1
|
Zagorácz O, Ollmann T, Péczely L, László K, Kovács A, Berta B, Kállai V, Kertes E, Vörös D, Dusa D, Szábó Á, Lénárd L. A single injection of neuropeptide QRFP in the lateral hypothalamus decreased food intake. J Psychopharmacol 2025; 39:254-264. [PMID: 39921588 PMCID: PMC11843799 DOI: 10.1177/02698811241311454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
BACKGROUND AND AIM Severe eating disorders, such as obesity, bulimia, and anorexia, keep increasing to epidemic proportions worldwide. Understanding of neuropeptides' role in complex hunger/satiety mechanisms may allow new prospects for treatment and prevention. Pyroglutamylated arginine-phenylalanine-amide peptides (QRFPs) are thought to enhance feeding following the central administration. METHODS In our study, QRFP-26 was delivered into the lateral hypothalamic area of male Wistar rats by direct microinjections, as QRFP-26 expressing neurons and binding sights are densely present in this neural structure. The consumption of liquid food was measured over 60-min. RESULTS Both doses (100 and 200 ng) significantly decreased food intake compared to the control treatment. Neuropeptide Y Y1R/NPFF (neuropeptide FF) antagonist BIBP3226 eliminated the anorexigenic effect caused by QRFP-26 administration. QRFP-26 affects neither general locomotion, behavioral patterns examined in the Open Field Test, nor anxiety. CONCLUSION This study is the first to report the anorexigenic action of QRFP-26 following direct administration into the hypothalamus, emphasizing steady locomotion and anxiety levels. We have shown that the effect of QRFP can be linked to the neuropeptide Y (NPY) Y1 or NPFF receptors.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Dávid Vörös
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Daniella Dusa
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - Ádám Szábó
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, University of Pécs Medical School, Pécs, Hungary
- Molecular Neurophysiology Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Przybył BJ, Szlis M, Misztal A, Wójcik-Gładysz A. QRFP43 modulates the activity of the hypothalamic-pituitary-thyroid axis in female sheep. Sci Rep 2025; 15:1085. [PMID: 39774489 PMCID: PMC11707026 DOI: 10.1038/s41598-025-85693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body. Therefore, it seems highly important to conduct studies aimed at elucidating how QRFP43 may impact the secretory activity of the HPT axis. The objective of this work was to investigate the role of QRFP43 in modulating HPT axis activity in sheep. The study examined mRNA and peptide expression of TRH and TSH in the hypothalamus and pituitary, as well as plasma concentrations of TSH, free T4 (FT4) and free T3 (FT3). Moreover, the relationship between QRFP34 and mRNA expression of the Dio1, Dio2, and Dio3 genes was explored in selected tissues of the HPT axis. The animals (n = 48) were randomly divided into three experimental groups: a control group receiving an ICV infusion of Ringer-Locke solution, and two experimental groups receiving ICV infusions of QRFP43 at doses of 10 and 50 µg per day. Four 50-minute ICV infusions were administered to all sheep at 30 min intervals each of three consecutive days. Hypothalamic, pituitary and thyroid glands were collected and preserved for further immunohistochemical and molecular biological analyses. Additionally, blood samples were collected during the experiment for subsequent RIA determinations. In summary, the results of the experiment have indicated that QRFP43 modulates the secretory activity of the HPT axis at all organisational levels. Moreover, QRFP43 can alter the mRNA expression profiles of DIO1, DIO2 and DIO3 in HPT tissues, leading to discrete changes in the metabolism of the cells studied and their response to signals transmitted by T4 and T3.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland.
| | - Anna Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| |
Collapse
|
3
|
Chen YM, Huang J, Fan H, Li WY, Shi TS, Zhao J, Wang CN, Chen WJ, Zhu BL, Qian JJ, Guan W, Jiang B. QRFP and GPR103 in the paraventricular nucleus play a role in chronic stress-induced depressive-like symptomatology by enhancing the hypothalamic-pituitary-adrenal axis. Neuropharmacology 2025; 262:110198. [PMID: 39442911 DOI: 10.1016/j.neuropharm.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects. Chronic stress induced not only depression-like behaviors but also significant enhancement in QRFP and GPR103 in the PVN. Genetic overexpression of QRFP/GPR103 and stereotactic infusion of QRFP-26/QRFP-43 peptide in the PVN all mimicked chronic stress that induced various depression-like phenotypes in naïve mice, and this was mediated by promoting CRH biosynthesis and HPA activity. In contrast, genetic knockdown of QRFP/GPR103 in the PVN produced notable antidepressant-like effects in mice exposed to chronic stress. Furthermore, genetic knockout of QRFP also protected against chronic stress in mice. In addition, both the C-terminal biological region of QRFP and the downstream PKA/PKC-CREB signaling coupled to GPR103 stimulation underlie the role of QRFP and GPR103 in depression. Collectively, QRFP and GPR103 in PVN neurons could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011 Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
4
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
5
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
6
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024; 115:111-127. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
7
|
Martin CT, Primeaux SD. The hypothalamic neuropeptide, QRFP, regulates high fat diet intake in female Long-Evans rats following ovariectomy. Peptides 2023; 162:170960. [PMID: 36690209 PMCID: PMC9992330 DOI: 10.1016/j.peptides.2023.170960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Obesity rates in women continue to increase throughout the lifespan and obesity-related comorbidities are prevalent in women in estrogen deficiency. The hypothalamic neuropeptide, QRFP, is an orexigenic peptide that increases the intake of high fat diet (HFD) in female rats and is overexpressed following ovariectomy (OVX). Therefore, the goal of the current series of experiments was to elucidate the effect of QRFP on HFD intake following OVX and determine if QRFP-26 administration in ovariectomized females altered expression of prepro-neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) mRNA in the mediobasal hypothalamus (MBH) and prepro-orexin in the lateral hypothalamus (LH). The intake of HFD was measured following acute administration of QRFP-26 prior to or following estradiol benzoate (EB) treatment in ovariectomized females. When administered prior to EB treatment, QRFP-26 increased HFD intake. EB treatment attenuated the effects of QRFP-26 on HFD intake. Sub-chronic, continuous administration of QRFP-26 increased HFD intake and weight gain following OVX. Subchronic, continuous administration of QRFP siRNA into the 3rd ventricle via osmotic pump decreased prepro-QRFP mRNA levels in the MBH by ∼75%, decreased HFD intake and decreased weight gain following OVX. QRFP-26administration did not alter the expression of prepro-NPY, AgRP or POMC mRNA in the MBH, but decreased prepro-orexin mRNA in the LH of ovariectomized females. Overall, results from these studies support the orexigenic neuropeptide, QRFP, as an important mediator of the ingestion of highly palatable foods and subsequent weight gain in females during estrogen deficiency.
Collapse
Affiliation(s)
- Cade T Martin
- Department of Physiology, LSU Health Sciences Center-NO, New Orleans, LA 70112, USA
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center-NO, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
8
|
Cook C, Nunn N, Worth AA, Bechtold DA, Suter T, Gackeheimer S, Foltz L, Emmerson PJ, Statnick MA, Luckman SM. The hypothalamic RFamide, QRFP, increases feeding and locomotor activity: The role of Gpr103 and orexin receptors. PLoS One 2022; 17:e0275604. [PMID: 36251705 PMCID: PMC9576062 DOI: 10.1371/journal.pone.0275604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Here we show that central administration of pyroglutamylated arginine-phenylamine-amide peptide (QRFP/26RFa) increases both food intake and locomotor activity, without any significant effect on energy expenditure, thermogenesis or reward. Germline knock out of either of the mouse QRFP receptor orthologs, Gpr103a and Gpr103b, did not produce a metabolic phenotype. However, both receptors are required for the effect of centrally administered QRFP to increase feeding and locomotor activity. As central injection of QRFP activated orexin/hypocretin neurons in the lateral hypothalamus, we compared the action of QRFP and orexin on behaviour. Both peptides increased arousal and locomotor activity. However, while orexin increased consummatory behaviour, QRFP also affected other appetitive behaviours. Furthermore, the feeding but not the locomotor response to QRFP, was blocked by co-administration of an orexin receptor 1 antagonist. These results suggest that QRFP agonism induces both appetitive and consummatory behaviour, but only the latter is dependent on orexin/hypocretin receptor signalling.
Collapse
Affiliation(s)
- Chris Cook
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, University of Manchester, Manchester, United Kingdom
| | - Nicolas Nunn
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, University of Manchester, Manchester, United Kingdom
| | - Amy A. Worth
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, University of Manchester, Manchester, United Kingdom
| | - David A. Bechtold
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, University of Manchester, Manchester, United Kingdom
| | - Todd Suter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Susan Gackeheimer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Lisa Foltz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Paul J. Emmerson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
| | - Michael A. Statnick
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States of America
- Recursion Pharmaceuticals, Salt Lake City, UT, United States of America
| | - Simon M. Luckman
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Point-Substitution of Phenylalanine Residues of 26RFa Neuropeptide: A Structure-Activity Relationship Study. Molecules 2021; 26:molecules26144312. [PMID: 34299587 PMCID: PMC8307317 DOI: 10.3390/molecules26144312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
26RFa is a neuropeptide that activates the rhodopsin-like G protein-coupled receptor QRFPR/GPR103. This peptidergic system is involved in the regulation of a wide array of physiological processes including feeding behavior and glucose homeostasis. Herein, the pharmacological profile of a homogenous library of QRFPR-targeting peptide derivatives was investigated in vitro on human QRFPR-transfected cells with the aim to provide possible insights into the structural determinants of the Phe residues to govern receptor activation. Our work advocates to include in next generations of 26RFa(20–26)-based QRFPR agonists effective substitutions for each Phe unit, i.e., replacement of the Phe22 residue by a constrained 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid moiety, and substitution of both Phe24 and Phe26 by their para-chloro counterpart. Taken as a whole, this study emphasizes that optimized modifications in the C-terminal part of 26RFa are mandatory to design selective and potent peptide agonists for human QRFPR.
Collapse
|
10
|
Wang W, Tian Y, Shi X, Ma Q, Xu Y, Yang G, Yi W, Shi Y, Zhou N. N-glycosylation of the human neuropeptide QRFP receptor (QRFPR) is essential for ligand binding and receptor activation. J Neurochem 2021; 158:138-152. [PMID: 33655503 DOI: 10.1111/jnc.15337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
The newly identified pyroglutamylated RFamide peptide (QRFP) signaling system has been shown to be implicated in regulating a variety of physiological processes. G-protein-coupled receptors (GPCRs) are preferentially N-glycosylated on extracellular domains. The human QRFP receptor QRFPR (GPR103) possesses three N-glycosylation consensus sites, two located on the N-terminal domain (N5 and N19) and one on the first extracellular loop (ECL1) (N106); however, to date, their role in QRFPR expression and signaling has not been established. Here, we combined mutants with glutamine substitution of the critical asparagines of the consensus sites with glycosidase PNGase F and N-glycosylation inhibitor tunicamycin to study the effect of N-glycosylation in the regulation of QRFPR cell surface expression and signaling. Western blot analysis performed with site-directed mutagenesis revealed that two asparagines at N19 in the N-terminus and N106 in ECL1, but not N5 in the N-terminus, served as sites for N-glycosylation. Treatment with PNGase F and tunicamycin resulted in a reduction in both two-protein species, ~43 kDa and ~85 kDa in size, by 2-4 kDa. Analysis with confocal microscopy and quantitative ELISA showed that N-glycosylation of QRFPR is not essentially required for targeting the cell membrane. However, further binding assay and functional assays demonstrated that removal of N-glycosylation sequons or treatment with tunicamycin led to significant impairments in the interaction of receptor with QRFP26 and downstream signaling. Thus, our findings suggest that for the human QRFP receptor (QRFPR), N-glycosylation is not important for cell surface expression but is a pre-requisite for ligand binding and receptor activation.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanan Tian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoliu Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Ma
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gangjie Yang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Yi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
12
|
Zagorácz O, Ollmann T, Péczely L, László K, Kovács A, Berta B, Kállai V, Kertes E, Lénárd L. QRFP administration into the medial hypothalamic nuclei improves memory in rats. Brain Res 2019; 1727:146563. [PMID: 31765630 DOI: 10.1016/j.brainres.2019.146563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/31/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Even though several of RFamide peptides have been shown to modify memory and learning processes in different species, almost nothing is known regarding cognitive effects of recently discovered neuropeptide QRFP. Considering multiple physiological functions of QRFP, localization of QRFP-synthesizing neurons in the hypothalamus and its' widely spread binding sites within the CNS, the present study was designed to investigate the possible role of QRFP in the consolidation of spatial memory. As target area for microinjection, the medial hypothalamic area, including dorsomedial (DMN) and ventromedial (VMN) nuclei, has been chosen. At first, the effects of two doses (200 ng and 400 ng) of QRFP were investigated in Morris water maze. After that receptor antagonist BIBP3226 (equimolar amount to the effective dose of neuropeptide) was applied to elucidate whether it can prevent effects of QRFP. To reveal possible changes in anxiety level, animals were tested in Elevated plus maze. The higher dose of QRFP (400 ng) improved short-term memory consolidation in Morris water maze. Pretreatment with antagonist BIBP3226 abolished cognitive effects of QRFP. The neuropeptide did not affect anxiety level of rats. This study provides unique evidence regarding the role of QRFP in the consolidation of memory and gives the basis for further investigations of neuropeptide's cognitive effects.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
13
|
Prévost G, Picot M, Le Solliec MA, Arabo A, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Gobet F, Brunel V, Leprince J, Lefebvre H, Anouar Y, Chartrel N. The neuropeptide 26RFa in the human gut and pancreas: potential involvement in glucose homeostasis. Endocr Connect 2019; 8:941-951. [PMID: 31234144 PMCID: PMC6612231 DOI: 10.1530/ec-19-0247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Recent studies performed in mice revealed that the neuropeptide 26RFa regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity. However, in humans, an association between 26RFa and the regulation of glucose homeostasis is poorly documented. In this study, we have thus investigated in detail the distribution of 26RFa and its receptor, GPR103, in the gut and the pancreas, and determined the response of this peptidergic system to an oral glucose challenge in obese patients. DESIGN AND METHODS Distribution of 26RFa and GPR103 was examined by immunohistochemistry using gut and pancreas tissue sections. Circulating 26RFa was determined using a specific radioimmunoassay in plasma samples collected during an oral glucose tolerance test. RESULTS 26RFa and GPR103 are present all along the gut but are more abundant in the stomach and duodenum. In the stomach, the peptide and its receptor are highly expressed in the gastric glands, whereas in the duodenum, ileum and colon they are present in the enterocytes and the goblet cells. In the pancreatic islets, the 26RFa/GPR103 system is mostly present in the β cells. During an oral glucose tolerance test, plasma 26RFa profile is different between obese patients and healthy volunteers, and we found strong positive correlations between 26RFa blood levels and the BMI, and with various parameters of insulin secretion and insulin resistance. CONCLUSION The present data suggest an involvement of the 26RFa/GPR103 peptidergic system in the control of human glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prévost
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
- Correspondence should be addressed to G Prévost:
| | - Marie Picot
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Marie-Anne Le Solliec
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Arnaud Arabo
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hind Berrahmoune
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Mouna El Mehdi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Saloua Cherifi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Françoise Gobet
- Department of Anatomopathophysiology, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Valéry Brunel
- Department of Biochemistry, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Nicolas Chartrel
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| |
Collapse
|
14
|
Li X, Qiu S, Shi J, Wang S, Wang M, Xu Y, Nie Z, Liu C, Liu C. A new function of copper zinc superoxide dismutase: as a regulatory DNA-binding protein in gene expression in response to intracellular hydrogen peroxide. Nucleic Acids Res 2019; 47:5074-5085. [PMID: 31162603 PMCID: PMC6547762 DOI: 10.1093/nar/gkz256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
In microorganisms, a number of metalloproteins including PerR are found to regulate gene expression in response to environmental reactive oxygen species (ROS) changes. However, discovery of similar regulatory mechanisms remains elusive within mammalian cells. As an antioxidant metalloenzyme that maintains intracellular ROS homeostasis, copper zinc superoxide dismutase (SOD1) has high affinity for DNA in solution and in cells. Here, we explored the regulatory roles of SOD1 in the expression of genes in response to ROS changes within mammalian cells. SOD1-occupied DNA sites with distinct sequence preference were identified. Changing ROS levels both were found to impact DNA-SOD1 interactions in solution and within HeLa cells. GGA was one of the base triplets that had direct contact with SOD1. DNA-SOD1 interactions were observed to regulate the ROS-responsive expression of functional genes including oncogenes and amyotrophic lateral sclerosis-linked genes in transcriptional phases. Our results confirm another function of SOD1, acting as a H2O2-responsive regulatory protein in the expression of numerous mammalian genes.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Shuang Qiu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jiayuan Shi
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Shanshan Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Mingfang Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yulin Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zefeng Nie
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
15
|
Yoshida K, Nonaka T, Nakamura S, Araki M, Yamamoto T. Microinjection of 26RFa, an endogenous ligand for the glutamine RF-amide peptide receptor (QRFP receptor), into the rostral ventromedial medulla (RVM), locus coelureus (LC), and periaqueductal grey (PAG) produces an analgesic effect in rats. Peptides 2019; 115:1-7. [PMID: 30772446 DOI: 10.1016/j.peptides.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
26RFa is an endogenous ligand for the QRFP receptor. We previously found that intracerebroventricular injection of 26RFa produces an analgesic effect in a rat formalin test. In the present study, we directly tested the hypothesis that the analgesic effects of 26RFa in the formalin test are mediated in well-recognized regions of the descending inhibitory pain pathways, such as the rostral ventromedial medulla (RVM), locus coeruleus (LC), and periaqueductal grey (PAG) in rats. Injection cannulae were stereotaxically placed in the RVM, LC, or PAG through a burr hole. 26RFa (15 μg) or saline was delivered in a total volume of 0.5 μL. In a formalin test, 50 μL of 5% formalin was injected subcutaneously into the hind paw. In an antagonist study, idazoxan, an α-2 antagonist, or naloxone, an opioid receptor antagonist, was administered. Microinjection of 26RFa into the RVM had no effect compared with that in saline-injected rats. Microinjection of 26RFa into the LC contralateral, but not ipsilateral, to the formalin injection site significantly decreased the number of flinching behaviors compared with that of saline-injected rats. This effect was antagonized by intrathecal injection of idazoxan. Microinjection of 26RFa into the contralateral, but not ipsilateral, PAG produced an analgesic effect, and this effect was partly antagonized by intraperitoneal naloxone. These data suggest that 26RFa microinjected into the contralateral LC induced noradrenaline release in the spinal cord and produced an analgesic effect. In the contralateral PAG, 26RFa activated the opioid system, and some analgesic effects were mediated by opioid system activation.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Takahiro Nonaka
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Shingo Nakamura
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Miki Araki
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan
| | - Tatsuo Yamamoto
- Department of Anesthesiology, School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto, 860-8556, Japan.
| |
Collapse
|
16
|
Alim K, Lefranc B, Sopkova-de Oliveira Santos J, Dubessy C, Picot M, Boutin JA, Vaudry H, Chartrel N, Vaudry D, Chuquet J, Leprince J. Design, Synthesis, Molecular Dynamics Simulation, and Functional Evaluation of a Novel Series of 26RFa Peptide Analogues Containing a Mono- or Polyalkyl Guanidino Arginine Derivative. J Med Chem 2018; 61:10185-10197. [PMID: 30358997 DOI: 10.1021/acs.jmedchem.8b01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
26RFa, the endogenous QRFPR ligand, is implicated in several physiological and pathological conditions such as the regulation of glucose homeostasis and bone mineralization; hence, QRFPR ligands display therapeutic potential. At the molecular level, functional interaction occurs between residues Arg25 of 26RFa and Gln125 of QRFPR. We have designed 26RFa(20-26) analogues incorporating arginine derivatives modified by alkylated substituents. We found that the Arg25 side chain length was necessary to retain the activity of 26RFa(20-26) and that N-monoalkylation of arginine was accommodated by the QRFPR active site. In particular, [(Me)ωArg25]26RFa(20-26) (5b, LV-2186) appeared to be 25-fold more potent than 26RFa(20-26) and displayed a position in a QRFPR homology model slightly different to that of the unmodified heptapeptide. Other peptides were less potent than 26RFa(20-26), exhibited partial agonistic activity, or were totally inactive in accordance to different ligand-bound structures. In vivo, [(Me)ωArg25]26RFa(20-26) exerted a delayed 26RFa-like hypoglycemic effect. Finally, N-methyl substituted arginine-containing peptides represent lead compounds for further development of QRFPR agonists.
Collapse
Affiliation(s)
- Karima Alim
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Benjamin Lefranc
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | | | - Christophe Dubessy
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Marie Picot
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier , 50 rue Carnot , 92150 Suresnes , France
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Nicolas Chartrel
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - David Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| | - Julien Chuquet
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France
| | - Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication , Normandy University , 76000 Rouen , France.,Cell Imaging Platform of Normandy (PRIMACEN) , Normandy University , 76000 Rouen , France
| |
Collapse
|
17
|
Leprince J, Bagnol D, Bureau R, Fukusumi S, Granata R, Hinuma S, Larhammar D, Primeaux S, Sopkova-de Oliveiras Santos J, Tsutsui K, Ukena K, Vaudry H. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. Br J Pharmacol 2017; 174:3573-3607. [PMID: 28613414 DOI: 10.1111/bph.13907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
The RFamide neuropeptide 26RFa was first isolated from the brain of the European green frog on the basis of cross-reactivity with antibodies raised against bovine neuropeptide FF (NPFF). 26RFa and its N-terminally extended form glutamine RF-amide peptide (QRFP) have been identified as cognate ligands of the former orphan receptor GPR103, now renamed glutamine RF-amide peptide receptor (QRFP receptor). The 26RFa/QRFP precursor has been characterized in various mammalian and non-mammalian species. In the brain of mammals, including humans, 26RFa/QRFP mRNA is almost exclusively expressed in hypothalamic nuclei. The 26RFa/QRFP transcript is also present in various organs especially in endocrine glands. While humans express only one QRFP receptor, two isoforms are present in rodents. The QRFP receptor genes are widely expressed in the CNS and in peripheral tissues, notably in bone, heart, kidney, pancreas and testis. Structure-activity relationship studies have led to the identification of low MW peptidergic agonists and antagonists of QRFP receptor. Concurrently, several selective non-peptidic antagonists have been designed from high-throughput screening hit optimization. Consistent with the widespread distribution of QRFP receptor mRNA and 26RFa binding sites, 26RFa/QRFP exerts a large range of biological activities, notably in the control of energy homeostasis, bone formation and nociception that are mediated by QRFP receptor or NPFF2. The present report reviews the current knowledge concerning the 26RFa/QRFP-QRFP receptor system and discusses the potential use of selective QRFP receptor ligands for therapeutic applications.
Collapse
Affiliation(s)
- Jérôme Leprince
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| | - Didier Bagnol
- CNS Drug Discovery, Arena Pharmaceuticals Inc., San Diego, CA, USA
| | - Ronan Bureau
- Normandy Centre for Studies and Research on Medicines (CERMN), Normandy University, Caen, France
| | - Shoji Fukusumi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Shuji Hinuma
- Department of Food and Nutrition, Faculty of Human Life Science, Senri Kinran University, Suita-City, Osaka, Japan
| | - Dan Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | - Stefany Primeaux
- Department of Physiology, Joint Diabetes, Endocrinology & Metabolism Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science, Tokyo, Japan
| | - Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hubert Vaudry
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Normandy University, Rouen, France
| |
Collapse
|
18
|
Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017; 44:80-88. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022]
Abstract
Sleep consumes a third of our lifespan, but we are far from understanding how it is initiated, maintained and terminated, or what purposes it serves. To address these questions, alternative model systems have recently been recruited. The diurnal zebrafish holds the promise of bridging the gap between simple invertebrate systems, which show little neuroanatomical conservation with mammals, and well-established, but complex and nocturnal, murine systems. Zebrafish larvae can be monitored in a high-throughput fashion, pharmacologically tested by adding compounds into the water, genetically screened using transient transgenesis, and optogenetically manipulated in a non-invasive manner. Here we discuss work that has established the zebrafish as a powerful system for the study of sleep, as well as novel insights gained by exploiting its particular advantages.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
19
|
Gesmundo I, Villanova T, Banfi D, Gamba G, Granata R. Role of Melatonin, Galanin, and RFamide Neuropeptides QRFP26 and QRFP43 in the Neuroendocrine Control of Pancreatic β-Cell Function. Front Endocrinol (Lausanne) 2017; 8:143. [PMID: 28729853 PMCID: PMC5499649 DOI: 10.3389/fendo.2017.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022] Open
Abstract
Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion through cellular receptors and their signal transduction cascades. The endocrine function of the pancreas is controlled by islets within the exocrine pancreatic tissue that release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In this review, we describe the role of neurohormones that have been less characterized compared to others, on the regulation of insulin secretion. In particular, we will focus on melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino acids, cytokines, and a variety of proteins, brain-derived hormones are now considered as key regulators of glucose homeostasis, representing potential therapeutic targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Tania Villanova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giacomo Gamba
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
- *Correspondence: Riccarda Granata,
| |
Collapse
|
20
|
Chartrel N, Picot M, El Medhi M, Arabo A, Berrahmoune H, Alexandre D, Maucotel J, Anouar Y, Prévost G. The Neuropeptide 26RFa (QRFP) and Its Role in the Regulation of Energy Homeostasis: A Mini-Review. Front Neurosci 2016; 10:549. [PMID: 27965532 PMCID: PMC5126098 DOI: 10.3389/fnins.2016.00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
This mini-review deals with the neuropeptide 26RFa (or QRFP) which is a member of the RFamide peptide family discovered simultaneously by three groups in 2003. 26RFa (or its N-extended form 43RFa) was subsequently shown to be the endogenous ligand of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and at the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when injected centrally, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting that the 26RFa/GPR103 system may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. This brief overview reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Mouna El Medhi
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Arnaud Arabo
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Julie Maucotel
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| |
Collapse
|
21
|
Schreiber AL, Arceneaux KP, Malbrue RA, Mouton AJ, Chen CS, Bench EM, Braymer HD, Primeaux SD. The effects of high fat diet and estradiol on hypothalamic prepro-QRFP mRNA expression in female rats. Neuropeptides 2016; 58:103-9. [PMID: 26823127 PMCID: PMC4960001 DOI: 10.1016/j.npep.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/22/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Estradiol (E2) is a potent regulator of feeding behavior, body weight and adiposity in females. The hypothalamic neuropeptide, QRFP, is an orexigenic peptide that increases the consumption of high fat diet (HFD) in intact female rats. Therefore, the goal of the current series of studies was to elucidate the effects of E2 on the expression of hypothalamic QRFP and its receptors, QRFP-r1 and QRFP-r2, in female rats fed a HFD. Alterations in prepro-QRFP, QRFP-r1, and QRFP-r2 expression across the estrous cycle, following ovariectomy (OVX) and following estradiol benzoate (EB) treatment were assessed in the ventral medial nucleus of the hypothalamus/arcuate nucleus (VMH/ARC) and the lateral hypothalamus. In intact females, consumption of HFD increased prepro-QRFP and QRFP-r1 mRNA levels in the VMH/ARC during diestrus, a phase associated with increased food intake and low levels of E2. To assess the effects of diminished endogenous E2, rats were ovariectomized. HFD consumption and OVX increased prepro-QRFP mRNA in the VMH/ARC. Ovariectomized rats consuming HFD expressed the highest levels of QRFP. In the third experiment, all rats received EB replacement every 4days following OVX to examine the effects of E2 on QRFP expression. Prepro-QRFP, QRFP-r1 and QRFP-r2 mRNA were assessed prior to and following EB administration. EB replacement significantly reduced prepro-QRFP mRNA expression in the VMH/ARC. Overall these studies support a role for E2 in the regulation of prepro-QRFP mRNA in the VMH/ARC and suggest that E2's effects on food intake may be via a direct effect on the orexigenic peptide, QRFP.
Collapse
Affiliation(s)
- Allyson L Schreiber
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA
| | - Kenneth P Arceneaux
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Raphael A Malbrue
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Alan J Mouton
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA
| | - Christina S Chen
- Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Elias M Bench
- Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - H Douglas Braymer
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Stefany D Primeaux
- Department of Physiology, 1901 Perdido Street, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, 6400 Perkins Road, Baton Rouge, LA 70808, USA; Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
22
|
Abstract
UNLABELLED The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep.
Collapse
|
23
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
24
|
Chartrel N, Prévost G, El Medhi M, Arabo A, Berrahmoune H, Maucotel J, Anouar Y, Picot M. [The neuropeptide 26RFa and its role in the regulation of energy metabolism]. Biol Aujourdhui 2016; 210:227-235. [PMID: 28327281 DOI: 10.1051/jbio/2016024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/14/2022]
Abstract
The neuropeptide 26RFa, also referred to as QRFP (for pyroglutamilated RFamide peptide), is the latest member of the RFamide peptide family to be discovered. 26RFa and its N-extended form, 43RFa, have been characterized in all vertebrate classes as the endogenous ligands of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and in the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when centrally injected, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting the view that 26RFa may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. In conclusion, this overview of the literature reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Mouna El Medhi
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Arnaud Arabo
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Julie Maucotel
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
25
|
Measurement, Interpretation and Use of Free Ligand Solution Conformations in Drug Discovery. PROGRESS IN MEDICINAL CHEMISTRY 2016; 55:45-147. [DOI: 10.1016/bs.pmch.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Zagorácz O, Kovács A, László K, Ollmann T, Péczely L, Lénárd L. Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats. Brain Res Bull 2015; 118:58-64. [PMID: 26385088 DOI: 10.1016/j.brainresbull.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
The RFamide peptide family comprises a number of biologically active peptides sharing RF motif at their C-terminal end. These peptides are involved in the control of multiple physiological functions including regulation of metabolism and feeding behavior. QRFP-43 as well as its 26-aminoacid residue QRFP-26 are able to cause orexigenic effect when administered to the rodents' cerebral ventricles. QRFPs have been suggested as the endogenous ligands of the previously orphan GPR103 receptors. GPR103 receptors share amino acid identity with other receptors of neuropeptides involved in feeding (NPY, NPFF, galanin). QRFP-26 expressing neurons and binding sites are densely present in the rat medial hypothalamus (MHA), an area directly responsible for the regulation of feeding. QRFP-26 was delivered to the target area by direct intrahypothalamic microinjection, and the consumption of liquid food was measured over a 60 min period. Both doses (100 and 200 ng) significantly increased food intake. Non-specific receptor antagonist BIBP3226 eliminated the orexigenic effect caused by QRFP-26 administration. Effective doses of QRFP-26 did not modify general locomotor activity and behavioral patterns examined in the open-field test. This study is the first reporting feeding modulating effects following direct intrahypothalamic QRFP-26 administration.
Collapse
Affiliation(s)
- Olga Zagorácz
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Anita Kovács
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | - László Lénárd
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary; Molecular Neurophysiology Research Group, Pécs University, Szentágothai Research Center, Pécs, Hungary.
| |
Collapse
|
27
|
Xu B, Bergqvist CA, Sundström G, Lundell I, Vaudry H, Leprince J, Larhammar D. Characterization of peptide QRFP (26RFa) and its receptor from amphioxus, Branchiostoma floridae. Gen Comp Endocrinol 2015; 210:107-13. [PMID: 25449662 DOI: 10.1016/j.ygcen.2014.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/27/2023]
Abstract
A peptide ending with RFamide (Arg-Phe-amide) was discovered independently by three different laboratories in 2003 and named 26RFa or QRFP. In mammals, a longer version of the peptide, 43 amino acids, was identified and found to bind to the orphan G protein-coupled receptor GPR103. We searched the genome database of Branchiostoma floridae (Bfl) for receptor sequences related to those that bind peptides ending with RFa or RYa (including receptors for NPFF, PRLH, GnIH, and NPY). One receptor clustered in phylogenetic analyses with mammalian QRFP receptors. The gene has 3 introns in Bfl and 5 in human, but all intron positions differ, implying that the introns were inserted independently. A QRFP-like peptide consisting of 25 amino acids and ending with RFa was identified in the amphioxus genome. Eight of the ten last amino acids are identical between Bfl and human. The prepro-QRFP gene in Bfl has one intron in the propeptide whereas the human gene lacks introns. The Bfl QRFP peptide was synthesized and the receptor was functionally expressed in human cells. The response was measured as inositol phosphate (IP) turnover. The Bfl QRFP peptide was found to potently stimulate the receptor's ability to induce IP turnover with an EC50 of 0.28nM. Also the human QRFP peptides with 26 and 43 amino acids were found to stimulate the receptor (1.9 and 5.1nM, respectively). Human QRFP with 26 amino acids without the carboxyterminal amide had dramatically lower potency at 1.3μM. Thus, we have identified an amphioxus QRFP-related peptide and a corresponding receptor and shown that they interact to give a functional response.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Christina A Bergqvist
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Görel Sundström
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Ingrid Lundell
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| | - Hubert Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| |
Collapse
|
28
|
Georgsson J, Bergström F, Nordqvist A, Watson MJ, Blundell CD, Johansson MJ, Petersson AU, Yuan ZQ, Zhou Y, Kristensson L, Kakol-Palm D, Tyrchan C, Wellner E, Bauer U, Brodin P, Svensson Henriksson A. GPR103 Antagonists Demonstrating Anorexigenic Activity in Vivo: Design and Development of Pyrrolo[2,3-c]pyridines That Mimic the C-Terminal Arg-Phe Motif of QRFP26. J Med Chem 2014; 57:5935-48. [DOI: 10.1021/jm401951t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Martin J. Watson
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | - Charles D. Blundell
- C4X Discovery Ltd., Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, U.K
| | | | | | | | - Yiqun Zhou
- Pharmaron Beijing, Co.
Ltd., 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Neuropeptides possessing the Arg-Phe-NH2 (RFamide) motif at their C-termini (designated as RFamide peptides) have been characterized in a variety of animals. Among these, neuropeptide 26RFa (also termed QRFP) is the latest member of the RFamide peptide family to be discovered in the hypothalamus of vertebrates. The neuropeptide 26RFa/QRFP is a 26-amino acid residue peptide that was originally identified in the frog brain. It has been shown to exert orexigenic activity in mammals and to be a ligand for the previously identified orphan G protein-coupled receptor, GPR103 (QRFPR). The cDNAs encoding 26RFa/QRFP and QRFPR have now been characterized in representative species of mammals, birds, and fish. Functional studies have shown that, in mammals, the 26RFa/QRFP-QRFPR system may regulate various functions, including food intake, energy homeostasis, bone formation, pituitary hormone secretion, steroidogenesis, nociceptive transmission, and blood pressure. Several biological actions have also been reported in birds and fish. This review summarizes the current state of identification, localization, and understanding of the functions of 26RFaQRFP and its cognate receptor, QRFPR, in vertebrates.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Tomohiro Osugi
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Section of Behavioral SciencesGraduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, JapanLaboratory of Integrative Brain SciencesDepartment of Biology, Center for Medical Life Science of Waseda University, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, JapanINSERM U982Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
30
|
Nordqvist A, Kristensson L, Johansson KE, Isaksson da Silva K, Fex T, Tyrchan C, Svensson Henriksson A, Nilsson K. New Hits as Antagonists of GPR103 Identified by HTS. ACS Med Chem Lett 2014; 5:527-32. [PMID: 24900874 DOI: 10.1021/ml400519h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/22/2014] [Indexed: 12/31/2022] Open
Abstract
Preclinical data indicate that GPR103 receptor and its endogenous neuropeptides QRFP26 and QRFP43 are involved in appetite regulation. A high throughput screening (HTS) for small molecule GPR103 antagonists was performed with the clinical goal to target weight management by modulation of appetite. A high hit rate from the HTS and initial low confirmation with respect to functional versus affinity data challenged us to revise the established screening cascade. To secure high quality data while increasing throughput, the binding assay was optimized on quality to run at single concentration. This strategy enabled evaluation of a larger fraction of chemical clusters and singletons delivering 17 new compound classes for GPR103 antagonism. Representative compounds from three clusters are presented. One of the identified clusters was further investigated, and an initial structure-activity relationship study is reported. The most potent compound identified had a pIC50 of 7.9 with an improved ligand lipophilic efficiency.
Collapse
Affiliation(s)
- Anneli Nordqvist
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lisbeth Kristensson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kjell E. Johansson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Krystle Isaksson da Silva
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Tomas Fex
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Christian Tyrchan
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anette Svensson Henriksson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Kristina Nilsson
- CVMD Medicinal Chemistry, ‡Discovery Sciences, and §RIA Medicinal
Chemistry, AstraZeneca, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
31
|
Five novel variants of GPR103 and their expression in different tissues of goose (Anser cygnoides). Comp Biochem Physiol B Biochem Mol Biol 2014; 171:18-25. [PMID: 24657519 DOI: 10.1016/j.cbpb.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/23/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
GPR103 plays an important role in various tissues, while little information is available about the alternative splicing (AS) of its mRNA. In the present study, we used genomic PCR to identify the partial genomic locus of goose (Anser cygnoides) GPR103 and rapid amplification of cDNA ends (RACE)-PCR to identify five GPR103 variants, including the full-length variant (aGPR103-n) and four alternatively spliced variants (aGPR103-va, -vb, -vc and -vd). Sequence analysis showed that aGPR103-va and -vd are less likely to undergo nonsense-mediated mRNA decay, suggesting that they may be translated into truncated proteins. Quantitative real-time PCR (qRT-PCR) analysis revealed that the five variants are widely distributed in the brain and peripheral tissues of geese and show specific expression patterns. Thus, we here provide the first account of the GPR103 genomic locus and illustrate its transcriptional diversity and widespread distribution in geese.
Collapse
|
32
|
Jossart C, Mulumba M, Granata R, Gallo D, Ghigo E, Marleau S, Servant MJ, Ong H. Pyroglutamylated RF-amide peptide (QRFP) gene is regulated by metabolic endotoxemia. Mol Endocrinol 2014; 28:65-79. [PMID: 24284825 PMCID: PMC5426650 DOI: 10.1210/me.2013-1027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is involved in the regulation of food intake, thermogenesis, adipogenesis, and lipolysis. The expression of QRFP in adipose tissue is reduced in diet-induced obesity, a mouse model in which plasma concentrations of endotoxins are slightly elevated. The present study investigated the role of metabolic endotoxemia (ME) on QRFP gene regulation. Our results uncovered the expression of QRFP in murine macrophages and cell lines. This expression has been found to be decreased in mice with ME. Low doses of lipopolysaccharide (LPS) transiently down-regulated QRFP by 59% in RAW264.7 macrophages but not in 3T3-L1 adipocytes. The effect of LPS on QRFP expression in macrophages was dependent on the inhibitor of kB kinase and TIR-domain-containing adapter-inducing interferon (IFN)-β (TRIF) but not myeloid differentiation primary response gene 88. IFN-β was induced by ME in macrophages. IFN-β sustainably reduced QRFP expression in macrophages (64%) and adipocytes (49%). IFN-γ down-regulated QRFP (74%) in macrophages only. Both IFNs inhibited QRFP secretion from macrophages. LPS-stimulated macrophage-conditioned medium reduced QRFP expression in adipocytes, an effect blocked by IFN-β neutralizing antibody. The effect of IFN-β on QRFP expression was dependent on phosphoinositide 3-kinase, p38 MAPK, and histone deacetylases. The effect of IFN-γ was dependent on MAPK/ERK kinase 1/2 and histone deacetylases. Macrophage-conditioned medium containing increased amounts of QRFP preserved adipogenesis in adipocytes. In conclusion, LPS induces IFN-β release from macrophages, which reduces QRFP expression in both macrophages and adipocytes in an autocrine/paracrine-dependent manner, suggesting QRFP as a potential biomarker in ME.
Collapse
Affiliation(s)
- Christian Jossart
- Faculty of Pharmacy (C.J., M.M., S.M., M.J.S., H.O.), Université de Montréal C.P. 6128, Succursale Centre-Ville, Québec, Canada, H3C 3J7; and Laboratory of Molecular and Cellular Endocrinology (R.G., D.G., E.G.), Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yun S, Kim DK, Furlong M, Hwang JI, Vaudry H, Seong JY. Does Kisspeptin Belong to the Proposed RF-Amide Peptide Family? Front Endocrinol (Lausanne) 2014; 5:134. [PMID: 25165463 PMCID: PMC4131245 DOI: 10.3389/fendo.2014.00134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/30/2014] [Indexed: 11/13/2022] Open
Abstract
Kisspeptin (KISS) plays a key role in regulating reproduction by binding to its receptor, GPR54. Because of the Arg-Phe (RF) sequence at its carboxyl terminus, KISS has been proposed to be a member of the RF-amide peptide family consisting of neuropeptide FF (NPFF), neuropeptide VF (NPVF), pyroglutamylated RF-amide peptide (QRFP), and prolactin-releasing hormone (PRLH). Evolutionary relationships of protein families can be determined through phylogenetic analysis. However, phylogenetic analysis among related peptide families often fails to provide sufficient information because only short mature peptide sequences from full preprohormone sequences are conserved. Considering the concept of the coevolution of peptide ligands and their cognate receptors, evolutionary relationships among related receptor families provide clues to explore relationships between their peptides. Although receptors for NPFF, NPVF, and QRFP are phylogenetically clustered together, receptors for PRLH and KISS are on different branches of the phylogenetic tree. In particular, KISS has been proposed to be a member of the KISS/galanin/spexin family based on synteny analysis and the phylogenetic relationship between their receptors. This article discusses the evolutionary history of the receptors for the proposed RF-amide peptide family and proposes that, from an evolutionary aspect, KISS has emerged from an ancestor, which is distinct from those of the other RF-amide peptides, and so should be classed separately.
Collapse
Affiliation(s)
- Seongsik Yun
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Dong-Kyu Kim
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Michael Furlong
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Hubert Vaudry
- INSERM U982, University of Rouen, Mont-Saint-Aignan, France
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, South Korea
- *Correspondence: Jae Young Seong, Graduate School of Medicine, Korea University, Seoul 136-705, South Korea e-mail:
| |
Collapse
|
34
|
Abstract
QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP's effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.
Collapse
Affiliation(s)
- S. D. Primeaux
- Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, USA
| | - M. J. Barnes
- Pennington Biomedical Research Center, Baton Rouge, USA
| | - H. D. Braymer
- Pennington Biomedical Research Center, Baton Rouge, USA
| |
Collapse
|
35
|
Ukena K, Tachibana T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization and function of a novel neuropeptide, 26RFa, and its cognate receptor, GPR103, in the avian hypothalamus. Gen Comp Endocrinol 2013; 190:42-6. [PMID: 23548680 DOI: 10.1016/j.ygcen.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023]
Abstract
Several neuropeptides possessing the RFamide motif at their C-termini (designated RFamide peptides) have been characterized in the hypothalamus of a variety of vertebrates. Since the discovery of the 26-amino acid RFamide peptide (termed 26RFa) from the frog brain, 26RFa has been shown to exert orexigenic activity in mammals and to be a ligand of the previously identified orphan G protein-coupled receptor GPR103. Recently, we have identified 26RFa in the avian brain by molecular cloning of the cDNA encoding the 26RFa precursor and mass spectrometry analysis of the mature peptide. 26RFa-producing neurons are exclusively located in the hypothalamus whereas GPR103 is widely distributed in the avian brain. Furthermore, avian 26RFa stimulates feeding behavior in broiler chicks. This review summarizes the advances in the identification, localization, and functions of 26RFa and its cognate receptor GPR103 in vertebrates and highlights recent progress made in birds.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Pierry C, Couve-Bonnaire S, Guilhaudis L, Neveu C, Marotte A, Lefranc B, Cahard D, Ségalas-Milazzo I, Leprince J, Pannecoucke X. Fluorinated pseudopeptide analogues of the neuropeptide 26RFa: synthesis, biological, and structural studies. Chembiochem 2013; 14:1620-33. [PMID: 23940098 DOI: 10.1002/cbic.201300325] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Indexed: 11/05/2022]
Abstract
A series of four fluorinated dipeptide analogues each containing a fluoro-olefin moiety as peptide bond surrogate has been designed and synthesized. These motifs have been successfully introduced into the bioactive C-terminal heptapeptide of the neuropeptide 26RFa by conventional SPPS. We then evaluated the ability of the generated pseudopeptides to increase [Ca²⁺](i) in GPR103-transfected cells. For these fluorinated analogues, greater stability in human serum was observed. Their conformations were also investigated, leading to the valuable identification of differences depending on the position of the fluoro-olefin moiety in the sequence.
Collapse
Affiliation(s)
- Camille Pierry
- UMR 6014 COBRA, INSA and University of Rouen, IRCOF, 1 rue Tesnière, 76130 Mont-Saint-Aignan (France)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Neuroendocrine control of feeding behavior and psychomotor activity by pituitary adenylate cyclase-activating polypeptide (PACAP) in vertebrates. Obes Res Clin Pract 2013; 7:e1-7. [DOI: 10.1016/j.orcp.2012.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/16/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
|
38
|
Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J. Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist. J Med Chem 2012; 55:7516-24. [PMID: 22800498 DOI: 10.1021/jm300507d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.
Collapse
Affiliation(s)
- Cindy Neveu
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine (IRIB), INSERM U982, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol 2011; 32:387-97. [PMID: 21530572 DOI: 10.1016/j.yfrne.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
Identification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IFRMP23, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
41
|
Tobari Y, Iijima N, Tsunekawa K, Osugi T, Haraguchi S, Ubuka T, Ukena K, Okanoya K, Tsutsui K, Ozawa H. Identification, localisation and functional implication of 26RFa orthologue peptide in the brain of zebra finch (Taeniopygia guttata). J Neuroendocrinol 2011; 23:791-803. [PMID: 21696471 DOI: 10.1111/j.1365-2826.2011.02179.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several neuropeptides with the C-terminal Arg-Phe-NH(2) (RFa) sequence have been identified in the hypothalamus of a variety of vertebrates. The present study was conducted to isolate novel RFa peptides from the zebra finch brain. Peptides were isolated by immunoaffinity purification using an antibody that recognises avian RFa peptides. The isolated peptide consisted of 25 amino acids with RFa at its C-terminus. The sequence was SGTLGNLAEEINGYNRRKGGFTFRFa. Alignment of the peptide with vertebrate 26RFa has revealed that the identified peptide is the zebra finch 26RFa. We also cloned the precursor cDNA encoding this peptide. Synteny analysis of the gene showed a high conservation of this gene among vertebrates. In addition, we cloned the cDNA encoding a putative 26RFa receptor, G protein-coupled receptor 103 (GPR103) in the zebra finch brain. GPR103 cDNA encoded a 432 amino acid protein that has seven transmembrane domains. In situ hybridisation analysis in the brain showed that the expression of 26RFa mRNA is confined to the anterior-medial hypothalamic area, ventromedial nucleus of the hypothalamus and the lateral hypothalamic area, the brain regions that are involved in the regulation of feeding behaviour, whereas GPR103 mRNA is distributed throughout the brain in addition to the hypothalamic nuclei. When administered centrally in free-feeding male zebra finches, 26RFa increased food intake 24 h after injection without body mass change. Diencephalic GPR103 mRNA expression was up-regulated by fasting for 10 h. Our data suggest that the hypothalamic 26RFa-its receptor system plays an important role in the central control of food intake and energy homeostasis in the zebra finch.
Collapse
Affiliation(s)
- Y Tobari
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Le Marec O, Neveu C, Lefranc B, Dubessy C, Boutin JA, Do-Régo JC, Costentin J, Tonon MC, Tena-Sempere M, Vaudry H, Leprince J. Structure-activity relationships of a series of analogues of the RFamide-related peptide 26RFa. J Med Chem 2011; 54:4806-14. [PMID: 21623631 DOI: 10.1021/jm200418c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
26RFa is a new member of the RFamide peptide family that has been identified as the endogenous ligand of the orphan GPCR GPR103. As the C-terminal heptapeptide (26RFa((20-26))) mimics the action of the native peptide on food intake and gonadotropin secretion in rodents, we have synthesized a series of analogues of 26RFa((20-26)) and measured their potency to induce [Ca(2+)](i) mobilization in Gα(16)-hGPR103-transfected CHO cells. Systematic replacement of each residue by an alanine (Ala scan) and its D-enantiomer (D scan) showed that the last three C-terminal residues were very sensitive to the substitutions while position 23 tolerated rather well both modifications. Most importantly, replacement of Ser(23) by a norvaline led to an analogue, [Nva(23)]26RFa((20-26)), that was 3-fold more potent than the native heptapeptide. These new pharmacological data, by providing the first information regarding the structure-activity relationships of 26RFa analogues, should prove useful for the rational design of potent GPR103 receptor ligands with potential therapeutic application.
Collapse
Affiliation(s)
- Olivier Le Marec
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, European Institute for Peptide Research (IFRMP 23), Cell Imaging Platform (PRIMACEN), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamamoto T, Miyazaki R, Yamada T, Shinozaki T. Anti-allodynic effects of intrathecally and intracerebroventricularly administered 26RFa, an intrinsic agonist for GRP103, in the rat partial sciatic nerve ligation model. Peptides 2011; 32:1262-9. [PMID: 21439338 DOI: 10.1016/j.peptides.2011.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 11/20/2022]
Abstract
26RFa and QRFP are endogenous ligands of GPR103. 26RFa binding sites are widely distributed in the brain and the spinal cord where they are involved in processing pain. In the present study, the effects of intrathecal and intracerebroventricular applications of 26RFa on the level of mechanical allodynia induced by partial sciatic nerve ligation were examined in rats. The level of mechanical allodynia was measured using von Frey filaments. Intrathecal and intracerebroventricular injection of 26RFa attenuated the level of mechanical allodynia. 26RFa has been reported to activate not only GPR103 but also neuropeptide FF2 receptor and the effect of intrathecally and intracerebroventricularly administered 26RFa was not antagonized by BIBP3226, an antagonist of neuropeptide FF receptor. Immunohistochemical examination revealed that QRFP-like immunoreactivity (QRFP-LI) was expressed mainly in the small to medium sized neurons in the L5 dorsal root ganglion (DRG) and that partial sciatic nerve injury increased the percentage of QRFP-LI positive neurons. 7 days after the nerve injury, QRFP-LI positive neurons in the L5 DRG ipsilateral to the partial sciatic nerve injury were larger than those in the L5 DRG ipsilateral to the sham operation. These data suggest that (1) exogenously applied 26RFa modulates nociceptive transmission at the spinal and the supraspinal brain in the neuropathic pain model, (2) the mechanism 26RFa uses to produce an anti-allodynic effect may be mediated by the activation of GPR103, and (3) partial sciatic nerve ligation affects the expression of QRFP-LI in the dorsal root ganglion.
Collapse
Affiliation(s)
- Tatsuo Yamamoto
- Department of Anesthesiology, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto-shi, Kumamoto 860-8556, Japan.
| | | | | | | |
Collapse
|
44
|
Primeaux SD. QRFP in female rats: effects on high fat food intake and hypothalamic gene expression across the estrous cycle. Peptides 2011; 32:1270-5. [PMID: 21473894 PMCID: PMC3109089 DOI: 10.1016/j.peptides.2011.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
Pyroglutamylated arginine-phenylalanineamide peptide (QRFP) is a neuropeptide involved in feeding behavior. Central administration of QRFP selectively increases the intake of a high fat diet in male rats. QRFP administration also stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in male and female rats. Prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus which are abundant in neurotransmitters, neuropeptides and receptor systems important for food intake regulation and reproductive behaviors. The current experiments were conducted to investigate the effects of centrally administered QRFP-26 on the intake of a high fat diet (HFD, 60%kcal from fat) in female rats and to investigate alterations in hypothalamic prepro-QRFP and its receptors, GPR130a and GPR103b, mRNA levels over the estrous cycle. In Experiment 1, female rats were administered QRFP-26 (intracerebroventricular; 0.3nmol, 0.5nmol, 1.0nmol) in rats consuming either a HFD or a low fat diet. All doses of QRFP-26 selectively increased the intake of the HFD in female rats. These data suggest that QRFP-26 regulates the intake of energy dense foods in female rats, which is similar to previous findings in male rats. In Experiment 2, hypothalamic levels of prepro-QRFP mRNA and its receptors were assessed during diestrus, proestrus, or estrus. The level of prepro-QRFP mRNA in the ventromedial/arcuate nucleus (VMH/ARC) of the hypothalamus was increased during proestrus, which suggests that endogenous estrogen levels regulate QRFP expression in the VMH/ARC. These data suggest that QRFP may play a role in coordinating feeding behaviors with reproductive function when energy demand is increased.
Collapse
Affiliation(s)
- Stefany D Primeaux
- Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, LA 70112, USA.
| |
Collapse
|
45
|
Kang KS, Yahashi S, Matsuda K. The effects of ghrelin on energy balance and psychomotor activity in a goldfish model: an overview. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:171034. [PMID: 21760819 PMCID: PMC3133451 DOI: 10.1155/2011/171034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
The goldfish (Carassius auratus) has a number of merits as a laboratory animal, and we have extensively identified the mechanisms by which ghrelin regulates food intake in this species. For the first time, we have purified and characterized 11 molecular variants of ghrelin that are present in goldfish intestine and shown that 17-residue ghrelin, the predominant form with n-octanoyl modification, is biologically active and implicated in the regulation of food intake as an endogenous orexigenic factor. Ghrelin and its receptor system are present not only in peripheral tissues such as stomach and intestine, but also in the central nervous system. Recent studies have also revealed that a number of neuropeptides are widely distributed in the brain in key areas of emotional regulation, and their role as modulators of behavioral states is being increasingly recognized. Interestingly, administration of ghrelin induces an orexigenic effect and also modifies locomotor activity, suggesting the involvement of ghrelin in feeding control and regulation of energy balance. Information derived from studies of ghrelin has been increasing, and important results have been obtained from both fish and mammals. Here, we present an overview of the effects of ghrelin on energy balance and psychomotor activity in the goldfish as an animal model. The available data provide an insight into evolutionary background of ghrelin's multiple actions on energy homeostasis in vertebrates.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Satowa Yahashi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
46
|
Ukena K, Vaudry H, Leprince J, Tsutsui K. Molecular evolution and functional characterization of the orexigenic peptide 26RFa and its receptor in vertebrates. Cell Tissue Res 2011; 343:475-81. [DOI: 10.1007/s00441-010-1116-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 02/04/2023]
|
47
|
Ukena K, Tachibana T, Iwakoshi-Ukena E, Saito Y, Minakata H, Kawaguchi R, Osugi T, Tobari Y, Leprince J, Vaudry H, Tsutsui K. Identification, localization, and function of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103. Endocrinology 2010; 151:2255-64. [PMID: 20308530 DOI: 10.1210/en.2009-1478] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several neuropeptides with the C-terminal RFamide sequence have been identified in the hypothalamus of a variety of vertebrates. Among the RFamide peptide groups, however, only LPXRFamide peptides, including gonadotropin-inhibitory hormone, have been characterized in the avian brain. In the present study, we sought for the presence of other RFamide peptides in the avian hypothalamus. We identified a cDNA encoding an RFamide peptide orthologous to 26RFa (also referred to as QRFP) in the hypothalamus of the Japanese quail. The deduced quail 26RFa precursor consisted of 120-amino-acid residues, encoding one RFamide peptide with 27 amino acids. This RFamide peptide was flanked at the N terminus by a dibasic amino acid cleavage site and at the C terminus by a glycine amidation signal. Quantitative RT-PCR analysis demonstrated specific expression of quail 26RFa mRNA in the diencephalon including the hypothalamus. Furthermore, mass spectrometry analysis revealed the presence of a peptide exhibiting the mass of mature 26RFa, indicating that the peptide is actually produced from the precursor in the diencephalon. 26RFa-producing cell bodies were localized in the anterior hypothalamic nucleus in the brain. Synthetic 26RFa increased intracellular Ca(2+) concentration in HEK293T cells transfected with the chicken G protein-coupled receptor GPR103. Intracerebroventricular injection of 26RFa in broiler chicks stimulated feeding behavior. These data provide the first evidence for the occurrence of the peptide 26RFa in the avian hypothalamus and indicate that this peptide exerts orexigenic activity.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Section of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
49
|
Zatylny-Gaudin C, Bernay B, Zanuttini B, Leprince J, Vaudry H, Henry J. Characterization of a novel LFRFamide neuropeptide in the cephalopod Sepia officinalis. Peptides 2010; 31:207-14. [PMID: 19954756 DOI: 10.1016/j.peptides.2009.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 11/25/2022]
Abstract
From a single LC-MS/MS analysis, a new C-terminally extended RFamide neuropeptide was characterized in Sepia officinalis. The experimental strategy was based on the specific neutral loss associated with RFamide breakdown. Mass losses of 17 Da (C-terminally amide) and 320 Da (RFamide) have been observed for three known peaks of m/z 581.7 (FLRFamide), 599.8 (FMRFamide), 1096.3 (ALSGDAFLRFamide) and one unknown of m/z 752.8. The primary sequence of the peptide of m/z 752.8 was GNLFRFamide. MS/MS analyses revealed that this novel neuropeptide, called sepFRF1, is largely distributed in the central nervous system of cuttlefish of both sexes. Probably transported in the visceral nerve from the subesophageal mass (the peptide was not detected in the hemolymph), this neuropeptide targeted the rectum in agreement with its peripheral distribution. From concentrations as low as 10(-9)M, sepFRF1 increased the frequency, tonus and amplitude of rectal contractions. SepFRF1 is the first RFamide peptide identified in Sepia officinalis that is not derived from the FaRPs precursor. SepFRF1 could belong to a RFamide subfamily identified in gastropods and may be involved in feeding behavior.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- UMR 100 IFREMER Physiologie et Ecophysiologie des Mollusques Marins, IFR ICORE 146, University of Caen, esplanade de la Paix, 14032 Caen cedex, Calvados, France
| | | | | | | | | | | |
Collapse
|
50
|
Matsuda K, Kojima K, Shimakura SI, Takahashi A. Regulation of food intake by melanin-concentrating hormone in goldfish. Peptides 2009; 30:2060-5. [PMID: 19836661 DOI: 10.1016/j.peptides.2009.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/24/2023]
Abstract
Melanin-concentrating hormone (MCH), originally discovered in the teleost pituitary, is a hypothalamic neuropeptide involved in the regulation of body color in fish. Although MCH is also present in the mammalian brain, it has no evident function in providing pigmentation. Instead, this peptide is now recognized to be one of the key neuropeptides that act as appetite enhancers in mammals such as rodents and primates. Although there has been little information about the central action of MCH on appetite in fish, recent studies have indicated that, in goldfish, MCH acts as an anorexigenic neuropeptide, modulating the alpha-melanocyte-stimulating hormone signaling pathway through neuronal interaction. These observations indicate that there may be major differences in the mode of action of MCH between fish and mammals. This paper reviews what is currently known about the regulation of food intake by MCH in fish, especially the goldfish.
Collapse
|