1
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
2
|
Turner RT, Branscum AJ, Iwaniec UT. Long-duration leptin transgene expression in dorsal vagal complex does not alter bone parameters in female Sprague Dawley rats. Bone Rep 2024; 21:101769. [PMID: 38706522 PMCID: PMC11067478 DOI: 10.1016/j.bonr.2024.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
李 怀, 韩 凤, 孟 静, 常 文, 冯 立. [Research progress on mechanism of traumatic brain injury promoting fracture healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:125-132. [PMID: 38225852 PMCID: PMC10796220 DOI: 10.7507/1002-1892.202310045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the research progress on the mechanism related to traumatic brain injury (TBI) to promote fracture healing, and to provide theoretical basis for clinical treatment of fracture non-union. Methods The research literature on TBI to promote fracture healing at home and abroad was reviewed, the role of TBI in fracture healing was summarized from three aspects of nerves, body fluids, and immunity, to explore new ideas for the treatment of fracture non-union. Results Numerous studies have shown that fracture healing is faster in patients with fracture combined with TBI than in patients with simple fracture. It is found that the expression of various cytokines and hormones in the body fluids of patients with fracture and TBI is significantly higher than that of patients with simple fracture, and the neurofactors released by the nervous system reaches the fracture site through the damaged blood-brain barrier, and the chemotaxis and aggregation of inflammatory cells and inflammatory factors at the fracture end of patients with combined TBI also differs significantly from those of patients with simple fracture. A complex network of humoral, neural, and immunomodulatory networks together promote regeneration of blood vessels at the fracture site, osteoblasts differentiation, and inhibition of osteoclasts activity. Conclusion TBI promotes fracture healing through a complex network of neural, humoral, and immunomodulatory, and can treat fracture non-union by intervening in the perifracture microenvironment.
Collapse
Affiliation(s)
- 怀任 李
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 凤平 韩
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 静 孟
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 文利 常
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 立 冯
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| |
Collapse
|
4
|
Aja PM, Chiadikaobi CD, Agu PC, Ale BA, Ani OG, Ekpono EU, Ogwoni HA, Awoke JN, Ogbu PN, Aja L, Nwite FE, Ukachi OU, Orji OU, Nweke PC, Egwu CO, Ekpono EU, Ewa GO, Igwenyi IO, Tusubira D, Offor CE, Maduagwuna EK, Alum EU, Uti DE, Njoku A, Atoki VA, Awuchi CG. Cucumeropsis mannii seed oil ameliorates Bisphenol-A-induced adipokines dysfunctions and dyslipidemia. Food Sci Nutr 2023; 11:2642-2653. [PMID: 37324904 PMCID: PMC10261814 DOI: 10.1002/fsn3.3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
This study demonstrated the therapeutic potentials of Cucumeropsis mannii seed oil (CMSO) capable of alleviating BPA-induced dyslipidemia and adipokine dysfunction. In this study, we evaluated the effects of CMSO on adipokine dysfunctions and dyslipidemia in bisphenol-A (BPA)-induced male Wistar rats. Six-week-old 36 albino rats of 100-200 g weight were assigned randomly to six groups, which received varied doses of BPA and/or CMSO. The administration of BPA and CMSO was done at the same time for 42 days by oral intubation. The adipokine levels and lipid profile were measured in adipose tissue and plasma using standard methods. BPA induced significant (p < .05) increases in triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices in adipose tissue and plasma, as well as a decrease in adiponectin and HDL-C levels in Group II animals. BPA administration significantly (p < .05) elevated Leptin levels and reduced adiponectin levels. BPA plus CMSO reduced triglycerides, cholesterol, leptin, LDL-C, and atherogenic and coronary risk indices while increasing adiponectin levels and HDL-C in adipose tissue and plasma (p < .05). The results showed that BPA exposure increased adipose tissue as well as serum levels of the atherogenic index, triglycerides, cholesterol, coronary risk index, LDL-C, leptin, and body weight with decreased adiponectin levels and HDL-C. Treatment with CMSO reduced the toxicities caused by BPA in rats by modulating the body weight, adiponectin/leptin levels, and lipid profiles in serum and adipose tissue. This study has shown that CMSO ameliorates BPA-induced dyslipidemia and adipokine dysfunctions. We suggest for further clinical trial to establish the clinical applications.
Collapse
Affiliation(s)
- Patrick M. Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | | | - Peter C. Agu
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Boniface A. Ale
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Onyedika G. Ani
- Department of Public Health and NutritionUniversity of ChesterChesterUK
| | - Ezebuilo U. Ekpono
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | - Hilary A. Ogwoni
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Joshua N. Awoke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Patience N. Ogbu
- Department of Medical BiochemistryAlex‐Ekwueme Federal University, Ndufu‐Alike, IkwoAbakalikiEbonyi StateNigeria
| | - Lucy Aja
- Department of Science EducationEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryFederal University of Health SciencesOtukpoNigeria
| | - Felix E. Nwite
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Oliver U. Ukachi
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Obasi U. Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Peter C. Nweke
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Chinedu O. Egwu
- Department of BiochemistryUniversity of NigeriaNsukkaNigeria
| | - Ejike U. Ekpono
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Gift O. Ewa
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | - Deusdedit Tusubira
- Department of BiochemistryMbarara University of Science and Technology (MUST)MbararaUganda
| | | | | | - Esther U. Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Daniel E. Uti
- Department of Science Laboratory TechnologyFederal Polytechnic OkoOkoAnambra StateNigeria
| | | | - Victor A. Atoki
- Department of BiochemistryKampala International UniversityBushenyiUganda
| | - Chinaza G. Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied Sciences, Kampala International UniversityKampalaUganda
| |
Collapse
|
5
|
Walowski CO, Herpich C, Enderle J, Braun W, Both M, Hasler M, Müller MJ, Norman K, Bosy-Westphal A. Determinants of bone mass in older adults with normal- and overweight derived from the crosstalk with muscle and adipose tissue. Sci Rep 2023; 13:5030. [PMID: 36977715 PMCID: PMC10050471 DOI: 10.1038/s41598-023-31642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Lower bone mass in older adults may be mediated by the endocrine crosstalk between muscle, adipose tissue and bone. In 150 community-dwelling adults (59-86 years, BMI 17-37 kg/m2; 58.7% female), skeletal muscle mass index, adipose tissue and fat mass index (FMI) were determined. Levels of myokines, adipokines, osteokines, inflammation markers and insulin were measured as potential determinants of bone mineral content (BMC) and density (BMD). FMI was negatively associated with BMC and BMD after adjustment for mechanical loading effects of body weight (r-values between -0.37 and -0.71, all p < 0.05). Higher FMI was associated with higher leptin levels in both sexes, with higher hsCRP in women and with lower adiponectin levels in men. In addition to weight and FMI, sclerostin, osteocalcin, leptin × sex and adiponectin were independent predictors of BMC in a stepwise multiple regression analysis. Muscle mass, but not myokines, showed positive correlations with bone parameters that were weakened after adjusting for body weight (r-values between 0.27 and 0.58, all p < 0.01). Whereas the anabolic effect of muscle mass on bone in older adults may be partly explained by mechanical loading, the adverse effect of obesity on bone is possibly mediated by low-grade inflammation, higher leptin and lower adiponectin levels.
Collapse
Affiliation(s)
- Carina O Walowski
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Catrin Herpich
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Janna Enderle
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Wiebke Braun
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Mario Hasler
- Applied Statistics, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University, Kiel, Germany
| | - Manfred J Müller
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany
| | - Kristina Norman
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Anja Bosy-Westphal
- Institute for Human Nutrition and Food Science, Christian-Albrechts-University, Düsternbrooker Weg 17, 24105, Kiel, Germany.
| |
Collapse
|
6
|
Ordaz G, Rentería JA, Mariscal G. Characterization and modeling of the serum concentration of osteocalcin in breeding sows and its interaction with biochemical indicators: A review. J Adv Vet Anim Res 2022; 9:634-648. [PMID: 36714515 PMCID: PMC9868799 DOI: 10.5455/javar.2022.i633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Adipose, muscle, and bone tissues modulate the metabolic state of mammals. However, the role of bone tissue as a metabolic state modulator in sows has not been studied. During the gestation-lactation transition, sows undergo metabolic adaptations to meet their nutritional requirements. Among these adaptations, bone remodeling is characterized by the synthesis and inhibition of hormones that participate, together with hormones from other tissues, in fetal development and lactogenesis. Osteocalcin is a hormone synthesized by the bone tissue which has been associated in different biological models with the improvement of the metabolic state. However, in sows, published results on the concentration of osteocalcin are scarce, and its concentration throughout the reproductive cycle is unknown. Therefore, with information from published trials on the measurement of serum osteocalcin, a structured review was conducted under the following objectives: (1) to review the promising effect of osteocalcin on energy metabolism in different models and (2) to characterize and model the serum concentrations of osteocalcin during the reproductive cycle of the sow. According to the review, the results obtained for humans and other animal models suggest that osteocalcin regulates energy metabolism, which has been associated with the need for integrated metabolism to cope with the metabolic demand during gestation and lactation in mammals. If these effects are significant in the sow, current recommendations for dietary balance should be reconsidered, particularly during the gestation-lactation transition period. According to mathematical modeling, it was the period in which the lowest concentration of osteocalcin was found.
Collapse
Affiliation(s)
- Gerardo Ordaz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal-INIFAP, Querétaro, México
| | - José Antonio Rentería
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal-INIFAP, Querétaro, México
| | - Gerardo Mariscal
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal-INIFAP, Querétaro, México
| |
Collapse
|
7
|
Shalitin S, Gat-Yablonski G. Associations of Obesity with Linear Growth and Puberty. Horm Res Paediatr 2022; 95:120-136. [PMID: 34130293 DOI: 10.1159/000516171] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prevalence of obesity in childhood has increased dramatically in recent decades with increased risk of developing cardiometabolic and other comorbidities. Childhood adiposity may also influence processes of growth and puberty. SUMMARY Growth patterns of obesity during childhood have been shown to be associated with increased linear growth in early childhood, leading to accelerated epiphyseal growth plate (EGP) maturation. Several hormones secreted by the adipose tissue may affect linear growth in the context of obesity, both via the growth hormone IGF-1 axis and via a direct effect on the EGP. The observation that children with obesity tend to mature earlier than lean children has led to the assumption that the degree of body fatness may trigger the neuroendocrine events that lead to pubertal onset. The most probable link between obesity and puberty is leptin and its interaction with the kisspeptin system, which is an important regulator of puberty. However, peripheral action of adipose tissue could also be involved in changes in the onset of puberty. In addition, nutritional factors, epigenetics, and endocrine-disrupting chemicals are potential mediators linking pubertal onset to obesity. In this review, we focused on interactions of obesity with linear growth and pubertal processes, based on basic research and clinical data in humans. KEY MESSAGE Children with obesity are subject to accelerated linear growth with risk of impaired adult height and early puberty, with its psychological consequences. The data highlight another important objective in combatting childhood obesity, for the prevention of abnormal growth and pubertal patterns.
Collapse
Affiliation(s)
- Shlomit Shalitin
- National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Gat-Yablonski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|
8
|
The Effects of Nutrition on Linear Growth. Nutrients 2022; 14:nu14091752. [PMID: 35565716 PMCID: PMC9100533 DOI: 10.3390/nu14091752] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 12/16/2022] Open
Abstract
Linear growth is a complex process and is considered one of the best indicators of children’s well-being and health. Genetics, epigenetics and environment (mainly stress and availability of nutrients) are the main regulators of growth. Nutrition exerts its effects on growth throughout the course of life with different, not completely understood mechanisms. Cells have a sophisticated sensing system, which allows growth processes to occur in the presence of an adequate nutrient availability. Most of the nutritional influence on growth is mediated by hormonal signals, in turn sensitive to nutritional cues. Both macro- and micro-nutrients are required for normal growth, as demonstrated by the impairment of growth occurring when their intake is insufficient. Clinical conditions characterized by abnormal nutritional status, including obesity and eating disorders, are associated with alterations of growth pattern, confirming the tight link between growth and nutrition. The precise molecular mechanisms connecting nutrition to linear growth are far from being fully understood and further studies are required. A better understanding of the interplay between nutrients and the endocrine system will allow one to develop more appropriate and effective nutritional interventions for optimizing child growth.
Collapse
|
9
|
Clark KA, Shin AC, Sirivelu MP, MohanKumar RC, Maddineni SR, Ramachandran R, MohanKumar PS, MohanKumar SMJ. Evaluation of the Central Effects of Systemic Lentiviral-Mediated Leptin Delivery in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22:ijms222413197. [PMID: 34947993 PMCID: PMC8703968 DOI: 10.3390/ijms222413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by hyperphagia, hyperglycemia and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We have reported previously that daily leptin injections help to alleviate these symptoms. Therefore, we hypothesized that leptin gene therapy could help to normalize the neuroendocrine dysfunction seen in T1D. Adult male Sprague Dawley rats were injected i.v. with a lentiviral vector containing the leptin gene or green fluorescent protein. Ten days later, they were injected with the vehicle or streptozotocin (STZ). HPA function was assessed by measuring norepinephrine (NE) levels in the paraventricular nucleus (PVN) and serum corticosterone (CS). Treatment with the leptin lentiviral vector (Lepvv) increased leptin and insulin levels in non-diabetic rats, but not in diabetic animals. There was a significant reduction in blood glucose levels in diabetic rats due to Lepvv treatment. Both NE levels in the PVN and serum CS were reduced in diabetic rats treated with Lepvv. Results from this study provide evidence that leptin gene therapy in STZ-induced diabetic rats was able to partially normalize some of the neuroendocrine abnormalities, but studies with higher doses of the Lepvv are needed to develop this into a viable option for treating T1D.
Collapse
MESH Headings
- Animals
- Corticosterone/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Injections, Intravenous
- Lentivirus/genetics
- Leptin/genetics
- Male
- Norepinephrine/metabolism
- Paraventricular Hypothalamic Nucleus/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kimberly A. Clark
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Madhu P. Sirivelu
- Pathobiology and Diagnostic Investigation, Michigan State University, E. Lansing, MI 48824, USA;
| | - Ramya C. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
| | - Sreenivasa R. Maddineni
- Department of Poultry Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.R.M.); (R.R.)
| | - Ramesh Ramachandran
- Department of Poultry Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.R.M.); (R.R.)
| | - Puliyur S. MohanKumar
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
- Pathobiology and Diagnostic Investigation, Michigan State University, E. Lansing, MI 48824, USA;
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
- Department of Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sheba M. J. MohanKumar
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
- Department of Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-1945
| |
Collapse
|
10
|
Turner RT, Wong CP, Fosse KM, Branscum AJ, Iwaniec UT. Caloric Restriction and Hypothalamic Leptin Gene Therapy Have Differential Effects on Energy Partitioning in Adult Female Rats. Int J Mol Sci 2021; 22:ijms22136789. [PMID: 34202651 PMCID: PMC8269114 DOI: 10.3390/ijms22136789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Kristina M. Fosse
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; (R.T.T.); (C.P.W.); (K.M.F.)
- Correspondence:
| |
Collapse
|
11
|
Ng JS, Chin KY. Potential mechanisms linking psychological stress to bone health. Int J Med Sci 2021; 18:604-614. [PMID: 33437195 PMCID: PMC7797546 DOI: 10.7150/ijms.50680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. This review aims to provide an overview of the factors mediating the relationship between psychological stress and bone health. These factors can be divided into physiological and behavioural changes induced by psychological stress. The physiological factors involve endocrinological changes, such as increased glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also mediate the relationship between socioeconomic status and bone health. However, more direct evidence is required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive osteoporosis-preventing strategy.
Collapse
Affiliation(s)
- Jia-Sheng Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
12
|
Abstract
With change in global concern toward food quality over food quantity, consumer concern and choice of healthy food has become a matter of prime importance. It gave rise to concept of “personalized or precision nutrition”. The theory behind personalization of nutrition is supported by multiple factors including advances in food analytics, nutrition based diseases and public health programs, increasing use of information technology in nutrition science, concept of gene-diet interaction and growing consumer capacity or concern by better and healthy foods. The advances in “omics” tools and related analytical techniques have resulted into tremendous scope of their application in nutrition science. As a consequence, a better understanding of underlying interaction between diet and individual is expected with addressing of key challenges for successful implementation of this science. In this chapter, the above aspects are discussed to get an insight into driving factors for increasing concern in personalized nutrition.
Collapse
|
13
|
Serum IGF1 and linear growth in children with congenital leptin deficiency before and after leptin substitution. Int J Obes (Lond) 2021; 45:1448-1456. [PMID: 34002033 PMCID: PMC8236407 DOI: 10.1038/s41366-021-00809-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Evidence from in vitro and rodent studies suggests that leptin, a key signal of long-term energy reserves, promotes IGF1 synthesis and linear growth. This effect of leptin has not been fully investigated in humans. The aim of our study was to investigate the effect of leptin substitution on growth factors and linear growth in children with congenital leptin deficiency (CLD). METHODS In this cohort study we included eight pediatric patients (six males), age 0.9-14.8 years, who were diagnosed with CLD and received leptin substitution at our University Medical Center. We calculated standard deviation scores (SDS) for serum levels of IGF1 and IGFBP3, IGF1/IGFBP3 molar ratio, and height at baseline (T0) and 12 months (T12) after the initiation of substitution with metreleptin. RESULTS All patients had severe obesity (BMI-SDS mean ± SD: 4.14 ± 1.51) at T0 and significant BMI-SDS reduction to 2.47 ± 1.05 at T12. At T0, all patients were taller than the mid-parental median, yet had low IGF1 and IGF1/IGFBP3 molar ratios (IGF1-SDS[Formula: see text]T0: -1.58 ± 0.92, IGF1/IGFBP3 molar ratio-SDS[Formula: see text]T0: -1.58 ± 0.88). At T12, IGF1-SDS increased significantly (∆T0-12: 1.63 ± 1.40, p = 0.01), and IGFBP3-SDS and IGF1/IGFBP3 molar ratio-SDS showed a trend toward an increase. In the three children within the childhood growth period (post-infancy, pre-puberty) height-SDS increased (∆height-SDST0-12: 0.57 ± 0.06, p = 0.003) despite substantial weight loss. CONCLUSIONS These results in CLD patients are contrary to observations in children with idiopathic obesity who typically have above-mean IGF1 levels that decrease with weight loss, and therefore suggest that leptin increases IGF1 levels and promotes linear growth.
Collapse
|
14
|
Bae SH, Goh TS, Kim DS, Lee JS. Leptin in adolescent idiopathic scoliosis – A meta-analysis. J Clin Neurosci 2020; 71:124-128. [DOI: 10.1016/j.jocn.2019.08.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022]
|
15
|
Keune JA, Branscum AJ, Wong CP, Iwaniec UT, Turner RT. Effect of Leptin Deficiency on the Skeletal Response to Hindlimb Unloading in Adult Male Mice. Sci Rep 2019; 9:9336. [PMID: 31249331 PMCID: PMC6597714 DOI: 10.1038/s41598-019-45587-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/06/2019] [Indexed: 12/29/2022] Open
Abstract
Based on body weight, morbidly obese leptin-deficient ob/ob mice have less bone than expected, suggesting that leptin plays a role in the skeletal response to weight bearing. To evaluate this possibility, we compared the skeletal response of wild type (WT) and ob/ob mice to hindlimb unloading (HU). Mice were individually housed at 32 °C (thermoneutral) from 4 weeks of age (rapidly growing) to 16 weeks of age (approaching skeletal maturity). Mice were then randomized into one of 4 groups (n = 10/group): (1) WT control, (2) WT HU, (3) ob/ob control, and (4) ob/ob HU and the results analyzed by 2-way ANOVA. ob/ob mice pair-fed to WT mice had normal cancellous bone volume fraction (BV/TV) in distal femur, lower femur length and total bone area, mineral content (BMC) and density (BMD), and higher cancellous bone volume fraction in lumbar vertebra (LV). HU resulted in lower BMC and BMD in total femur, and lower BV/TV in distal femur and LV in both genotypes. Cancellous bone loss in femur in both genotypes was associated with increases in osteoclast-lined bone perimeter. In summary, leptin deficiency did not attenuate HU-induced osteopenia in male mice, suggesting that leptin is not required for bone loss induced by unweighting.
Collapse
Affiliation(s)
- Jessica A. Keune
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Adam J. Branscum
- 0000 0001 2112 1969grid.4391.fBiostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Carmen P. Wong
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA
| | - Urszula T. Iwaniec
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| | - Russell T. Turner
- 0000 0001 2112 1969grid.4391.fSkeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331 USA ,0000 0001 2112 1969grid.4391.fCenter for Healthy Aging Research, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
16
|
Wee NKY, Lorenz MR, Bekirov Y, Jacquin MF, Scheller EL. Shared Autonomic Pathways Connect Bone Marrow and Peripheral Adipose Tissues Across the Central Neuraxis. Front Endocrinol (Lausanne) 2019; 10:668. [PMID: 31611846 PMCID: PMC6776593 DOI: 10.3389/fendo.2019.00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) is increased in both obesity and anorexia. This is unique relative to white adipose tissue (WAT), which is generally more attuned to metabolic demand. It suggests that there may be regulatory pathways that are common to both BMAT and WAT and also those that are specific to BMAT alone. The central nervous system (CNS) is a key mediator of adipose tissue function through sympathetic adrenergic neurons. Thus, we hypothesized that central autonomic pathways may be involved in BMAT regulation. To test this, we first quantified the innervation of BMAT by tyrosine hydroxylase (TH) positive nerves within the metaphysis and diaphysis of the tibia of B6 and C3H mice. We found that many of the TH+ axons were concentrated around central blood vessels in the bone marrow. However, there were also areas of free nerve endings which terminated in regions of BMAT adipocytes. Overall, the proportion of nerve-associated BMAT adipocytes increased from proximal to distal along the length of the tibia (from ~3-5 to ~14-24%), regardless of mouse strain. To identify the central pathways involved in BMAT innervation and compare to peripheral WAT, we then performed retrograde viral tract tracing with an attenuated pseudorabies virus (PRV) to infect efferent nerves from the tibial metaphysis (inclusive of BMAT) and inguinal WAT (iWAT) of C3H mice. PRV positive neurons were identified consistently from both injection sites in the intermediolateral horn of the spinal cord, reticular formation, rostroventral medulla, solitary tract, periaqueductal gray, locus coeruleus, subcoeruleus, Barrington's nucleus, and hypothalamus. We also observed dual-PRV infected neurons within the majority of these regions. Similar tracings were observed in pons, midbrain, and hypothalamic regions from B6 femur and tibia, demonstrating that these results persist across mouse strains and between skeletal sites. Altogether, this is the first quantitative report of BMAT autonomic innervation and reveals common central neuroanatomic pathways, including putative "command" neurons, involved in coordinating multiple aspects of sympathetic output and facilitation of parallel processing between bone marrow/BMAT and peripheral adipose tissue.
Collapse
Affiliation(s)
- Natalie K. Y. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, United States
| | - Madelyn R. Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Yusuf Bekirov
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Erica L. Scheller
| |
Collapse
|
17
|
Reid IR, Baldock PA, Cornish J. Effects of Leptin on the Skeleton. Endocr Rev 2018; 39:938-959. [PMID: 30184053 DOI: 10.1210/er.2017-00226] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Leptin originates in adipocytes, including those in bone marrow, and circulates in concentrations 20 to 90 times higher than those in the cerebrospinal fluid. It has direct anabolic effects on osteoblasts and chondrocytes, but it also influences bone indirectly, via the hypothalamus and sympathetic nervous system, via changes in body weight, and via effects on the production of other hormones (e.g., pituitary). Leptin's role in bone physiology is determined by the balance of these conflicting effects. Reflecting this inconsistency, the leptin-deficient mouse has reduced length and bone mineral content of long bones but increased vertebral trabecular bone. A consistent bone phenotype in human leptin deficiency has not been established. Systemic leptin administration in animals and humans usually exerts a positive effect on bone mass, and leptin administration into the cerebral ventricles usually normalizes the bone phenotype in leptin-deficient mice. Reflecting the role of the sympathetic nervous system in mediating the central catabolic effects of leptin on the skeleton, β-adrenergic agonists and antagonists have major effects on bone in mice, but this is not consistently seen in humans. The balance of the central and peripheral effects of leptin on bone remains an area of substantial controversy and might vary between species and according to other factors such as body weight, baseline circulating leptin levels, and the presence of specific pathologies. In humans, leptin is likely to contribute to the positive relationship observed between adiposity and bone density, which allows the skeleton to respond appropriately to changes in soft tissue mass.
Collapse
Affiliation(s)
- Ian R Reid
- University of Auckland, Auckland, New Zealand.,Department of Endocrinology, Auckland District Health Board, Auckland, New Zealand
| | - Paul A Baldock
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
18
|
Philbrick KA, Branscum AJ, Wong CP, Turner RT, Iwaniec UT. Leptin Increases Particle-Induced Osteolysis in Female ob/ob Mice. Sci Rep 2018; 8:14790. [PMID: 30287858 PMCID: PMC6172200 DOI: 10.1038/s41598-018-33173-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
Particles generated from wear of prosthesis joint bearing surfaces induce inflammation-mediated periprosthetic bone resorption (osteolysis). Morbidly obese leptin-deficient ob/ob mice are resistant to polyethylene particle-induced bone loss, suggesting that leptin, a hormone produced by adipocytes that circulates in concentrations proportional to total body adiposity, increases osteolysis. To confirm that particles induce less osteolysis in leptin-deficient mice after controlling for cold stress (room temperature)-induced bone loss, ob/ob mice on a C57BL/6 (B6) background and colony B6 wildtype (WT) mice housed at thermoneutral temperature were randomized to control or particle treatment groups (N = 5/group). Polyethylene particles were implanted over calvaria and mice sacrificed 2 weeks later. Compared to particle-treated WT mice, particle-treated ob/ob mice had lower osteolysis score, less infiltration of immune cells, and less woven bone formation. To determine the role of leptin in particle-induced osteolysis, ob/ob mice were randomized into one of 4 groups (n = 6-8/group): (1) control, (2) particles, (3) particles + continuous leptin (osmotic pump, 6 μg/d), or (4) particles + intermittent leptin (daily injection, 40 μg/d). Leptin treatment increased particle-induced osteolysis in ob/ob mice, providing evidence that the adpiokine may play a role in inflammation-driven bone loss. Additional research is required to determine whether altering leptin levels within the physiological range results in corresponding changes in polyethylene-particle-induced osteolysis.
Collapse
Affiliation(s)
- Kenneth A Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.,Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA. .,Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
19
|
McCabe IC, Fedorko A, Myers MG, Leinninger G, Scheller E, McCabe LR. Novel leptin receptor signaling mutants identify location and sex-dependent modulation of bone density, adiposity, and growth. J Cell Biochem 2018; 120:4398-4408. [PMID: 30269370 DOI: 10.1002/jcb.27726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Abstract
Leptin, a hormone primarily produced by adipocytes, contributes to the regulation of bone health by modulating bone density, growth and adiposity. Upon leptin binding, multiple sites of the long form of the leptin receptor (LepRb) are phosphorylated to trigger activation of downstream signaling pathways. To address the role of LepRb-signaling pathways in bone health, we compared the effects of three LepRb mutations on bone density, adiposity, and growth in male and female mice. The ∆65 mutation, which lacks the known tyrosine phosphorylation sites, caused obesity and the most dramatic bone phenotype marked by excessive bone adiposity, osteoporosis, and decreased growth, consistent with the phenotype of db/db and ob/ob mice that fully lack leptin receptor signaling. Mutation of LepRb Tyr 1138 , which results in an inability to recruit and phosphorylate signal transducer and activator of transcription 3, also caused obesity, but bone loss and adiposity were more dominant in male mice and no growth defect was observed. In contrast, mutation of LepRb Tyr 985 , which blocks SHP2/SOCS3 recruitment to LepRb and contributes to leptin hypersensitivity, promoted increased femur bone density only in male mice, while marrow adiposity and bone growth were not affected. Additional analyses of vertebral trabecular bone volume indicate that only the Tyr 1138 mutant mice exhibit bone loss in vertebrae. Together, our findings suggest that the phosphorylation status of specific sites of the LepRb contribute to the sex- and location-dependent bone responses to leptin. Unraveling the mechanisms by which leptin responses are sex- and location-dependent can contribute to the development of uniquely targeted osteoporosis therapies.
Collapse
Affiliation(s)
- Ian C McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Alyssa Fedorko
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gina Leinninger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Erica Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, Saint Louis, Missouri
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan.,Department of Radiology, Michigan State University, East Lansing, Michigan.,Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
| |
Collapse
|
20
|
Devlin M, Robbins A, Cosman M, Moursi C, Cloutier A, Louis L, Van Vliet M, Conlon C, Bouxsein M. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs. FVB/NJ Mice. Bone Rep 2018; 8:204-214. [PMID: 29955639 PMCID: PMC6020275 DOI: 10.1016/j.bonr.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 03/06/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
The effects of obesity on bone metabolism are complex, and may be mediated by consumption of a high fat diet and/or by obesity-induced metabolic dysregulation. To test the hypothesis that both high fat (HF) diet and diet-induced metabolic disease independently decrease skeletal acquisition, we compared effects of HF diet on bone mass and microarchitecture in two mouse strains: diet-induced obesity (DIO)-susceptible C57BL/6J (B6) and DIO-resistant FVB/NJ (FVB). At 3 wks of age we weaned 120 female FVB and B6 mice onto normal (N, 10% Kcal/fat) or HF diet (45% Kcal/fat) and euthanized them at 6, 12 and 20 weeks of age (N = 10/grp). Outcomes included body mass; percent fat and whole-body bone mineral density (WBBMD, g/cm2) via DXA; cortical and trabecular bone architecture at the midshaft and distal femur via μCT; and marrow adiposity via histomorphometry. In FVB HF, body mass, percent body fat, WBBMD and marrow adiposity did not differ vs. N, but trabecular bone mass was lower at 6 wks of age only (p < 0.05), cortical bone geometric properties were lower at 12 wks only, and bone strength was lower at 20 wks of age only in HF vs. N (p < 0.05). In contrast, B6 HF had higher body mass, percent body fat, and leptin vs. N. B6 HF also had higher WBBMD (p < 0.05) at 9 and 12 wks of age but lower distal femur trabecular bone mass at 12 wks of age, and lower body mass-adjusted cortical bone properties at 20 wks of age compared to N (p < 0.05). Marrow adiposity was also markedly higher in B6 HF vs. N. Overall, HF diet negatively affected bone mass in both strains, but was more deleterious to trabecular bone microarchitecture and marrow adiposity in B6 than in FVB mice. These data suggest that in addition to fat consumption itself, the metabolic response to high fat diet independently alters skeletal acquisition in obesity.
Collapse
Affiliation(s)
- M.J. Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - A. Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - M.N. Cosman
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - C.A. Moursi
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48104, United States
| | - A.M. Cloutier
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - L. Louis
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - M. Van Vliet
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - C. Conlon
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| | - M.L. Bouxsein
- Harvard Medical School, Boston, MA 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, United States
| |
Collapse
|
21
|
Gat-Yablonski G, De Luca F. Effect of Nutrition on Statural Growth
. Horm Res Paediatr 2018; 88:46-62. [PMID: 28365689 DOI: 10.1159/000456547] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
In children, proper growth and development are often regarded as a surrogate marker for good health. A complex system controls the initiation, rate, and cessation of growth, and thus gives a wonderful example of the interactions between genetics, epigenetics, and environmental factors (especially stress and nutrition). Malnutrition is considered a leading cause of growth attenuation in children. This review summarizes our current knowledge regarding the mechanisms linking nutrition and skeletal growth, including systemic factors, such as insulin, growth hormone, insulin-like growth factor-1, fibroblast growth factor-21, etc., and local mechanisms, including mTOR, miRNAs, and epigenetics. Studying the molecular mechanisms regulating skeletal growth may lead to the establishment of better nutritional and therapeutic regimens for more effective linear growth in children with malnutrition and growth abnormalities.
.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesco De Luca
- Section of Endocrinology and Diabetes, St. Christopher's Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Seemann R, Graef F, Garbe A, Keller J, Huang F, Duda G, Schmidt-Bleek K, Schaser KD, Tsitsilonis S. Leptin-deficiency eradicates the positive effect of traumatic brain injury on bone healing: histological analyses in a combined trauma mouse model. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2018; 18:32-41. [PMID: 29504576 PMCID: PMC5881126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The combination of traumatic brain injury (TBI) and long-bone fracture leads to increased formation of callus and mineral density in wild-type (WT) mice. However, this effect was not detected radiologically in leptin-deficient mice. Due to the complex interactions between hormonal and bone metabolism and the important role of leptin in this setting, our aim was to investigate morphologic properties and the tissue composition in the fracture callus comparing WT and leptin-deficient mice. METHODS Female C57/Black6N mice (n=36) and leptin deficient ob/ob mice (n=36) each were assigned to two groups (fracture Fx/combined trauma Fx/TBI). Femoral osteotomy was stabilized with external fixator, TBI was induced with controlled cortical impact injury. After sacrifice of the animals, femora were harvested, cryofixated, and 7 µm slices were prepared. Staining was performed adhering to Movat's Pentachrome protocol. Histomorphometric analysis, quantifying percentage of mineralized bone area, and a semi-quantitative evaluation of bone bridging were performed. RESULTS Leptin deficient mice showed a higher rate of non-union after osteotomy, less callus formation in the osteotomy gap, and unexpected bone and cartilage formation independent of the osteotomy region. DISCUSSION Leptin plays an important role in fracture healing and bone formation. Without Leptin, the positive effect of TBI on fracture healing ceases. The comprehension of the underlying pathophysiological process could sign important for novel strategies in stimulation of fracture healing.
Collapse
Affiliation(s)
- Ricarda Seemann
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Corresponding author: Ricarda Seemann, MD, Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany E-mail:
| | - Frank Graef
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anja Garbe
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Johannes Keller
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Fan Huang
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg Duda
- Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kate Schmidt-Bleek
- Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus-Dieter Schaser
- University Center for Orthopedics and Trauma Surgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
23
|
De Blasio MJ, Lanham SA, Blache D, Oreffo ROC, Fowden AL, Forhead AJ. Sex- and bone-specific responses in bone structure to exogenous leptin and leptin receptor antagonism in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 2018; 314:R781-R790. [PMID: 29443548 DOI: 10.1152/ajpregu.00351.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Widespread expression of leptin and its receptor in developing cartilage and bone suggests that leptin may regulate bone growth and development in the fetus. Using microcomputed tomography, this study investigated the effects of exogenous leptin and leptin receptor antagonism on aspects of bone structure in the sheep fetus during late gestation. From 125 to 130 days of gestation (term ~145 days), chronically catheterized singleton sheep fetuses were infused intravenously for 5 days with either saline (0.9% saline, n = 13), recombinant ovine leptin at two doses (0.6 mg·kg-1·day-1 LEP1, n = 10 or 1.4 mg·kg-1·day-1 LEP2, n = 7), or recombinant superactive ovine leptin receptor antagonist (4.6 mg·kg-1·day-1 SOLA, n = 6). No significant differences in plasma insulin-like growth factor-I, osteocalcin, calcium, inorganic phosphate, or alkaline phosphatase were observed between treatment groups. Total femur midshaft diameter and metatarsal lumen diameter were narrower in male fetuses treated with exogenous leptin. In a fixed length of femur midshaft, total and bone volumes were reduced by the higher dose of leptin; nonbone space volume was lower in both groups of leptin-treated fetuses. Leptin infusion caused increments in femur porosity and connectivity density, and vertebral trabecular thickness. Leptin receptor antagonism decreased trabecular spacing and increased trabecular number, degree of anisotrophy, and connectivity density in the lumbar vertebrae. The increase in vertebral porosity observed following leptin receptor antagonism was greater in the malecompared with female, fetuses. Therefore, leptin may have a role in the growth and development of the fetal skeleton, dependent on the concentration of leptin, sex of the fetus, and bone type examined.
Collapse
Affiliation(s)
- Miles J De Blasio
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Stuart A Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton , Southampton , United Kingdom
| | - Dominique Blache
- School of Animal Biology, University of Western Australia , Crawley , Australia
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton , Southampton , United Kingdom
| | - Abigail L Fowden
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Alison J Forhead
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom.,Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , United Kingdom
| |
Collapse
|
24
|
Philbrick KA, Martin SA, Colagiovanni AR, Branscum AJ, Turner RT, Iwaniec UT. Effects of hypothalamic leptin gene therapy on osteopetrosis in leptin-deficient mice. J Endocrinol 2018; 236:57-68. [PMID: 29191939 PMCID: PMC5771473 DOI: 10.1530/joe-17-0524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022]
Abstract
Impaired resorption of cartilage matrix deposited during endochondral ossification is a defining feature of juvenile osteopetrosis. Growing, leptin-deficient ob/ob mice exhibit a mild form of osteopetrosis. However, the extent to which the disease is (1) self-limiting and (2) reversible by leptin treatment is unknown. We addressed the first question by performing histomorphometric analysis of femurs in rapidly growing (2-month-old), slowly growing (4-month-old) and skeletally mature (6-month-old) wild-type (WT) and ob/ob male mice. Absent by 6 months of age in WT mice, cartilage matrix persisted to varying extents in distal femur epiphysis, metaphysis and diaphysis in ob/ob mice, suggesting that the osteopetrotic phenotype is not entirely self-limiting. To address the second question, we employed hypothalamic recombinant adeno-associated virus (rAAV) gene therapy to restore leptin signaling in ob/ob mice. Two-month-old mice were randomized to one of the three groups: (1) untreated control, (2) rAAV-Leptin or (3) control vector rAAV-green fluorescent protein and vectors injected intracerebroventricularly. Seven months later, rAAV-leptin-treated mice exhibited no cartilage in the metaphysis and greatly reduced cartilage in the epiphysis and diaphysis. At the cellular level, the reduction in cartilage was associated with increased bone turnover. These findings (1) support the concept that leptin is important for normal replacement of cartilage by bone, and (2) demonstrate that osteopetrosis in ob/ob mice is bone-compartment-specific and reversible by leptin at skeletal sites capable of undergoing robust bone turnover.
Collapse
Affiliation(s)
- Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Martin
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Amy R Colagiovanni
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics ProgramSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
25
|
Graef F, Seemann R, Garbe A, Schmidt-Bleek K, Schaser KD, Keller J, Duda G, Tsitsilonis S. Impaired fracture healing with high non-union rates remains irreversible after traumatic brain injury in leptin-deficient mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:78-85. [PMID: 28574414 PMCID: PMC5492322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Patients with traumatic brain injury (TBI) and long-bone fractures can show increased callus formation. This effect has already been reproduced in wild-type (wt) mice. However, the mechanisms remain poorly understood. Leptin is significantly increased following TBI, while its role in bone healing remains unclear. The aim of this study was to evaluate fracture healing in leptin-deficient ob/ob mice and to measure any possible impact of TBI on callus formation. 138 female, 12 weeks old, ob/ob mice were divided into four groups: Control, fracture, TBI and combined trauma. Osteotomies were stabilized with an external fixator; TBI was induced with Controlled Cortical Impact Injury. Callus bridging was weekly evaluated with in vivo micro-CT. Biomechanical testing was performed ex vivo. Micro-CT showed high non-union rates after three and four weeks in the fracture and combined trauma group. No differences were observed in callus volume, density and biomechanical properties at any time point. This study shows that bony bridging is impaired in the present leptin-deficient trauma model. Furthermore, the phenomenon of increased callus formation after TBI could not be reproduced in ob/ob mice, as in wt mice. Our findings suggest that the increased callus formation after TBI may be dependent on leptin signaling.
Collapse
Affiliation(s)
- F. Graef
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Corresponding author: Frank Graef, MD, Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany E-mail:
| | - R. Seemann
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - A. Garbe
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - K. Schmidt-Bleek
- Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - K-D. Schaser
- University Center for Orthopedics and Trauma Surgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden
| | - J. Keller
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany
| | - G. Duda
- Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany,Julius Wolff Institute, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - S. Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
26
|
Turner RT, Philbrick KA, Kuah AF, Branscum AJ, Iwaniec UT. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice. J Endocrinol 2017; 233:357-367. [PMID: 28428364 PMCID: PMC5527997 DOI: 10.1530/joe-17-0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022]
Abstract
Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Amida F Kuah
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics ProgramSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
27
|
Philbrick KA, Wong CP, Branscum AJ, Turner RT, Iwaniec UT. Leptin stimulates bone formation in ob/ob mice at doses having minimal impact on energy metabolism. J Endocrinol 2017; 232:461-474. [PMID: 28057869 PMCID: PMC5288125 DOI: 10.1530/joe-16-0484] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
Leptin, the protein product of the ob gene, is essential for normal bone growth, maturation and turnover. Peripheral actions of leptin occur at lower serum levels of the hormone than central actions because entry of leptin into the central nervous system (CNS) is limited due to its saturable transport across the blood-brain barrier (BBB). We performed a study in mice to model the impact of leptin production associated with different levels of adiposity on bone formation and compared the response with well-established centrally mediated actions of the hormone on energy metabolism. Leptin was infused (0, 4, 12, 40, 140 or 400 ng/h) for 12 days into 6-week-old female ob/ob mice (n = 8/group) using sc-implanted osmotic pumps. Treatment resulted in a dose-associated increase in serum leptin. Bone formation parameters were increased at EC50 infusion rates of 7-17 ng/h, whereas higher levels (EC50, 40-80 ng/h) were required to similarly influence indices of energy metabolism. We then analyzed gene expression in tibia and hypothalamus at dose rates of 0, 12 and 140 ng/h; the latter dose resulted in serum leptin levels similar to WT mice. Infusion with 12 ng/h leptin increased the expression of genes associated with Jak/Stat signaling and bone formation in tibia with minimal effect on Jak/Stat signaling and neurotransmitters in hypothalamus. The results suggest that leptin acts peripherally to couple bone acquisition to energy availability and that limited transport across the BBB insures that the growth-promoting actions of peripheral leptin are not curtailed by the hormone's CNS-mediated anorexigenic actions.
Collapse
Affiliation(s)
- Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Adam J Branscum
- Biostatistics ProgramSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA
- Center for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USA
| |
Collapse
|
28
|
Kokolski M, Ebling FJ, Henstock JR, Anderson SI. Photoperiod-Induced Increases in Bone Mineral Apposition Rate in Siberian Hamsters and the Involvement of Seasonal Leptin Changes. Front Endocrinol (Lausanne) 2017; 8:357. [PMID: 29312147 PMCID: PMC5742149 DOI: 10.3389/fendo.2017.00357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
The adipokine leptin regulates energy balance, appetite, and reproductive maturation. Leptin also acts on bone growth and remodeling, but both osteogenic and anti-osteogenic effects have been reported depending on experimental conditions. Siberian hamsters (Phodopus sungorus) have natural variation in circulating leptin concentrations, where serum leptin is significantly decreased during the short day (SD)-induced winter state. In summer long day (LD) photoperiods, appetite and body adiposity increase with associated central leptin insensitivity. This natural change in leptin secretion was exploited to investigate leptin's effect on bone growth. Hamsters were injected with calcium-chelating fluorescent dyes to measure bone mineral apposition rate (MAR). Measurements were initially obtained from 5-week and 6-month-old animals maintained in low leptin (SD) or high leptin (LD) states. A further study investigated effects of chronic administration of recombinant mouse leptin to hamsters housed in SD and LD conditions; growth plate thickness and bone density were also assessed. As expected, a reduction in body mass was seen in hamsters exposed to SD, confirming the phenotype change in all studies. Serum leptin concentrations were significantly reduced in SD animals in all studies. MAR was reproducibly and significantly increased in the femurs of SD animals in all studies. Vitamin D and growth plate thickness were significantly increased in SD animals at 6 months. No effect on bone density was observed in any study. Taken together these data suggest that bone growth is associated with the low leptin, winter, lean state. In leptin-treated animals, there was a significant interaction effect of leptin and photoperiod. In comparison to their vehicle counterparts, SD animals had decreased and LD animals had increased MAR, which was not apparent prior to leptin administration. In conclusion, increased MAR was associated with low serum leptin levels in early life and sustained over 6 months, implying that leptin has a negative effect on bone growth in this model. The unexpected finding that MAR increased after peripheral leptin administration in LD suggests that leptin exerts different effects on bone growth dependent on initial leptin status. This adds further weight to the hypothesis that leptin-treated LD animals display central leptin resistance.
Collapse
Affiliation(s)
- Marie Kokolski
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- *Correspondence: Marie Kokolski,
| | - Francis J. Ebling
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - James R. Henstock
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Susan I. Anderson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| |
Collapse
|
29
|
Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, Mabilleau G. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone 2016; 87:102-13. [PMID: 27062994 DOI: 10.1016/j.bone.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM.
Collapse
Affiliation(s)
- Sity Aishah Mansur
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia; School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Aleksandra Mieczkowska
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Peter R Flatt
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Beatrice Bouvard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France
| | - Nigel Irwin
- Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France; SCIAM, Service Commun d'Imagerie et Analyses Microscopiques, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, LUNAM Université, 49933 ANGERS Cedex, France.
| |
Collapse
|
30
|
Devlin MJ, Brooks DJ, Conlon C, Vliet MV, Louis L, Rosen CJ, Bouxsein ML. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice. J Endocrinol 2016; 229:295-306. [PMID: 27340200 PMCID: PMC5171226 DOI: 10.1530/joe-15-0473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
Starvation induces low bone mass and high bone marrow adiposity in humans, but the underlying mechanisms are poorly understood. The adipokine leptin falls in starvation, suggesting that hypoleptinemia may be a link between negative energy balance, bone marrow fat accumulation, and impaired skeletal acquisition. In that case, treating mice with leptin during caloric restriction (CR) should reduce marrow adipose tissue (MAT) and improve bone mass. To test this hypothesis, female C57Bl/6J mice were fed a 30% CR or normal (N) diet from 5 to 10 weeks of age, with daily injections of vehicle (VEH), 1mg/kg leptin (LEP1), or 2mg/kg leptin (LEP2) (N=6-8/group). Outcomes included body mass, body fat percentage, and whole-body bone mineral density (BMD) via peripheral dual-energy X-ray absorptiometry, cortical and trabecular microarchitecture via microcomputed tomography (μCT), and MAT volume via μCT of osmium tetroxide-stained bones. Overall, CR mice had lower body mass, body fat percentage, BMD, and cortical bone area fraction, but more connected trabeculae, vs N mice (P<0.05 for all). Most significantly, although MAT was elevated in CR vs N overall, leptin treatment blunted MAT formation in CR mice by 50% vs VEH (P<0.05 for both leptin doses). CR LEP2 mice weighed less vs CR VEH mice at 9-10 weeks of age (P<0.05), but leptin treatment did not affect body fat percentage, BMD, or bone microarchitecture within either diet. These data demonstrate that once daily leptin bolus during CR inhibits bone marrow adipose expansion without affecting bone mass acquisition, suggesting that leptin has distinct effects on starvation-induced bone marrow fat formation and skeletal acquisition.
Collapse
Affiliation(s)
- M J Devlin
- Department of AnthropologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - D J Brooks
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C Conlon
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - M van Vliet
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - L Louis
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C J Rosen
- Maine Medical Center Research InstituteScarborough, Maine, USA
| | - M L Bouxsein
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA Harvard Medical SchoolBoston, Massachusetts, USA
| |
Collapse
|
31
|
Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone 2016; 85:99-106. [PMID: 26855373 PMCID: PMC4801515 DOI: 10.1016/j.bone.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | - Hale Z Toklu
- Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Alex Balaez
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA
| | - Ean G Phillips
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA
| | - Dana M Otzel
- Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA
| | - Cong Chen
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yasemin Sakarya
- Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Nihal Tümer
- Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Philip J Scarpace
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Lindenmaier LB, Philbrick KA, Branscum AJ, Kalra SP, Turner RT, Iwaniec UT. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High-Fat Diets. Front Endocrinol (Lausanne) 2016; 7:110. [PMID: 27579023 PMCID: PMC4985531 DOI: 10.3389/fendo.2016.00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest that leptin plays an important role in regulating the differentiation of MSCs to adipocytes and osteoblasts, a process that may be dysregulated by high-fat diet. However, the results also illustrate that reducing MAT by increasing leptin levels does not necessarily result in increased bone mass.
Collapse
Affiliation(s)
- Laurence B. Lindenmaier
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Satya P. Kalra
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA
- *Correspondence: Urszula T. Iwaniec,
| |
Collapse
|
33
|
Turner RT, Dube M, Branscum AJ, Wong CP, Olson DA, Zhong X, Kweh MF, Larkin IV, Wronski TJ, Rosen CJ, Kalra SP, Iwaniec UT. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss. J Endocrinol 2015; 227:129-41. [PMID: 26487675 PMCID: PMC4917201 DOI: 10.1530/joe-15-0280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 02/04/2023]
Abstract
Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Michael Dube
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Adam J Branscum
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Dawn A Olson
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Xiaoying Zhong
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Mercedes F Kweh
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Iske V Larkin
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Thomas J Wronski
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Clifford J Rosen
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Satya P Kalra
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA Skeletal Biology LaboratorySchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USACenter for Healthy Aging ResearchOregon State University, Corvallis, Oregon, USADepartment of NeuroscienceMcKnight Brain Institute, University of Florida, Gainesville, Florida, USABiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USADepartment of Physiological SciencesUniversity of Florida, Gainesville, Florida, USADepartment of Large Animal Clinical SciencesUniversity of Florida, Gainesville, Florida, USAMaine Medical Center Research InstituteScarborough, Maine, USA
| |
Collapse
|
34
|
Role of Enhanced Central Leptin Activity in a Scoliosis Model Created in Bipedal Amputated Mice. Spine (Phila Pa 1976) 2015; 40:E1041-5. [PMID: 26192719 DOI: 10.1097/brs.0000000000001060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental study to investigate the role of enhanced central leptin activity in a bipedal mouse scoliosis model. OBJECTIVE To investigate the influence of enhanced central leptin activity on the development of scoliosis in mice, and to support Burwell's hypothesis that central leptin dysfunction is involved in the etiopathogenesis of idiopathic scoliosis. SUMMARY OF BACKGROUND DATA Significantly lower level of circulating leptin and higher level of soluble leptin receptor have been reported in adolescent idiopathic scoliosis compared with healthy adolescents, suggesting possible association between abnormal central leptin level and dysfunction. METHODS Amputation of forelimbs and tail was performed on 50 male C3H/HeJ mice at the age of 3 weeks. Then, the mice were randomly divided into 2 groups: Group A consisted of 25 mice treated with injection into the hypothalamus with lentivirus vectors that overexpressed leptin; and Group B involved the remaining 25 mice receiving intracerebral injection with the control vectors. Radiographs were obtained at 20th week to determine the presence of spinal deformity. The incidence of scoliosis and curve magnitude were compared between groups. RESULTS The body weight was initially found to be slightly lower in mice of Group A when compared with Group B. Significantly higher peripheral serum leptin level was found in leptin-overexpressing mice than control mice. Scoliosis developed in 23 mice of Group A (92%), with an average Cobb angle of 30.2°, and in 13 of Group B (52%), with an average Cobb angle of 18.4°, respectively. A higher incidence (P = 0.002) and more severe curve (P <0.001) were observed in Group A. CONCLUSION In this bipedal mouse scoliosis model, enhanced central leptin activity might not only increase the risk of developing a scoliosis, but also contribute to the progression of scoliosis. LEVEL OF EVIDENCE N/A.
Collapse
|
35
|
Chen XX, Yang T. Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 2015; 33:474-85. [PMID: 25777984 DOI: 10.1007/s00774-014-0569-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023]
Abstract
Adipose tissue has been more accepted as an active contributor to whole body homeostasis, rather than just a fat depot, since leptin, a 16 kDa protein, was discovered as the product of the obese gene in 1994. With more and more studies conducted on this hormone, it has been shown that there is a close relationship between adipose tissue and bone, which have important effects on each other. Bone is the source of many hormones, such as osteocalcin, that can affect energy metabolism and then the anabolism or catabolism of fat tissue. In contrast, the adipose tissue synthesizes and releases a series of adipokines, which are involved in bone metabolism through direct or indirect effects on bone formation and resorption. Interestingly, leptin, one of the most important cytokines derived from fat tissue, seems to account for the largest part of effects on bone, through direct or indirect involvement in bone remodeling and by playing a significant role in many bone diseases, such as osteoporosis, osteoarthritis, rheumatic arthritis, bone tumors and even fractures. In this review, we will discuss the progress in leptin research, particularly focusing on the roles of leptin in bone diseases.
Collapse
Affiliation(s)
- Xu Xu Chen
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | | |
Collapse
|
36
|
Tian L, Yu X. Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated (review). Mol Med Rep 2015; 12:783-94. [PMID: 25760577 PMCID: PMC4438959 DOI: 10.3892/mmr.2015.3472] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 12/03/2014] [Indexed: 02/05/2023] Open
Abstract
The association between lipid and bone metabolism has become an increasing focus of interest in recent years, and accumulating evidence has shown that atherosclerosis (AS) and osteoporosis (OP), a disorder of bone metabolism, frequently co-exist. Fat and bone are known to share a common progenitor cell: Multipotent mesenchymal stem cells (MSC) in the bone marrow (BM), which are able to differentiate into various cell phenotypes, including osteoblasts, adipocytes and chondrocytes. Laboratory-based and clinical trials have shown that increasing adipocytes are accompanied by a decrease in bone mineral density (BMD) and bone mass. Statins, lipid-lowering drugs used to treat hyperlipidemia, also provide benefit in the treatment of OP. There is thus evidence that the metabolism of lipids is correlated with that of bone, and that the two are mutually regulated. The present review primarily focuses on the potential association between lipid metabolism disturbance and OP, based on biological metabolism, pathophysiological processes, results from clinical and experimental animal studies, processes involved in the differentiation of adipocytes and osteoblasts, as well as pharmacological treatments of these diseases.
Collapse
Affiliation(s)
- Li Tian
- Laboratory of Endocrinology and Metabolism, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
37
|
Gat-Yablonski G, Phillip M. Nutritionally-induced catch-up growth. Nutrients 2015; 7:517-51. [PMID: 25594438 PMCID: PMC4303852 DOI: 10.3390/nu7010517] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022] Open
Abstract
Malnutrition is considered a leading cause of growth attenuation in children. When food is replenished, spontaneous catch-up (CU) growth usually occurs, bringing the child back to its original growth trajectory. However, in some cases, the CU growth is not complete, leading to a permanent growth deficit. This review summarizes our current knowledge regarding the mechanism regulating nutrition and growth, including systemic factors, such as insulin, growth hormone, insulin- like growth factor-1, vitamin D, fibroblast growth factor-21, etc., and local mechanisms, including autophagy, as well as regulators of transcription, protein synthesis, miRNAs and epigenetics. Studying the molecular mechanisms regulating CU growth may lead to the establishment of better nutritional and therapeutic regimens for more effective CU growth in children with malnutrition and growth abnormalities. It will be fascinating to follow this research in the coming years and to translate the knowledge gained to clinical benefit.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, and Felsenstein Medical Research Center, Petach Tikva 49100, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, and Felsenstein Medical Research Center, Petach Tikva 49100, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
38
|
Pando R, Masarwi M, Shtaif B, Idelevich A, Monsonego-Ornan E, Shahar R, Phillip M, Gat-Yablonski G. Bone quality is affected by food restriction and by nutrition-induced catch-up growth. J Endocrinol 2014; 223:227-39. [PMID: 25248555 DOI: 10.1530/joe-14-0486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth stunting constitutes the most common effect of malnutrition. When the primary cause of malnutrition is resolved, catch-up (CU) growth usually occurs. In this study, we have explored the effect of food restriction (RES) and refeeding on bone structure and mechanical properties. Sprague-Dawley male rats aged 24 days were subjected to 10 days of 40% RES, followed by refeeding for 1 (CU) or 26 days long-term CU (LTCU). The rats fed ad libitum served as controls. The growth plates were measured, osteoclasts were identified using tartrate-resistant acid phosphatase staining, and micro-computed tomography (CT) scanning and mechanical testing were used to study structure and mechanical properties. Micro-CT analysis showed that RES led to a significant reduction in trabecular BV/TV and trabecular number (Tb.N), concomitant with an increase in trabecular separation (Tb.Sp). Trabecular BV/TV and Tb.N were significantly greater in the CU group than in the RES in both short- and long-term experiments. Mechanical testing showed that RES led to weaker and less compliant bones; interestingly, bones of the CU group were also more fragile after 1 day of CU. Longer term of refeeding enabled correction of the bone parameters; however, LTCU did not achieve full recovery. These results suggest that RES in young rats attenuated growth and reduced trabecular bone parameters. While nutrition-induced CU growth led to an immediate increase in epiphyseal growth plate height and active bone modeling, it was also associated with a transient reduction in bone quality. This should be taken into consideration when treating children undergoing CU growth.
Collapse
Affiliation(s)
- Rakefet Pando
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Majdi Masarwi
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Biana Shtaif
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Anna Idelevich
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Efrat Monsonego-Ornan
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Ron Shahar
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Moshe Phillip
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - Galia Gat-Yablonski
- Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel Felsenstein Medical Research CenterPetach Tikva, IsraelSackler Faculty of MedicineTel Aviv University, Tel Aviv, IsraelRobert H. Smith Faculty of AgricultureFood and Environment, Institute of Biochemistry and NutritionFaculty of AgriculturalFood and Environmental Quality Sciences, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, IsraelThe Jesse Z and Sara Lea Shafer Institute for Endocrinology and DiabetesNational Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| |
Collapse
|
39
|
Turner RT, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT. Morbid obesity attenuates the skeletal abnormalities associated with leptin deficiency in mice. J Endocrinol 2014; 223:M1-15. [PMID: 24990938 PMCID: PMC4161659 DOI: 10.1530/joe-14-0224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leptin-deficient ob/ob mice are morbidly obese and exhibit low total bone mass and mild osteopetrosis. In order to disassociate the skeletal effects of leptin deficiency from those associated with morbid obesity, we evaluated bone mass, architecture, gene expression, and indices of bone turnover in WT mice, ob/ob mice allowed to feed ad libitum (ob/ob), and ob/ob mice pair-fed equivalent to WT mice (pair-fed ob/ob). Mice were maintained at 32 °C (thermoneutral) from 6 to 18 weeks of age to minimize differences in resting energy expenditure. ob/ob mice were heavier, had more abdominal white adipose tissue (WAT), and were hyperglycemic compared with WT mice. Femur length, bone mineral content (BMC) and bone mineral density, and midshaft femur cortical thickness were lower in ob/ob mice than in WT mice. Cancellous bone volume (BV) fraction was higher but indices of bone formation and resorption were lower in ob/ob mice compared with WT mice; reduced bone resorption in ob/ob mice resulted in pathological retention of calcified cartilage. Pair-fed ob/ob mice were lighter and had lower WAT, uterine weight, and serum glucose than ob/ob mice. Similarly, femoral length, BMC, and cortical thickness were lower in pair-fed ob/ob mice compared with ob/ob mice, as were indices of cancellous bone formation and resorption. In contrast, bone marrow adiposity, calcified cartilage, and cancellous BV fraction were higher at one or more cancellous sites in pair-fed ob/ob mice compared with ob/ob mice. These findings indicate that the skeletal abnormalities caused by leptin deficiency are markedly attenuated in morbidly obese ob/ob mice.
Collapse
Affiliation(s)
- Russell T Turner
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kenneth A Philbrick
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Carmen P Wong
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dawn A Olson
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Adam J Branscum
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA Skeletal Biology LaboratorySchool of Biological and Population Health SciencesCenter for Healthy Aging ResearchBiostatisticsSchool of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
40
|
Christensen JD, Lungu AO, Cochran E, Collins MT, Gafni RI, Reynolds JC, Rother KI, Gorden P, Brown RJ. Bone mineral content in patients with congenital generalized lipodystrophy is unaffected by metreleptin replacement therapy. J Clin Endocrinol Metab 2014; 99:E1493-500. [PMID: 25070319 PMCID: PMC4121033 DOI: 10.1210/jc.2014-1353] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin alters bone and mineral metabolism in rodents, but this has not been verified in humans. PATIENTS with congenital generalized lipodystrophy (CGL) have low leptin due to deficient adipose mass and serve as models of leptin deficiency and replacement. OBJECTIVE To study the effects of recombinant human methionyl leptin (metreleptin) on bone mineral content (BMC) and mineral metabolism. DESIGN AND SETTING An open-label nonrandomized study at the National Institutes of Health. PATIENTS Thirty-one patients with CGL (ages 4.3 to 46.7 y). INTERVENTION Metreleptin (0.06 to 0.24 mg/kg/d) for 6 months to 11 years. OUTCOME MEASURES BMC was assessed by dual-energy x-ray absorptiometry. SD scores (SDS) for BMC were calculated based on height, race, sex, and age using population normative data. Calcium, phosphorus, PTH, 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D were measured at baseline and follow-up. RESULTS At baseline, patients demonstrated significantly increased total body less head BMC (mean SDS, 1.8 ± 0.7), height (mean SDS, 1.3 ± 1.3), and lean mass index, defined as lean body mass per height squared (mean SDS, 1.5 ± 0.83), vs population normative data. No change in total body less head BMC was observed after metreleptin. Lean mass index decreased with metreleptin. Serum calcium decreased with metreleptin, but remained within normal limits. No changes were seen in phosphorus, PTH, or vitamin D. CONCLUSIONS In contrast to rodent models, CGL patients have increased BMC in the leptin-deficient state, which does not change with leptin replacement. The high BMC in these patients is partially explained by high lean mass and tall stature.
Collapse
Affiliation(s)
- John D Christensen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (J.D.C., E.C., P.G., K.I.R., R.J.B.), National Institute of Dental and Craniofacial Research (M.T.C., R.I.G.), Nuclear Medicine Department, Clinical Center (J.C.R.), National Institutes of Health, Bethesda, Maryland 20892; and Joslin Diabetes Center (A.O.L.), Brookline, Massachusetts 02215
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice. Gene Ther 2014; 21:298-308. [PMID: 24430238 DOI: 10.1038/gt.2013.85] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023]
Abstract
There is growing evidence that leptin is able to ameliorate Alzheimer's disease (AD)-like pathologies, including brain amyloid-β (Aβ) burden. In order to improve the therapeutic potential for AD, we generated a lentivirus vector expressing leptin protein in a self-inactivating HIV-1 vector (HIV-leptin), and delivered this by intra-cerebroventricular administration to APP/PS1 transgenic model of AD. Three months after intra-cerebroventricular administration of HIV-leptin, brain Aβ accumulation was reduced. By electron microscopy, we found that APP/PS1 mice exhibited deficits in synaptic density, which were partially rescued by HIV-leptin treatment. Synaptic deficits in APP/PS1 mice correlated with an enhancement of caspase-3 expression, and a reduction in synaptophysin levels in synaptosome preparations. Notably, HIV-leptin therapy reverted these dysfunctions. Moreover, leptin modulated neurite outgrowth in primary neuronal cultures, and rescued them from Aβ42-induced toxicity. All the above changes suggest that leptin may affect multiple aspects of the synaptic status, and correlate with behavioral improvements. Our data suggest that leptin gene delivery has a therapeutic potential for Aβ-targeted treatment of mouse model of AD.
Collapse
|
42
|
Iwaniec UT, Turner RT, Smith BJ, Stoecker BJ, Rust A, Zhang B, Vasu VT, Gohil K, Cross CE, Traber MG. Evaluation of long-term vitamin E insufficiency or excess on bone mass, density, and microarchitecture in rodents. Free Radic Biol Med 2013; 65:1209-1214. [PMID: 24051180 PMCID: PMC3859709 DOI: 10.1016/j.freeradbiomed.2013.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/04/2013] [Accepted: 09/07/2013] [Indexed: 12/19/2022]
Abstract
High dietary α-tocopherol levels reportedly result in osteopenia in growing rats, whereas α-tocopherol deficiency in α-tocopherol transfer protein-knockout (α-TTP-KO) mice results in increased cancellous bone mass. Because osteoporosis is a disease associated primarily with aging, we hypothesized that age-related bone loss would be attenuated in α-TTP-KO mice. Cancellous and cortical bone mass and microarchitecture were assessed using dual-energy X-ray absorptiometry and micro-computed tomography in 2-year-old α-TTP-KO and wild-type (WT) male and female mice fed dl-α-tocopherol acetate. In contrast to our expectations, differences in cancellous bone were not detected between WT and α-TTP-KO mice of either gender, and α-TTP-KO males had lower (p<0.05) cortical bone mass than WT males. We therefore evaluated bone mass, density, and microarchitecture in proximal femur of skeletally mature (8.5-month-old) male Sprague-Dawley rats fed diets containing low (15 IU/kg diet), adequate (75 IU/kg diet), or high (500 IU/kg diet) dl-α-tocopherol acetate for 13 weeks. Low dietary α-tocopherol did not increase bone mass. Furthermore, no reductions in cancellous or cortical bone mass were detected with high dietary α-tocopherol. Failure to detect increased bone mass in aged α-TTP-KO mice or bone changes in skeletally mature rats fed either low or high levels of α-tocopherol does not support the hypothesis that α-tocopherol has a negative impact on bone mass, density, or microarchitecture in rodents.
Collapse
Affiliation(s)
- Urszula T Iwaniec
- Skeletal Biology Laboratory, Oregon State University, Corvallis, OR 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, Oregon State University, Corvallis, OR 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, College of Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Barbara J Stoecker
- Department of Nutritional Sciences, College of Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Allison Rust
- Skeletal Biology Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Bo Zhang
- Biostatistics Core, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vihas T Vasu
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California at Davis, Davis, CA 95616, USA
| | - Kishorchandra Gohil
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California at Davis, Davis, CA 95616, USA
| | - Carroll E Cross
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California at Davis, Davis, CA 95616, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
43
|
Abstract
Nutritional status is an essential component in determining whole body energy homeostasis. The balance between energy/food intake and metabolism is governed by a range of hormones secreted from various parts of the body. Their subsequent dissemination via the blood results in a wide range of biological responses including satiety, hunger, and glucose uptake. The roles of these systemic hormones also extend to bone regulation with animal and clinical studies establishing a relationship between these regulatory pathways. This review covers the gastrointestinal hormones, ghrelin, PYY, GIP, GLP-1, and GLP-2, and the adipokines, leptin, and adiponectin and their roles in regulating bone homeostasis. Their known actions are reviewed, with an emphasis upon recent advances in understanding. Taken together, this review outlines an expanding appreciation of the interactions between bone mass and the nutritional control of whole body energy balance by gut and adipose tissue.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Division, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales, 2010, Australia
| | | | | |
Collapse
|
44
|
Yan H, Zhang HW, Fu P, Liu BL, Jin WZ, Duan SB, Xue J, Liu K, Sun ZM, Zeng XW. Leptin's effect on accelerated fracture healing after traumatic brain injury. Neurol Res 2013; 35:537-44. [PMID: 23594570 DOI: 10.1179/1743132813y.0000000201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To investigate mechanisms behind the faster rehabilitation of limb fractures when associated with traumatic brain injury (TBI). METHODS New Zealand rabbits were divided into TBI group and sham-operation group for four studies as follows: (1) blood and cerebrospinal fluid (CSF) were drawn on days 1, 3, and 7 to demonstrate changes in serum leptin, growth hormone (GH), insulin-like growth factor 1 (IGF-1), and CSF leptin; (2) bone defection was created by drilling in the tibial bone and either leptin or normal saline was injected into rabbit's cerebellomedullary cistern. X-ray was taken at 1 days, 2 weeks, and 5 weeks and evaluated by criteria to determine rate of bone healing; (3) FITC-labeled rabbit leptin was injected into TBI and sham-operation groups, and frozen sections of rabbit brain were observed to identify differences in central nervous system (CNS) leptin by fluorescence; (4) polymerase chain reaction (PCR) was used to evaluate the expression of leptin production by brain tissue. RESULTS Serum and CSF leptin, GH, and IGF-1 concentrations were found to be higher in the TBI group than the sham-operation group at days 1, 3, and 7 (P<0·05). CSF leptin of the TBI group was positively correlated with serum leptin on day 1 (P<0·05), and positively correlated with GH and IGF-1 on days 3 and 7 (P<0·05). X-ray criteria demonstrated that leptin administration caused significantly faster healing calluses at 3 and 5 weeks as compared to control animals (P<0·05). FITC-labeled leptin study demonstrated that TBI animals had stronger expression of leptin in the brain than sham-operated animals. However, PCR of brain tissue leptin showed no significant differences between TBI and sham-operated animals in the expression of leptin. CONCLUSIONS Our study suggests that increased CSF leptin, likely from blood-brain barrier breakdown, combined with elevated serum GH and IGF-1 after TBI, leads to accelerated fracture healing.
Collapse
Affiliation(s)
- Hua Yan
- Department of Neurosurgery, Tianjin Huanhu Hospital, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Burwell RG, Dangerfield PH, Moulton A, Grivas TB, Cheng JC. Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. SCOLIOSIS 2013; 8:4. [PMID: 23448588 PMCID: PMC3608974 DOI: 10.1186/1748-7161-8-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 01/01/2023]
Abstract
This paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility. Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression. Twin studies and observations of family aggregation have revealed significant genetic contributions to idiopathic scoliosis, that place AIS among other common disease or complex traits with a high heritability interpreted by the genetic variant hypothesis of disease. We summarize etiopathogenetic knowledge of AIS as theories of pathogenesis including recent multiple concepts, and blood tests for AIS based on predictive biomarkers and genetic variants that signify disease risk. There is increasing evidence for the possibility of an underlying neurological disorder for AIS, research which holds promise. Like brain research, most AIS workers focus on their own corner and there is a need for greater integration of research effort. Epigenetics, a relatively recent field, evaluates factors concerned with gene expression in relation to environment, disease, normal development and aging, with a complex regulation across the genome during the first decade of life. Research on the role of environmental factors, epigenetics and chronic non-communicable diseases (NCDs) including adiposity, after a slow start, has exploded in the last decade. Not so for AIS research and the environment where, except for monozygotic twin studies, there are only sporadic reports to suggest that environmental factors are at work in etiology. Here, we examine epigenetic concepts as they may relate to human development, normal life history phases and AIS pathogenesis. Although AIS is not regarded as an NCD, like them, it is associated with whole organism metabolic phenomena, including lower body mass index, lower circulating leptin levels and other systemic disorders. Some epigenetic research applied to Silver-Russell syndrome and adiposity is examined, from which suggestions are made for consideration of AIS epigenetic research, cross-sectional and longitudinal. The word scoliogeny is suggested to include etiology, pathogenesis and pathomechanism.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Derby Road, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT. Peripheral leptin regulates bone formation. J Bone Miner Res 2013; 28:22-34. [PMID: 22887758 PMCID: PMC3527690 DOI: 10.1002/jbmr.1734] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/30/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
Substantial evidence does not support the prevailing view that leptin, acting through a hypothalamic relay, decreases bone accrual by inhibiting bone formation. To clarify the mechanisms underlying regulation of bone architecture by leptin, we evaluated bone growth and turnover in wild-type (WT) mice, leptin receptor-deficient db/db mice, leptin-deficient ob/ob mice, and ob/ob mice treated with leptin. We also performed hypothalamic leptin gene therapy to determine the effect of elevated hypothalamic leptin levels on osteoblasts. Finally, to determine the effects of loss of peripheral leptin signaling on bone formation and energy metabolism, we used bone marrow (BM) from WT or db/db donor mice to reconstitute the hematopoietic and mesenchymal stem cell compartments in lethally irradiated WT recipient mice. Decreases in bone growth, osteoblast-lined bone perimeter and bone formation rate were observed in ob/ob mice and greatly increased in ob/ob mice following subcutaneous administration of leptin. Similarly, hypothalamic leptin gene therapy increased osteoblast-lined bone perimeter in ob/ob mice. In spite of normal osteoclast-lined bone perimeter, db/db mice exhibited a mild but generalized osteopetrotic-like (calcified cartilage encased by bone) skeletal phenotype and greatly reduced serum markers of bone turnover. Tracking studies and histology revealed quantitative replacement of BM cells following BM transplantation. WT mice engrafted with db/db BM did not differ in energy homeostasis from untreated WT mice or WT mice engrafted with WT BM. Bone formation in WT mice engrafted with WT BM did not differ from WT mice, whereas bone formation in WT mice engrafted with db/db cells did not differ from the low rates observed in untreated db/db mice. In summary, our results indicate that leptin, acting primarily through peripheral pathways, increases osteoblast number and activity.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Satya P. Kalra
- Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Carmen P. Wong
- Molecular and Cellular Nutrition Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Laurence B. Lindenmaier
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephane Boghossian
- Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
48
|
Pennington KA, Harper JL, Sigafoos AN, Beffa LM, Carleton SM, Phillips CL, Schulz LC. Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology 2012; 153:4556-67. [PMID: 22778222 PMCID: PMC3423615 DOI: 10.1210/en.2012-1119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metabolic disease is a significant global health and economic problem. In a phenomenon referred to as fetal programming, offspring of underweight or overweight mothers have an increased incidence of adulthood obesity and metabolic disease. Undernourished individuals have decreased levels of leptin, a regulator of energy balance, whereas obese people develop hyperleptinemia and leptin resistance. We hypothesize that alterations in circulating leptin during pregnancy contribute to programming events caused by maternal nutritional status. To test this hypothesis, pregnant mice were randomly placed in one of three treatment groups: ad libitum feed plus saline injection (control, n = 5), 50% food restriction plus saline injection (restricted, n = 4), or 50% food restriction plus 1 mg/kg · d leptin injection (restricted, leptin treated, n = 4). Mice were treated from 1.5 to 11.5 d after conception and then returned to ad libitum feeding until weaning. At 19 wk after weaning, offspring were placed on a 45% fat diet and then followed up until 26 wk after weaning, at which time they were killed, and samples were collected for further analysis. Our results demonstrate that males are more negatively impacted by high-fat diet than females, regardless of maternal treatment. We provide evidence that differential response to leptin may mediate the sexual dimorphism observed in fetal programming in which male offspring are more affected by maternal undernutrition and female offspring by maternal overnutrition. We show that female offspring born to food-restricted, leptin-supplemented mothers are obese and insulin resistant. This may mimic fetal programming events seen in offspring of overweight women.
Collapse
Affiliation(s)
- Kathleen A Pennington
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, 1 Hospital Drive, Columbia, Missouri 65212, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
50
|
Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, Sharma S, Su P, Huang D. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to Leptin in Adolescent Idiopathic Scoliosis. PLoS One 2012; 7:e36648. [PMID: 22615788 PMCID: PMC3352937 DOI: 10.1371/journal.pone.0036648] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/11/2012] [Indexed: 01/16/2023] Open
Abstract
Leptin has been suggested to play a role in the etiology of Adolescent Idiopathic Scoliosis (AIS), however, the leptin levels in AIS girls are still a discrepancy, and no in vitro study of leptin in AIS is reported. We took a series of case-control studies, trying to understand whether Leptin gene polymorphisms are involved in the etiology of the AIS or the change in leptin level is a secondary event, to assess the level of leptin receptor, and to evaluate the differences of response to leptin between AIS cases and controls. We screened all exons of Leptin gene in 45 cases and 45 controls and selected six tag SNPs to cover all the observed variations. Association analysis in 446 AIS patients and 550 healthy controls showed no association between the polymorphisms of Leptin gene and susceptibility/severity to AIS. Moreover, adipogenesis assay of bone mesenchymal stem cells (MSCs) suggested that the adipogenic ability of MSCs from AIS girls was lower than controls. After adjusting the differentiation rate, expressions of leptin and leptin receptor were similar between two groups. Meanwhile, osteogenesis assay of MSC showed the leptin level was similar after adjusting the differentiation rate, but the leptin receptor level was decreased in induced AIS osteoblasts. Immunocytochemistry and western blot analysis showed less leptin receptors expressed in AIS group. Furthermore, factorial designed studies with adipogenesis and osteogenesis revealed that the MSCs from patients have no response to leptin treatment. Our results suggested that Leptin gene variations are not associated with AIS and low serum leptin probably is a secondary outcome which may be related to the low capability of adipogenesis in AIS. The decreased leptin receptor levels may lead to the hyposensitivity to leptin. These findings implied that abnormal peripheral leptin signaling plays an important role in the pathological mechanism of AIS.
Collapse
Affiliation(s)
- Guoyan Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Swarkar Sharma
- Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, Texas, United States of America
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (DH); (PS)
| |
Collapse
|