response to infection, as well as their contribution(s) to various inflammatory disorders and autoimmune diseases. Furthermore, we discuss current efforts to develop synthetic HDPs as therapeutics aimed at restoring balance to immune responses that are dysregulated and contribute to disease pathologies.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Felix L. Santana
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Hitchhiking with Nature: Snake Venom Peptides to Fight Cancer and Superbugs. Toxins (Basel) 2020; 12:toxins12040255. [PMID: 32326531 PMCID: PMC7232197 DOI: 10.3390/toxins12040255] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract For decades, natural products in general and snake venoms (SV) in particular have been a rich source of bioactive compounds for drug discovery, and they remain a promising substrate for therapeutic development. Currently, a handful of SV-based drugs for diagnosis and treatment of various cardiovascular disorders and blood abnormalities are on the market. Likewise, far more SV compounds and their mimetics are under investigation today for diverse therapeutic applications, including antibiotic-resistant bacteria and cancer. In this review, we analyze the state of the art regarding SV-derived compounds with therapeutic potential, focusing on the development of antimicrobial and anticancer drugs. Specifically, information about SV peptides experimentally validated or predicted to act as antimicrobial and anticancer peptides (AMPs and ACPs, respectively) has been collected and analyzed. Their principal activities both in vitro and in vivo, structures, mechanisms of action, and attempts at sequence optimization are discussed in order to highlight their potential as drug leads. Key Contribution This review describes the state of the art in snake venom-derived peptides and their therapeutic applications. This work reinforces the potential of snake venom components as therapeutic agents, particularly in the quest for new antimicrobial and anticancer drugs.
Collapse
|
30
|
Jimenez EC. Bromotryptophan and its Analogs in Peptides from Marine Animals. Protein Pept Lett 2019; 26:251-260. [PMID: 30663557 DOI: 10.2174/0929866526666190119170020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023]
Abstract
Bromotryptophan is a nonstandard amino acid that is rarely incorporated in ribosomally synthesized and post-translationally modified peptides (ribosomal peptides). Bromotryptophan and its analogs sometimes occur in non-ribosomal peptides. This paper presents an overview of ribosomal and non-ribosomal peptides that are known to contain bromotryptophan and its analogs. This work further covers the biological activities and therapeutic potential of some of these peptides.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines
| |
Collapse
|
31
|
Chen C, Wang A, Zhang F, Zhang M, Yang H, Li J, Su P, Chen Y, Yu H, Wang Y. The protective effect of fish-derived cathelicidins on bacterial infections in zebrafish, Danio rerio. FISH & SHELLFISH IMMUNOLOGY 2019; 92:519-527. [PMID: 31202967 DOI: 10.1016/j.fsi.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/19/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic-resistant bacteria are severe threats to aquaculture industry. Boosting and modulating host immune responses has been proved to be an effective strategy to combat with bacterial infections and there is an urgent need for novel immunomodulators. Cathelicidins is an important family of host defense peptides (HDPs) that possess direct antimicrobial activities and potent immunomodulatory properties. Several cathelicidins have been identified and characterized from diverse fish species. Considering the relatively conserved immune systems between different fish species, it is reasonable to speculate that cathelicidins from different fish species possess immunomodulating functions on the other fish species. In the present study, two fish-derived cathelicidins (CATH_BRALE and codCath1) were selected to investigate their protective effect on zebrafish with bacterial infections. They exhibited potent and broad-spectrum antimicrobial activities against the tested aquatic Gram-positive and Gram-negative pathogenic bacteria, with MIC values ranging 2.34-18.75 μg/ml for CATH_BRALE and 2.34-37.5 μg/ml for codCath1. And their antimicrobial effect is so rapid that they killed the bacteria within 60 min. Unlike conventional antibiotics, they kill bacteria by inducing bacterial membrane permeabilization and cell disruption. Besides direct antimicrobial activity, CATH_BRALE and codCath1 exhibited potent immunomodulatory functions by both inhibiting bacteria induced zebrafish pro-inflammatory cytokine gene (TNF-α, IL-1β, and IL-6) expression and stimulating zebrafish chemokine gene IL-8 expression. In vivo challenge test proved that they could significantly decrease the bacterial numbers and enhance the survival rates of zebrafish. All the results above imply the great potential of CATH_BRALE and codCath1 as novel peptide immunomodulators in fish aquaculture industry.
Collapse
Affiliation(s)
- Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Aili Wang
- Weifang University of Science and Technology, Shouguang, Shandong, 262700, China
| | - Fen Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Minghui Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huaixin Yang
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Jianan Li
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Pengchao Su
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, China
| | - Yan Chen
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116023, China.
| | - Yipeng Wang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
32
|
Genomic Identification and Expression Analysis of the Cathelicidin Gene Family of the Forest Musk Deer. Animals (Basel) 2019; 9:ani9080481. [PMID: 31344924 PMCID: PMC6719980 DOI: 10.3390/ani9080481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cathelicidins are a group of host defense peptides in vertebrates with both antimicrobial and immunomodulatory activities. In the present study, we identified the entire repertoire of the cathelicidin gene family from the forest musk deer genome. Sequence comparison, phylogenetic topology, and gene and genomic organizations collectively suggest that all cathelicidin genes have already been fixed in the genome of forest musk deer before the split of moschidae and bovidae, while independent pseudogenization events have occurred after species divergence. In addition, real-time PCR analysis suggested that all functional cathelicidins play important roles in the immune system. The results of this study will be helpful for further evolutionary and functional studies. Abstract The forest musk deer (Moschus berezovskii) is a small-sized artiodactyl species famous for the musk secreted by adult males. In the captive population, this species is under the threat of infection diseases, which greatly limits the increase of individual numbers. In the present study, we computationally analyzed the repertoire of the cathelicidin (CATHL) family from the genome of forest musk deer and investigated their expression pattern by real-time PCR. Our results showed that the entire genome of forest musk deer encodes eight cathelicidins, including six functional genes and two pseudogenes. Phylogenetic analyses further revealed that all forest musk deer cathelicidin members have emerged before the split of the forest musk deer and cattle and that forest musk deer CATHL3L2 and CATHL9 are orthologous with two cattle pseudogenes. In addition, the gene expression results showed that the six functional genes are not only abundantly expressed in the spleen and lung, but are also differently expressed in response to abscesses, which suggests that forest musk deer cathelicidins may be involved in infections. Taken together, identification and characterization of the forest musk deer cathelicidins provide fundamental data for further investigating their evolutionary process and biological functions.
Collapse
|
33
|
Furlan M, Rosani U, Gambato S, Irato P, Manfrin A, Mardirossian M, Venier P, Pallavicini A, Scocchi M. Induced expression of cathelicidins in trout (Oncorhynchus mykiss) challenged with four different bacterial pathogens. J Pept Sci 2018; 24:e3089. [PMID: 29808604 DOI: 10.1002/psc.3089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 11/05/2022]
Abstract
Cathelicidins are an important family of antimicrobial peptide effectors of innate immunity in vertebrates. Two members of this group, CATH-1 and CATH-2, have been identified and characterized in teleosts (ray-finned fish). In this study, we investigated the expression of these genes in different tissues of rainbow trout challenged with 4 different inactivated pathogens. By using qPCR, we detected a strong induction of both cath-1 and cath-2 genes within 24 hours after intraperitoneal inoculation with Lactococcus garvieae, Yersinia ruckeri, Aeromonas salmonicida, or Flavobacterium psychrophilum cells. Up to 700-fold induction of cath-2 was observed in the spleen of animals challenged with Y. ruckeri. Moreover, we found differences in the intensity and timing of gene up-regulation in the analyzed tissues. The overall results highlight the importance of cathelicidins in the immune response mechanisms of salmonids.
Collapse
Affiliation(s)
- Michela Furlan
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Irato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Amedeo Manfrin
- Fish Pathology Laboratory, Istituto Zooprofilattico delle Venezie, Via Romea 14/a, 35020 Legnaro, Padova, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| |
Collapse
|
34
|
Pérez-Peinado C, Dias SA, Domingues MM, Benfield AH, Freire JM, Rádis-Baptista G, Gaspar D, Castanho MARB, Craik DJ, Henriques ST, Veiga AS, Andreu D. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom. J Biol Chem 2017; 293:1536-1549. [PMID: 29255091 DOI: 10.1074/jbc.ra117.000125] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.
Collapse
Affiliation(s)
- Clara Pérez-Peinado
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Susana Almeida Dias
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marco M Domingues
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Aurélie H Benfield
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - João Miguel Freire
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.,the Department of Virology, Institut Pasteur, 75724 Paris, France, and
| | - Gandhi Rádis-Baptista
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.,the Laboratory of Biochemistry and Biotechnology, Institute for Marine Science, Federal University of Ceará, 60165-081 Fortaleza, CE, Brazil
| | - Diana Gaspar
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel A R B Castanho
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - David J Craik
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia,
| | - Ana Salomé Veiga
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal,
| | - David Andreu
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain,
| |
Collapse
|
35
|
Khurshid Z, Naseem M, Yahya I Asiri F, Mali M, Sannam Khan R, Sahibzada HA, Zafar MS, Faraz Moin S, Khan E. Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules 2017; 7:biom7040080. [PMID: 29206168 PMCID: PMC5745462 DOI: 10.3390/biom7040080] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Cathelicidins are a group of oral antimicrobial peptides that play multiple vital roles in the human body, such as their antimicrobial (broad spectrum) role against oral microbes, wound healing, and angiogenesis, with recent evidences about their role in cancer regulation. Cathelicidins are present in humans and other mammals as well. By complex interactions with the microenvironment, it results in pro-inflammatory effects. Many in vitro and in vivo experiments have been conducted to ultimately conclude that these unique peptides play an essential role in innate immunity. Peptides are released in the precursor form (defensins), which after cleavage results in cathelicidins formation. Living in the era where the major focus is on non-invasive and nanotechnology, this ultimately leads to further advancements in the field of salivaomics. Based on current spotlight innovations, we have highlighted the biochemistry, mode of action, and the importance of cathelicidins in the oral cavity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mustafa Naseem
- Department of Preventive Dentistry, College of Dentistry, Dar-Al-Uloom University, Riyadh 13314, Saudi Arabia.
| | - Faris Yahya I Asiri
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Al-Ahsa 312982, Saudi Arabia.
| | - Maria Mali
- Department of Orthodontics, Islamic International Dental College, Ripah International University, Islamabad 44000, Pakistan.
| | - Rabia Sannam Khan
- Department of Oral Pathology, College of Dentistry, Baqai University, Super Highway, P.O. Box 2407, Karachi 74600, Pakistan.
| | | | - Muhammad Sohail Zafar
- Department of Dental Materials, College of Dentistry, Taibah University, Madinah Munawwarah 41311, Saudi Arabia.
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| | - Syed Faraz Moin
- National Center for Proteomics, Karachi University, Karachi 75270, Pakistan.
| | - Erum Khan
- Department of Oral Pathology, Institute of Dentistry, Liaquat University of Medical and Health Sciences, Jamshoro 71000, Pakistan.
| |
Collapse
|
36
|
Udroiu I, Sgura A. The Phylogeny of the Spleen. THE QUARTERLY REVIEW OF BIOLOGY 2017. [DOI: 10.1086/695327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Shabir U, Ali S, Magray AR, Ganai BA, Firdous P, Hassan T, Nazir R. Fish antimicrobial peptides (AMP's) as essential and promising molecular therapeutic agents: A review. Microb Pathog 2017; 114:50-56. [PMID: 29180291 DOI: 10.1016/j.micpath.2017.11.039] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/23/2023]
Abstract
Antimicrobial peptides (AMPs) are generally considered as an essential component of innate immunity, thereby providing the first line of defense against wide range of pathogens. In addition, they can also kill the pathogens which are generally resistant to number of antibiotics, thereby providing the avenues for the development of future therapeutic agents. Fishes are constantly challenged by variety of pathogens which not only shows detrimental effect on their health but also increases risk of becoming resistant to conventional antibiotics. As fishes rely more on innate immunity, AMPs can serve as a potential defensive weapons in fishes for combating emerging devastating diseases. Generally, AMPs show multidimensional properties like rapid diffusion to the site of infection, recruitment of other immune cells to infected tissues and vigorous potential to rapidly neutralize broad range of pathogens (bacterial, fungal and viral). AMPs also exhibit diverse biological effect like endotoxin neutralization, immunomodulation and induction of angiogenesis in mammals. Due to these properties AMPs have become one of the most promising therapeutic agents to be studied. Till date, many AMPs have been isolated from the fishes but not fully characterized at molecular level. This review provides an overview of the structures, functions, and putative mechanisms of major families of fish AMPs. Further, we also highlighted how fish AMPs can be used as a novel therapeutic tool which is the theme of future research in drug development.
Collapse
Affiliation(s)
- Uzma Shabir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Aqib Rehman Magray
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India.
| | - Parveena Firdous
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Toyeeba Hassan
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| | - Ruqeya Nazir
- Centre of Research for Development, University of Kashmir, Hazratbal, 190006, India
| |
Collapse
|
38
|
Abstract
Specialized adaptations for killing microbes are synonymous with phagocytic cells including macrophages, monocytes, inflammatory neutrophils, and eosinophils. Recent genome sequencing of extant species, however, reveals that analogous antimicrobial machineries exist in certain non-immune cells and also within species that ostensibly lack a well-defined immune system. Here we probe the evolutionary record for clues about the ancient and diverse phylogenetic origins of macrophage killing mechanisms and how some of their properties are shared with cells outside the traditional bounds of immunity in higher vertebrates such as mammals.
Collapse
|
39
|
Molecular Characterisation of a Novel Isoform of Hepatic Antimicrobial Peptide, Hepcidin (Le-Hepc), from Leiognathus equulus and Analysis of Its Functional Properties In Silico. Probiotics Antimicrob Proteins 2017. [PMID: 28631249 DOI: 10.1007/s12602-017-9294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepcidin represents a family of cysteine-rich antimicrobial peptides that are mainly expressed in the liver of living organisms. In this study, we have identified and characterised a novel isoform of hepcidin from the common pony fish, Leiognathus equulus (Le-Hepc). A 261-bp fragment cDNA coding for 86 amino acids was obtained. Homologous analysis showed that Le-Hepc belongs to the hepcidin super family and shares sequence identity with other known fish pre-propeptide hepcidin sequences. The ORF encodes for a 24-amino acid (aa) signal peptide coupled to a 36-aa prodomain followed by a 26-aa mature peptide. The mature peptide region has a calculated molecular weight of 2.73 kDa, a net positive charge of +2 and a theoretical pI of 8.23. Phylogenetic analysis of Le-Hepc showed a strong relationship with other fish hepcidin sequences and clustered into HAMP2 group hepcidins. Secondary structural analysis indicated that Le-Hepc mature peptide contains two antiparallel β-sheets strengthened by four disulphide bonds formed by eight conserved cysteine residues. The physicochemical properties of the peptide and its structural parameters are in agreement with characteristic features of an antimicrobial peptide. This is the first report of an antimicrobial peptide from the common pony fish, L. equulus.
Collapse
|
40
|
Ageitos J, Sánchez-Pérez A, Calo-Mata P, Villa T. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017; 133:117-138. [DOI: 10.1016/j.bcp.2016.09.018] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023]
|
41
|
Characterization of Two Antimicrobial Peptides from Antarctic Fishes (Notothenia coriiceps and Parachaenichthys charcoti). PLoS One 2017; 12:e0170821. [PMID: 28122029 PMCID: PMC5266299 DOI: 10.1371/journal.pone.0170821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
We identified two antimicrobial peptides (AMPs) with similarity to moronecidin in Antarctic fishes. The characteristics of both AMPs were determined using moronecidin as a control. Moronecidin, which was first isolated from hybrid striped bass, is highly salt-resistant, and possesses broad-spectrum activity against various microbes. The moronecidin-like peptide from Notothenia coriiceps exhibited a narrower spectrum of activity and a higher salt sensitivity than moronecidin. The AMP from Parachaenichthys charcoti exhibited similar antimicrobial activity to moronecidin, and similar salt sensitivity. In an experiment to identify toxic effects, both of the moronecidin-like peptides from the Antarctic fishes exhibited lower hemolytic activity than moronecidin. In spite of its low toxicity, the AMP from N. coriiceps is unlikely to be considered as a candidate for antibiotic development, owing to its narrow spectrum of activity and high salt sensitivity. In contrast, the high salt resistance and broad-spectrum activity of the AMP from P. charcoti could be more advantageous for clinical use than moronecidin, since it could kill bacteria under physiological conditions with low toxicity. A further comparison of these two AMPs from Antarctic fishes with other AMPs could help to reduce the toxicity of AMPs for clinical use.
Collapse
|
42
|
Chettri JK, Mehrdana F, Hansen EB, Ebbensgaard A, Overgaard MT, Lauritsen AH, Dalsgaard I, Buchmann K. Antimicrobial peptide CAP18 and its effect on Yersinia ruckeri infections in rainbow trout Oncorhynchus mykiss (Walbaum): comparing administration by injection and oral routes. JOURNAL OF FISH DISEASES 2017; 40:97-104. [PMID: 27334068 DOI: 10.1111/jfd.12497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 06/06/2023]
Abstract
The antimicrobial peptide CAP18 has been demonstrated to have a strong in vitro bactericidal effect on Yersinia ruckeri, but its activity in vivo has not been described. In this work, we investigated whether CAP18 protects rainbow trout Oncorhynchus mykiss (Walbaum) against enteric red mouth disease caused by this pathogen either following i.p. injection or by oral administration (in feed). It was found that injection of CAP18 into juvenile rainbow trout before exposure to Y. ruckeri was associated with lowered mortality compared to non-medicated fish although it was less effective than the conventional antibiotic oxolinic acid. Oral administration of CAP18 to trout did not prevent infection. The proteolytic effect of secretions on the peptide CAP18 in the fish gastrointestinal tract is suggested to account for the inferior effect of oral administration.
Collapse
Affiliation(s)
- J K Chettri
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - F Mehrdana
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - E B Hansen
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - A Ebbensgaard
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - M T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - I Dalsgaard
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - K Buchmann
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
43
|
Yacoub HA, Elazzazy AM, Mahmoud MM, Baeshen MN, Al-Maghrabi OA, Alkarim S, Ahmed ES, Almehdar HA, Uversky VN. Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:8-24. [PMID: 27328070 DOI: 10.1016/j.dci.2016.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
This study was performed to identify the expression patterns of the cathelicidin genes in a local chicken breed and to evaluate the antimicrobial activities of the cathelicidin peptides against pathogenic bacteria. This analysis revealed that the coding regions of CATH-1, -2, and -3 genes contain 447 bp, 465 bp, and 456 bp, respectively, and encode proteins of 148, 154, 151 amino acids, respectively. The complete amino acid sequences of the cathelicidin peptides are similar to those found in Meleagris gallopavo, Phasianus colchicus, and Coturnix coturnix, and show high sequence identity to their Columba livia and Anas platyrhynchos counterparts. In contrast, these avian peptides shared a very low sequence identity with the mammalian cathelicidins. The analysis further revealed that the cathelicidin genes are expressed in various organ and tissues. We also show that the CATH peptides 1, 2, 3 and their amide-modified structures possess potent antimicrobial activities against both Gram-positive and Gram-negative pathogens, with these bacteria being affected to different extents. The antimicrobial activities of the peptides are slightly lower than those of their amide analogs. Computational analysis revealed that pre-pro-cathelicidins are hybrid proteins that contain ordered domains and functional intrinsically disordered regions. Furthermore, high structural and sequence variability of mature cathelicidins is a strong indication of their rather disordered nature. It is likely that intrinsic disorder is needed for the multifarious functionality of these antimicrobial peptides. Our analyses indicated that cathelicidin peptides require further study to better understand their full potentials in the treatment of diseases in both humans and animals. The data obtained for synthetic avian peptides will help elucidating of their potential applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Haitham A Yacoub
- Biological Sciences Department, Faculty of Science, University of Jeddah, P.O. Box 80203, Jeddah, Saudi Arabia; Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, P.O. Box 12622, Gizza, Egypt.
| | - Ahmed M Elazzazy
- Biological Sciences Department, Faculty of Science, University of Jeddah, P.O. Box 80203, Jeddah, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Dokki, P.O. Box 12622, Gizza, Egypt.
| | - Maged M Mahmoud
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Department of Molecular Genetics and Enzymology, Davison of Human Genetics and Genome Research, National Research Centre, Dokki, P.O. Box 12622, Gizza, Egypt
| | - Mohamed Nabih Baeshen
- Biological Sciences Department, Faculty of Science, University of Jeddah, P.O. Box 80203, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Omar A Al-Maghrabi
- Biological Sciences Department, Faculty of Science, University of Jeddah, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Saleh Alkarim
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Ekram S Ahmed
- Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, P.O. Box 12622, Gizza, Egypt
| | - Hussein A Almehdar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
44
|
D'Este F, Benincasa M, Cannone G, Furlan M, Scarsini M, Volpatti D, Gennaro R, Tossi A, Skerlavaj B, Scocchi M. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. FISH & SHELLFISH IMMUNOLOGY 2016; 59:456-468. [PMID: 27818338 DOI: 10.1016/j.fsi.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Cathelicidins, a major family of vertebrate antimicrobial peptides (AMPs), have a recognized role in the first line of defense against infections. They have been identified in several salmonid species, where the putative mature peptides are unusually long and rich in serine and glycine residues, often arranged in short multiple repeats (RLGGGS/RPGGGS) intercalated by hydrophobic motifs. Fragments of 24-40 residues, spanning specific motifs and conserved sequences in grayling or brown, rainbow and brook trout, were chemically synthesized and examined for antimicrobial activity against relevant Gram-positive and Gram-negative salmonid pathogens, as well as laboratory reference strains. They were not active in complete medium, but showed varying potency and activity spectra in diluted media. Bacterial membrane permeabilization also occurred only under these conditions and was indicated by rapid propidium iodide uptake in peptide-treated bacteria. However, circular dichroism analyses indicated that they did not significantly adopt ordered conformations in membrane-like environments. The peptides were not hemolytic or cytotoxic to trout cells, including freshly purified head kidney leukocytes (HKL) and the fibroblastic RTG-2 cell line. Notably, when exposed to them, HKL showed increased metabolic activity, while a growth-promoting effect was observed on RTG-2 cells, suggesting a functional interaction of salmonid cathelicidins with host cells similar to that shown by mammalian ones. The three most active peptides produced a dose-dependent increase in phagocytic uptake by HKL simultaneously stimulated with bacterial particles. The peptide STF(1-37), selected for further analyses, also enhanced phagocytic uptake in the presence of autologous serum, and increased intracellular killing of live E. coli. Furthermore, when tested on HKL in combination with the immunostimulant β-glucan, it synergistically potentiated both phagocytic uptake and the respiratory burst response, activities that play a key role in fish immunity. Collectively, these data point to a role of salmonid cathelicidins as modulators of fish microbicidal mechanisms beyond a salt-sensitive antimicrobial activity, and encourage further studies also in view of potential applications in aquaculture.
Collapse
Affiliation(s)
- Francesca D'Este
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Giuseppe Cannone
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Michela Furlan
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Michele Scarsini
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Donatella Volpatti
- Department of Agricultural, Food, Environmental and Animal Sciences, Via Sondrio 2/a, 33100 Udine, Italy
| | - Renato Gennaro
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Barbara Skerlavaj
- Department of Medical and Biological Sciences, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
45
|
The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:546-66. [DOI: 10.1016/j.bbamem.2015.11.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
|
46
|
Liu H, Lei M, Du X, Cui P, Zhang S. Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses. Sci Rep 2015; 5:18355. [PMID: 26680226 PMCID: PMC4683396 DOI: 10.1038/srep18355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022] Open
Abstract
The emergence of multi-drug resistant (MDR) microbes leads to urgent demands for novel antibiotics exploration. We demonstrated a cDNA from amphioxus Branchiostoma japonicum, designated Bjamp1, encoded a protein with features typical of antimicrobial peptides (AMPs), which is not homologous to any AMPs currently discovered. It was found that Bjamp1 was expressed in distinct tissues, and its expression was remarkably up-regulated following challenge with LPS and LTA. Moreover, the synthesized putative mature AMP, mBjAMP1, underwent a coil-to-helix transition in the presence of TFE or SDS, agreeing well with the expectation that BjAMP1 was a potential AMP. Functional assays showed that mBjAMP1 inhibited the growth of all the bacteria tested, and induced membrane/cytoplasmic damage. ELISA indicated that mBjAMP1 was a pattern recognition molecule capable of identifying LPS and LTA. Importantly, mBjAMP1 disrupted the bacterial membranes by a membranolytic mechanism. Additionally, mBjAMP1 was non-cytotoxic to mammalian cells. Collectively, these data indicate that mBjAMP1 is a new AMP with a high bacterial membrane selectivity, rendering it a promising template for the design of novel peptide antibiotics against MDR microbes. It also shows for the first time that use of signal conserved sequence of AMPs is effective identifying potential AMPs across different animal classes.
Collapse
Affiliation(s)
- Haohan Liu
- Laboratory for Evolution &Development, Institute of Evolution &Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Miaomiao Lei
- Laboratory for Evolution &Development, Institute of Evolution &Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Xiaoyuan Du
- Laboratory for Evolution &Development, Institute of Evolution &Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution &Development, Institute of Evolution &Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution &Development, Institute of Evolution &Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
47
|
Li CH, Lu XJ, Li MY, Chen J. Cathelicidin modulates the function of monocytes/macrophages via the P2X7 receptor in a teleost, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:878-885. [PMID: 26525517 DOI: 10.1016/j.fsi.2015.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Cathelicidins (CATHs) are a family of endogenous antimicrobial peptides that are capable of both direct bacteria-killing and immunomodulatory effects. P2X7 receptor (P2X7R) is a mediator of CATH in mammalian immune cells. Here, we studied the function and regulation of CATH in head kidney-derived monocytes/macrophages (MO/MФ) from ayu, Plecoglossus altivelis. We investigated the chemotaxis of MO/MФ in response to ayu CATH (PaCATH), and found that PaCATH had a dose-dependent effect on MO/MФ chemotaxis with the optimal concentration of 10.0 μg/ml. The qPCR and Western blot analysis revealed that PaCATH inhibited the expression of ayu P2X7R (PaP2X7R) at both mRNA and protein levels. Knockdown of the PaP2X7R expression in ayu MO/MФ by RNA interference not only significantly inhibited the chemotactic effect of PaCATH on MO/MФ, but also obviously reduced the effect of PaCATH on the phagocytosis, bacteria-killing, respiratory burst, and cytokine expression of ayu MO/MФ. Our study revealed that the immunomodulatory effect of fish CATH is mediated by P2X7R.
Collapse
Affiliation(s)
- Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
48
|
Dhaliwal KK, Arora JS, Mukhopadhyay CS, Dubey PP. In Silico Characterization of Functional Divergence of Two Cathelicidin Variants in Indian Sheep. Evol Bioinform Online 2015; 11:189-96. [PMID: 26380546 PMCID: PMC4559185 DOI: 10.4137/ebo.s29779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/05/2015] [Accepted: 07/12/2015] [Indexed: 11/14/2022] Open
Abstract
The present work focuses on the in silico characterization of functional divergence of two ovine cathelicidin coding sequence (cds) variants (ie, Cath1 and Cath2) of Indian sheep. Overlapping partial cds of both the cathelicidin variants were cloned in pJet1.2/blunt vector and sequenced. Evolutionary analysis of the Cath2 and Cath1 indicated that the mammalian cathelicidins clustered separately from avian fowlicidins. The avian fowlicidins, which are very different from mammalian cathelicidins (Caths), clearly displayed signatures of purifying selection. The pairwise sequence alignments of translated amino acid sequences of these two sheep cathelicidins showed gaps in the antimicrobial domain of Cath1 variant; however, the amino terminal cathelin regions of both the Caths were conserved. Amino acid sequence analysis of full-length cathelicidins available at public database revealed that Cath1, Cath2, and Cath7 of different ruminant species (including our Cath1 and Cath2 variants) formed individual clads, suggesting that these types have evolved to target specific types of microbes. In silico analysis of Cath1 and Cath2 peptide sequences indicated that the C-terminal antimicrobial peptide domain of Cath2 is more immunogenic than that of the ovine Cath1 due to its higher positive antigenic index, making Cath1 a promising antigen for production of monoclonal antibodies.
Collapse
Affiliation(s)
- Kamaljeet K Dhaliwal
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Jaspreet S Arora
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Chandra S Mukhopadhyay
- School of Animal Biotechnology, Post Graduate Institute of Veterinary Education and Research, Ludhiana, Punjab, India
| | - Prem P Dubey
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
49
|
Yu H, Lu Y, Qiao X, Wei L, Fu T, Cai S, Wang C, Liu X, Zhong S, Wang Y. Novel Cathelicidins from Pigeon Highlights Evolutionary Convergence in Avain Cathelicidins and Functions in Modulation of Innate Immunity. Sci Rep 2015; 5:11082. [PMID: 26194630 PMCID: PMC4508531 DOI: 10.1038/srep11082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/14/2015] [Indexed: 12/27/2022] Open
Abstract
Cathelicidins are short cationic host defense peptides and play a central role in host innate immune system. Here we identified two novel cathelicidins, Cl-CATH2 and 3, from Columba livia. Evolutionary analysis of avian cathelicidins via phylogenetic tree and Ka/Ks calculations supported the positive selection that prompted evolution of CATH2 to CATH1 and 3, which originate from common ancestor and could belong to one superfamily. Cl-CATH2 and 3 both adopt amphipathic α-helical comformations identified by circular dichroism and the 3D structures built by Rosetta. Cl-CATH2 of CATH2 family with the most expression abundance in bird, exhibited relatively weak antimicrobial activity, but acted instead on the innate immune response without showing undesirable toxicities. In macrophages primed by LPS, Cl-CATH2 significantly down-regulated the gene and protein expressions of inducible nitric oxide synthase and pro-inflammatory cytokines while enhancing the anti-inflammatory cytokine, acting through MAPK and NF-κB signaling pathways. Molecular docking shows for the first time that cathelicidin binds to the opening region of LPS-binding pocket on myeloid differentiation factor 2 (MD-2) of toll-like receptor (TLR)4-MD-2 complex, which in turn inhibits the TLR4 pathway. Our results, therefore, provide new insight into the mechanism underlying the blockade of TLR4 signaling by cathelicidins.
Collapse
Affiliation(s)
- Haining Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yiling Lu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xue Qiao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lin Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123 China
| | - Tingting Fu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shasha Cai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chen Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuelian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shijun Zhong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123 China
| |
Collapse
|
50
|
Halldórsdóttir K, Árnason E. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species. PeerJ 2015; 3:e976. [PMID: 26038731 PMCID: PMC4451034 DOI: 10.7717/peerj.976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host's apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of balancing selection maintaining the variation. Using Bayesian and likelihood methods positive and negative selection is evident at sites in the conserved part of the genes and, to a larger extent, in the active part which also shows episodic diversifying selection, further supporting the argument for balancing selection.
Collapse
Affiliation(s)
- Katrín Halldórsdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Einar Árnason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|