1
|
Watanabe K, Konno N, Nakamachi T, Matsuda K. Intraperitoneal administration of α-melanocyte stimulating hormone (α-MSH) suppresses food intake and induces anxiety-like behavior via the brain MC4 receptor-signaling pathway in goldfish. J Neuroendocrinol 2024; 36:e13435. [PMID: 39092865 DOI: 10.1111/jne.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/24/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
α-Melanocyte stimulating hormone (α-MSH) is a peptide hormone released from the intermediate lobe of the pituitary which regulates body pigmentation. In addition to the pituitary, α-MSH is also produced in the midbrain, and exerts both anorexigenic and an anxiogenic actions. Acyl ghrelin and cholecystokinin are peripheral hormones derived from the digestive tract which affect the brain to control food intake and feeding behavior in vertebrates. In the present study, hypothesizing that plasma α-MSH may also stimulate the brain and exert central effects, we examined whether peripherally administered α-MSH affects food intake and psychomotor activity using a goldfish model. Intraperitoneal (IP) administration of α-MSH at 100 pmol g-1 body weight (BW) reduced food consumption and enhanced thigmotaxis. These α-MSH-induced actions were blocked by intracerebroventricular administration of HS024, an antagonist of the melanocortin 4 receptor (MC4R), at 50 pmol g-1 BW, whereas these actions were not attenuated by pretreatment with an IP-injected excess amount of capsaicin, a neurotoxin that destroys primary sensory (vagal and splanchnic) afferents, at 160 nmol g-1 BW. Transcripts for the MC4R showed higher expression in the diencephalon in other regions of the brain. These results suggest that, in goldfish, IP administered α-MSH is taken up by the brain, and also acts as anorexigenic and anxiogenic factor via the MC4R signaling pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Nagamine R, Konno N, Nakamachi T, Matsubara H, Matsuda K. Intraperitoneal administration of arginine vasotocin (AVT) induces anorexigenic and anxiogenic actions via the brain V1a receptor-signaling pathway in the tiger puffer, Takifugu rubripes. Peptides 2024; 178:171239. [PMID: 38723948 DOI: 10.1016/j.peptides.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.
Collapse
Affiliation(s)
- Ryo Nagamine
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
3
|
Uezono S, Kato T, Yamada Y, Yoshimoto M, Yamamoto N. Afferent and efferent connections of the secondary general visceral sensory nucleus in goldfish. J Comp Neurol 2024; 532:e25566. [PMID: 38104256 DOI: 10.1002/cne.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The secondary general visceral sensory nucleus (SVN) receives ascending fibers from the commissural nucleus of Cajal (NCC), or the primary general visceral sensoru in the medulla oblongata of teleosts. However, the full set of fiber connections of the SVN have been studied only in the Nile tilapia. We have investigated the connections of the SVN in goldfish by tracer injection experiments to the nucleus. We paid special attention to the possible presence of spinal afferents, since the spinal cord projects to the lateral parabrachial nucleus, or the presumed homologue of SVN, in mammals. We found that the SVN indeed receives spinal projections. Spinal terminals were restricted to a region ventrolaterally adjacent to the terminal zone of NCC fibers, suggesting that the SVN can be subdivided into two subnuclei: the commissural nucleus-recipient (SVNc) and spinal-recipient (SVNsp) subnuclei. Tracer injections to the SVNc and SVNsp as well as reciprocal injections to the diencephalon revealed that both subnuclei project directly to diencephalic structures, such as the posterior thalamic nucleus and nucleus of lateral recess, although diencephalic projections of the SVNsp were rather sparse. The SVNsp appears to send fibers to more wide-spread targets in the preoptic area than the SVNc does. The SVNc projects to the telencephalon, while the SVNsp sends scarce or possibly no fibers to the telencephalon. Another notable difference was that the SVNsp gives rise to massive projections to the dorsal diencephalon (ventromedial thalamic, central posterior thalamic, and periventricular posterior tubercular nuclei). These differential connections of the subnuclei may reflect discrete functional significances of the general visceral sensory information mediated by the medulla oblongata and spinal cord.
Collapse
Affiliation(s)
- Shiori Uezono
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
- Department of Rehabilitation Sciences, University of Tokyo Health Sciences, Tama, Japan
| | - Takeshi Kato
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | - Yuusuke Yamada
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | - Masami Yoshimoto
- Department of Rehabilitation Sciences, University of Tokyo Health Sciences, Tama, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| |
Collapse
|
4
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
5
|
Matsuda K, Watanabe K, Miyagawa Y, Maruyama K, Konno N, Nakamachi T. Distribution of neuromedin U (NMU)-like immunoreactivity in the goldfish brain, and effect of intracerebroventricular administration of NMU on emotional behavior in goldfish. Peptides 2022; 156:170846. [PMID: 35905944 DOI: 10.1016/j.peptides.2022.170846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Neuromedin U (NMU) is a multifunctional neuropeptide implicated in regulation of smooth muscle contraction in the circulatory and digestive systems, energy homeostasis and the stress response, but especially food intake in vertebrates. Recent studies have indicated the possible involvement of NMU in the regulation of psychomotor activity in rodents. We have identified four cDNAs encoding three putative NMU variants (NMU-21, -25 and -38) from the goldfish brain and intestine. Recently, we have also purified these NMUs and the truncated C-terminal form NMU-9 from these tissues, and demonstrated their anorexigenic action in goldfish. However, there is no information on the brain localization of NMU-like immunoreactivity and the psychophysiological roles of NMU in fish. Here, we investigated the brain distribution of NMU-like immunoreactivity and found that it was localized throughout the fore- and mid-brains. We subsequently examined the effect of intracerebroventricular (ICV) administration of NMU-21, which is abundant only in the brain on psychomotor activity in goldfish. As goldfish prefer the lower to the upper area of a tank, we developed an upper/lower area preference test in a tank for evaluating the psychomotor activity of goldfish using a personal tablet device without an automatic behavior-tracking device. ICV administration of NMU-21 at 10 pmol g-1 body weight (BW) prolonged the time spent in the upper area of the tank, and this action mimicked that of ICV administration of the central-type benzodiazepine receptor (CBR) agonist tofisopam at 100 pmol g-1 BW. These results suggest that NMU-21 potently induces anxiolytic-like action in the goldfish brain.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan
| | - Yoshiki Miyagawa
- Laboratory of Regulatory Biology, Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Maruyama
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
6
|
Basto-Silva C, Couto A, Rodrigues J, Oliva-Teles A, Navarro I, Kaiya H, Capilla E, Guerreiro I. Feeding frequency and dietary protein/carbohydrate ratio affect feed intake and appetite regulation-related genes expression in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111168. [PMID: 35182764 DOI: 10.1016/j.cbpa.2022.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios on appetite regulation of gilthead seabream, two practical diets were formulated to include high protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin (cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets or fed 1 or 2 meals a day.
Collapse
Affiliation(s)
- Catarina Basto-Silva
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Ana Couto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Juliana Rodrigues
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Aires Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Sinmachi, Suita, 564-8565 Osaka, Japan
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Inês Guerreiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Watanabe K, Konno N, Nakamachi T, Matsuda K. Intracerebroventricular administration of α-melanocyte-stimulating hormone (α-MSH) enhances thigmotaxis and induces anxiety-like behavior in the goldfish Carassius auratus. Peptides 2021; 145:170623. [PMID: 34375685 DOI: 10.1016/j.peptides.2021.170623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a body pigmentation-regulating hormone secreted from the intermediate lobe of the pituitary in vertebrates. It is also produced in the brain, and acts as an anorexigenic neuropeptide involved in feeding regulation. In rodents, intracerebroventricular (ICV) administration of α-MSH has been shown to affect not only feeding behavior, but also psychomotor activity. However, there is still no information regarding the psychophysiological effects of α-MSH on behavior in fish. Therefore, we examined the effect of synthetic α-MSH on psychomotor activity in goldfish. Since this species prefers the edge to the central area of a tank, we used this as a preference test for assessing psychomotor activity. When α-MSH was administered ICV at 1 and 10 pmol g-1 body weight (BW), the time spent in the edge area of a tank was prolonged at 10 pmol g-1 BW. However, α-MSH at these doses did not affect locomotor activity. The action of α-MSH mimicked those of FG-7142 (a central-type benzodiazepine receptor (CBR) inverse agonist with an anxiogenic effect) at 10 pmol g-1 BW and melanotan II (a melanocortin 4 receptor (MC4R) agonist) at 50 pmol g-1 BW, whereas ICV administration of tofisopam (a CBR agonist with an anxiolytic effect) at 10 pmol g-1 BW prolonged the time spent in the central area. The anxiogenic-like effect of α-MSH was abolished by treatment with the MC4R antagonist HS024 at 50 pmol g-1 BW. These data indicate that α-MSH affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the MC4R-signaling pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan; Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama, Toyama, 930-8555, Japan.
| |
Collapse
|
8
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Aubin-Horth N, Bernier NJ, Balshine S. Rank- and sex-specific differences in the neuroendocrine regulation of glucocorticoids in a wild group-living fish. Horm Behav 2021; 136:105079. [PMID: 34717080 DOI: 10.1016/j.yhbeh.2021.105079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
Individuals that live in groups experience different challenges based on their social rank and sex. Glucocorticoids have a well-established role in coordinating responses to challenges and glucocorticoid levels often vary between ranks and sexes. However, the neuroendocrine mechanisms regulating glucocorticoid dynamics in wild groups are poorly understood, making it difficult to determine the functional consequences of differences in glucocorticoid levels. Therefore, we observed wild social groups of a cooperatively breeding fish (Neolamprologus pulcher) and evaluated how scale cortisol content (an emerging method to evaluate cortisol dynamics in fishes) and expression of glucocorticoid-related genes varied across group members. Scale cortisol was detectable in ~50% of dominant males (7/17) and females (7/15)-but not in any subordinates (0/16)-suggesting that glucocorticoid levels were higher in dominants. However, the apparent behavioural and neuroendocrine factors regulating cortisol levels varied between dominant sexes. In dominant females, higher cortisol was associated with greater rates of territory defense and increased expression of corticotropin-releasing factor in the preoptic and hypothalamic regions of the brain, but these patterns were not observed in dominant males. Additionally, transcriptional differences in the liver suggest that dominant sexes may use different mechanisms to cope with elevated cortisol levels. While dominant females appeared to reduce the relative sensitivity of their liver to cortisol (fewer corticosteroid receptor transcripts), dominant males appeared to increase hepatic cortisol breakdown (more catabolic enzyme transcripts). Overall, our results offer valuable insights on the mechanisms regulating rank- and sex-based glucocorticoid dynamics, as well as the potential functional outcomes of these differences.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Yuan D, Wang B, Tang T, Lei L, Zhou C, Li Z, Li L. Characterization and evaluation of the tissue distribution of CRH, apelin, and GnRH2 reveal responses to feeding states in Schizothorax davidi. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:421-438. [PMID: 33417073 DOI: 10.1007/s10695-020-00922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Schizothorax davidi is a rare fish in Southwest China and is considered a promising species for aquaculture. Compared with other teleosts, little is known about the endocrine regulation of feeding in this species. In this study, we identified the CRH, apelin, and GnRH2 genes in S. davidi and assessed the effects of different energy statuses on CRH, apelin, and GnRH2 expression. Our results showed that the full-length cDNA sequences of CRH, apelin, and GnRH2 of S. davidi were 995, 905, and 669 bp long, respectively. Furthermore, CRH was mainly expressed in the hypothalamus, telencephalon, and myelencephalon; apelin was highly expressed in the spleen and heart; and GnRH2 mRNA was widely distributed in all examined tissues, with the highest level in the hypothalamus. Notably, the levels of CRH and GnRH2 increased in the hypothalamus at 1 h and 3 h post-feeding, while hypothalamic apelin levels decreased. Conversely, CRH and GnRH2 expression in the hypothalamus significantly decreased after fasting for 7 days and returned to the control levels after re-feeding for 3 or 5 days. In contrast, fasting increased apelin levels in the hypothalamus. Overall, this study suggests that CRH, apelin, and GnRH2 play critical roles in appetite regulation in S. davidi. These results provide an essential groundwork to elucidate the appetite regulatory systems in S. davidi as well as in other teleosts.
Collapse
Affiliation(s)
- Dengyue Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, College of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, China
| | - Tao Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, China
| | - Luo Lei
- College of Aquaculture, Southwest University, Chongqing, 402460, China
| | - Chaowei Zhou
- College of Aquaculture, Southwest University, Chongqing, 402460, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 610000, Sichuan, China
| | - Lijun Li
- Dehong Science and Technology Innovation Center, Dehong, 678400, Yunnan, China
| |
Collapse
|
10
|
Kalananthan T, Murashita K, Rønnestad I, Ishigaki M, Takahashi K, Silva MS, Wakabayashi Y, Lai F, Shimizu M, Nilsen TO, Pino Martinez E, Gomes AS. Hypothalamic agrp and pomc mRNA Responses to Gastrointestinal Fullness and Fasting in Atlantic Salmon ( Salmo salar, L.). Front Physiol 2020; 11:61. [PMID: 32116771 PMCID: PMC7026680 DOI: 10.3389/fphys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
The orexigenic agouti-related protein (AgRP) and the anorexigenic pro-opiomelanocortin (POMC) are crucial players in the control of feed intake in vertebrates, yet their role in teleosts has not been fully established. Triplicate groups of Atlantic salmon (Salmo salar) post smolts were subjected to (1) fasting for 3 days (fast) and (2) normal feeding (fed), resulting in a significant (p < 0.05) upregulation of hypothalamic agrp1 transcripts levels in the fast group. Moreover, the mRNA abundance of agrp1 was significantly (p < 0.05) correlated with the stomach dry weight content. Corresponding inverse patterns were observed for pomca2, albeit not statistically significant. No significant differences were found for the other paralogues, agrp2 and pomca1 and b, between fed and fast groups. The significant correlation between stomach fullness and agrp1 mRNA expression suggests a possible link between the stomach filling/distension and satiety signals. Our study indicates that hypothalamic agrp1 acts as an orexigenic signal in Atlantic salmon.
Collapse
Affiliation(s)
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Kota Takahashi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Marta S Silva
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Institute of Marine Research, Bergen, Norway
| | - Yuki Wakabayashi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Enrique Pino Martinez
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Cai Y, Yin Y, Li Y, Guan L, Zhang P, Qin Y, Wang Y, Li Y. Cadmium exposure affects growth performance, energy metabolism, and neuropeptide expression in Carassius auratus gibelio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:187-197. [PMID: 31612298 DOI: 10.1007/s10695-019-00709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is the most abundant heavy metal in aquatic environments and is easily detected on a global scale. Carassius auratus gibelio is a common aquaculture species. The aim of this study was to explore the toxic effects of 1, 2, and 4 mg/L Cd on the energy metabolism, growth performance, and neurological responses of C. gibelio. After 30 days of exposure, Cd concentrations in the liver and brain were significantly increased in Cd-exposed groups. Low-level Cd exposure (1 mg/L) increased weight and length gains, as well as food intake, in the fish. Acetylcholinesterase activity decreased significantly in the Cd-exposed groups. Energy metabolism levels (as reflected by oxygen consumption, ammonia excretion rate, and swimming activity), as well as serum T3 and T4 levels, increased significantly in the fish exposed to 1 mg/L Cd. However, energy metabolism and serum T3/T4 levels decreased significantly in the 4-mg/L Cd group. Neuropeptide gene expression levels in brain were consistent with the observed changes in food intake. In the Cd-exposed groups, the expression levels of neuropeptide Y (NPY), apelin, and metallothionein (MT) increased significantly, while those of pro-opinmelanocortin (POMC), ghrelin, and corticotrophin-releasing factor (CRF) decreased significantly. Our data suggested that in fish, low doses of Cd might increase food intake, as well as weight and length gains, but high doses of Cd might have the opposite effect. These effects might be a result of neurohumoral regulation. Long-term exposure to low doses of Cd might cause weight gain and affect food intake.
Collapse
Affiliation(s)
- Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yueru Li
- Laboratory of Ginseng and Antler Products Quality and Safety Risk Assessment, Ministry of Agriculture, Changchun, 130118, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Yue Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yunxiang Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Blanco AM. Hypothalamic- and pituitary-derived growth and reproductive hormones and the control of energy balance in fish. Gen Comp Endocrinol 2020; 287:113322. [PMID: 31738909 DOI: 10.1016/j.ygcen.2019.113322] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Most endocrine systems in the body are influenced by the hypothalamic-pituitary axis. Within this axis, the hypothalamus delivers precise signals to the pituitary gland, which in turn releases hormones that directly affect target tissues including the liver, thyroid gland, adrenal glands and gonads. This action modulates the release of additional hormones from the sites of action, regulating key physiological processes, including growth, metabolism, stress and reproduction. Pituitary hormones are released by five distinct hormone-producing cell types: somatotropes (which produce growth hormone), thyrotropes (thyrotropin), corticotropes (adrenocorticotropin), lactotropes (prolactin) and gonadotropes (follicle stimulating hormone and luteinizing hormone), each modulated by specific hypothalamic signals. This careful and distinct organization of the hypothalamo-pituitary axis has been classically associated with the existence of many lineal axes (e.g., the hypothalamic-pituitary-gonadal axis) in charge of the control of the different physiological processes. While this traditional concept is valid, it is becoming apparent that hormones produced by the hypothalamo-pituitary axis have diverse effects. For instance, gonadotropin-releasing hormone II has been associated with a suppressive effect on food intake in fish. Likewise, growth hormone has been shown to influence appetite, swimming activity and aggressive behavior in fish. This review will focus on the hypothalamic and pituitary hormones classically involved in regulating growth and reproduction, and will attempt to provide a general overview of the current knowledge on their actions on energy balance and appetite in fish. It will also give a brief perspective of the role of some of these peptides in integrating feeding, metabolism, growth and reproduction.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
13
|
Araishi K, Watanabe K, Yamazaki T, Nakamachi T, Matsuda K. Intracerebroventricular administration of arginine vasotocin (AVT) induces anorexigenesis and anxiety-like behavior in goldfish. Peptides 2019; 119:170118. [PMID: 31279654 DOI: 10.1016/j.peptides.2019.170118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Arginine vasotocin (AVT) is known as a neurohypophyseal hormone that regulates water- and mineral-balance in non-mammalian vertebrates. Recent studies revealed that AVT also exerts central effects on behavior. The goldfish has several merits for evaluation of behavioral changes. However, there is few information on the behavioral action of AVT in this species. Here we examined the effects of AVT on food intake and psychomotor activity. AVT was administered intracerebroventricularly at 1, 5 and 10 pmol g-1 body weight (BW). Intracerebroventricular (ICV) administration of AVT at 5 and 10 pmol g-1 BW significantly decreased food intake during 30 min after injection and recovery from anesthesia. The AVT-induced anorexigenic action was attenuated by treatment with the AVT receptor V1aR antagonist Manning compound (MC) at 50 pmol g-1 BW. As the goldfish tends to prefer the lower to the upper area of a tank, we used this preference behavior for assessing psychomotor activity during a 30-min observation period. ICV administration of AVT at 1, 5 and 10 pmol g-1 BW significantly prolonged the time spent in the lower area, but did not affect locomotor activity in the tank at any dose. The action of AVT was similar to that of the central-type benzodiazepine receptor inverse agonist FG-7142 at 10 pmol g-1 BW. AVT-induced anxiety-like behavior was blocked by treatment with MC at 50 pmol g-1 BW. These results indicate that AVT affects food intake and psychophysiological status, and also induces anorexigenic- and anxiogenic-like actions via the V1aR-signaling pathway in the goldfish brain.
Collapse
Affiliation(s)
- Koh Araishi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Keisuke Watanabe
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takumi Yamazaki
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan; Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of Toyama, Toyama 930-8555, Japan.
| |
Collapse
|
14
|
Nakamachi T, Tanigawa A, Konno N, Shioda S, Matsuda K. Expression Patterns of PACAP and PAC1R Genes and Anorexigenic Action of PACAP1 and PACAP2 in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:227. [PMID: 31031705 PMCID: PMC6473066 DOI: 10.3389/fendo.2019.00227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with potent suppressive effects on feeding behavior in rodents, chicken, and goldfish. Teleost fish express two PACAPs (PACAP1, encoded by the adcyap1a gene, and PACAP2, encoded by the adcyap1b gene) and two PACAP receptors (PAC1Rs; PAC1Ra, encoded by the adcyap1r1a gene, and PAC1Rb, encoded by the adcyap1r1b gene). However, the mRNA expression patterns of the two PACAPs and PAC1Rs, and the influence and relationship of the two PACAPs on feeding behavior in teleost fish remains unclear. Therefore, we first examined mRNA expression patterns of PACAP and PAC1R in tissue and brain. All PACAP and PAC1Rs mRNAs were dominantly expressed in the zebrafish brain. However, adcyap1a mRNA was also detected in the gut and testis. In the brain, adcyap1b and adcyap1r1a mRNA levels were greater than that of adcyap1a and adcyap1r1b, respectively. Moreover, adcyap1b and adcyap1r1a mRNA were dominantly expressed in telencephalon and diencephalon. The highest adcyap1a mRNA levels were detected in the brain stem and diencephalon, while the highest levels of adcyap1r1b were detected in the cerebellum. To clarify the relationship between PACAP and feeding behavior in the zebrafish, the effects of zebrafish (zf) PACAP1 or zfPACAP2 intracerebroventricular (ICV) injection were examined on food intake, and changes in PACAP mRNA levels were assessed against feeding status. Food intake was significantly decreased by ICV injection of zfPACAP1 (2 pmol/g body weight), zfPACAP2 (2 or 20 pmol/g body weight), or mammalian PACAP (2 or 20 pmol/g). Meanwhile, the PACAP injection group did not change locomotor activity. Real-time PCR showed adcyap1 mRNA levels were significantly increased at 2 and 3 h after feeding compared with the pre-feeding level, but adcyap1b, adcyap1r1a, and adcyap1r1b mRNA levels did not change after feeding. These results suggest that the expression levels and distribution of duplicated PACAP and PAC1R genes are different in zebrafish, but the anorexigenic effects of PACAP are similar to those seen in other vertebrates.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- *Correspondence: Tomoya Nakamachi
| | - Ayano Tanigawa
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, Tokyo, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Anderson K, Kuo CY, Lu MW, Bar I, Elizur A. A transcriptomic investigation of digestive processes in orange-spotted grouper, Epinephelus coioides, before, during, and after metamorphic development. Gene 2018; 661:95-108. [DOI: 10.1016/j.gene.2018.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|
16
|
Takahashi A, Kasagi S, Murakami N, Furufuji S, Kikuchi S, Mizusawa K, Andoh T. Effects of different green light intensities on the growth performance and endocrine properties of barfin flounder Verasper moseri. Gen Comp Endocrinol 2018; 257:203-210. [PMID: 28427902 DOI: 10.1016/j.ygcen.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
We previously reported that the somatic growth of barfin flounder, Verasper moseri, was effectively stimulated by the green light compared to the blue and red lights. Herein, we report the effects of different green light intensities on the growth and endocrine system of the fish. Fish were reared in a dark room with light from a light-emitting diode (LED) at a peak wavelength of 518nm under controlled photoperiod (10.5:13.5h, light:dark cycle; 06:00-16:30, light) with three levels of photon flux density (PFD)-2 (low), 7 (medium), or 21 (high) μmol·m-2·s-1 at the water surface. The average water temperature was 10.2°C, and the fish were fed until satiety. The fish reared under high PFD of green light showed the highest specific growth rates, followed by the medium PFD group. Under high PFD, the fish showed the highest amount of melanin-concentrating hormone mRNA in their brains and insulin in plasma, while the lowest amount of growth hormone was observed in their pituitary glands. These results suggest that the green light stimulated the growth of barfin flounders in a light intensity-dependent manner in association with their central and peripheral endocrine systems. However, when the fish were reared in an ordinary room where they received both ambient and green LED lights, the fish under LED and ambient light grew faster than those under ambient light only (control). Moreover, no difference was observed in the specific growth rate of the fish reared under the three different green LED light intensities, suggesting that the growth was equally stimulated by the green light within a certain range of intensities under ambient light.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Naoto Murakami
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Hokkaido 088-1108, Japan
| | | | | | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Tadashi Andoh
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan
| |
Collapse
|
17
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
18
|
Culbert BM, Gilmour KM. Rapid recovery of the cortisol response following social subordination in rainbow trout. Physiol Behav 2016; 164:306-13. [PMID: 27317163 DOI: 10.1016/j.physbeh.2016.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/29/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) confined in pairs form social hierarchies in which distinctive behavioural and physiological phenotypes distinguish dominant from subordinate fish. In particular, subordinate fish are characterized by inhibition of behaviours such as feeding and activity, by low growth rates, and by chronic elevation of circulating glucocorticoid stress hormone (cortisol) concentrations. To evaluate the ability of trout to recover from chronic social stress, pairs of fish were allowed to interact for 4d, and subordinate fish were then separated from dominant fish. Recovery was assessed using behavioural (position in the tank, latency to feed, and food consumed) and physiological (plasma cortisol and glucose concentrations, liver glycogen content, hepatosomatic index, specific growth rate, and gall bladder mass) indices. During 48 or 96h of recovery from the 4d interaction period, only plasma cortisol and glucose levels of subordinates returned to baseline values consistent with those of dominant and sham trout (fish that were handled like paired fish but housed singly). All other physiological variables failed to recover, likely owing to the absence of behavioural recovery, including continued inhibition of food intake even following separation from the dominant fish. Whereas subordinate fish exhibited an attenuated cortisol response to an acute netting stressor, 'recovered' subordinates mounted a cortisol response that was equivalent to those of dominant and sham fish. However, 'recovered' subordinates that were paired with a socially naïve conspecific were unable to achieve non-subordinate status. Collectively, these results indicate that recovery of the cortisol response precedes behavioural recovery from social subordination.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
19
|
Takahashi A, Kasagi S, Murakami N, Furufuji S, Kikuchi S, Mizusawa K, Andoh T. Chronic effects of light irradiated from LED on the growth performance and endocrine properties of barfin flounder Verasper moseri. Gen Comp Endocrinol 2016; 232:101-8. [PMID: 26795919 DOI: 10.1016/j.ygcen.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/07/2023]
Abstract
We investigated the effects of specific wavelengths of light on the growth of barfin flounder. The fish, reared in white tanks in a dark room, were irradiated with light from light-emitting diodes (LEDs) with peak wavelengths of 464nm (blue), 518nm (green), and 635nm (red) under a controlled photoperiod (10.5:13.5, light-dark cycle; 06:00-16:30, light). Fish were reared for four weeks in three independent experiments at three different water temperatures (averages of 14.9°C, 8.6°C, and 6.6°C). The fish irradiated with blue and green light had higher specific growth rates (% body weight⋅day(-1)) than fish irradiated with red light. Notably, green light had the greatest effect on growth among the three light wavelengths at 6.6°C. In the brains of fish reared at 6.6°C, the amounts of melanin-concentrating hormone 1 mRNA under green light were lower than those under red light, and amounts of proopiomelanocortin-C mRNA under blue and green light were higher than those under red light. No differences were observed for other neuropeptides tested. In the pituitary, no difference was observed in growth hormone mRNA content. In plasma, higher levels of insulin and insulin-like growth factor-I were observed in fish under green light than those of fish under red light. These results suggest that the endocrine systems of barfin flounder are modulated by a specific wavelength of light that stimulates somatic growth.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Naoto Murakami
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Hokkaido 088-1108, Japan
| | | | | | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Tadashi Andoh
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2213, Japan
| |
Collapse
|
20
|
Zhang J, Sun P, Yang F, Kong T, Zhang R. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus). CHEMOSPHERE 2016; 152:221-228. [PMID: 26971175 DOI: 10.1016/j.chemosphere.2016.02.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 05/22/2023]
Abstract
Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses.
Collapse
Affiliation(s)
- Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China.
| | - Ping Sun
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Fan Yang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Tao Kong
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Ruichen Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| |
Collapse
|
21
|
Yan AF, Chen T, Chen S, Ren CH, Hu CQ, Cai YM, Liu F, Tang DS. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control. Int J Mol Sci 2016; 17:ijms17060783. [PMID: 27249000 PMCID: PMC4926331 DOI: 10.3390/ijms17060783] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC). By intraperitoneal (IP) injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY) injection. High levels of leptin receptor (lepR) mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP) and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART), cholecystokinin (CCK), melanin-concentrating hormone (MCH) and proopiomelanocortin (POMC) in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.
Collapse
Affiliation(s)
- Ai-Fen Yan
- College of Medicine, Foshan University, Foshan 528000, China.
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Shuang Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Chun-Hua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Yi-Ming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Fang Liu
- College of Medicine, Foshan University, Foshan 528000, China.
| | - Dong-Sheng Tang
- College of Medicine, Foshan University, Foshan 528000, China.
| |
Collapse
|
22
|
Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus. J Comp Physiol B 2016; 186:313-21. [PMID: 26832922 DOI: 10.1007/s00360-016-0961-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/05/2016] [Accepted: 01/15/2016] [Indexed: 11/27/2022]
Abstract
In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.
Collapse
|
23
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
24
|
Kang DY, Kim HC. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:44-56. [DOI: 10.1016/j.cbpb.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
25
|
Wang T, Zhou C, Yuan D, Lin F, Chen H, Wu H, Wei R, Xin Z, Liu J, Gao Y, Li Z. Schizothorax prenanti corticotropin-releasing hormone (CRH): molecular cloning, tissue expression, and the function of feeding regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1407-1415. [PMID: 24696302 DOI: 10.1007/s10695-014-9935-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Corticotropin-releasing hormone (CRH) is a potent mediator of endocrine, autonomic, behavioral, and immune responses to stress. For a better understanding of the structure and function of the CRH gene and to study its effect on feeding regulation in cyprinid fish, the cDNA of the CRH gene from the brain of Schizothorax prenanti was cloned and sequenced. The full-length CRH cDNA consisted of 1,046 bp with an open reading frame of 489 bp encoding a protein of 162 amino acids. Real-time quantitative PCR analyses revealed that CRH was widely expressed in central and peripheral tissues. In particular, high expression level of CRH was detected in brain. Furthermore, CRH mRNA expression was examined in different brain regions, especially high in hypothalamus. In addition, there was no significant change in CRH mRNA expression in fed group compared with the fasted group in the S. prenanti hypothalamus during short-term fasting. However, CRH gene expression presented significant decrease in the hypothalamus in fasted group compared with the fed group (P < 0.05) on day 7; thereafter, re-feeding could lead to a significant increase in CRH mRNA expression in fasted group on day 9. The results suggest that the CRH may play a critical role in feeding regulation in S. prenanti.
Collapse
Affiliation(s)
- Tao Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Agulleiro MJ, Cortés R, Leal E, Ríos D, Sánchez E, Cerdá-Reverter JM. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 205:251-9. [PMID: 24561275 DOI: 10.1016/j.ygcen.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/11/2023]
Abstract
The melanocortin system is one of the most complex hormonal systems in vertebrates. Atypically, the signaling of melanocortin receptors is regulated by the binding of endogenous antagonists, named agouti-signaling protein (ASIP) and agouti-related protein (AGRP). Teleost specific genome duplication (TSGD) rendered new gene copies in teleost fish and up to four different genes of the agouti family of peptides have been characterized. In this paper, molecular cloning was used to characterize mRNA of the agouti family of peptides in sea bass. Four different genes were identified: AGRP1, ASIP1, AGRP2 and ASIP2. The AGRP1 gene is mainly expressed in the brain whereas ASIP1 is mainly expressed in the ventral skin. Both ASIP2 and AGRP2 are expressed in the brain and the pineal gland but also in some peripheral tissues. Immunocytochemical studies demonstrated that AGRP1 is exclusively expressed within the lateral tuberal nucleus, the homologue of the mammalian arcuate nucleus in fish. Long-term fasting (8-29 days) increased the hypothalamic expression of AGRP1 but depressed AGRP2 expression (15-29 days). In contrast, the hypothalamic expression of ASIP2 was upregulated during short-term fasting suggesting that this peptide could be involved in the short term regulation of food intake in the sea bass.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Diana Ríos
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
27
|
MacDonald LE, Alderman SL, Kramer S, Woo PTK, Bernier NJ. Hypoxemia-induced leptin secretion: a mechanism for the control of food intake in diseased fish. J Endocrinol 2014; 221:441-55. [PMID: 24741070 DOI: 10.1530/joe-13-0615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leptin is a potent anorexigen, but little is known about the physiological conditions under which this cytokine regulates food intake in fish. In this study, we characterized the relationships between food intake, O2-carrying capacity, liver leptin-A1 (lep-a1) gene expression, and plasma leptin-A1 in rainbow trout infected with a pathogenic hemoflagellate, Cryptobia salmositica. As lep gene expression is hypoxia-sensitive and Cryptobia-infected fish are anemic, we hypothesized that Cryptobia-induced anorexia is mediated by leptin. A 14-week time course experiment revealed that Cryptobia-infected fish experience a transient 75% reduction in food intake, a sharp initial drop in hematocrit and hemoglobin levels followed by a partial recovery, a transient 17-fold increase in lep-a1 gene expression, and a sustained increase in plasma leptin-A1 levels. In the hypothalamus, peak anorexia was associated with decreases in mRNA levels of neuropeptide Y (npy) and cocaine- and amphetamine-regulated transcript (cart), and increases in agouti-related protein (agrp) and pro-opiomelanocortin A2 (pomc). In contrast, in non-infected fish pair-fed to infected animals, lep-a1 gene expression and plasma levels did not differ from those of non-infected satiated fish. Pair-fed fish were also characterized by increases in hypothalamic npy and agrp, no changes in pomc-a2, and a reduction in cart mRNA expression. Finally, peak infection was characterized by a significant positive correlation between O2-carrying capacity and food intake. These findings show that hypoxemia, and not feed restriction, stimulates leptin-A1 secretion in Cryptobia-infected rainbow trout and suggest that leptin contributes to anorexia by inhibiting hypothalamic npy and stimulating pomc-a2.
Collapse
Affiliation(s)
- Lauren E MacDonald
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah L Alderman
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Sarah Kramer
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Patrick T K Woo
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative BiologyUniversity of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
28
|
Shahjahan M, Kitahashi T, Parhar IS. Central pathways integrating metabolism and reproduction in teleosts. Front Endocrinol (Lausanne) 2014; 5:36. [PMID: 24723910 PMCID: PMC3971181 DOI: 10.3389/fendo.2014.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023] Open
Abstract
Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
Collapse
Affiliation(s)
- Md. Shahjahan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia e-mail:
| |
Collapse
|
29
|
Ortega VA, Lovejoy DA, Bernier NJ. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 2013; 7:196. [PMID: 24194695 PMCID: PMC3810612 DOI: 10.3389/fnins.2013.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Corticotropin-releasing factor (CRF), urotensin I (UI) and serotonin (5-HT) are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to (1) assess the individual effects of synthesized rainbow trout CRF (rtCRF), rtUI as well as 5-HT on food intake in rainbow trout, and (2) determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv) injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI [ED50 = 17.4 ng/g body weight (BW)] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW). Co-injection of either rtCRF or rtUI with the CRF receptor antagonist α-hCRF(9–41) blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW) and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by α-hCRF(9–41) co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph Guelph, ON, Canada
| | | | | |
Collapse
|
30
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
31
|
Matsuda K, Hagiwara Y, Shibata H, Sakashita A, Wada K. Ovine corticotropin-releasing hormone (oCRH) exerts an anxiogenic-like action in the goldfish, Carassius auratus. Gen Comp Endocrinol 2013; 188:118-22. [PMID: 23321398 DOI: 10.1016/j.ygcen.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/25/2012] [Accepted: 01/03/2013] [Indexed: 01/30/2023]
Abstract
Corticotropin-releasing hormone (CRH) is a member of the hypothalamic neuropeptide family that includes urocortins, urotensin I and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in rodents. In a goldfish model, intracerebroventricular (ICV) administration of ovine CRH (oCRH) affects not only food intake, but also locomotor activity. However, there is no information regarding the psychophysiological roles of CRH in goldfish. Therefore, we investigated the effect of oCRH on psychomotor activity in this species. ICV administration of synthetic oCRH at 20 pmol/g body weight (BW) enhanced locomotor activity. Since intact goldfish prefer the lower to the upper area of a tank, we developed a method for measuring the time taken for fish to move from the lower to the upper area. ICV administration of oCRH at 20 pmol/g BW and the central-type benzodiazepine receptor inverse agonist FG-7142 (an anxiogenic agent) at 1-4 pmol/g BW both increased the time taken to move from the lower to the upper area. This anxiogenic-like effect of oCRH was abolished by the CRH receptor antagonist α-helical CRH(9-41) (100 pmol/g BW). These results indicate that CRH can potently affect locomotor and psychomotor activities in goldfish.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
| | | | | | | | | |
Collapse
|
32
|
Matsuda K. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH) in fish. Front Neurosci 2013; 7:91. [PMID: 23754974 PMCID: PMC3667241 DOI: 10.3389/fnins.2013.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/14/2013] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) is a hypothalamic neuropeptide belonging to a family of neuropeptides that includes urocortins, urotensin I, and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in fish. In a goldfish model, intracerebroventricular (ICV) administration of CRH has been shown to affect not only food intake, but also locomotor and psychomotor activities. In particular, CRH elicits anxiety-like behavior as an anxiogenic neuropeptide in goldfish, as is the case in rodents. This paper reviews current knowledge of CRH and its related peptides derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the CRH system, and examines its significance from a comparative viewpoint.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, Graduate School of Innovative Life Science, University of Toyama Toyama, Japan
| |
Collapse
|
33
|
Matsuda K, Sakashita A, Yokobori E, Azuma M. Neuroendocrine control of feeding behavior and psychomotor activity by neuropeptideY in fish. Neuropeptides 2012; 46:275-83. [PMID: 23122775 DOI: 10.1016/j.npep.2012.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
Neuropeptide Y (NPY) is a neuropeptide distributed widely among vertebrates. In mammals, NPY and its related peptides such as pancreatic polypeptide and peptide YY (PYY) are distributed throughout the brain and gastrointestinal tissues, and are centrally involved in many physiological functions such as the regulation of food intake, locomotion and psychomotor activities through their receptors. With regard to non-mammalian vertebrates, there has also been intensive study aimed at the identification and functional characterization of NPY, PYY and their receptors, and recent investigations of the role of NPY have revealed that it exerts several behavioral effects in goldfish and zebrafish. Both of these species are excellent teleost fish models, in which it has been demonstrated that NPY increases food consumption as an orexigenic factor and reduces locomotor activity, as is the case in mammals. This paper reviews current knowledge of NPY derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the NPY system, and examines its significance from a comparative viewpoint.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan.
| | | | | | | |
Collapse
|
34
|
Xia T, Cheng Y, Zhang Q, Xiao F, Liu B, Chen S, Guo F. S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid. Diabetes 2012; 61:2461-71. [PMID: 22787141 PMCID: PMC3447917 DOI: 10.2337/db11-1278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is well established that the central nervous system (CNS), especially the hypothalamus, plays an important role in regulating energy homeostasis and lipid metabolism. We have previously shown that hypothalamic corticotropin-releasing hormone (CRH) is critical for stimulating fat loss in response to dietary leucine deprivation. The molecular mechanisms underlying the CNS regulation of leucine deprivation-stimulated fat loss are, however, still largely unknown. Here, we used intracerebroventricular injection of adenoviral vectors to identify a novel role for hypothalamic p70 S6 kinase 1 (S6K1), a major downstream effector of the kinase mammalian target of rapamycin, in leucine deprivation stimulation of energy expenditure. Furthermore, we show that the effect of hypothalamic S6K1 is mediated by modulation of Crh expression in a melanocortin-4 receptor-dependent manner. Taken together, our studies provide a new perspective for understanding the regulation of energy expenditure by the CNS and the importance of cross-talk between nutritional control and regulation of endocrine signals.
Collapse
|
35
|
Kamijo M, Kojima K, Maruyama K, Konno N, Motohashi E, Ikegami T, Uchiyama M, Shioda S, Ando H, Matsuda K. Neuropeptide Y in tiger puffer (Takifugu rubripes): distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zoolog Sci 2012; 28:882-90. [PMID: 22132785 DOI: 10.2108/zsj.28.882] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropeptide tyrosine (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in rodents. However, the involvement of NPY in feeding behavior has not well been studied in fish. Therefore, we investigated the role of NPY in food intake using a tiger puffer (Takifugu rubripes) model. We observed the distribution of NPY-like immunoreactivity in the brain. Neuronal cell bodies containing NPY were located in the telencephalon, hypothalamus, mesencephalon, and medulla oblongata, and their nerve fibers were also found throughout the brain. We cloned two cDNAs, encoding NPYa and NPYb orthologs, respectively, from the brain, and also confirmed two genes encoding these NPYs in the Takifugu genome database. We examined the distribution of these transcripts in the brain using real-time PCR. Levels of NPYa mRNA in the telencephalon, mesencephalon and hypothalamus were much higher than in the medulla oblongata and cerebellum, whereas levels of NPYb mRNA in the medulla oblongata were higher than in other regions. We also examined prandial effects on the expression level of these transcripts in the telencephalon and hypothalamus. NPYa mRNA levels in the hypothalamus, but not in the telencephalon, obtained from fish fasted for one week were higher than those in fish that had been fed normally. The level was decreased at 2 h after feeding. Levels of NPYb mRNA were not affected by prandial conditions. These results suggest that NPY is present throughout the brain, and that NPYa, but not NPYb, in the hypothalamus is involved in the feeding regulation in the tiger puffer.
Collapse
Affiliation(s)
- Motoki Kamijo
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Canosa L, Lopez G, Scharrig E, Lesaux-Farmer K, Somoza G, Kah O, Trudeau V. Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J Comp Neurol 2011; 519:3748-65. [DOI: 10.1002/cne.22688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Kang KS, Yahashi S, Azuma M, Sakashita A, Shioda S, Matsuda K. Effect of intraperitoneal injection of curcumin on food intake in a goldfish model. J Mol Neurosci 2011; 45:172-6. [PMID: 20514526 DOI: 10.1007/s12031-010-9390-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 05/06/2010] [Indexed: 01/30/2023]
Abstract
Although spice compounds have several pharmacological and biochemical actions such as antioxidant activity, their physiological effects on neuropeptides related to feeding regulation are not well known. The aim of the present study was to identify the pharmacological activities of spice compounds on appetite regulation using a goldfish (Carassius auratus) model with emphasis on the role of neuropeptides. The spice compounds used in this study were curcumin, piperine, and ursolic acid. Goldfish were injected intraperitoneally with test solutions containing each spice or vehicle (including 10% dimethyl sulfoxide in saline), and the changes in food intake were measured every 15 min for 60 min. Among the tested spice compounds, curcumin was found to reduce cumulative food intake and was thus selected for further experiments. Pretreatment with capsaicin, a neurotoxin of afferent nerves, abolished the curcumin-induced decrease of food intake. Curcumin-induced anorexigenic action was also attenuated by intracerebroventricular injection of the corticotropin-releasing hormone (CRH) receptor antagonist α-helical CRH((9-41)). We also examined the expression levels of mRNA for CRH, which is a potent anorexigenic neuropeptide in goldfish, in the diencephalon at 1 h after treatment with curcumin, and found that they were increased. Therefore, the reduction of appetite induced by curcumin treatment in goldfish was suggested to be mediated by the vagal afferent and subsequently through the CRH/CRH receptor pathway.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Cerdá-Reverter JM, Agulleiro MJ, R RG, Sánchez E, Ceinos R, Rotllant J. Fish melanocortin system. Eur J Pharmacol 2011; 660:53-60. [DOI: 10.1016/j.ejphar.2010.10.108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 12/26/2022]
|
39
|
Kang KS, Shimizu K, Azuma M, Ui Y, Nakamura K, Uchiyama M, Matsuda K. Gonadotropin-releasing hormone II (GnRH II) mediates the anorexigenic actions of α-melanocyte-stimulating hormone (α-MSH) and corticotropin-releasing hormone (CRH) in goldfish. Peptides 2011; 32:31-5. [PMID: 20955748 DOI: 10.1016/j.peptides.2010.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/09/2010] [Accepted: 10/10/2010] [Indexed: 11/19/2022]
Abstract
Intracerebroventricular (ICV) administration of gonadotropin-releasing hormone II (GnRH II), which plays a crucial role in the regulation of reproduction in vertebrates, markedly reduces food intake in goldfish. However, the neurochemical pathways involved in the anorexigenic action of GnRH II and its interaction with other neuropeptides have not yet been identified. Alpha-melanocyte-stimulating hormone (α-MSH), corticotropin-releasing hormone (CRH) and CRH-related peptides play a major role in feeding control as potent anorexigenic neuropeptides in goldfish. However, our previous study has indicated that the GnRH II-induced anorexigenic action is not blocked by treatment with melanocortin 4 receptor (MC4R) and CRH receptor antagonists. Therefore, in the present study, we further examined whether the anorexigenic effects of α-MSH and CRH in goldfish could be mediated through the GnRH receptor neuronal pathway. ICV injection of the MC4R agonist, melanotan II (80 pmol/g body weight; BW), significantly reduced food intake, and its anorexigenic effect was suppressed by ICV pre-administration of the GnRH type I receptor antagonist, antide (100 pmol/gBW). The CRH-induced (50 pmol/gBW) anorexigenic action was also blocked by treatment with antide. ICV injection of CRH (50 pmol/gBW) induced a significant increase of the GnRH II mRNA level in the hypothalamus, while ICV injection of melanotan II (80 pmol/gBW) had no effect on the level of GnRH II mRNA. These results indicate that, in goldfish, the anorexigenic actions of α-MSH and CRH are mediated through the GnRH type I receptor-signaling pathway, and that the GnRH II system regulates feeding behavior.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Kang KS, Yahashi S, Matsuda K. Effect of the N-methyl-d-aspartate receptor antagonist on locomotor activity and cholecystokinin-induced anorexigenic action in a goldfish model. Neurosci Lett 2011; 488:238-41. [DOI: 10.1016/j.neulet.2010.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023]
|
41
|
Kang KS, Yahashi S, Azuma M, Matsuda K. The anorexigenic effect of cholecystokinin octapeptide in a goldfish model is mediated by the vagal afferent and subsequently through the melanocortin- and corticotropin-releasing hormone-signaling pathways. Peptides 2010; 31:2130-4. [PMID: 20688118 DOI: 10.1016/j.peptides.2010.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 01/18/2023]
Abstract
We have been extensively investigating the mechanisms by which neuropeptides regulate feeding behavior by using a goldfish (Carassius auratus) model. In this species, the anorexigenic action of melanocortin peptide is centrally mediated via the corticotropin-releasing hormone (CRH)/CRH receptor neuronal system, whereas sulfated cholecystokinin octapeptide (CCK-8s) is involved in the appetite regulation as a peripheral anorexigenic factor. The aim of the present study was to identify the mechanism of the anorexigenic effect of peripherally injected CCK-8s, which has not yet been identified in goldfish. Co-administration of capsaicin, a neurotoxin that destroys primary sensory afferents, at 100 nmol/g BW, blocked the anorexigenic action of intraperitoneally injected CCK-8s (100 pmol/g BW), whereas the anorexigenic action of intracerebroventricularly injected CCK-8s (5 pmol/g BW) was not blocked by co-administration of capsaicin. Pre-treatment with a specific CRH receptor antagonist, α-helical CRH((9-41)), attenuated the anorexigenic action of CCK-8s. The expression level of CRH mRNA in the diencephalic tissue of the CCK-8s-injected group was not changed, but the level of proopiomelanocortin mRNA was significantly increased at 1h after treatment. Therefore, we have identified for the first time that the reduction of appetite induced by peripherally injected CCK-8s in goldfish appears to be mediated by the vagal afferent and subsequently through the melanocortin- and corticotropin-releasing hormone-signaling pathways.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | |
Collapse
|
42
|
Matsuda K, Morimoto N, Hashimoto K, Okada R, Mochida H, Uchiyama M, Kikuyama S. Changes in the distribution of corticotropin-releasing factor (CRF)-like immunoreactivity in the larval bullfrog brain and the involvement of CRF in the cessation of food intake during metamorphosis. Gen Comp Endocrinol 2010; 168:280-6. [PMID: 20064518 DOI: 10.1016/j.ygcen.2010.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/18/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
Abstract
In submammalian vertebrates, corticotropin-releasing factor (CRF) acts as an anorexigenic neuropeptide as well as a potent stimulator of corticotropin and thyrotropin release from the pituitary. As a step for demonstrating the involvement of CRF in the feeding regulation of anuran larvae, which are known to stop feeding toward the metamorphic climax, we studied firstly the changes in the distribution of CRF-like immunoreactivity (CRF-LI) in the brain of metamorphosing bullfrog larvae. Neuronal cell bodies showing CRF-LI were invariably present in the thalamic regions throughout larval development. Cells with CRF-LI were also found in the hypothalamus. The number of cells with CRF-LI in the hypothalamus, but not in the thalamus, showed a significant increase as metamorphosis progressed. Immunoreactive nerve fibers were observed mainly in the median eminence, and became abundant as metamorphosis proceeded. The number of cells showing CRF-LI in the hypothalamus as well as the density of immunoreactive fibers in the median eminence decreased at the end of metamorphosis. Secondly, we examined the effect of intracerebroventricular (ICV) injection of CRF on the food intake in the premetamorphic larvae. ICV injection of CRF at 10 pmol/g body weight (BW) induced a significant decrease of food intake during 15 min. The CRF-induced anorexigenic action was blocked by the treatment with a CRF receptor antagonist [alpha-helical CRF(9-41)] at 100 pmol/g BW. The results suggest the involvement of CRF in the accomplishment of metamorphosis through the pituitary and in the feeding restriction that occurs during the later stages of metamorphosis through the central nervous system.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
44
|
Kojima K, Amiya N, Kamijo M, Kageyama H, Uchiyama M, Shioda S, Matsuda K. Relationship between alpha-melanocyte-stimulating hormone- and neuropeptide Y-containing neurons in the goldfish hypothalamus. Gen Comp Endocrinol 2010; 167:366-72. [PMID: 20005228 DOI: 10.1016/j.ygcen.2009.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/27/2009] [Accepted: 12/04/2009] [Indexed: 12/14/2022]
Abstract
Intracerebroventricular (ICV) injection of alpha-melanocyte-stimulating hormone (alpha-MSH) inhibits, whereas ICV injection of neuropeptide Y (NPY) stimulates food intake in the goldfish. However, there is little information about the functional relationship between alpha-MSH-induced anorexigenic and NPY-induced orexigenic actions in the goldfish. In this study we examined the relationship between alpha-MSH- and NPY-containing neurons in the goldfish hypothalamus to investigate whether these alpha-MSH- and NPY-containing neurons have direct mutual inputs. alpha-MSH- and NPY-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. In particular, alpha-MSH-containing nerve fibers or endings lay in close apposition to NPY-containing neurons in a specific region of the hypothalamus, the nucleus posterioris periventricularis (NPPv). NPY-containing nerve fibers or endings also lay in close apposition to alpha-MSH-containing neurons specifically in the interior part of the nucleus lateralis tuberis (NLTi). We also investigated the effect of ICV injection of melanocortin 4 receptor agonist (melanotan II) at 100 pmol/g body weight (BW), which is enough to suppress food intake, or NPY at 10 pmol/g BW, which is enough to enhance food intake, on expression levels of mRNA for NPY or proopiomelanocortin (POMC) in the hypothalamus. ICV injection of melanotan II and NPY induced a significant decrease in the expression levels for NPY and POMC mRNA, respectively. These observations suggest that alpha-MSH- and NPY-containing neurons share direct mutual inputs in the NPPv and the NLTi of the hypothalamus, and that alpha-MSH and NPY functionally interact or exhibit mutual inhibition to regulate feeding behavior in the goldfish.
Collapse
Affiliation(s)
- Kenji Kojima
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|
46
|
The Anorexigenic Action of the Octadecaneuropeptide (ODN) in Goldfish is Mediated Through the MC4R- and Subsequently the CRH Receptor-Signaling Pathways. J Mol Neurosci 2010; 42:74-9. [DOI: 10.1007/s12031-010-9346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
47
|
Maruyama K, Wada K, Ishiguro K, Shimakura SI, Wakasugi T, Uchiyama M, Shioda S, Matsuda K. Neuromedin U-induced anorexigenic action is mediated by the corticotropin-releasing hormone receptor-signaling pathway in goldfish. Peptides 2009; 30:2483-6. [PMID: 19699772 DOI: 10.1016/j.peptides.2009.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 01/15/2023]
Abstract
Our recent research has indicated that neuromedin U (NMU) orthologs exist in goldfish, and that NMU consisting of 21 amino acid residues (NMU-21) can potently inhibit food intake in goldfish, as is the case in rodents. However, the anorexigenic pathway of NMU-21 has not yet been clarified in this species. Corticotropin-releasing hormone (CRH), CRH-related peptides and alpha-melanocyte-stimulating hormone (alpha-MSH), which exert potent anorexigenic effects, are important mediators involved in feeding regulation in fish. We examined whether CRH or alpha-MSH mediates NMU-21-induced anorexigenic action in goldfish. We first investigated the effect of intracerebroventricular (ICV) administration of NMU-21 at 100 pmol/g body weight (BW), which is enough to suppress food intake, on expression levels of mRNA for CRH and proopiomelanocortin (POMC) in the hypothalamus. ICV-injected NMU-21 induced a significant increase in the expression level of CRH mRNA, but not that of POMC mRNA. We also examined the effects of ICV administration of the CRH 1/2 receptor antagonist, alpha-helical CRH((9-41)), and the melanocortin 4 receptor antagonist, HS024, on the anorexigenic action of ICV-injected NMU-21. The anorexigenic effect of NMU-21 was blocked by treatment with alpha-helical CRH((9-41)) at 400 pmol/g BW, but not HS024 at 200 pmol/g BW. These results suggest that the anorexigenic action of NMU-21 is mediated by the CRH 1 or 2 receptor-signaling pathway in goldfish.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsuda K, Kojima K, Shimakura SI, Takahashi A. Regulation of food intake by melanin-concentrating hormone in goldfish. Peptides 2009; 30:2060-5. [PMID: 19836661 DOI: 10.1016/j.peptides.2009.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/24/2023]
Abstract
Melanin-concentrating hormone (MCH), originally discovered in the teleost pituitary, is a hypothalamic neuropeptide involved in the regulation of body color in fish. Although MCH is also present in the mammalian brain, it has no evident function in providing pigmentation. Instead, this peptide is now recognized to be one of the key neuropeptides that act as appetite enhancers in mammals such as rodents and primates. Although there has been little information about the central action of MCH on appetite in fish, recent studies have indicated that, in goldfish, MCH acts as an anorexigenic neuropeptide, modulating the alpha-melanocyte-stimulating hormone signaling pathway through neuronal interaction. These observations indicate that there may be major differences in the mode of action of MCH between fish and mammals. This paper reviews what is currently known about the regulation of food intake by MCH in fish, especially the goldfish.
Collapse
|
49
|
Le Mével JC, Lancien F, Mimassi N, Conlon JM. Central hyperventilatory action of the stress-related neurohormonal peptides, corticotropin-releasing factor and urotensin-I in the trout Oncorhynchus mykiss. Gen Comp Endocrinol 2009; 164:51-60. [PMID: 19341734 DOI: 10.1016/j.ygcen.2009.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/03/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
The stress-related neurohormonal peptides corticotropin-releasing factor (CRF) and urotensin-I (U-I), an ortholog of mammalian urocortin 1, are widely distributed in the central nervous systems of teleost fish but little is known about their possible central neurotropic actions. In the present study, we investigated the effect of intracerebroventricular (ICV) injection of CRF and U-I (1-10pmol) on ventilatory and cardiovascular variables in our established unanaesthetized trout model. CRF and U-I produced a significant dose-dependent and long-lasting increase in the ventilatory frequency (VF) and the ventilatory amplitude (VA). Consequently the net effect of these peptides was a hyperventilatory response since the total ventilation (VTOT) was significantly elevated. However, CRF evoked a significant hyperventilatory response 5-10min sooner than that observed after ICV administration of U-I and the hyperventilatory effect of 10pmol CRF was twofold higher than that of equimolar dose of U-I. Pre-treatment of the trout with the antagonist, alpha-helical CRF(9-41), significantly reduced by about threefold the CRF-induced increase in VF, VA and VTOT. The most significant cardiovascular action of central CRF and U-I was to evoke a hypertensive response without changing the heart rate. Peripheral injection of CRF and U-I at doses of 5 and 50pmol produced no change in VF, VA or VTOT. Only a transient hypertensive response without change in heart rate was observed after the injection of the highest dose of U-I. Our results demonstrate that in a teleost fish, CRF and U-I produce a potent hyperventilatory response only when injected centrally. The two endogenous stress-related neuropeptides may play an important stimulatory role acting as neurotransmitters and/or neuromodulators in the central control of ventilatory apparatus during stress.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM U650, Laboratoire de Traitement de l'Information Médicale, IFR 148 ScInBioS, Faculté de Médecine et des Sciences de la Santé, Brest, CHU de Brest, France.
| | | | | | | |
Collapse
|
50
|
Matsuda K, Kojima K, Shimakura SI, Miura T, Uchiyama M, Shioda S, Ando H, Takahashi A. Relationship between melanin-concentrating hormone- and neuropeptide Y-containing neurons in the goldfish hypothalamus. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:3-7. [DOI: 10.1016/j.cbpa.2008.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|