1
|
Yoon HJ, Price BE, Parks RK, Ahn SJ, Choi MY. Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104025. [PMID: 37813200 DOI: 10.1016/j.ibmb.2023.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.
Collapse
Affiliation(s)
- Ho Jung Yoon
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Briana E Price
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA.
| |
Collapse
|
2
|
Orchard I, Leyria J, Al-Dailami A, Lange AB. Fluid Secretion by Malpighian Tubules of Rhodnius prolixus: Neuroendocrine Control With New Insights From a Transcriptome Analysis. Front Endocrinol (Lausanne) 2021; 12:722487. [PMID: 34512553 PMCID: PMC8426621 DOI: 10.3389/fendo.2021.722487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023] Open
Abstract
Rhodnius prolixus (the kissing bug and a major vector of Chagas disease) is an obligate blood feeder that in the case of the fifth instar consumes up to 10 times its unfed body weight in a single 20-minute feed. A post-prandial diuresis is initiated, within minutes of the start of gorging, in order to lower the mass and concentrate the nutrients of the meal. Thus, R. prolixus rapidly excretes a fluid that is high in NaCl content and hypo-osmotic to the hemolymph, thereby eliminating 50% of the volume of the blood meal within 3 hours of gorging. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in diuresis. Malpighian tubules are not innervated, and their fine control comes under the influence of the neuroendocrine system that releases amines and neuropeptides as diuretic or antidiuretic hormones. These hormones act upon the Malpighian tubules via a variety of G protein-coupled receptors linked to second messenger systems that influence ion transporters and aquaporins; thereby regulating fluid secretion. Much has been discovered about the control of diuresis in R. prolixus, and other model insects, using classical endocrinological studies. The post-genomic era, however, has brought new insights, identifying novel diuretic and antidiuretic hormone-signaling pathways whilst also validating many of the classical discoveries. This paper will focus on recent discoveries into the neuroendocrine control of the rapid post-prandial diuresis in R. prolixus, in order to emphasize new insights from a transcriptome analysis of Malpighian tubules taken from unfed and fed bugs.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
3
|
Capriotti N, Gioino P, Ons S, Ianowski JP. The neuropeptide RhoprCCHamide2 inhibits serotonin-stimulated transcellular Na+ transport across the anterior midgut of the vector of Chagas disease, Rhodnius prolixus. J Exp Biol 2021; 224:264938. [PMID: 34008838 DOI: 10.1242/jeb.242272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Rhodnius prolixus is a blood-feeding insect vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. During each blood meal, the animals ingest large volumes of blood, that may be up to 12 times the unfed body mass. These blood meals impose a significant osmotic stress for the animals due to the hyposmotic condition of the ingested blood compared with the insect's hemolymph. Thus the insect undergoes a massive postprandial diuresis that allows for the excretion of the plasma fraction of the blood in less than two hours. Diuresis is performed by the excretory system, consisting of the Malpighian tubules and gut, under the control of diuretic and anti-diuretic factors. We investigated the ion transport machinery triggered by stimulation with the diuretic factor serotonin in the anterior midgut (i.e. crop) and the effect of the diuretic modulator RhoprCCHamide2. Ussing chamber assays revealed that serotonin-stimulated increase in transepithelial short-circuit current (Isc) was more sensitive to the blockage with amiloride than 5-N-ethyl-N-isopropyl amiloride (EIPA), suggesting the involvement of Na+ channels. Incubation in Na+-free, but not Cl--free saline, blocked the effect of serotonin on Isc. Moreover, treatment with Na+-K+-2Cl- cotransporter (NKCC) and Na+-Cl- cotransporter (NCC) blockers had no effect on fluid secretion but was blocked by amiloride. Blockage of Na+/K+-ATPase with ouabain inhibited Isc but the H+-ATPase inhibitor bafilomycin had no effect. The neuropeptide RhoprCCHamide2 diminished serotonin-stimulated Isc across the crop. The results suggest that Na+ undergoes active transport via an apical amiloride-sensitive Na+ channel and a basolateral ouabain-sensitive Na+/K+-ATPase, while Cl- is transported through a passive paracellular pathway.
Collapse
Affiliation(s)
- Natalia Capriotti
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 numero 1459, codigo postal 1900, La Plata, Buenos Aires, Argentina
| | - Paula Gioino
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 numero 1459, codigo postal 1900, La Plata, Buenos Aires, Argentina
| | - Juan P Ianowski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
4
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
5
|
Capriotti N, Ianowski JP, Gioino P, Ons S. The neuropeptide CCHamide2 regulates diuresis in the Chagas disease vector Rhodnius prolixus. ACTA ACUST UNITED AC 2019; 222:jeb.203000. [PMID: 31053646 DOI: 10.1242/jeb.203000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Given that hematophagous insects ingest large quantities of blood in a single meal, they must undergo a rapid post-prandial diuresis in order to maintain homeostasis. In the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae), the coordinated activity of the Malpighian tubules and anterior midgut maintains water and ion balance during the post-prandial diuresis. Three to four hours after the meal, the diuretic process finishes, and the animal enters an antidiuretic state to ensure water conservation until the next blood intake. The diuretic and antidiuretic processes are tightly regulated by serotonin and neuropeptides in this insect. In the present work, we report that the neuropeptide precursor CCHamide2 is involved in the regulation of the post-prandial diuresis in R . prolixus Our results suggest a dual effect of RhoprCCHamide2 peptide, enhancing the serotonin-induced secretion by Malpighian tubules, and inhibiting serotonin-induced absorption across the anterior midgut. To our knowledge, this is the first report of a hormone presenting opposite effects in the two osmoregulatory organs (i.e. midgut and Malpighian tubules) in insects, probably reflecting the importance of a well-tuned diuretic process in hematophagous insects during different moments after the blood meal.
Collapse
Affiliation(s)
- Natalia Capriotti
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62 (1900), 1900 La Plata, Buenos Aires, Argentina
| | - Juan P Ianowski
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Paula Gioino
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62 (1900), 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Alexander J, Oliphant A, Wilcockson DC, Webster SG. Functional Identification and Characterization of the Diuretic Hormone 31 (DH31) Signaling System in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 12:454. [PMID: 30022930 PMCID: PMC6039563 DOI: 10.3389/fnins.2018.00454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
The functional characterization of crustacean neuropeptides and their cognate receptors has not kept pace with the recent advances in sequence determination and, therefore, our understanding of the physiological roles of neuropeptides in this important arthropod sub-phylum is rather limited. We identified a candidate receptor-ligand pairing for diuretic hormone 31 (DH31) in a neural transcriptome of the crab, Carcinus maenas. In insects, DH31 plays species -specific but central roles in many facets of physiology, including fluid secretion, myoactivity, and gut peristalsis but little is known concerning its functions in crustaceans. The C. maenas DH31 transcript codes for a 147 amino acid prepropeptide, and a single receptor transcript translates to a secretin-like (Class B1) G protein-coupled receptor (GPCR). We used an in vitro aequorin luminescence Ca2+ mobilization assay to demonstrate that this candidate DH31R is activated byCarcinus and insect DH31s in a dose-dependent manner (EC50 15-30 nM). Whole mount immunohistochemical and in situ hybridization localization revealed extensive DH31 expressing neurons throughout the central nervous system, most notably in the abdominal ganglion where large, unpaired cells give rise to medial nerves, which terminate in extensive DH31 immunopositive dendritic fields intimately associated with oesophageal musculature. This system constitutes a large and hitherto undescribed neurohemal area adjacent to key muscle groups associated with the gastric system. DH31 expressing neurons were also seen in the cardiac, commissural, oesophageal, and stomatogastric ganglia and intense labeling was seen in dendrites innervating fore- and hindgut musculature but not with limb muscles. These labeling patterns, together with measurement of DH31R mRNA in the heart and hindgut, prompted us test the effects of DH31 on semi-isolated heart preparations. Cardiac superfusion with peptide evoked increased heart rates (10-100 nM). The neuroanatomical distribution of DH31 and its receptor transcripts, particularly that associated with gastric and cardiac musculature, coupled with the cardio- acceleratory effects of the peptide implicate this peptide in key myoactive roles, likely related to rhythmic coordination.
Collapse
Affiliation(s)
- Jodi Alexander
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Simon G. Webster
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
8
|
Predel R, Neupert S, Derst C, Reinhardt K, Wegener C. Neuropeptidomics of the Bed Bug Cimex lectularius. J Proteome Res 2017; 17:440-454. [PMID: 29148801 DOI: 10.1021/acs.jproteome.7b00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bed bug Cimex lectularius is a globally distributed human ectoparasite with fascinating biology. It has recently acquired resistance against a broad range of insecticides, causing a worldwide increase in bed bug infestations. The recent annotation of the bed bug genome revealed a full complement of neuropeptide and neuropeptide receptor genes in this species. With regard to the biology of C. lectularius, neuropeptide signaling is especially interesting because it regulates feeding, diuresis, digestion, as well as reproduction and also provides potential new targets for chemical control. To identify which neuropeptides are translated from the genome-predicted genes, we performed a comprehensive peptidomic analysis of the central nervous system of the bed bug. We identified in total 144 different peptides from 29 precursors, of which at least 67 likely present bioactive mature neuropeptides. C. lectularius corazonin and myosuppressin are unique and deviate considerably from the canonical insect consensus sequences. Several identified neuropeptides likely act as hormones, as evidenced by the occurrence of respective mass signals and immunoreactivity in neurohemal structures. Our data provide the most comprehensive peptidome of a Heteropteran species so far and in comparison suggest that a hematophageous life style does not require qualitative adaptations of the insect peptidome.
Collapse
Affiliation(s)
- Reinhard Predel
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Christian Derst
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technical University of Dresden , Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
9
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Traverso L, Sierra I, Sterkel M, Francini F, Ons S. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. ACTA ACUST UNITED AC 2016; 110:83-98. [PMID: 27993629 DOI: 10.1016/j.jphysparis.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely extend functional and genetic studies involving neuropeptides in triatomines.
Collapse
Affiliation(s)
- Lucila Traverso
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Ivana Sierra
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Flavio Francini
- Center of Experimental and Applied Endocrinology, CONICET-CCT La Plata, National University of La Plata, 60 and 120 Street, CP: 1900, La Plata, Argentina
| | - Sheila Ons
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina.
| |
Collapse
|
11
|
Bhatt G, da Silva R, Nachman RJ, Orchard I. The molecular characterization of the kinin transcript and the physiological effects of kinins in the blood-gorging insect, Rhodnius prolixus. Peptides 2014; 53:148-58. [PMID: 23624318 DOI: 10.1016/j.peptides.2013.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022]
Abstract
The dramatic feeding-related activities of the Chagas' disease vector, Rhodnius prolixus are under the neurohormonal regulation of serotonin and various neuropeptides. One such family of neuropeptides, the insect kinins, possess diuretic, digestive and myotropic activities in many insects. In this study, we have cloned and examined the spatial expression of the R. prolixus kinin (Rhopr-kinin) transcript. In addition, in situ hybridization has been used to map the distribution of neurons expressing the kinin transcript. Physiological bioassays demonstrate the myostimulatory effects of selected Rhopr-kinin peptides and also illustrate the augmented responses of hindgut contractions to co-application of Rhopr-kinin and a R. prolixus diuretic hormone. Two synthetic kinin analogs have also been examined on the hindgut. These reveal interesting properties including a relatively irreversible effect on hindgut contractions and activity at very low concentrations.
Collapse
Affiliation(s)
- Garima Bhatt
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Rosa da Silva
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Ronald J Nachman
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX 77845, USA.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
12
|
Zandawala M, Orchard I. Post-feeding physiology in Rhodnius prolixus: the possible role of FGLamide-related allatostatins. Gen Comp Endocrinol 2013; 194:311-7. [PMID: 24161751 DOI: 10.1016/j.ygcen.2013.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/20/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
Allatostatins (ASTs) are neuropeptides that were first identified as inhibitors of juvenile hormone biosynthesis by the corpora allata of some insect species. The FGLamide-related ASTs (FGLa/ASTs) belong to one of three families of insect ASTs. Previously, we showed that Rhodnius prolixus FGLa/ASTs (Rhopr-FGLa/ASTs) are present throughout the R. prolixus central nervous system and are associated with 5 dorsal unpaired median (DUM) neurons in the mesothoracic ganglionic mass. A similar set of neurons contain serotonin which is a diuretic hormone in R. prolixus. Rhopr-FGLa/ASTs inhibit both spontaneous contractions of the anterior midgut and leucokinin-1-induced hindgut contractions. Since these tissues are involved with post-feeding diuresis, these data suggest a possible role for FGLa/ASTs in events associated with feeding, and a possible interaction with serotonin. To investigate this possibility, we have examined the DUM neurons in more detail with regard to their peptide content, examined the potential release of Rhopr-FGLa/ASTs into the haemolymph following feeding, and further investigated the effects of Rhopr-FGLa/ASTs on feeding-related tissues. There are 10 DUM neurons in the abdominal neuromeres, 5 of which express serotonin-like immunoreactivity and the other 5 express FGLa/AST-like immunoreactivity. FGLa/AST-like immunoreactivity is reduced in the 5 DUM neuron cell bodies and their neurohaemal sites on abdominal nerves at 3-5 h post feeding. Rhopr-FGLa/ASTs do not inhibit serotonin-stimulated anterior midgut absorption or Malpighian tubule secretion but do inhibit hindgut contractions induced by an endogenous kinin, suggesting that they may only indirectly affect post-feeding diuresis in R. prolixus.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.
| | | |
Collapse
|
13
|
Isolation and functional characterization of calcitonin-like diuretic hormone receptors in Rhodnius prolixus. PLoS One 2013; 8:e82466. [PMID: 24312424 PMCID: PMC3843727 DOI: 10.1371/journal.pone.0082466] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Several families of diuretic hormones exist in insects, one of which is the calcitonin-like diuretic hormone (CT/DH) family. CT/DH mediates its effects by binding to family B G-protein coupled receptors (GPCRs). Here we isolate and functionally characterize two R. prolixusCT/DH receptor paralogs (Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2) using a novel heterologous assay utilizing a modified human embryonic kidney 293 (HEK293) cell line. Rhopr-CT/DH-R1 is orthologous to the previously characterized D. melanogasterCT/DH receptor (CG17415) while Rhopr-CT/DH-R2 is orthologous to the D. melanogaster receptor (CG4395), an orphan receptor whose ligand was unknown until now. We determine the cDNA sequences of three splice variants encoding Rhopr-CT/DH-R1 (Rhopr-CT/DH-R1-A, Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C) and two splice variants encoding Rhopr-CT/DH-R2 (Rhopr-CT/DH-R2-A and Rhopr-CT/DH-R2-B). Rhopr-CT/DH-R1-A and Rhopr-CT/DH-R2-A encode truncated receptors that lack six and seven of the characteristic seven transmembrane domains, respectively. Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C, which only differ by 2 amino acids in their C-terminal domain, can both be activated by Rhopr-CT/DH at equal sensitivities (EC50 = 200-300 nM). Interestingly, Rhopr-CT/DH-R2-B is much more sensitive to Rhopr-CT/DH (EC50 = 15 nM) compared to Rhopr-CT/DH-R1-B/C and also yields a much greater response (amplitude) in our heterologous assay. This is the first study to reveal that insects possess at least two CT/DH receptors, which may be functionally different. Quantitative PCR demonstrates that Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2 have distinct expression patterns, with both receptors expressed centrally and peripherally. Moreover, the expression analysis also identified novel target tissues for this neuropeptide, including testes, ovaries and prothoracic glands, suggesting a possible role for Rhopr-CT/DH in reproductive physiology and development.
Collapse
|
14
|
Zandawala M. Calcitonin-like diuretic hormones in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:816-825. [PMID: 22820711 DOI: 10.1016/j.ibmb.2012.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 06/01/2023]
Abstract
Insect neuropeptides control various biological processes including growth, development, homeostasis and reproduction. The calcitonin-like diuretic hormone (CT/DH) is one such neuropeptide that has been shown to affect salt and water transport by Malpighian tubules of several insects. With an increase in the number of sequenced insect genomes, CT/DHs have been predicted in several insect species, making it easier to characterize the gene encoding this hormone and determine its function in the species in question. This mini review summarizes the current knowledge on insect CT/DHs, focusing on mRNA and peptide structures, distribution patterns, physiological roles, and receptors in insects.
Collapse
Affiliation(s)
- Meet Zandawala
- Department of Biology, University of Toronto Mississauga, Room 3016A/B, William Davis Building, 3359 Mississauga Road N., Mississauga, ON, Canada L5L 1C6.
| |
Collapse
|
15
|
Lange AB, Alim U, Vandersmissen HP, Mizoguchi A, Vanden Broeck J, Orchard I. The distribution and physiological effects of the myoinhibiting peptides in the kissing bug, rhodnius prolixus. Front Neurosci 2012; 6:98. [PMID: 22783161 PMCID: PMC3390896 DOI: 10.3389/fnins.2012.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
The myoinhibiting peptides (MIPs), also designated as allatostatin-Bs or prothoracicostatic peptides in some insects, are neuropeptides that are characterized by two tryptophan (W) residues at the C-terminal, denoted as the W(X6)Wamide motif. They are believed to be the ancestral ligands for the Drosophila sex peptide (SP) receptor. Physiological functions of MIPs include the inhibition of contraction of insect visceral muscles, in addition to allatostatic and prothoracicostatic activities. The MIP precursor in Rhodnius prolixus encodes MIPs that have an unusual W(X7)Wamide motif. In the present study, MIP-like immunoreactivity was detected within neurons in the central nervous system and within the innervation to the salivary glands, hindgut, and female and male reproductive systems of adult R. prolixus. The effects of peptides with the unusual W(X7)Wamide motif (Rhopr-MIP-4) and with the typical W(X6)Wamide motif (Rhopr-MIP-7) were tested for physiological activity on R. prolixus hindgut contractions. Both peptides reduce the frequency and amplitude of hindgut contractions in a dose-dependent manner. In addition, both peptides activate the Drosophila SP receptor. The MIP/SP receptors are therefore activated by peptides with the unusual W(X7)Wamide motif.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Sterkel M, Oliveira PL, Urlaub H, Hernandez-Martinez S, Rivera-Pomar R, Ons S. OKB, a novel family of brain-gut neuropeptides from insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:466-473. [PMID: 22480496 DOI: 10.1016/j.ibmb.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
In insects, neuropeptides play a central role in the control of most physiological processes. The knowledge and characterization of new neuropeptide families, is of interest on the fields of Genetics, Genomics, Neurobiology, Endocrinology and Evolution. This knowledge also provides the tools for the design of peptidomimetics, pseudopeptides or small molecules, capable of disrupting the physiological processes regulated by the signaling molecules and their receptors. This is a promising target for a novel generation of insecticides. Using database searches, mass spectrometry and RACE-PCR, we identified a neuropeptide precursor transcript encoding a new family of insect neuropeptides in the hemipteran Rhodnius prolixus. We named this precursor Orcokinin B, because is originated by the alternative splicing of the Orcokinin gen. EST and genomic data suggests that Orcokinin B is expressed in the nervous system and gut from several insect species, with the exception of Drosophila sp. (Diptera) and Acyirthosiphon pisum (Hemiptera). Mass spectrometry and RT-PCR confirmed the expression of Orcokinin B in brain and anterior midgut of R. prolixus. Furthermore, we identified orthologues of this new family of peptides in genomic and EST databases from Arachnids and Crustaceans.
Collapse
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genomicos. Universidad Nacional de La Plata. Av. Calchaquí 5900 4to. piso, 1888, Florencio Varela, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
17
|
Te Brugge V, Paluzzi JP, Schooley DA, Orchard I. Identification of the elusive peptidergic diuretic hormone in the blood-feeding bug Rhodnius prolixus: a CRF-related peptide. ACTA ACUST UNITED AC 2011; 214:371-81. [PMID: 21228196 DOI: 10.1242/jeb.046292] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Probing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events. The huge blood-meal is pumped into the anterior midgut during feeding, then modified by diuresis and stored until it is digested. While serotonin is known to be a diuretic hormone in R. prolixus, a peptidergic factor(s) was also known to play a role in diuresis. In the present study we employed molecular techniques and mass spectrometry to determine the sequence of a native CRF-like peptide from R. prolixus (Rhopr DH). In addition, we confirmed the distribution and localization of Rhopr DH using in situ hybridization and immunohistochemistry, and demonstrated its potent biological activity on both the anterior midgut and Malpighian tubules.
Collapse
Affiliation(s)
- Victoria Te Brugge
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6.
| | | | | | | |
Collapse
|
18
|
Coast GM, Nachman RJ, Lopez J. The control of Malpighian tubule secretion in a predacious hemipteran insect, the spined soldier bug Podisus maculiventris (Heteroptera, Pentatomidae). Peptides 2011; 32:493-9. [PMID: 21093508 DOI: 10.1016/j.peptides.2010.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 11/28/2022]
Abstract
Spined soldier bugs, Podisus maculiventris, are heteropteran insects that feed voraciously on other insects, particular the soft bodied larval forms of Lepidoptera and Coleoptera. The response of P. maculiventris Malpighian tubules (MTs) to serotonin and known diuretic and antidiuretic peptides has been investigated, and is compared with that of MT from the hematophagous and phytophagous heteropteran bugs Rhodnius prolixus and Acrosternum hilare, respectively. A CRF-related peptide diuretic hormone (DH) from the termite Zootermopsis nevadensis (Zoone-DH) stimulated MT secretion, which was reversed by a member of the CAP(2b) family of peptides from A. hilare (Acrhi-CAP(2b)-2), an antidiuretic effect. Serotonin had no effect on secretion, neither did a representative calcitonin-like DH, kinin, tachykinin-related peptide, and an antidiuretic factor from the mealworm Tenebrio molitor (Tenmo-ADFb) in both P. maculiventris or A. hilare. Serotonin is a DH in R. prolixus, and its lack of effect on MT from P. maculiventris and A. hilare suggests this is an adaptation to hematophagy. On the other hand, the antidiuretic activity of members of the CAP(2b) family in all three bugs is consistent with this being a heteropteran feature rather than a specialism for hematophagy.
Collapse
Affiliation(s)
- Geoffrey M Coast
- Birkbeck (University of London), School of Biological and Chemical Sciences, Malet Street, London WC1E 7HX, United Kingdom.
| | | | | |
Collapse
|
19
|
Mykles DL, Adams ME, Gäde G, Lange AB, Marco HG, Orchard I. Neuropeptide action in insects and crustaceans. Physiol Biochem Zool 2010; 83:836-46. [PMID: 20550437 PMCID: PMC3844688 DOI: 10.1086/648470] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:371-7. [DOI: 10.1016/j.cbpa.2009.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/10/2009] [Accepted: 12/03/2009] [Indexed: 11/23/2022]
|
21
|
Christie AE, Stevens JS, Bowers MR, Chapline MC, Jensen DA, Schegg KM, Goldwaser J, Kwiatkowski MA, Pleasant TK, Shoenfeld L, Tempest LK, Williams CR, Wiwatpanit T, Smith CM, Beale KM, Towle DW, Schooley DA, Dickinson PS. Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system. ACTA ACUST UNITED AC 2010; 213:118-27. [PMID: 20008368 DOI: 10.1242/jeb.037077] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a powerful modulator of cardiac output. Specifically, during an ongoing EST project, a transcript encoding a putative H. americanus CLDH precursor was identified; a full-length cDNA was subsequently cloned. In silico analyses of the deduced prepro-hormone predicted the mature structure of the encoded CLDH to be GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPamide (Homam-CLDH), which is identical to a known Tribolium castaneum peptide. RT-PCR tissue profiling suggests that Homam-CLDH is broadly distributed within the lobster nervous system, including the cardiac ganglion (CG), which controls the movement of the neurogenic heart. RT-PCR analysis conducted on pacemaker neuron- and motor neuron-specific cDNAs suggests that the motor neurons are the source of the CLDH message in the CG. Perfusion of Homam-CLDH through the isolated lobster heart produced dose-dependent increases in both contraction frequency and amplitude and a dose-dependent decrease in contraction duration, with threshold concentrations for all parameters in the range 10(-11) to 10(-10) mol l(-1) or less, among the lowest for any peptide on this system. This report is the first documentation of a decapod CLDH, the first demonstration of CLDH bioactivity outside the Insecta, and the first detection of an intrinsic neuropeptide transcript in the crustacean CG.
Collapse
Affiliation(s)
- A E Christie
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, PO Box 35, Old Bar Harbor Road, Salisbury Cove, ME 04672, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santini MS, Ronderos JR. Daily variation of an allatotropin-like peptide in the Chagas disease vectorTriatoma infestans(klug). BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802214583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Te Brugge V, Ianowski JP, Orchard I. Biological activity of diuretic factors on the anterior midgut of the blood-feeding bug, Rhodnius prolixus. Gen Comp Endocrinol 2009; 162:105-12. [PMID: 19408362 DOI: 10.1016/j.ygcen.2009.01.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Probing of a host and ingestion of a blood-meal in a fifth instar Rhodnius prolixus results in a cascade of tightly integrated events, including salivary gland secretion, plasticization of the abdominal cuticle, increased ion and water movement across the anterior midgut (crop) and Malpighian tubules (which rapidly produce urine) and the regular expulsion of urine from the hindgut. In this study we have focussed on the role of the anterior midgut during the rapid postprandial diuresis. The huge blood-meal is pumped into the anterior midgut, during feeding, then modified by diuresis and stored until it is digested. Changes in the anterior midgut activity are rapid. Within minutes of the commencement of feeding there is an increase in the frequency of anterior midgut contractions and diuresis begins with the movement of salt and water across the epithelium of the anterior midgut into the haemolymph. While serotonin, a diuretic hormone in R. prolixus, is known to play a role in the physiological activity of the anterior midgut, we were interested in exploring further the role of serotonin, and other diuretic peptides. We have tested the activity of several peptides, including R. prolixus calcitonin-like diuretic hormone (Rhopr-DH 31), corticotropin-releasing factor (CRF)-like peptide from Zootermopsis nevadensis DH (Zoone-DH) and a kinin from Leucophaea maderae, Leucokinin 1 (LK1). These peptides families are known to be present in the central nervous system of R. prolixus, are putative neurohormones released into the haemolymph after the start of feeding, and have been shown to have activity on a variety of tissues involved in post-feeding diuresis. We show here that both serotonin and Zoone-DH increase the cAMP content of the anterior midgut and that serotonin, Zoone-DH and cAMP analogues increase absorption of water from the anterior midgut, increase the short circuit current and voltage, while decreasing the resistance across the epithelium. While LK1 and Rhopr-DH 31 do not significantly increase absorption, or short circuit current, LK1 does significantly decrease the resistance and transepithelial voltage of the anterior midgut epithelium. All of the factors studied increase the frequency of contractions of the anterior midgut.
Collapse
Affiliation(s)
- Victoria Te Brugge
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
24
|
Coast GM. Neuroendocrine control of ionic homeostasis in blood-sucking insects. ACTA ACUST UNITED AC 2009; 212:378-86. [PMID: 19151213 DOI: 10.1242/jeb.024109] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pioneering work of Simon Maddrell established that the rapid postprandial diuresis of the haematophagous insect Rhodnius prolixus is controlled by a diuretic hormone and demonstrated the role of the Malpighian tubules in meeting the volumic, osmotic and ionic challenges posed by an enormous blood meal. A number of diuretic and antidiuretic hormones that control secretion of primary urine by Malpighian tubules have now been identified, but little is known of the interplay between these hormones and those that regulate transport processes in the hindgut. This review therefore focuses on the control of ionic homeostasis in Rhodnius and mosquitoes, because primary urine is voided virtually unchanged during the rapid diuresis that follows a blood meal. At such times, the hindgut has a negligible impact on the volume and composition of the final urine, and neurohormones acting on the Malpighian tubules have a dominant role in the control of ionic homeostasis.
Collapse
Affiliation(s)
- Geoffrey M Coast
- Birkbeck College, School of Biological and Chemical Sciences, London, WC1E 7HX UK.
| |
Collapse
|
25
|
Santini MS, Ronderos JR. Allatotropin-like peptide in Malpighian tubules: insect renal tubules as an autonomous endocrine organ. Gen Comp Endocrinol 2009; 160:243-9. [PMID: 19118556 DOI: 10.1016/j.ygcen.2008.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 10/13/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022]
Abstract
Malpighian tubules (MTs) are recognised as the main excretory organ in insects, ensuring water and mineral balance. Haematophagous insects incorporate with each meal a large quantity of blood, producing a particularly large volume of urine in a few hours. In the present study, we report the presence of an allatotropin-like (AT-like) peptide in MTs of Triatoma infestans (Klug). The AT-like content in MTs decreased during the first hours after blood-intake, correlating with the post-prandial diuresis. In vivo artificial dilution of haemolymph showed a similar effect. Isolated MTs challenged with a diluted saline solution resulted in an autonomous and reversible response of the organ regulating the quantity of peptide released to the medium, and suggesting that MTs synthesise the AT-like peptide. While MTs are recognised as the target for several hormones, our results corroborate that they also have the ability to produce and secrete a hormone in an autonomous way.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG), Universidad Nacional de La Plata, Parque Tecnologico Florencio Varela, Buenos Aires, Argentina
| | | |
Collapse
|
26
|
Paluzzi JP, Russell WK, Nachman RJ, Orchard I. Isolation, cloning, and expression mapping of a gene encoding an antidiuretic hormone and other CAPA-related peptides in the disease vector, Rhodnius prolixus. Endocrinology 2008; 149:4638-46. [PMID: 18511504 DOI: 10.1210/en.2008-0353] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After a blood meal, Rhodnius prolixus undergoes a rapid diuresis to eliminate excess water and salts. During the voiding of this primary urine, R. prolixus acts as a vector of Chagas' disease, with the causative agent, Trypanosoma cruzi, infecting the human host via the urine. Diuresis in R. prolixus is under the neurohormonal control of serotonin and peptidergic diuretic hormones, and thus, diuretic hormones play an important role in the transmission of Chagas' disease. Although diuretic hormones may be degraded or excreted, resulting in the termination of diuresis, it would also seem appropriate, given the high rates of secretion, that a potent antidiuretic factor could be present and act to prevent excessive loss of water and salts after the postgorging diuresis. Despite the medical importance of R. prolixus, no genes for any neuropeptides have been cloned, including obviously, those that control diuresis. Here, using molecular biology in combination with matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry, we determined the sequence of the CAPA gene and CAPA-related peptides in R. prolixus, which includes a peptide with anti-diuretic activity. We have characterized the expression of mRNA encoding these peptides in various developmental stage and also examined the tissue-specific distribution in fifth-instars. The expression is localized to numerous bilaterally paired cell bodies within the central nervous system. In addition, our results show that RhoprCAPA gene expression is also associated with the testes, suggesting a novel role for this family of peptides in reproduction.
Collapse
Affiliation(s)
- Jean-Paul Paluzzi
- Department of Biology, University of Toronto Mississauga, South Building (Room 3016A), 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | |
Collapse
|
27
|
Brugge VAT, Schooley DA, Orchard I. Amino acid sequence and biological activity of a calcitonin-like diuretic hormone (DH31) from Rhodnius prolixus. ACTA ACUST UNITED AC 2008; 211:382-90. [PMID: 18203994 DOI: 10.1242/jeb.013771] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diuresis in the blood-gorging hemipteran Rhodnius prolixus is under neurohormonal control and involves a variety of processes and tissues. These include ion and water movement across the epithelium of the crop and the Malpighian tubules, and muscle contractions of the crop, hindgut and dorsal vessel, which facilitate mixing of the blood-meal, mixing of the haemolymph, as well as the expulsion of waste. One of the neurohormones that might play a role in this rapid diuresis belongs to the calcitonin-like diuretic hormone (DH(31)) family of insect peptides. Previously we have demonstrated the presence of DH(31)-like peptides in the central nervous system (CNS) and gut of R. prolixus 5th instars. In the present work, a DH(31) from the CNS of 5th instar R. prolixus was isolated using reversed-phase liquid chromatography (RPLC), monitored with an enzyme-linked immunosorbent assay (ELISA) combined with matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry, and sequenced using tandem mass spectrometry and Edman degradation. This neuropeptide is the first to be sequenced in R. prolixus and has a sequence identical to that found previously for Dippu-DH(31) from the cockroach Diploptera punctata. In previous studies testing Rhopr/Dippu-DH(31) in Malpighian tubule secretion assays, we demonstrated increases in the rate of secretion that were small, relative to that induced by serotonin, but nevertheless 14-fold over baseline. In the present study, we investigated second messenger pathways in response to Rhopr/Dippu-DH(31) and found no increase or decrease in cyclic adenosine monophosphate (cyclic AMP) content of the Malpighian tubules. DH(31)-like immunoreactivity is present over the dorsal hindgut, anterior dorsal vessel and dorsal diaphragm, and bioassays of the R. prolixus dorsal vessel and hindgut indicate that Rhopr/Dippu-DH(31) increases the frequency of muscle contractions of both tissues. Second messenger pathways were also investigated for the dorsal vessel and hindgut.
Collapse
Affiliation(s)
- Victoria A Te Brugge
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | | | | |
Collapse
|
28
|
Donini A, O'Donnell MJ, Orchard I. Differential actions of diuretic factors on the Malpighian tubules of Rhodnius prolixus. ACTA ACUST UNITED AC 2008; 211:42-8. [PMID: 18083731 DOI: 10.1242/jeb.011882] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of corticotropin-releasing factor (CRF)-related (ZooneDH), calcitonin (CT)-related (RhoprDH(31)) and kinin-related (leucokinin I) peptides on the ion composition of fluid secreted by upper Rhodnius prolixus Malpighian tubules and on KCl reabsorption by the lower tubules were assessed. ZooneDH stimulated fluid secretion while increasing the [Na(+)] of secreted fluid at the expense of [K(+)]. Upper tubules responded to ZooneDH with a characteristic triphasic change in the transepithelial potential (TEP), reminiscent of the response to 5-hydroxytryptamine (5HT). RhoprDH(31) produced a small (~9 mV) lumen-positive shift in TEP of the upper tubule but had no effect on the rate of fluid secretion or ion composition of the secreted fluid. In contrast to 5HT, both peptides failed to activate KCl reabsorption by the lower tubule. Leucokinin I had no effect on the ion composition of fluid secreted by whole or upper Malpighian tubules. We propose that: (1) 5HT and a native CRF-related peptide similar to ZooneDH activate the same second messenger systems and ion transporters in the upper tubule cells; (2) CRF-related peptide is utilized to maintain high rates of fluid secretion during the post-feeding diuresis and is additionally used at times when KCl reabsorption is unnecessary or detrimental. The differential actions of multiple diuretic factors allows for intricate control of ionic and osmotic balance in R. prolixus.
Collapse
Affiliation(s)
- Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
29
|
Te Brugge VA, Orchard I. Distribution and activity of a Dippu DH31-like peptide in the large milkweed bug Oncopeltus fasciatus. Peptides 2008; 29:206-13. [PMID: 18206263 DOI: 10.1016/j.peptides.2007.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 10/11/2007] [Indexed: 11/25/2022]
Abstract
The milkweed bug, Oncopeltus fasciatus, is a plant feeding hemipteran. While there has been much research done on the neurohormonal control of the post-feeding diuresis in the blood-feeding hemipteran, Rhodnius prolixus, little is known about the control of the post-feeding diuresis in O. fasciatus. One of the neurohormones that may play a role in this rapid diuresis belongs to the calcitonin-like diuretic hormone (DH31) family of insect peptides. In this study we demonstrate the presence of DH31-like immunoreactivity in the central nervous system (CNS) and gut of O. fasciatus 5th instars. As well, DH31-like material was quantified and partially purified from the CNS of 5th instar O. fasciatus using reversed-phase liquid chromatography (RPLC) and monitored with an enzyme-linked immunosorbent assay (ELISA). When tested on O. fasciatus 5th instar Malpighian tubules, DH31-like peptides significantly increased the rate of secretion over saline controls. The results suggest that there is a DH31-like peptide(s) present in the CNS of O. fasciatus and that this peptide may play a role in the control of Malpighian tubule secretion.
Collapse
Affiliation(s)
- V A Te Brugge
- Department of Biology, University of Toronto at Mississauga, Ontario, Canada L5L-1C6.
| | | |
Collapse
|
30
|
Santini MS, Ronderos JR. Allatotropin-like peptide released by Malpighian tubules induces hindgut activity associated with diuresis in the Chagas disease vector Triatoma infestans (Klug). J Exp Biol 2007; 210:1986-91. [PMID: 17515423 DOI: 10.1242/jeb.004291] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SUMMARY
Haematophagous insects incorporate a large amount of blood with each meal,producing a big quantity of urine in a few hours to eliminate the excess water and Na+. Malpighian tubules (MTs) have traditionally been seen as a system that responds to neuroendocrine stimulus. In a related paper, we demonstrated that MTs of Triatoma infestans produce an autonomous endocrine secretion of an allatotropin-like (AT-like) peptide. In the present study, we report a myostimulatory activity of AT at the level of the hindgut(HG), associated with endocrine mechanisms regulating post-prandial diuresis. Allatotropin induced an increase in frequency and intensity of peristaltic contractions at the level of the HG. The release of the HG content in MTs–HG in vitro preparations undergoing an osmotic shock occurred at different times, depending on the number of MTs present, and there was no release in treatments without MTs. The application of an AT-antiserum to MTs–HG preparations undergoing osmotic shock produced a delay or a long-term blockade of diuresis, depending on the antiserum dilution applied. Similar results were obtained when AT-antiserum was applied in vivoprior to blood intake, decreasing the volume of urine eliminated during the first 2 h. Our results allow us to assign a specific endocrine function to the AT-like peptide released by MTs that is linked to the elimination of urine after blood meals.
Collapse
Affiliation(s)
- Maria Soledad Santini
- Centro Regional de Estudios Genomicos (CREG-UNLP) and Catedra Histol, Embriol, Animal (FCNyM-UNLP), La Plata, Argentina
| | | |
Collapse
|
31
|
Coast G. The endocrine control of salt balance in insects. Gen Comp Endocrinol 2007; 152:332-8. [PMID: 17400222 DOI: 10.1016/j.ygcen.2007.02.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/12/2007] [Accepted: 02/17/2007] [Indexed: 11/20/2022]
Abstract
An overview is given of the role of Malpighian (renal) tubules and the hindgut (ileum and rectum) in the excretory process of insects. The review focuses on the mechanism of primary urine production by Malpighian tubules and its control by neurohormones, which includes serotonin and neuropeptides resembling mammalian corticotropin-releasing factor (CRF) and calcitonin. Particular emphasis is given to in vitro studies of the effect of neurohormones on Malpighian tubule ion transport and a consideration of their likely role in the regulation of salt balance in vivo.
Collapse
Affiliation(s)
- Geoffrey Coast
- School of Biological & Chemical Sciences, Birkbeck (University of London), Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
32
|
Holtzhausen WD, Nicolson SW. Beetle diuretic peptides: the response of mealworm (Tenebrio molitor) Malpighian tubules to synthetic peptides, and cross-reactivity studies with a dung beetle (Onthophagus gazella). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:361-9. [PMID: 17292388 DOI: 10.1016/j.jinsphys.2006.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 12/15/2006] [Accepted: 12/21/2006] [Indexed: 05/13/2023]
Abstract
This paper reports the effects of different diuretic factors on the Malpighian tubules of beetles. Calcitonin (CT)-like peptides from silkmoth and mosquito increase fluid secretion in a dose-dependent manner in the tubules of Tenebrio molitor, but the cockroach CT-like peptide, Dippu-DH(31), has no effect. Thapsigargin induces a small but significant increase in tubule secretion rates. The interactions between different factors in mealworm tubules were explored by testing CT-like peptides, thapsigargin and the mealworm CRF-related diuretic factor Tenmo-DH(37) in various combinations, but no synergistic effects were observed. C-terminal fragments of the CRF-related diuretic peptides Locmi-DH(46) and Dippu-DH(46) fail to increase fluid secretion in mealworm tubules, unlike their corresponding whole peptides. Cross-reactivity of factors between beetle species was investigated using the scarabaeid Onthophagus gazella. Tenmo-DH(37) increases fluid secretion in isolated tubules of O. gazella in a dose-dependent manner, revealing a high degree of cross-reactivity in this distantly related beetle species. However, homogenates of O. gazella brains inhibited fluid secretion in mealworm tubules.
Collapse
Affiliation(s)
- W D Holtzhausen
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | | |
Collapse
|
33
|
Orchard I. Serotonin: A coordinator of feeding-related physiological events in the blood-gorging bug, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:316-24. [PMID: 16377224 DOI: 10.1016/j.cbpa.2005.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/13/2005] [Accepted: 11/17/2005] [Indexed: 12/31/2022]
Abstract
Rhodnius prolixus is an obligatory blood-feeder that can ingest blood meals of up to 10 times its mass. Rapid production of urine commences within 2-3 min of the start of feeding in order to eliminate the load of water and salts, and so there is an increase of Malpighian tubule secretion greater than 1,000 fold in response to feeding. Feeding and post-prandial diuresis in Rhodnius are highly coordinated events, including for example, host recognition, probing, injection of saliva, cuticle plasticization, passage of blood through the digestive system, diuresis and excretion. This review illustrates that many of the known functions of serotonin in Rhodnius are feeding-related. Serotonin coordinates or 'orchestrates' feeding-related physiological events either as a neurotransmitter/neuromodulator, delivered to target tissues in the nerve supply, or as a neurohormone, delivered by the haemolymph. Thus, serotonin has physiological effects upon the salivary glands, cuticle, digestive tract, cardiac muscle, and Malpighian tubules. By discussing these aspects, the review illustrates that serotonin acts in a coordinated manner to prepare Rhodnius for this energy-demanding process of feeding and diuresis.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|
34
|
Paluzzi JP, Orchard I. Distribution, activity and evidence for the release of an anti-diuretic peptide in the kissing bug Rhodnius prolixus. ACTA ACUST UNITED AC 2006; 209:907-15. [PMID: 16481579 DOI: 10.1242/jeb.02083] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the haematophagous insect Rhodnius prolixus, diuresis is accomplished through the combined actions of peptidergic diuretic hormones and 5-HT released from neurohaemal sites on the abdominal nerves. Preliminary work on anti-diuresis in this blood-feeder, previously believed to occur through a decrease in the levels of the diuretic factors, indicates that an anti-diuretic hormone, with properties similar to CAP2b (pELYAFPRVamide; recently renamed Mas-CAPA-1), might also be present in R. prolixus. Here, we present evidence from immunohistochemical analysis that suggests a PRXamide-like neuropeptide may be released from the abdominal neurohaemal sites beginning 3-4 h following feeding; a time that coincides with the cessation of diuresis. We also show evidence for an endogenous factor, isolated from the central nervous system using reversed-phase high performance liquid chromatography, which mimics the effects of Mas-CAPA-1. Specifically, this endogenous anti-diuretic factor inhibits rates of 5-HT-stimulated secretion in a dose-dependent manner and elevates intracellular cGMP levels of Malpighian tubules stimulated with 5-HT.
Collapse
Affiliation(s)
- Jean-Paul Paluzzi
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | | |
Collapse
|