1
|
Erman A, Dragin Jerman U, Peskar D, Šešelja K, Bazina I, Baus Lončar M. Trefoil Factor Protein 3 (TFF3) as a Guardian of the Urinary Bladder Epithelium. J Histochem Cytochem 2024; 72:693-709. [PMID: 39579021 PMCID: PMC11585002 DOI: 10.1369/00221554241299863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
Trefoil factor family (TFF) peptides have been examined primarily in the gastrointestinal tract, where they play an important role in the epithelial regeneration. The therapeutic effects of TFFs, particularly the TFF3 protein, have been well studied in humans and in animal models of gastrointestinal injury, whereas little is known about their occurrence and function in the urinary bladder. In this study, we investigated the presence, location, and function of Tff3 in the urinary bladders of wild-type mice (Tff3WT) and compared them with Tff3 knockout mice (Tff3KO) using molecular and microscopic methods at the light and electron microscopic level. Our results show that Tff3 is expressed in the superficial cells of the urothelium, where it colocalizes with the uroplakin UP1b as one of the fundamental structural components of the apical plasma membrane, which is an important component of the blood-urine permeability barrier. Analysis of the urothelium with experimentally induced injury revealed that injury is more severe in Tff3KO mice and urothelial regeneration is attenuated compared with Tff3WT mice, suggesting that Tff3 plays a fine-tuned role in homeostasis and protection of the urothelium. This study provides the first data on the precise location and function of Tff3 in the bladder epithelium. (J Histochem Cytochem XX. XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dominika Peskar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kate Šešelja
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva Bazina
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mirela Baus Lončar
- Laboratory for Neurodegenerative Research, Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
2
|
Salm F, Znalesniak EB, Laskou A, Harder S, Schlüter H, Hoffmann W. Expression Profiling along the Murine Intestine: Different Mucosal Protection Systems and Alterations in Tff1-Deficient Animals. Int J Mol Sci 2023; 24:12684. [PMID: 37628863 PMCID: PMC10454331 DOI: 10.3390/ijms241612684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).
Collapse
Affiliation(s)
- Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
3
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
5
|
Tff3 Deficiency Protects against Hepatic Fat Accumulation after Prolonged High-Fat Diet. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081288. [PMID: 36013467 PMCID: PMC9409972 DOI: 10.3390/life12081288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal surfaces and is involved in proper mucosal function and recovery via various mechanisms, including immune response. However, Tff3 is also found in the bloodstream and in various other tissues, including the liver. Its complete attenuation was observed as the most prominent event in the early phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored the animals’ general metabolic parameters, liver morphology, ultrastructure and molecular genes in relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice and a less prominent reduction in female mice. This was associated with downregulated peroxisome proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression, although protein level difference did not reach statistical significance due to higher individual variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the liver; further research is needed to elucidate its precise role in metabolism-related events.
Collapse
|
6
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Adewale B, Heintz JR, Pastore CF, Rossi HL, Hung LY, Rahman N, Bethony J, Diemert D, Babatunde JA, Herbert DR. Parasitic helminth infections in humans modulate Trefoil Factor levels in a manner dependent on the species of parasite and age of the host. PLoS Negl Trop Dis 2021; 15:e0009550. [PMID: 34662329 PMCID: PMC8553090 DOI: 10.1371/journal.pntd.0009550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/28/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
Helminth infections, including hookworms and Schistosomes, can cause severe disability and death. Infection management and control would benefit from identification of biomarkers for early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins (TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical mediators of tissue repair and worm clearance in the context of hookworm infection, very little is known about how they are modulated in the context of human helminth infection. We measured TFF2, TFF3, and IL-33 levels in serum from patients in Brazil infected with Hookworm and/or Schistosomes, and compared them to endemic and non-endemic controls. TFF2 was specifically elevated by Hookworm infection in females, not Schistosoma or co-infection. This elevation was correlated with age, but not worm burden. TFF3 was elevated by Schistosoma infection and found to be generally higher in females. IL-33 was not significantly altered by infection. To determine if this might apply more broadly to other species or regions, we measured TFFs and cytokine levels (IFNγ, TNFα, IL-33, IL-13, IL-1β, IL-17A, IL-22, and IL-10) in both the serum and urine of Nigerian school children infected with S. haematobium. We found that serum levels of TFF2 and 3 were reduced by infection, likely in an age dependent manner. In the serum, only IL-10 and IL-13 were significantly increased, while in urine IFN-γ, TNF-α, IL-13, IL-1β, IL-22, and IL-10 were significantly increased in by infection. Taken together, these data support a role for TFF proteins in human helminth infection. Billions of people are infected with parasitic helminths across the globe, especially in resource poor regions. These infections can result in severe developmental delay, disability, and death. Adequate management of helminth infection would benefit from the identification of host biomarkers in easily obtained samples (e.g. serum or urine) that correlate to infection state. Our goal was to determine if specific proteins involved in tissue repair and immune modulation are altered by infection with specific helminth species in Brazil (hookworm and S. mansoni species of blood fluke) or Nigeria (S. haematobium species of blood fluke). One of these proteins, Trefoil Factor 2 (TFF2), was elevated in the serum of hookworm infected women from Brazil, while another, TFF3 is higher in women than men, but also increased by S. mansoni blood fluke infection. In contrast, both TFFs were decreased in the serum of Nigerian children infected by S. haematobium, while many pro-inflammatory cytokines were increased in the urine, where the eggs emerge from host tissue.
Collapse
Affiliation(s)
- Babatunde Adewale
- Public Health Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Jonathan R. Heintz
- University of Pennsylvania, Perlman School of Medicine Biostatistics Analysis Center, Philadelphia, Pennsylvania, United States of America
| | - Christopher F. Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
| | - Heather L. Rossi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, United States of Amerca
| | - Nurudeen Rahman
- Public Health Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Jeff Bethony
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States of Amerca
| | - David Diemert
- Department of Microbiology, Immunology & Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States of Amerca
| | - James Ayorinde Babatunde
- Department of Biochemistry & Nutrition, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of Amerca
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, United States of Amerca
- * E-mail:
| |
Collapse
|
8
|
Zhang B, Lapenta K, Wang Q, Nam JH, Chung D, Robert ME, Nathanson MH, Yang X. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem 2021; 297:100887. [PMID: 34146542 PMCID: PMC8267550 DOI: 10.1016/j.jbc.2021.100887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT–TFF2 axis in the process of fibrogenesis.
Collapse
Affiliation(s)
- Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Kalina Lapenta
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Jin Hyun Nam
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Znalesniak EB, Salm F, Hoffmann W. Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21020644. [PMID: 31963721 PMCID: PMC7014203 DOI: 10.3390/ijms21020644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
Collapse
|
11
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
12
|
Abstract
Respiratory immunity is accomplished using multiple mechanisms including structure/anatomy of the respiratory tract, mucosal defense in the form of the mucociliary apparatus, innate immunity using cells and molecules and acquired immunity. There are species differences of the respiratory immune system that influence the response to environmental challenges and pharmaceutical, industrial and agricultural compounds assessed in nonclinical safety testing and hazard identification. These differences influence the interpretation of respiratory system changes after exposure to these challenges and compounds in nonclinical safety assessment and hazard identification and their relevance to humans.
Collapse
|
13
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
14
|
Thiem S, Eissmann MF, Stuart E, Elzer J, Jonas A, Buchert M, Ernst M. Inducible gene modification in the gastric epithelium ofTff1-CreERT2,Tff2-rtTA, Tff3-lucmice. Genesis 2016; 54:626-635. [DOI: 10.1002/dvg.22987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Stefan Thiem
- Cancer and Inflammation Laboratory; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine La Trobe University; Heidelberg Australia
| | - Moritz F. Eissmann
- Cancer and Inflammation Laboratory; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine La Trobe University; Heidelberg Australia
| | - Emma Stuart
- Department of Medical Biology University of Melbourne; Inflammation Division, The Walter & Eliza Hall Institute for Medical Research and; Melbourne Victoria 3052 Australia
| | - Joachim Elzer
- Cancer and Inflammation Laboratory; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine La Trobe University; Heidelberg Australia
| | - Anna Jonas
- Department of Multiple Sclerosis; The Florey Institute of Neuroscience and Mental Health; Melbourne Victoria 3010 Australia
| | - Michael Buchert
- Cancer and Inflammation Laboratory; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine La Trobe University; Heidelberg Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine La Trobe University; Heidelberg Australia
| |
Collapse
|
15
|
Thiem S, Eissmann MF, Elzer J, Jonas A, Putoczki TL, Poh A, Nguyen P, Preaudet A, Flanagan D, Vincan E, Waring P, Buchert M, Jarnicki A, Ernst M. Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model. Cancer Res 2016; 76:2277-87. [DOI: 10.1158/0008-5472.can-15-3089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022]
|
16
|
Liu SQ, Ma XL, Qin G, Liu Q, Li YC, Wu YH. Trans-system mechanisms against ischemic myocardial injury. Compr Physiol 2015; 5:167-92. [PMID: 25589268 DOI: 10.1002/cphy.c140026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois Department of Emergency Medicine, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois Carbohydrate and Lipid Metabolism Research Laboratory, College of Life Science and Technology, Dalian University, Dalian, China Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
17
|
Judd LM, Chalinor HV, Walduck A, Pavlic DI, Däbritz J, Dubeykovskaya Z, Wang TC, Menheniott TR, Giraud AS. TFF2 deficiency exacerbates weight loss and alters immune cell and cytokine profiles in DSS colitis, and this cannot be rescued by wild-type bone marrow. Am J Physiol Gastrointest Liver Physiol 2015; 308:G12-24. [PMID: 25324506 PMCID: PMC9925116 DOI: 10.1152/ajpgi.00172.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The trefoil factor TFF2 is a member of a tripartite family of small proteins that is produced by the stomach and the colon. Recombinant TFF2, when applied intrarectally in a rodent model of hapten colitis, hastens mucosal healing and reduces inflammatory indexes. Additionally, TFF2 is expressed in immune organs, supporting a potential immunomodulatory and reparative role in the bowel. In this study we confirm that TFF2 is expressed in the colon and is specifically enriched in epithelial cells relative to colonic leukocytes. TFF2-deficient, but not TFF1-deficient, mice exhibit a more severe response to acute or chronic dextran sulfate (DSS)-induced colitis that correlates with a 50% loss of expression of TFF3, the principal colonic trefoil. In addition, the response to acute colitis is associated with altered expression of IL-6 and IL-33, but not other inflammatory cytokines. While TFF2 can reduce macrophage responsiveness and block inflammatory cell recruitment to the colon, the major role in limiting the susceptibility to acute colitis appears to be maintenance of barrier function. Bone marrow transfer experiments demonstrate that leukocyte expression of TFF2 is not sufficient for prevention of colitis induction but, rather, that the gastrointestinal epithelium is the primary source of TFF2. Together, these findings illustrate that epithelial TFF2 is an important endogenous regulator of gut mucosal homeostasis that can modulate immune and epithelial compartments. Because of its extreme stability, even in the corrosive gut lumen, TFF2 is an attractive candidate as an oral therapeutic scaffold for future drug development in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Louise M. Judd
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Heather V. Chalinor
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | - Daniel I. Pavlic
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jan Däbritz
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Zinaida Dubeykovskaya
- 3Department of Medicine and Irving Cancer Research Centre, Columbia University, New York, New York
| | - Timothy C. Wang
- 3Department of Medicine and Irving Cancer Research Centre, Columbia University, New York, New York
| | - Trevelyan R. Menheniott
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Andrew S. Giraud
- 1Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Trefoil factor 3 as an endocrine neuroprotective factor from the liver in experimental cerebral ischemia/reperfusion injury. PLoS One 2013; 8:e77732. [PMID: 24204940 PMCID: PMC3799633 DOI: 10.1371/journal.pone.0077732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/08/2013] [Indexed: 01/30/2023] Open
Abstract
Cerebral ischemia, while causing neuronal injury, can activate innate neuroprotective mechanisms, minimizing neuronal death. In this report, we demonstrate that experimental cerebral ischemia/reperfusion injury in the mouse causes upregulation of the secretory protein trefoil factor 3 (TFF3) in the hepatocyte in association with an increase in serum TFF3. Partial hepatectomy (~60% liver resection) immediately following cerebral injury significantly lowered the serum level of TFF3, suggesting a contribution of the liver to the elevation of serum TFF3. Compared to wild-type mice, TFF3-/- mice exhibited a significantly higher activity of caspase 3 and level of cell death in the ischemic cerebral lesion, a larger fraction of cerebral infarcts, and a smaller fraction of the injured cerebral hemisphere, accompanied by severer forelimb motor deficits. Intravenous administration of recombinant TFF3 reversed changes in cerebral injury and forelimb motor function due to TFF3 deficiency. These observations suggest an endocrine neuroprotective mechanism involving TFF3 from the liver in experimental cerebral ischemia/reperfusion injury.
Collapse
|
19
|
Quante M, Marrache F, Goldenring JR, Wang TC. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology 2010; 139:2018-2027.e2. [PMID: 20708616 PMCID: PMC2997174 DOI: 10.1053/j.gastro.2010.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gastric stem cells are located in the isthmus of the gastric glands and give rise to epithelial progenitors that undergo bipolar migration and differentiation into pit and oxyntic lineages. Although gastric mucus neck cells located below the isthmus express trefoil factor family 2 (TFF2) protein, TFF2 messenger RNA transcripts are concentrated in cells above the neck region in normal corpus mucosa, suggesting that TFF2 transcription is a marker of gastric progenitor cells. METHODS Using a BAC strategy, we generated a transgenic mouse with a tamoxifen-inducible Cre under the control of the TFF2 promoter (TFF2-BAC-Cre(ERT2)) and analyzed the lineage derivation from TFF2 mRNA transcript-expressing (TTE) cells. RESULTS TTE cells were localized to the isthmus, above and distinct from TFF2 protein-expressing mucus neck cells. Lineage tracing revealed that these cells migrated toward the bottom of the gland within 20 days, giving rise to parietal, mucous neck, and chief cells, but not to enterochromaffin-like-cell. Surface mucus cells were not derived from TTE cells and the progeny of the TTE lineage did not survive beyond 200 days. TTE cells were localized in the isthmus adjacent to doublecortin CaM kinase-like-1(+) putative progenitor cells. Induction of spasmolytic polypeptide-expressing metaplasia with DMP-777-induced acute parietal cell loss revealed that this metaplastic phenotype might arise in part through transdifferentiation of chief cells as opposed to expansion of mucus neck or progenitor cells. CONCLUSIONS TFF2 transcript-expressing cells are progenitors for mucus neck, parietal and zymogenic, but not for pit or enterochromaffin-like cell lineages in the oxyntic gastric mucosa.
Collapse
Affiliation(s)
- Michael Quante
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Frederic Marrache
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| | - James R. Goldenring
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
20
|
Synthesis and localization of trefoil factor family (TFF) peptides in the human urinary tract and TFF2 excretion into the urine. Cell Tissue Res 2010; 339:639-47. [PMID: 20063012 DOI: 10.1007/s00441-009-0913-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/20/2009] [Indexed: 01/17/2023]
Abstract
Trefoil factor family (TFF) peptides promote regeneration and repair processes of mucous epithelia. They also probably play a key role in the remarkable regenerative capacity of the urinary tract epithelia. We have localized TFF1, TFF2, and TFF3 expression systematically in surgical specimens from the urinary tract by reverse transcription with the polymerase chain reaction, Western blot analysis, and immunohistochemistry. Urine samples from patients suffering from nephrolithiasis have been investigated and compared with those of healthy controls. TFF synthesis is detectable along the entire urinary tract epithelia. TFF3 synthesis is the most pronounced followed by TFF1, whereas TFF2 synthesis is occasionally detectable but only in trace amounts. In contrast, TFF2 is the predominant TFF peptide excreted into the urine, and significantly increased urinary TFF2 levels (together with occasionally raised TFF3 levels) have been observed in patients suffering from nephrolithiasis. Thus, we consider that TFF3 plays a major part in regeneration and restitution processes in urinary tract epithelia. TFF2 and probably also TFF3 are candidate biomarkers for nephrolithiasis and possibly other inflammatory conditions of the urinary tract.
Collapse
|
21
|
Greeley MA, Van Winkle LS, Edwards PC, Plopper CG. Airway trefoil factor expression during naphthalene injury and repair. Toxicol Sci 2009; 113:453-67. [PMID: 19880587 DOI: 10.1093/toxsci/kfp268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
While the role of trefoil factors (TFF) in the maintenance of epithelial integrity in the gastrointestinal tract is well known, their involvement in wound healing in the conducting airway is less well understood. We defined the pattern of expression of TFF1, TFF2, and TFF3 in the airways of mice during repair of both severe (300 mg/kg) and moderate (200 mg/kg) naphthalene-induced Clara cell injury. Quantitative real-time PCR for tff messenger RNA expression and immunohistochemistry for protein expression were applied to airway samples obtained by microdissection of airway trees or to fixed lung tissue from mice at 6 and 24 h and 4 and 7 days after exposure to either naphthalene or an oil (vehicle) control. All three TFF were expressed in normal whole lung and airways. TFF2 was the most abundant and was enriched in airways. Injury of the airway epithelium by 300 mg/kg naphthalene caused a significant induction of tff1 gene expression at 24 h, 4 days, and 7 days. In contrast, tff2 was decreased in the high-dose group at 24 h and 4 days but returned to baseline levels by 7 days. tff3 gene expression was not significantly changed at any time point. Protein localization via immunohistochemistry did not directly correlate with the gene expression measurements. TFF1 and TFF2 expression was most intense in the degenerating Clara cells in the injury target zone at 6 and 24 h. Following the acute injury phase, TFF1 and TFF2 were localized to the luminal apices of repairing epithelial cells and to the adjacent mesenchyme in focal regions that correlated with bifurcations and the bronchoalveolar duct junction. The temporal pattern of increases in TFF1, TFF2, and TFF3 indicate a role in cell death as well as proliferation, migration, and differentiation phases of airway epithelial repair.
Collapse
Affiliation(s)
- Melanie A Greeley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Cholangiocytes, the epithelial cells lining bile ducts, provide the first line of defense against lumenal microbes in the biliary system. Recent advances in biliary immunity indicate that cholangiocytes express a variety of pathogen-recognition receptors and can activate a set of intracellular signaling cascades to initiate a profound antimicrobial defense, including release of proinflammatory cytokines and chemokines, production of antimicrobial peptides and maintenance of biliary epithelial integrity. Cholangiocytes also interact with other cell types in the liver (for example, lymphocytes and Kupffer cells) through expression and release of adhesion molecules and immune mediators. Subsequently, through an intricate feedback mechanism involving both epithelial and other liver cells, a set of intracellular signaling pathways are activated to regulate the functional state of cholangiocyte responses during microbial infection. Thus, cholangiocytes are actively involved in mucosal immunity of the biliary system and represent a fine-tuned, integral component of liver immunity.
Collapse
|
23
|
Kouznetsova I, Chwieralski CE, Bälder R, Hinz M, Braun A, Krug N, Hoffmann W. Induced trefoil factor family 1 expression by trans-differentiating Clara cells in a murine asthma model. Am J Respir Cell Mol Biol 2006; 36:286-95. [PMID: 16990615 DOI: 10.1165/rcmb.2006-0008oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways that is accompanied by goblet cell metaplasia and mucus hypersecretion. Trefoil factor family (TFF) peptides represent major secretory products of the respiratory tract and are synthesized together with mucins. In the murine lung, TFF2 is mainly expressed, whereas TFF1 transcripts represent only a minor species. TFF peptides are well known for their motogenic and anti-apoptotic effects, and they modulate the inflammatory response of bronchial epithelial cells. Here, an established mouse model of asthma was investigated (i.e., exposure to Aspergillus fumigatus [AF] antigens). RT-PCR analysis of lung tissue showed elevated levels particularly of TFF1 transcripts in AF-sensitized/challenged animals. In contrast, transcripts encoding Clara cell secretory protein (CCSP/CC10) were strongly diminished in these animals. For comparison, the expression of the goblet cell secretory granule marker mCLCA3/Gob-5, the mucins Muc1-Muc6 and Muc19, and the secretoglobins ScgB3A1 and ScgB3A2, as well as the mammalian ependymin-related gene MERP2, were monitored. Immunohistochemistry localized TFF1 mainly in cells with a mixed phenotype (e.g., TFF1-positive cells stain with the lectin wheat germ agglutinin (WGA), which recognizes mucins characteristic of goblet cells). In addition, these cells express CCSP/CC10, a Clara cell marker. When compared with mucins or CCSP/CC10, TFF1 was stored in a different population of secretory granules localized at the more basolateral portion of these cells. Thus, the results presented indicate for the first time that allergen exposure leads to the trans-differentiation of Clara cells toward a TFF1-expressing mucous phenotype.
Collapse
Affiliation(s)
- Irina Kouznetsova
- Institut für Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universität, Magdeburg; and Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Demetris AJ, Fontes P, Lunz JG, Specht S, Murase N, Marcos A. Wound healing in the biliary tree of liver allografts. Cell Transplant 2006; 15 Suppl 1:S57-65. [PMID: 16826796 DOI: 10.3727/000000006783982386] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An increasing need for liver transplantation requires evaluation and triage of organs harvested from "extended criteria" donors. Although there is currently no widely accepted definition, most would agree that "extended criteria" includes organs donated by individuals that are old (>65 years), obese, infected with HBV or HCV, non-heart beating (NHBD), or had an unstable blood pressure before harvesting or the organ experienced a long cold ischemic time. These organs carry a statistical risk of dysfunction early after transplantation, but in the majority of recipients, hepatic parenchymal function recovers. Later, however, a small but significant percentage of extended criteria donors develop biliary strictures within several months after transplantation. The strictures occur primarily because of preservation injury that leads to "ischemic cholangitis" or deep wounding of the bile duct wall. Subsequent partial wound healing and wound contraction, but failed restitution of the biliary epithelial cell (BEC) lining, result in biliary tract strictures that cause progressive biliary fibrosis, increased morbidity, and decreased organ half-life. Better understanding of the pathophysiologic mechanisms that lead to biliary strictures in extended criteria donors provides an ideal proving ground for regenerative medicine; it also can provide insights into other diseases, such as extrahepatic biliary atresia and primary sclerosing cholangitis, that likely share certain pathogenic mechanisms. Possible points of therapeutic intervention include limiting cold and warm ischemic times, donor and/or donor organ treatment, ex vivo, to minimize the ischemic/preservation injury, maximize blood flow after transplantation, promote BEC wound healing, and limit myofibroblasts activation and proliferation in the bile duct wall. The pathobiology of biliary wound healing and therapeutic potential of interleukin-6 (IL-6) are highlighted.
Collapse
Affiliation(s)
- A J Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Demetris AJ, Lunz JG, Specht S, Nozaki I. Biliary wound healing, ductular reactions, and IL-6/gp130 signaling in the development of liver disease. World J Gastroenterol 2006; 12:3512-22. [PMID: 16773708 PMCID: PMC4087567 DOI: 10.3748/wjg.v12.i22.3512] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Basic and translational wound healing research in the biliary tree lag significantly behind similar studies on the skin and gastrointestinal tract. This is at least partly attributable to lack of easy access to the biliary tract for study. But clinical relevance, more interest in biliary epithelial cell (BEC) pathophysiology, and widespread availability of BEC cultures are factors reversing this trend. In the extra-hepatic biliary tree, ineffectual wound healing, scarring and stricture development are pressing issues. In the smallest intra-hepatic bile ducts either impaired BEC proliferation or an exuberant response can contribute to liver disease. Chronic inflammation and persistent wound healing reactions in large and small bile ducts often lead to liver cancer. General concepts of wound healing as they apply to the biliary tract, importance of cellular processes dependent on IL-6/gp130/STAT3 signaling pathways, unanswered questions, and future directions are discussed.
Collapse
Affiliation(s)
- A-J Demetris
- The Thomas E. Starzl Transplantation Institute, Department of Pathology, Division of Transplantation, University of Pittsburgh Medical Center, UPMC-Montefiore E-741, 200 Lothrop Street, Pittsburgh, PA 15213-2582, USA.
| | | | | | | |
Collapse
|
26
|
Nozaki I, Lunz JG, Specht S, Park JI, Giraud AS, Murase N, Demetris AJ. Regulation and function of trefoil factor family 3 expression in the biliary tree. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:1907-20. [PMID: 15579435 PMCID: PMC1618723 DOI: 10.1016/s0002-9440(10)63243-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microarray analysis identified trefoil factor family 3 (TFF3) as a gene expressed in biliary epithelial cells (BECs), regulated by interleukin (IL)-6, and potentially involved in biliary pathophysiology. We therefore studied the regulation and function of BEC TFF3, in vitro and in vivo in IL-6(+/+) and IL-6(-/-) mice subjected to chronic bile duct ligation for 12 weeks. In vitro studies showed that IL-6 wild-type (IL-6(+/+)) BECs expressed higher TFF3 mRNA and protein levels than IL-6-deficient (IL-6(-/-)) BECs. BEC TFF3 expression is dependent primarily on signal transducer and activator of transcription (STAT3) signaling, but the reciprocal negative regulation known to exist between the intracellular IL-6/gp130 signaling pathways, STAT3 and mitogen-activated protein kinase (MAPK), importantly contributes to BEC TFF3 expression. Specifically blocking STAT3 activity with a dominant-negative molecule or treatment with a growth factor such as hepatocyte growth factor, which increases MAPK signaling, decreases BEC TFF3 expression. In contrast, specifically blocking MAPK activity with PD98059 significantly increased BEC TFF3 expression. Higher BEC TFF3 levels in IL-6(+/+) BECs were associated with significantly better migration than IL-6(-/-) BECs in a wound-healing assay and defective IL-6(-/-) BEC migration was reversed with exogenous TFF3. In vivo, hepatic TFF3 mRNA and protein expression was limited to BECs and dependent significantly on STAT3 signaling, but was influenced by other factors present after bile duct ligation. Comparable results were obtained in normal and diseased human tissue samples. In conclusion the regulation and function of BEC TFF3 expression is similar to the colon. BEC TFF3 expression depends primarily on gp130/STAT3 and contributes to BEC migration and wound healing. Therefore, use of recombinant IL-6 or TFF3 peptides should exert a therapeutic role in preventing biliary strictures in liver allografts.
Collapse
Affiliation(s)
- Isao Nozaki
- Thomas E. Starzl Transplantation Institute, Division of Transplantation, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|