1
|
Abdelrahman RS, Abdelmageed ME. Hepatoprotective effects of the xanthine oxidase inhibitor Febuxostat against thioacetamide-induced liver injury in rats: The role of the Nrf2/ HO-1 and TLR4/ NF-κB pathways. Food Chem Toxicol 2024; 194:115087. [PMID: 39489394 DOI: 10.1016/j.fct.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Experimental models of liver injury have been established utilizing thioacetamide (TAA), a classic liver toxic chemical that causes organ damage via oxidative stress and inflammatory induction. This study examined the impact of Febuxostat (a xanthine oxidase inhibitor; Febu, 10-15 mg/kg, orally) against TAA (500 mg/kg, i.p.) -induced liver injury in rats. Febu significantly attenuated TAA-induced alterations in liver function parameters, in addition to promoting hepatic antioxidant effects through a significant elevation of Heme-oxygenase-1(HO-1), nuclear factor erythroid 2-related factor2 (Nrf2), reduced glutathione (GSH) and superoxide dismutase (SOD) levels and reduction in hepatic malondialdehyde (MDA) content. Moreover, Febu improved the hepatic anti-inflammatory status by increasing the anti-inflammatory cytokine Interleukin (IL-10) level and reducing the levels of the pro-inflammatory cytokines (Nuclear factor kappa B (NF-κB), IL-1β, high-mobility group box1 (HMGB1), receptor for advanced glycation end products (RAGE), and toll-like receptor4 (TLR4) levels, in addition to suppressing the increased protein and mRNA expression levels of tumor necrosis factor alpha (TNF-α) and IL-6, hepatic expression of TNF-α and activated mitogen-activated protein kinases (p-JNK/p-p38 MAPK). Histopathologically, Febu markedly normalized TAA-induced alteration in liver sections. In conclusion, Febu, in a dose-dependent fashion, refines TAA-induced hepatotoxicity by enhancing antioxidant capabilities and decreasing inflammatory signals.
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
2
|
El-Kashef DH, Abdel-Rahman N, Sharawy MH. Apocynin alleviates thioacetamide-induced acute liver injury: Role of NOX1/NOX4/NF-κB/NLRP3 pathways. Cytokine 2024; 183:156747. [PMID: 39236429 DOI: 10.1016/j.cyto.2024.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The liver has a distinctive capacity to regenerate, yet severe acute injury can be life-threatening if not treated appropriately. Inflammation and oxidative stress are central processes implicated in the pathophysiology of acute livery injury. NOX isoforms are important enzymes for ROS generation, NF-κB and NLRP3 activation, its inhibition could be vital in alleviating acute liver injury (ALI). Here in our study, we used apocynin, a natural occurring potent NOX inhibitor, to exploreits potential protective effect against thioacetamide (TAA)-induced ALI through modulating crucial oxidative and inflammatory pathways. Rats were injected once with TAA (500 mg/kg/i.p) and treated with apocynin (10 mg/kg/i.p) twice before TAA challenge. Sera and hepatic tissues were collected for biochemical, mRNA expression, western blot analysis and histopathological assessments. Pretreatment with apocynin improved liver dysfunction evidenced by decreased levels of aminotransferases, ALP, GGT and bilirubin. Apocynin reduced mRNA expression of NOX1 and NOX4 which in turn alleviated oxidative stress, as shown by reduction in MDA and NOx levels, and elevation in GSH levels andcatalase and SOD activities. Moreover, apocynin significantly reduced MPO gene expression. We also demonstrate that apocynin ameliorated inflammation through activating IκBα and suppressing IKKα, IKKβ, NF-κBp65 and p-NF-κBp65, IL-6 andTNF-α. Additionally, apocynin potentiated the gene expression of anti-inflammatory IL-10 and reduced levels of hepatic NLRP3, Caspase-1 and IL-1β. These results suggest that apocynin protects against ALI in association with the inhibition of NOX1 and NOX4 and regulating oxidative and inflammatory pathways.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Abdelmageed ME, Abdelrahman RS. Canagliflozin attenuates thioacetamide-induced liver injury through modulation of HMGB1/RAGE/TLR4 signaling pathways. Life Sci 2023; 322:121654. [PMID: 37023955 DOI: 10.1016/j.lfs.2023.121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Thioacetamide (TAA), a classic liver toxic compound, is used to establish experimental models of liver injury via induction of inflammation and oxidative stress. The current study was employed to explore the effects of canagliflozin (CANA), a sodium glucose cotransporter 2 (SGLT-2) inhibitor and antidiabetic agent, on TAA-induced acute liver injury. METHODS A rat model of acute hepatic injury was established using single intraperitoneal injection of TAA (500 mg/kg) and rats received CANA (10 and 30 mg/kg, orally) once daily for 10 days prior to TAA challenge. Liver function, oxidative stress, and inflammatory parameters were measured in serum and hepatic tissues of rats. RESULTS Elevated levels of liver enzymes, hepatic malondialdehyde (MDA), and serum lactate dehydrogenase (LDH) were significantly attenuated by CANA. CANA also increased hepatic superoxide dismutase (SOD) and glutathione (GSH). Hepatic levels of high-mobility group box 1 (HMGB1), toll like receptor4 (TLR4), receptor for advanced glycation end products (RAGE), and pro-inflammatory cytokines (IL-6, and IL-1β) were normalized with CANA. Additionally, Hepatic expression of p-JNK/p-p38 MAPK was significantly attenuated by CANA compared to TAA-treated rats. CANA also decreased hepatic immunoexpression of NF-κB and TNF-α and attenuated hepatic histopathological alterations via reduction of inflammation and necrosis scores and collagen deposition. Moreover, mRNA expression levels of TNF-α and IL-6 were reduced upon CANA treatment. CONCLUSION CANA attenuates TAA-prompted acute liver damage, via suppressing HMGB1/RAGE/TLR4 signaling, regulation of oxidative stress and inflammation pathways.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah 30001, Saudi Arabia
| |
Collapse
|
4
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
5
|
Zeweil MM, Sadek KM, Elsadek MF, Mahmoud SF, Ahmed BM, Khafaga AF. Sidr honey abrogates the oxidative stress and downregulates the hyaluronic acid concentration and gene expression of TGF-β1 and COL1a1 in rat model of thioacetamide-induced hepatic fibrosis. Anim Sci J 2020; 91:e13434. [PMID: 32696560 DOI: 10.1111/asj.13434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023]
Abstract
Liver fibrosis is a major health concern, which might progress to cirrhosis. To date, treatment trials rely mainly on the removal of the causative factor. The current study investigated the potential ameliorative role of sidr honey on thioacetamide (TAA)-induced liver fibrosis in rats. Forty-eight Wistar albino rats were equally allocated into four groups: control; sidr honey (5g/kg body weight (BW), orally); TAA (200 mg/kg BW, IP three times weekly/15 weeks); and sidr honey plus TAA at the same dose and administration rout. Rats co-treated with sidr honey plus TAA revealed significant reduction in hepatic malondialdehyde, hyaluronic acid (HA), alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transferase, direct bilirubin, and hepatic mRNA expression of transforming growth factor (TGF)-β1 and collagen type I alpha 1 chain (COL1a1) compared to TAA-exposed rats. In addition, the hepatoprotective potential of sidr honey was indicated via improvement of histopathologic picture of hepatocytes and upregulation of total antioxidant capacity, reduced glutathione, catalase, glutathione peroxidase, superoxide dismutase, total protein, and albumin compared to TAA-treated rats. In conclusion, daily administration of sidr honey (5 g/kg BW) is a promising natural antioxidant and fibrosuppressive agent that could ameliorate liver fibrosis via downregulation of fibrosis genes including TGF-β1 and COL1a1 and HA and via enhancement of antioxidant system.
Collapse
Affiliation(s)
- Mohamed M Zeweil
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed F Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Nutrition and Food Science, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Sahar F Mahmoud
- Department of Histology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Badreldin M Ahmed
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| |
Collapse
|
6
|
Afifi NA, Ramadan A, Erian EY, Sedik AA, Amin MM, Hassan A, Saleh DO. Synergistic effect of aminoguanidine and l-carnosine against thioacetamide-induced hepatic encephalopathy in rats: behavioral, biochemical, and ultrastructural evidence. Can J Physiol Pharmacol 2020; 99:332-347. [PMID: 32721224 DOI: 10.1139/cjpp-2020-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. Hyperammonemia, inflammatory injury, and oxidative stress are the main predisposing factors for the direct and indirect changes in cerebral metabolism causing encephalopathy. The aim of this study was to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg, p.o.) and l-carnosine (CAR; 200 mg/kg, p.o.) on hepatic encephalopathy that was induced by thioacetamide (TAA; 100 mg/kg, i.p.) administered three times weekly for six weeks. Behavioral changes, biochemical parameters, histopathological analysis, and immunohistochemical and ultrastructural studies were conducted 24 h after the last treatment. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by reduced locomotor activity and decline in motor skill performance, as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes and serum and brain levels of ammonia. In addition, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines, and cleaved caspase-3 expression. Furthermore, they succeeded in activating nuclear erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase-1 (HO-1) activity and ameliorating markers of hepatic encephalopathy, including hepatic necrosis and brain astrocyte swelling. This study shows that combining AG with CAR exerted a new intervention for hepatic and brain damage in hepatic encephalopathy due to their complementary antioxidant, anti-inflammatory effects and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.
Collapse
Affiliation(s)
- Nehal A Afifi
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - A Ramadan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Emad Y Erian
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohamed M Amin
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Sayan M, Karabulut D, Özdamar S. Assessment of the protective and therapeutic effect of melatonin against thioacetamide-induced acute liver damage. J Biochem Mol Toxicol 2020; 34:e22450. [PMID: 31967703 DOI: 10.1002/jbt.22450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Acute or chronic damage to the liver may occur through alcohol, drugs, viruses, genetic disorders, and toxicity. In this study, we planned to investigate the protective and therapeutic effects of melatonin (Mel) by causing damage to the liver with thioacetamide (TAA). Thirty-five rats were used. Group I: control group (seven pieces), group II: Mel group (seven pieces) the single dose on the first day of the experiment was 10 mg/kg, group III: TAA (seven pieces) 300 mg/kg with 24-hour intervals, two doses, group IV: Mel + TAA group (seven pieces) 10 mg/kg single dose Mel was applied 24 hours before TAA application, group V: TAA + Mel group (seven pieces) single dose (24th hour) of 10 mg/kg Mel was administered after TAA (300 mg/kg) two doses. The liver histology was evaluated. Apoptosis, autophagy, and necrosis markers in tissue were determined by immunohistochemistry. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels in blood serum samples and transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) levels were determined in liver tissue. TAA affected histologically the classical lobule structure both in cell cords and sinusoids. Caspase-3, RIP3, and LC3 levels were increased in group III compared with the control group. TAA did not cause a statistically significant change in TNF-α level but decreased the TGF-β level significantly. AST and ALT levels were statistically significant in group II and V compared with group I, the ALP level was significant in group IV compared with group II. The results of this study showed that TAA caused significant damage to tissues and increased cell death, Mel was found to have more therapeutic than the protective effect on tissues.
Collapse
Affiliation(s)
- Meryem Sayan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Kayseri, Turkey
| |
Collapse
|
8
|
Abstract
Cyanobacteria are the most primitive, oxygen-evolving prokaryotic organism. Several, conspicuous investigations have been done around lipids from cyanobacteria. However, to date and to the best of our knowledge, no study was conducted to formulate and evaluate liposomal vesicles prepared from cyanobacterial lipid. In the present study, cyanosomes were formulated using natural lipids extracted from the cyanobacterium Synechococcus elongatus PCC7942 which were further loaded with thymoquinone. The results showed that the prepared cyanosomes were homogenous with an overall negative charge of particle size ranging between 200 to 210 nm and entrapment efficacy was 70.9 ± 1.86%. The obtained release profiles demonstrated sustained drug release pattern. The study of encapsulated thymoquinone on CCl4 induced liver insult in balb/c mice revealed the better efficacy of encapsulated thymoquinone as compared to thymoquinone alone indicating cyanosome as a promising candidate for drug carrier. However, more studies are required to establish the safety profile, pharmacokinetic pattern and biodistribution parameters of cyanosome for its clinical intricacies in future applications.
Collapse
|
9
|
Eftekhari A, Heidari R, Ahmadian E, Eghbal MA. Cytoprotective Properties of Carnosine against Isoniazid-Induced Toxicity in Primary Cultured Rat Hepatocytes. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Drug-induced liver injury is a critical clinical complication. Hence, finding new and safe protective agents with potential clinical application is of value. Isoniazid (INH) is an antituberculosis agent widely used against Mycobacterium tuberculosis infection in human. On the other hand, hepatotoxicity is a clinical complication associated with isoniazid therapy. Oxidative stress and its associated events are major mechanisms identified for INH-induced liver injury. Carnosine is an endogenously found peptide widely investigated for its hepatoprotective effects. On the other hand, robust antioxidant and cytoprotective effects have been attributed to this peptide. Methods: The current study designed to evaluate the potential cytoprotective properties of carnosine against INH-induced cytotoxicity in drug-exposed primary cultured rat hepatocytes. Primary cultured rat hepatocytes were incubated with INH (1.2 mM). Results: INH treatment caused significant increase in cell death and lactate dehydrogenase (LDH) release. On the other hand, it was found that markers of oxidative stress including reactive oxygen species were significantly increased in INH-treated cells. Cellular glutathione reservoirs were also depleted in INH-treated group. Carnosine treatment (50 and 100 µM) significantly diminished INH-induced oxidative stress and cytotoxicity. Conclusion: These data mention carnosine as a potential protective agent with therapeutic capability against INH hepatotoxicity.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, Azarpira N, Zarei A, Zarei M, Asadi B, Abasvali M, Yeganeh Y, Jafari F, Saeedi A, Najibi A, Mardani E. Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol 2017; 41:424-434. [PMID: 28283328 DOI: 10.1016/j.clinre.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 02/04/2023]
Abstract
AIM Chronic liver injury and cirrhosis leads to liver failure. Hyperammonemia is a deleterious consequence of liver failure. On the other hand, oxidative stress seems to play a pivotal role in the pathogenesis of liver fibrosis as well as in the cytotoxic mechanism of ammonia. There is no promising therapeutic agent against ammonia-induced complications. The present study was conducted to evaluate the role of carnosine (CA) administration on liver pathological changes, elevated plasma ammonia, and its consequent events in cirrhotic rats. METHODS Bile duct ligated (BDL) rats were used as a model of cirrhosis. CA (250, 500, and 1000mg/kg, daily, i.p) was administered for 28 consecutive days to BDL animals. At the end of treatments, markers of oxidative stress and liver fibrosis was determined in liver and serum biomarkers of liver injury and plasma ammonia was assessed. Moreover, changes in animals' locomotor activity were monitored. RESULTS Severe bridging fibrosis, inflammation, and necrosis in liver, along with elevated serum biomarkers of liver injury were evident in BDL animals. Furthermore, plasma ammonia was drastically elevated in cirrhotic rats and animals' locomotor activity was suppressed. It was found that CA (250, 500, and 1000mg/kg, daily, i.p) significantly alleviated liver injury and its consequent events in cirrhotic rats. The data suggested that CA is not only a useful and safe agent to preserve liver function, but also prevented hyperammonemia and brain damage as a deleterious consequence of cirrhosis and liver failure.
Collapse
Affiliation(s)
- Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran.
| | - Zahra Latifpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammed Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 1583, 71345 Roknabad, Karafarin Street, Shiraz, Fars, Iran
| | - Narges Abdoli
- Iran Food and Drug Administration (IFDA), Ministry of Health, Tehran, Iran
| | - Somayeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnam Asadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojgan Abasvali
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Yeganeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Jafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elnaz Mardani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Chen PJ, Tseng JK, Lin YL, Wu YHS, Hsiao YT, Chen JW, Chen YC. Protective Effects of Functional Chicken Liver Hydrolysates against Liver Fibrogenesis: Antioxidation, Anti-inflammation, and Antifibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4961-4969. [PMID: 28561587 DOI: 10.1021/acs.jafc.7b01403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Via an assay using an Amino Acid Analyzer, pepsin-digested chicken liver hydrolysates (CLHs) contain taurine (365.57 ± 39.04 mg/100 g), carnosine (14.03 ± 1.98 mg/100 g), and anserine (151.58 ± 27.82 mg/100 g). This study aimed to evaluate whether CLHs could alleviate thioacetamide (TAA)-induced fibrosis. A dose of 100 mg TAA/kg BW significantly increased serum liver damage indices and liver cytokine contents. Cell infiltration and monocytes/macrophages in livers of TAA-treated rats were illustrated by the H&E staining and immunohistochemical analysis of cluster of differentiation 68 (CD68, ED1), respectively. A significantly increased hepatic collagen accumulation was also observed and quantified under TAA treatment. A significant up-regulation of transforming growth factor-beta (TGF-β) and SMAD family member 4 (SMAD4) caused by TAA treatment further enhanced alpha smooth muscle actin (αSMA) gene and protein expressions. The liver antioxidant effects under TAA treatment were significantly amended by 200 and 600 mg CLHs/kg BW. Hence, the ameliorative effects of CLHs on liver fibrogenesis could be attributed by antioxidation and anti-inflmmation.
Collapse
Affiliation(s)
- Po-Ju Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University , Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University , Taichung 404, Taiwan
| | - Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Tse Hsiao
- School of Veterinary Medicine, National Taiwan University , Taipei 106, Taiwan
| | - Jr-Wei Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
- Poultry Industry Section, Department of Animal Industry, Council of Agriculture, Executive Yuan , Taipei 100, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
12
|
Abdel-Hamid NM, Wahid A, Nazmy MH, Eisa MAM. Synergistic Effects of Jerusalem Artichoke in Combination with Pegylated Interferon Alfa-2a and Ribavirin Against Hepatic Fibrosis in Rats. Asian Pac J Cancer Prev 2017; 17:1979-85. [PMID: 27221884 DOI: 10.7314/apjcp.2016.17.4.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complementary and alternative medicine has been highly appreciated as a supportive regimen for classical treatment strategies. Here we offer a nutrition-based adjuvant therapy for liver fibrosis, a major risk factor for cirrhosis and hepatocellular carcinoma. AIM OF THE STUDY To evaluate the possible hepatoprotective effects of Jerusalem artichoke tubers (JAT) in combination with interferon and ribavirin. MATERIALS AND METHODS Twelve groups of rats were administered JAT, interferon and ribavirin either separately or in combination from day one of CCL4 administration until the end of the study. Animals were killed after 8 weeks of CCL4- induced hepatotoxicity. RESULTS Hepatocytes from rats treated with triple combination of interferon, ribavirin, and JAT showed more less normal architecture compared to CCL4- treated rats. We also detected significantly higher hepatic protein expression levels of p53, BAX and transforming growth factor-β (TGF-β) in the CCl4- intoxicated group compared to normal controls, as evidenced by immunohistochemical staining and western blotting analyses. Addition of JAT as a supportive regimen improved response to ribavirin and interferon and effectively participated in retaining normal histopathological and biochemical criteria and significantly lowered protein expression of p53, BAX, and TGF-β. CONCLUSIONS We suggest that addition of JAT as a supportive regimen to interferon and ribavirin effectively potentiates their anti-fibrotic effects.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Biochemistry Department, Faculty of Pharmacy, Kafr-El-Sheikh University, Minya, Egypt E-mail :
| | | | | | | |
Collapse
|
13
|
Cong J, Zhang L, Li J, Wang S, Gao F, Zhou G. Effects of dietary supplementation with carnosine on meat quality and antioxidant capacity in broiler chickens. Br Poult Sci 2016; 58:69-75. [PMID: 27845563 DOI: 10.1080/00071668.2016.1237767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. This study aimed to investigate the effects of carnosine supplementation on meat quality, antioxidant capacity and lipid peroxidation status in broiler chickens. 2. A total of 256 1-d-old male Arbor Acres broilers were randomly assigned to 4 treatments consisting of 8 replicates of 8 chickens each. The birds were supplied with 4 different diets: a basal diet or a basal diet supplemented with 100, 200 or 400 mg/kg carnosine, respectively. The whole experiment lasted 42 d. 3. The results showed that dietary supplementation with carnosine linearly increased the values of pH45 min and redness and reduced drip loss of breast meat. Dietary carnosine increased the activity of antioxidant enzymes in liver, serum and breast meat and decreased the contents of lipid peroxides at 21 and 42 d of age. 4. These findings indicated that dietary supplementation with carnosine was beneficial to enhance meat quality, antioxidant capacity and decrease lipid peroxidation status of breast meat.
Collapse
Affiliation(s)
- J Cong
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - L Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - J Li
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - S Wang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - F Gao
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| | - G Zhou
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , People's Republic of China.,b Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province , Nanjing Agricultural University , Nanjing , People's Republic of China.,c Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|
14
|
Sadek K, Beltagy D, Saleh E, Abouelkhair R. Camel milk and bee honey regulate profibrotic cytokine gene transcripts in liver cirrhosis induced by carbon tetrachloride. Can J Physiol Pharmacol 2016; 94:1141-1150. [DOI: 10.1139/cjpp-2015-0596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The lack of studies regarding the mechanism of the protective effects of camel milk and bee honey against hepatotoxic compounds led us to perform this study. Thirty-six male rats were divided into two main groups. The first group (n = 9) comprised control non-cirrhotic rats. The rats of the second group (n = 27) were administered carbon tetrachloride (CCl4) by intraperitoneal injection to induce liver cirrhosis. The cirrhotic rats were then divided into three equal subgroups, each comprising nine animals, as follows: (i) cirrhotic rats, (ii) cirrhotic rats treated with camel milk, and (iii) cirrhotic rats treated with camel milk and bee honey. The present findings revealed that CCl4elevated the activities of liver enzymes, blood glucose levels, non-esterified fatty acids (NEFA) in the serum and glycogen content in the liver. On the other hand, CCl4significantly decreased phosphorylase activity in the liver tissue and significantly increased carbohydrate intolerance and insulin resistance index (HOMA-IR). Moreover, CCl4induced a significant increase in oxidative stress, along with increased expression of the profibrotic cytokine genes TNF-α and TGF-β. However, camel milk either alone or in combination with bee honey ameliorated these toxic actions. The antioxidant properties of these protective agents and their effects of downregulating certain procirrhotic cytokine gene transcripts underlie this protection.
Collapse
Affiliation(s)
- Kadry Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhûr, Al Buhayrah, Egypt
| | - Doha Beltagy
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhûr, Al Buhayrah, Egypt
| | - Ebeed Saleh
- Department of Milk and Meat Hygiene, Faculty of Veterinary Medicine, Damanhour University, Damanhûr, Al Buhayrah, Egypt
| | - Reham Abouelkhair
- Department of Nutrition, Faculty of Veterinary Medicine, University of El Sadat City, Sadat City, Al Buhayrah, Egypt
| |
Collapse
|
15
|
Hasanein P, Kazemian-Mahtaj A, Khodadadi I. Bioactive peptide carnosin protects against lead acetate-induced hepatotoxicity by abrogation of oxidative stress in rats. PHARMACEUTICAL BIOLOGY 2016; 54:1458-1464. [PMID: 26808926 DOI: 10.3109/13880209.2015.1104700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Oxidative stress is a common mechanism of liver injury. Carnosine is a dipeptide having strong antioxidant effects. Objectives We investigated the effects of carnosine on lead-induced hepatotoxicity and oxidative stress in rats. Materials and methods Animals received an aqueous solution of lead acetate (500 mg Pb/L in the drinking water) and/or daily oral gavage of carnosine (10 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical (commercial kits), molecular (standard chemical methods) and histological (microscopic) evaluations. Results Lead-induced oxidative stress in liver tissue was indicated by a significant increase in the level of malondialdehyde (MDA) (8.25 ± 0.15 nmol/mg) as well as decrease in the level of total antioxidant capacity (TAC) (1.72 ± 0.25 μmol/g) and total thiol (SH) groups) 1.9 ± 0.22 μmol/g). Carnosine treatment decreased MDA (4 ± 0.08 nmol/mg), whereas it increased the contents of total thiol (3.25 ± 0.04 μmol/g) and TAC (3.44 ± 0.32 μmol/g) in the lead group. Carnosine also prevented the decreased body weight (p < 0.001), albumin (p < 0.05) and total protein levels (p < 0.001) and increased liver weight (p < 0.05) and activates of hepatic enzymes (p's < 0.001) (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase) in the lead group. Furthermore, histopathological study showed that carnosine attenuates liver damage by decreasing necrosis and infiltration of inflammatory cells. Conclusion Carnosine prevented lead-induced hepatotoxicity, indicated by molecular, biochemical and histopathological analyses through inhibiting lipid peroxidation and enhancing antioxidant defence systems. Therefore, carnosine makes a good candidate to protect against the deleterious effect of chronic lead intoxication.
Collapse
Affiliation(s)
- Parisa Hasanein
- a Department of Biology, School of Basic Sciences , Bu-Ali Sina University , Hamedan , Iran
| | - Azam Kazemian-Mahtaj
- a Department of Biology, School of Basic Sciences , Bu-Ali Sina University , Hamedan , Iran
| | - Iraj Khodadadi
- b Department of Biochemistry, School of Medicine , Hamedan University of Medical Sciences , Hamedan , Iran
| |
Collapse
|
16
|
Kalaz EB, Aydın AF, Doğan-Ekici I, Çoban J, Doğru-Abbasoğlu S, Uysal M. Protective effects of carnosine alone and together with alpha-tocopherol on lipopolysaccharide (LPS) plus ethanol-induced liver injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:23-29. [PMID: 26773358 DOI: 10.1016/j.etap.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/22/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effect of carnosine (CAR) alone and together with vitamin E (Vit E) on alcoholic steatohepatitis (ASH) in rats. ASH was induced by ethanol (3 times; 5 g/kg; 12 h intervals, via gavage), followed by a single dose of lipopolysaccharide (LPS; 10 mg/kg; i.p.). CAR (250 mg/kg; i.p.) and Vit E (200 mg D-α-tocopherol/kg; via gavage) were administered 30 min before and 90 min after the LPS injection. CAR treatment lowered high serum transaminase activities together with hepatic histopathologic improvements in rats with ASH. Reactive oxygen species formation, malondialdehyde levels, myeloperoxidase activities and transforming growth factor β1 (TGF-β1) and collagen 1α1 (COL1A1) expressions were observed to decrease. These improvements were more remarkable in CAR plus Vit E-treated rats. Our results indicate that CAR may be effective in suppressing proinflammatory, prooxidant, and profibrotic factors in the liver of rats with ASH.
Collapse
Affiliation(s)
- Esra Betül Kalaz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - A Fatih Aydın
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Jale Çoban
- Department of Biochemistry, Yeditepe University Medical Faculty, Kayışdağı, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey.
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| |
Collapse
|
17
|
Milewski K, Hilgier W, Fręśko I, Polowy R, Podsiadłowska A, Zołocińska E, Grymanowska AW, Filipkowski RK, Albrecht J, Zielińska M. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure. Neurochem Res 2016; 41:376-84. [PMID: 26801175 PMCID: PMC4773466 DOI: 10.1007/s11064-015-1821-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022]
Abstract
Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of l-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-l-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague–Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Inez Fręśko
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Anna Podsiadłowska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Ewa Zołocińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Aneta W Grymanowska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland.
| |
Collapse
|
18
|
Kumral A, Giriş M, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Türkoğlu Ü, Uysal M. Beneficial effects of carnosine and carnosine plus vitamin E treatments on doxorubicin-induced oxidative stress and cardiac, hepatic, and renal toxicity in rats. Hum Exp Toxicol 2015. [PMID: 26224044 DOI: 10.1177/0960327115597468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidative stress plays an important role in doxorubicin (DOX)-induced toxicity. Carnosine (CAR) is a dipeptide with antioxidant properties. The aim of this study was to evaluate the decreasing or preventive effect of CAR alone or combination with vitamin E (CAR + Vit E) on DOX-induced toxicity in heart, liver, and brain of rats. METHODS Rats were treated with CAR (250 mg kg(-1) day(-1); intraperitoneally (i.p.)) or CAR + Vit E (equals 200 mg kg(-1) α-tocopherol; once every 3 days; intramuscularly) for 12 consecutive days. On the 8th day of treatment, rats were injected with a single dose of DOX (30 mg kg(-1), i.p.). Serum cardiac troponin I (cTnI), urea, and creatinine levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities; and oxidative stress parameters in tissues were measured. We also determined thiobarbituric acid reactive substances, diene conjugate, protein carbonyl (PC), and glutathione levels and antioxidant enzyme activities. RESULTS DOX resulted in increased serum cTnI, ALT, AST, urea, and creatinine levels and increased lipid peroxide and PC levels in tissues. CAR or CAR + Vit E treatments led to decreases in serum cTnI levels and ALT and AST activities. These treatments reduced prooxidant status and ameloriated histopathologic findings in the examined tissues. CONCLUSION Our results may indicate that CAR alone, especially in combination with Vit E, protect against DOX-induced toxicity in heart, liver, and kidney tissues of rats. This was evidenced by improved cardiac, hepatic, and renal markers and restoration of the prooxidant state and amelioration of histopathologic changes.
Collapse
Affiliation(s)
- A Kumral
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M Giriş
- Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - M Soluk-Tekkeşin
- Oncology Institute, Department of Pathology, Istanbul University, Istanbul, Turkey
| | - V Olgaç
- Oncology Institute, Department of Pathology, Istanbul University, Istanbul, Turkey
| | - S Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ü Türkoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Başaran-Küçükgergin C, Bingül İ, Tekkeşin MS, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Effects of carnosine, taurine, and betaine pretreatments on diethylnitrosamine-induced oxidative stress and tissue injury in rat liver. Toxicol Ind Health 2014; 32:1405-1413. [DOI: 10.1177/0748233714563432] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several chemicals such as N-diethylnitrosamine (DEN) promote hepatocellular cancer in rodents and induce hepatocyte injury. DEN affects the initiation stage of carcinogenesis together with enhanced cell proliferation accompanied by hepatocellular necrosis. DEN-induced hepatocellular necrosis is reported to be related to enhanced generation of reactive oxygen species. Carnosine (CAR), taurine (TAU), and betaine (BET) are known to have powerful antioxidant properties. We aimed to investigate the effects of CAR, TAU, and BET pretreatments on DEN-induced oxidative stress and liver injury in male rats. Rats were given CAR (2 g L−1 in drinking water), TAU (2.5% in chow), and BET (2.5% in chow) for 6 weeks and DEN (200 mg kg−1 intraperitoneally) was given 2 days before the end of this period. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and γ-glutamyl transferase activities were determined and a histopathologic evaluation was performed on the liver tissue. Oxidative stress was detected in the liver by measuring malondialdehyde, diene conjugate, protein carbonyl and nitrotyrosine levels, glutathione and glutathione peroxidase levels, and superoxide dismutase and glutathione transferase activities. Pretreatments with CAR, TAU, and BET decreased liver prooxidant status without remarkable changes in antioxidant parameters in DEN-treated rats. Pretreatments with TAU and BET, but not CAR, were also found to be effective to reduce liver damage in DEN-treated rats. In conclusion, TAU, BET, and possibly CAR may have an ameliorating effect on DEN-induced hepatic injury by reducing oxidative stress in rats.
Collapse
Affiliation(s)
- C Başaran-Küçükgergin
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İ Bingül
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Soluk Tekkeşin
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - V Olgaç
- Department of Pathology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - S Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Uysal
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
20
|
Aydın AF, Çoban J, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M, Koçak-Toker N. Carnosine and vitamin E - a promising pair in the combat against testicular oxidative stress in aged rats. Andrologia 2014; 47:1131-8. [DOI: 10.1111/and.12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 02/01/2023] Open
Affiliation(s)
- A. F. Aydın
- Department of Biochemistry; İstanbul Medical Faculty; Istanbul University; Çapa İstanbul Turkey
| | - J. Çoban
- Department of Biochemistry; Yeditepe University Medical Faculty; Kayışdağı İstanbul Turkey
| | - I. Doğan-Ekici
- Department of Medical Pathology; Yeditepe University Medical Faculty; Kayışdağı İstanbul Turkey
| | - S. Doğru-Abbasoğlu
- Department of Biochemistry; İstanbul Medical Faculty; Istanbul University; Çapa İstanbul Turkey
| | - M. Uysal
- Department of Biochemistry; İstanbul Medical Faculty; Istanbul University; Çapa İstanbul Turkey
| | - N. Koçak-Toker
- Department of Biochemistry; İstanbul Medical Faculty; Istanbul University; Çapa İstanbul Turkey
| |
Collapse
|
21
|
Al-Harbi NO, Imam F, Nadeem A, Al-Harbi MM, Iqbal M, Ahmad SF. Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int Immunopharmacol 2014; 21:383-8. [DOI: 10.1016/j.intimp.2014.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/08/2014] [Accepted: 05/13/2014] [Indexed: 02/05/2023]
|
22
|
Evran B, Karpuzoğlu H, Develi S, Kalaz EB, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Effects of carnosine on prooxidant–antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacol Rep 2014; 66:81-6. [DOI: 10.1016/j.pharep.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 10/25/2022]
|
23
|
Effect of carnosine alone or combined with α-tocopherol on hepatic steatosis and oxidative stress in fructose-induced insulin-resistant rats. J Physiol Biochem 2014; 70:385-95. [DOI: 10.1007/s13105-014-0314-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
|
24
|
El-Bahr S. Camel Milk Regulates Gene Expression and Activities of Hepatic Antioxidant Enzymes in Rats Intoxicated with Carbon Tetrachloride. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajb.2014.30.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Haeri SA, Rajabi H, Fazelipour S, Hosseinimehr SJ. Carnosine mitigates apoptosis and protects testicular seminiferous tubules from gamma-radiation-induced injury in mice. Andrologia 2013; 46:1041-6. [DOI: 10.1111/and.12193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- S. A. Haeri
- Faculty of Medical Sciences; Department of Medical Physics; Tarbiat Modares University; Tehran Iran
| | - H. Rajabi
- Faculty of Medical Sciences; Department of Medical Physics; Tarbiat Modares University; Tehran Iran
| | - S. Fazelipour
- Faculty of Medical Sciences; Department of Anatomy; Islamic Azad University; Tehran Iran
| | - S. J. Hosseinimehr
- Faculty of Pharmacy; Department of Radiopharmacy; Mazandaran University of Medical Sciences; Sari Iran
| |
Collapse
|
26
|
Carnosine and taurine treatments decreased oxidative stress and tissue damage induced by d-galactose in rat liver. J Physiol Biochem 2013; 70:15-25. [DOI: 10.1007/s13105-013-0275-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/02/2013] [Indexed: 01/11/2023]
|
27
|
Kalaz EB, Evran B, Develi-İş S, Vural P, Dogru-Abbasoglu S, Uysal M. Effect of carnosine on prooxidant-antioxidant balance in several tissues of rats exposed to chronic cold plus immobilization stress. J Pharmacol Sci 2013; 120:98-104. [PMID: 23079503 DOI: 10.1254/jphs.12107fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, we investigated the effect of L-carnosine (CAR) on prooxidant-antioxidant balance in several tissues of rats exposed to chronic stress. Both cold and immobilization stresses were applied to rats at the same time. In the stress group, rats were placed in restraint cages and kept in a cold room (+4°C) for 1 h for 21 days (5 days a week). Rats were injected with CAR (250 mg/kg, i.p.) at 30 min before stress application. Malondialdehyde, diene conjugate, protein carbonyl and nitrotyrosine levels, nonenzymatic (glutathione, vitamin E, and vitamin C), and enzymatic (catalase, superoxide dismutase and glutathione peroxidase) antioxidants were determined in the liver, heart, and brain tissues. Chronic cold plus immobilization stress was observed to affect especially the prooxidant-antioxidant status in the brain tissue of rats. This is the first report showing the beneficial effects of CAR on oxidative stress in the brain in rats exposed to stress.
Collapse
Affiliation(s)
- Esra Betül Kalaz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Althnaian T, Albokhadaim I, El-Bahr SM. Biochemical and histopathological study in rats intoxicated with carbontetrachloride and treated with camel milk. SPRINGERPLUS 2013; 2:57. [PMID: 23487568 PMCID: PMC3593006 DOI: 10.1186/2193-1801-2-57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
The unique characters of camel’s milk make it used extensively in the field of medicine as anti-microbial, anti-diabetic and hepatoprotective agent. The lack of studies demonstrating the protective effect of camel’s milk against hepatotoxic compound was the main reason beyond the conduction of the current experiment which aimed to investigate the protective effects of camel’s milk against carbontetrachloride (CCl4) induced hepatotoxicity. Therefore, 24 rats were fed on standard diet and divided into four groups. Rats of the first group and second groups were injected i/p with paraffin oil and received either tap water (control 1) or camel’s milk (control 2), respectively. Rats of the third and fourth groups were injected i/p with CCl4 and received either tap water or camel’s milk, respectively. At the end of the experiment (5 weeks), blood and liver samples were collected for biochemical and histopathological analysis. The present findings revealed that, CCl4 elevated serum enzyme activities of liver and some biochemical parameters, but these effects were prevented by the treatment of rats with camel milk. Histopathologically, a great amount of mononuclear cells infiltration, necrotic cells and few fibroblasts were observed in liver of CCl4 treated group. The present study concluded that camel milk treatment may play a protective role against CCl4-induced liver damages in rats. These protective effects were in the form of improving of liver enzyme activities, blood biochemical parameters and histological picture of liver of intoxicated rats. In the future, examination of the liver protective effect of camel milk against CCl4 in dose dependant manner could be investigated.
Collapse
Affiliation(s)
- Thnaian Althnaian
- Department of Anatomy, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | |
Collapse
|
29
|
Beneficial effects of taurine and carnosine in experimental ischemia/reperfusion injury in testis. Pediatr Surg Int 2012; 28:1125-31. [PMID: 22961384 DOI: 10.1007/s00383-012-3168-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/15/2022]
Abstract
PURPOSE Testicular torsion can be thought of as an ischemia/reperfusion (I/R) injury to the testis. This study aimed to investigate the effects of taurine (TAU) and carnosine (CAR), which are strong antioxidants, on experimental testicular I/R injury model. METHODS Male Wistar albino rats were divided into four groups with eight animals in each. A sham operation was performed in group 1. To create testicular I/R, the left testis was torsioned 720° for 2 h followed by 2 h of detorsion. Groups 2 (I/R), 3 (I/R + TAU) and 4 (I/R + CAR) received intraperitoneal saline, TAU (250 mg/kg) and CAR (250 mg/kg), respectively, 1 h before detorsion. Thiobarbituric acid reactive substances (TBARS), diene conjugate (DC), protein carbonyls (PC), nonprotein sulfhydryl (NPSH), and vitamin C levels were measured in testis tissues as well as superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Histopathological evaluation was also performed. RESULTS TBARS, DC, and PC levels were significantly increased in I/R group. TAU and CAR did not alter TBARS levels, but decreased the elevated DC and PC levels. There were no changes in testicular NPSH levels, SOD, and GPx activities in all groups; however, vitamin C significantly decreased in I/R group. CAR treatment was found to increase vitamin C levels as compared to I/R group. Histopathologically, both I/R + TAU and I/R + CAR groups showed significant increase in testicular spermatogenesis in comparison to I/R group. CONCLUSION Our results indicate that TAU and CAR reduces oxidative stress and may have a protective role in testicular I/R injury.
Collapse
|
30
|
Naghshvar F, Abianeh SM, Ahmadashrafi S, Hosseinimehr SJ. Chemoprotective effects of carnosine against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Cell Biochem Funct 2012; 30:569-73. [PMID: 22535690 DOI: 10.1002/cbf.2834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/10/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
The protective effects of carnosine as a natural dipeptide were investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were injected with solutions of carnosine at three different doses (10, 50 and 100 mg kg(-1) bw) for five consecutive days. On the fifth day of treatment, mice were injected cyclophosphamide and killed after 24 h. The frequency of micronuclei in polychromatic erythrocytes and the ratio of polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte [PCE/(PCE + NCE)] were evaluated by May-Grunwald/Giemsa staining. Histopathology of bone marrow was examined in mice treated with cyclophosphamide and carnosine. Carnosine significantly reduced micronucleated polychromatic erythrocytes (MnPCEs) induced by cyclophosphamide at all three doses. Carnosine at dose of 100 mg kg(-1) bw reduced MnPCEs 3.76-fold and completely normalized the PCE/(PCE + NCE) ratio. Administration of carnosine inhibited bone marrow toxicity induced by cyclophosphamide. It appeared that carnosine with protective activity reduced the oxidative stress and genotoxicity induced by cyclophosphamide in bone marrow cells of mice.
Collapse
Affiliation(s)
- Farshad Naghshvar
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | |
Collapse
|
31
|
Karakus E, Karadeniz A, Simsek N, Can I, Kara A, Yildirim S, Kalkan Y, Kisa F. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CCl4). JOURNAL OF HAZARDOUS MATERIALS 2011; 195:208-213. [PMID: 21880419 DOI: 10.1016/j.jhazmat.2011.08.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to investigate possible beneficial effects of Panax ginseng (PG) on carbon tetrachloride (CCl(4))-induced acute hepatotoxicity in rats. CCl(4) challenge elevated serum enzyme activities of liver and some biochemical parameters, but these effects were prevented by the pretreatment of rats with PG. Histologically, a great amount of mononuclear cells infiltration, necrotic cells and few fibroblasts were observed in liver of CCl(4) group. Also, CD68(+) and caspase-3 staining cells were diffused in both lobular and portal areas. However, PG pretreatment had a little influence on the number of caspase-3 immunopositive staining cells in the liver, but CD68(+) staining areas were significantly decreased in the PG+CCl(4) when compared to CCl(4) group. We conclude that PG treatment may play a protective role by enhancing liver enzyme activities and recovering biochemical parameters, and improving the changes in histological structure against CCl(4)-induced liver damages in rats.
Collapse
Affiliation(s)
- Emre Karakus
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Atatürk, 25240, Erzurum, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim MY, Kim EJ, Kim YN, Choi C, Lee BH. Effects of α-lipoic acid and L-carnosine supplementation on antioxidant activities and lipid profiles in rats. Nutr Res Pract 2011; 5:421-8. [PMID: 22125679 PMCID: PMC3221827 DOI: 10.4162/nrp.2011.5.5.421] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 12/02/2022] Open
Abstract
α-Lipoic acid and L-carnosine are powerful antioxidants and are often used as a health supplement and as an ergogenic aid. The objective of this study was to investigate the effects of α-lipoic acid and/or L-carnosine supplementation on antioxidant activity in serum, skin, and liver of rats and blood lipid profiles for 6 weeks. Four treatment groups received diets containing regular rat chow diet (control, CON), 0.5% α-lipoic acid (ALA), 0.25% α-lipoic acid + 0.25% L-carnosine (ALA + LC), or 0.5% L-carnosine (LC). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and lipid peroxidation products, malondialdehyde (MDA) concentrations, were analyzed in serum, skin, and liver. Blood lipid profiles were measured, including triglycerides (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C). Skin and liver SOD activities of the ALA and LC groups were higher than those of the CON group (P < 0.05), but serum SOD activity was higher only in the LC group compared to that in the CON group (P < 0.05). Additionally, only liver GSH-Px activity in the LC group was higher than that of the CON and the other groups. Serum and skin MDA levels in the ALA and LC groups were lower than those in the CON group (P < 0.05). Serum TG and TC in the ALA and ALA + LC groups were lower than those in the CON and LC groups (P < 0.05). The HDL-C level in the LC group was higher than that in any other group (P < 0.05). LDL-C level was lower in the ALA + LC and LC groups than that in the CON group (P < 0.05). Thus, α-lipoic acid and L-carnosine supplementation increased antioxidant activity, decreased lipid peroxidation in the serum, liver, and skin of rats and positively modified blood lipid profiles.
Collapse
Affiliation(s)
- Mi Young Kim
- Department of Food & Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 456-756, Korea
| | | | | | | | | |
Collapse
|
33
|
Kadir FA, Othman F, Abdulla MA, Hussan F, Hassandarvish P. Effect of Tinospora crispa on thioacetamide-induced liver cirrhosis in rats. Indian J Pharmacol 2011; 43:64-8. [PMID: 21455425 PMCID: PMC3062125 DOI: 10.4103/0253-7613.75673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 09/24/2010] [Accepted: 10/21/2010] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study was conducted to determine the effect of ethanolic extract of the dried stems of Tinospora crispa in a male rat model of hepatic fibrosis caused by the hepatotoxin, thioacetamide. MATERIALS AND METHODS The extract was gavaged daily to the rats, at doses of 100 and 200 mg/kg along with thioacetamide at a dose of 200 mg/kg twice weekly. To assess the effectivity of extract, against thioacetamide, the activity of aminotransferases (alanine aminotransferase, aspartate aminotransferase), alkaline phosphatase (AP); and bilirubin were measured, together with morphological and histopathological indices in the liver of healthy and thioacetamide-treated rats. RESULTS A significant increase in the activity of liver enzymes, bilirubin and G-glutamyl transferase and gross and histopathological changes were determined. Although previous in vitro study established that this extract had strong antioxidant activity, this in vivo study establishes that this extract contains hepatotoxins whose identity may be quite different from those compounds with antioxidant properties. CONCLUSION The study confirms that complete reliance on data obtained using in vitro methodologies may lead to erroneous conclusions pertaining to the safety of phytopharmaceuticals.
Collapse
Affiliation(s)
- Farkaad A Kadir
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
34
|
Oku T, Ando S, Hayakawa T, Baba K, Nishi R, Shiozaki K, Yamada S. Purification and identification of a novel primitive secretory enzyme catalyzing the hydrolysis of imidazole-related dipeptides in the jawless vertebrate Lethenteron reissneri. Peptides 2011; 32:648-55. [PMID: 21262300 DOI: 10.1016/j.peptides.2011.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/28/2022]
Abstract
Imidazole-related dipeptides, such as carnosine and anserine, occur widely in skeletal muscles of jawed vertebrates. All of the known enzymes that catalyze the hydrolysis of these dipeptides belong to the M20A metallopeptidase subfamily; two secretory enzymes, serum carnosinase (EC 3.4.13.20) and anserinase (EC 3.4.13.5), and one non-secretory enzyme, cytosolic nonspecific dipeptidase (EC 3.4.13.18). Here we report the enzymatic characterization and molecular identification of an unidentified enzyme, which catalyzes the hydrolysis of these dipeptides, from the skeletal muscle of Far Eastern brook lamprey (Lethenteron reissneri). A 60-kDa subunit protein of the enzyme was purified to near homogeneity. We cloned two M20A genes from the skeletal muscle of Far Eastern brook lamprey; one was a secretory-type gene encoding for the 60-kD protein, and another was a non-secretory-type gene presumably encoding for cytosolic nonspecific dipeptidase. Our findings indicate that the purified enzyme is a N-glycosylated secretory M20A dipeptidase distributed specifically in the jawless vertebrate group, and may be derived from a common ancestor gene between serum carnosinase and anserinase. We propose that this dipeptidase is a novel secretory M20A enzyme and is classified as neither serum carnosinase nor anserinase.
Collapse
Affiliation(s)
- Takahiro Oku
- Science of Marine Resources, United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Husson E, Humeau C, Harscoat C, Framboisier X, Paris C, Dubreucq E, Marc I, Chevalot I. Enzymatic acylation of the polar dipeptide, carnosine: Reaction performances in organic and aqueous media. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
El-Batch M, Ibrahim W, Said S. Effect of histidine on autotaxin activity in experimentally induced liver fibrosis. J Biochem Mol Toxicol 2010; 25:143-50. [DOI: 10.1002/jbt.20370] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 07/13/2010] [Accepted: 07/31/2010] [Indexed: 01/08/2023]
|
37
|
Artun BC, Küskü-Kiraz Z, Güllüoglu M, Çevikbaş U, Koçak-Toker N, Uysal M. The effect of carnosine pretreatment on oxidative stress and hepatotoxicity in binge ethanol administered rats. Hum Exp Toxicol 2010; 29:659-65. [DOI: 10.1177/0960327109359460] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carnosine is a dipeptide having strong antioxidant effects. Oxidative stress plays an important role in pathogenesis of alcohol-induced liver injury. In this study, we investigated the effect of carnosine pretreatment on ethanol-induced oxidative stress and hepatotoxicity. Rats were given carnosine (2 g/L in drinking water) for 4 weeks and then ethanol was administered orally to rats at a dose of 5 g/kg every 12 hours for 3 doses totally (binge model). All rats were killed 6 hours after last ethanol injection. Plasma alanine (ALT) and aspartate (AST) transaminase activities and liver triglyceride, malondialdehyde (MDA), diene conjugate (DC), glutathione (GSH), vitamin E and vitamin C levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione transferase (GST) activities were determined. Binge ethanol administration resulted in significant increases in plasma transaminase activities, hepatic triglyceride and lipid peroxide levels. However, GSH, vitamin E, vitamin C levels and GSH-Px and GST activities were found to be decreased following ethanol administration. Macromicrovesicular steatosis was also seen. Carnosine pretreatment appeared to prevent the increase of plasma ALT and AST activities and hepatic MDA and DC levels following ethanol treatment. In addition, hepatic GSH levels increased, but there were no changes in triglyceride, vitamin E, vitamin C levels and SOD, GSH-Px and GST activities, following ethanol treatment in carnosine-pretreated rats. There was also no change in liver histopathological appearance. In conclusion, carnosine prevented the increases in serum transaminase activities and lipid peroxides in liver of ethanol-treated rats, without any change on steatosis in liver.
Collapse
Affiliation(s)
- BC Artun
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Z. Küskü-Kiraz
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M. Güllüoglu
- Deparment of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - U. Çevikbaş
- Deparment of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - N. Koçak-Toker
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M. Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey,
| |
Collapse
|
38
|
Aydin AF, Küskü-Kiraz Z, Doğru-Abbasoğlu S, Güllüoğlu M, Uysal M, Koçak-Toker N. Effect of carnosine against thioacetamide-induced liver cirrhosis in rat. Peptides 2010; 31:67-71. [PMID: 19958806 DOI: 10.1016/j.peptides.2009.11.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
Carnosine (beta-alanyl-L-histidine) is a dipeptide with antioxidant properties. Oxidative stress has been proposed to be involved in thioacetamide (TAA)-induced liver cirrhosis in rats, that is similar to human disease. In this study we aimed to investigate the role of carnosine on the development of TAA-induced cirrhosis. 200mg TAA/kg body weight has been given i.p. twice a week for three months to female wistar rats. Another group received same dose of TAA in the same pattern plus 2g carnosine/L of drinking water for three months. TAA administration resulted in hepatic fibrosis, significant increases in plasma transaminase activities as well as hepatic hydroxyproline and lipid peroxide levels, while liver glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) protein expressions and activities decreased. Carnosine was found to behave as an antioxidant reducing malondialdehyde (MDA) and diene conjugate (DC) levels although it was not effective on increased transaminase activities and decreased antioxidants. It also did not affect the histopathological changes observed in TAA group. Thus our findings indicate that carnosine appears to attenuate peroxidation as an antioxidant itself but does not seem to prevent the development of TAA-induced cirrhotic process.
Collapse
Affiliation(s)
- A Fatih Aydin
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
39
|
Nishida T, Ohata S, Kusumoto C, Mochida S, Nakada J, Inagaki Y, Ohta Y, Matsura T. Zinc Supplementation with Polaprezinc Protects Mouse Hepatocytes against Acetaminophen-Induced Toxicity via Induction of Heat Shock Protein 70. J Clin Biochem Nutr 2009; 46:43-51. [PMID: 20104264 PMCID: PMC2803132 DOI: 10.3164/jcbn.09-60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022] Open
Abstract
Polaprezinc, a chelate compound consisting of zinc and l-carnosine, is clinically used as a medicine for gastric ulcers. It has been shown that induction of heat shock protein (HSP) is involved in protective effects of polaprezinc against gastric mucosal injury. In the present study, we investigated whether polaprezinc and its components could induce HSP70 and prevent acetaminophen (APAP) toxicity in mouse primary cultured hepatocytes. Hepatocytes were treated with polaprezinc, zinc sulfate or l-carnosine at the concentration of 100 microM for 9 h, and then exposed to 10 mM APAP. Polaprezinc or zinc sulfate increased cellular HSP70 expression. However, l-carnosine had no influence on it. Pretreatment of the cells with polaprezinc or zinc sulfate significantly suppressed cell death as well as cellular lipid peroxidation after APAP treatment. In contrast, pretreatment with polaprezinc did not affect decrease in intracellular glutathione after APAP. Furthermore, treatment with KNK437, an HSP inhibitor, attenuated increase in HSP70 expression induced by polaprezinc, and abolished protective effect of polaprezinc on cell death after APAP. These results suggested that polaprezinc, in particular its zinc component, induces HSP70 expression in mouse primary cultured hepatocytes, and inhibits lipid peroxidation after APAP treatment, resulting in protection against APAP toxicity.
Collapse
Affiliation(s)
- Tadashi Nishida
- Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem Toxicol 2009; 47:2863-70. [DOI: 10.1016/j.fct.2009.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/02/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
|
41
|
Aydın AF, Küçükgergin C, Özdemirler-Erata G, Koçak-Toker N, Uysal M. The effect of carnosine treatment on prooxidant–antioxidant balance in liver, heart and brain tissues of male aged rats. Biogerontology 2009; 11:103-9. [DOI: 10.1007/s10522-009-9232-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
|