1
|
Payant MA, Spencer CD, Ly NKK, Chee MJ. Inhibitory actions of melanin-concentrating hormone in the lateral septum. J Physiol 2024; 602:3545-3574. [PMID: 38874572 DOI: 10.1113/jp284845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Melanin-concentrating hormone (MCH) neurons can co-express several neuropeptides or neurotransmitters and send widespread projections throughout the brain. Notably, there is a dense cluster of nerve terminals from MCH neurons in the lateral septum (LS) that innervate LS cells by glutamate release. The LS is also a key region integrating stress- and anxiety-like behaviours, which are also emerging roles of MCH neurons. However, it is not known if or where the MCH peptide acts within the LS. We analysed the projections from MCH neurons in male and female mice anteroposteriorly throughout the LS and found spatial overlap between the distribution pattern of MCH-immunoreactive (MCH-ir) fibres with MCH receptor Mchr1 mRNA hybridization or MCHR1-ir cells. This overlap was most prominent along the ventral and lateral border of the rostral part of the LS (LSr). Most MCHR1-labelled LS neurons lay adjacent to passing MCH-ir fibres, but some MCH-ir varicosities directly contacted the soma or cilium of MCHR1-labelled LS neurons. We thus performed whole-cell patch-clamp recordings from MCHR1-rich LSr regions to determine if and how LS cells respond to MCH. Bath application of MCH to acute brain slices activated a bicuculline-sensitive chloride current that directly hyperpolarized LS cells. This MCH-mediated hyperpolarization was blocked by calphostin C, which suggested that the inhibitory actions of MCH were mediated by protein kinase C-dependent activation of GABAA receptors. Taken together, these findings define potential hotspots within the LS that may elucidate the contributions of MCH to stress- or anxiety-related feeding behaviours. KEY POINTS: Melanin-concentrating hormone (MCH) neurons have dense nerve terminals within the lateral septum (LS), a key region underlying stress- and anxiety-like behaviours that are emerging roles of the MCH system, but the function of MCH in the LS is not known. We found spatial overlap between MCH-immunoreactive fibres, Mchr1 mRNA, and MCHR1 protein expression along the lateral border of the LS. Within MCHR1-rich regions, MCH directly inhibited LS cells by increasing chloride conductance via GABAA receptor activation in a protein kinase C-dependent manner. Electrophysiological MCH effects in brain slices have been elusive, and few studies have described the mechanisms of MCH action. Our findings demonstrated, to our knowledge, the first description of MCHR1 Gq-coupling in brain slices, which was previously predicted in cell or primary culture models only. Together, these findings defined hotspots and mechanistic underpinnings for MCH effects such as in feeding and anxiety-related behaviours.
Collapse
Affiliation(s)
- Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - C Duncan Spencer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Nikita K Koziel Ly
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
3
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
4
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
5
|
Beekly BG, Rupp A, Burgess CR, Elias CF. Fast neurotransmitter identity of MCH neurons: Do contents depend on context? Front Neuroendocrinol 2023; 70:101069. [PMID: 37149229 PMCID: PMC11190671 DOI: 10.1016/j.yfrne.2023.101069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) neurons participate in many fundamental neuroendocrine processes. While some of their effects can be attributed to MCH itself, others appear to depend on co-released neurotransmitters. Historically, the subject of fast neurotransmitter co-release from MCH neurons has been contentious, with data to support MCH neurons releasing GABA, glutamate, both, and neither. Rather than assuming a position in that debate, this review considers the evidence for all sides and presents an alternative explanation: neurochemical identity, including classical neurotransmitter content, is subject to change. With an emphasis on the variability of experimental details, we posit that MCH neurons may release GABA and/or glutamate at different points according to environmental and contextual factors. Through the lens of the MCH system, we offer evidence that the field of neuroendocrinology would benefit from a more nuanced and dynamic interpretation of neurotransmitter identity.
Collapse
Affiliation(s)
- B G Beekly
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States.
| | - A Rupp
- Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| | - C R Burgess
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - C F Elias
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Elizabeth W. Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
He X, Tian M, Wang W, Feng Y, Li Z, Wang J, Song Y, Zhang J, Liu D. Identification of Candidate Genes for Min Pig Villi Hair Traits by Genome-Wide Association of Copy Number Variation. Vet Sci 2023; 10:vetsci10050307. [PMID: 37235390 DOI: 10.3390/vetsci10050307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Min pig is a famous native pig breed in northeast China, which has the special genetic character of villi hair growth in cold seasons. At present, little research has focused on the genetic mechanism of villi hair growth in Min pigs. Copy number variations (CNVs) are a type of variant that may influence many traits. In this study, we first investigated the phenotype of Large White × Min pigs' F2 pig villi hair in detail and then performed a CNV-based genome-wide association study (GWAS) between CNVs and pig villi hair appearance. Finally, a total number of 15 significant CNVRs were found to be associated with Min pig villi hair. The most significant CNVR was located on chromosome 1. Nearest gene annotation analysis indicated that the pig villi hair traits may be associated with the biological process of the G-protein-coupled receptor signaling pathway. QTL overlapping analysis found that among the CNVRs, 14 CNVRs could be co-located with known QTLs. Some genes such as MCHR2, LTBP2, and GFRA2 may be candidate genes for pig villi traits and are worth further study. Our study may provide a basic reference for the selection and breeding of cold-resistant pigs and outdoor breeding.
Collapse
Affiliation(s)
- Xinmiao He
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Yanzhong Feng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Zhongqiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jiahui Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Yan Song
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China
| | - Jinfeng Zhang
- Harbin Academy of Agricultural Sciences, Harbin 150029, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
7
|
Ruiz-Viroga V, de Ceglia M, Morelli L, Castaño EM, Calvo EB, Suárez J, Rodríguez de Fonseca F, Galeano P, Lagos P. Acute intrahippocampal administration of melanin-concentrating hormone impairs memory consolidation and decreases the expression of MCHR-1 and TrkB receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110703. [PMID: 36565982 DOI: 10.1016/j.pnpbp.2022.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interest in the role of melanin-concentrating hormone (MCH) in memory processes has increased in recent years, with some studies reporting memory-enhancing effects, while others report deleterious effects. Due to these discrepancies, this study seeks to provide new evidence about the role of MCH in memory consolidation and its relation with BDNF/TrkB system. To this end, in the first experiment, increased doses of MCH were acutely administered in both hippocampi to groups of male rats (25, 50, 200, and 500 ng). Microinjections were carried out immediately after finishing the sample trial of two hippocampal-dependent behavioral tasks: the Novel Object Recognition Test (NORT) and the modified Elevated Plus Maze (mEPM) test. Results indicated that a dose of 200 ng of MCH or higher impaired memory consolidation in both tasks. A second experiment was performed in which a dose of 200 ng of MCH was administered alone or co-administered with the MCHR-1 antagonist ATC-0175 at the end of the sample trial in the NORT. Results showed that MCH impaired memory consolidation, while the co-administration with ATC-0175 reverted this detrimental effect. Moreover, MCH induced a significant decrease in hippocampal MCHR-1 and TrkB expression with no modification in the expression of BDNF and NMDA receptor subunits NR1, NR2A, and NR2B. These results suggest that MCH in vivo elicits pro-amnesic effects in the rat hippocampus by decreasing the availability of its receptor and TrkB receptors, thus linking both endogenous systems to memory processes.
Collapse
Affiliation(s)
- Vicente Ruiz-Viroga
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay
| | - Marialuisa de Ceglia
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo M Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Eduardo Blanco Calvo
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Campus de Teatinos S/N, Málaga 29071, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga 29071, Spain.
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Av. Carlos Haya 82, Málaga 29010, Spain.
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir (IIBBA-CONICET), Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo ZP11800, Uruguay.
| |
Collapse
|
8
|
Bell SM, Evans JM, Evans KM, Tsai KL, Noorai RE, Famula TR, Holle DM, Clark LA. Congenital idiopathic megaesophagus in the German shepherd dog is a sex-differentiated trait and is associated with an intronic variable number tandem repeat in Melanin-Concentrating Hormone Receptor 2. PLoS Genet 2022; 18:e1010044. [PMID: 35271580 PMCID: PMC8912139 DOI: 10.1371/journal.pgen.1010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Congenital idiopathic megaesophagus (CIM) is a gastrointestinal (GI) motility disorder of dogs in which reduced peristaltic activity and dilation of the esophagus prevent the normal transport of food into the stomach. Affected puppies regurgitate meals and water, fail to thrive, and experience complications such as aspiration pneumonia that may necessitate euthanasia. The German shepherd dog (GSD) has the highest disease incidence, indicative of a genetic predisposition. Here, we discover that male GSDs are twice as likely to be affected as females and show that the sex bias is independent of body size. We propose that female endogenous factors (e.g., estrogen) are protective via their role in promoting relaxation of the sphincter between the esophagus and stomach, facilitating food passage. A genome-wide association study for CIM revealed an association on canine chromosome 12 (P-val = 3.12x10-13), with the lead SNPs located upstream or within Melanin-Concentrating Hormone Receptor 2 (MCHR2), a compelling positional candidate gene having a role in appetite, weight, and GI motility. Within the first intron of MCHR2, we identified a 33 bp variable number tandem repeat (VNTR) containing a consensus binding sequence for the T-box family of transcription factors. Across dogs and wolves, the major allele includes two copies of the repeat, whereas the predominant alleles in GSDs have one or three copies. The single-copy allele is strongly associated with CIM (P-val = 1.32x10-17), with homozygosity for this allele posing the most significant risk. Our findings suggest that the number of T-box protein binding motifs may correlate with MCHR2 expression and that an imbalance of melanin-concentrating hormone plays a role in CIM. We describe herein the first genetic factors identified in CIM: sex and a major locus on chromosome 12, which together predict disease state in the GSD with greater than 75% accuracy. German shepherd dogs (GSDs) are predisposed to an inherited motility disorder of the esophagus, termed congenital idiopathic megaesophagus (CIM), in which swallowing is ineffective and the esophagus is enlarged. Affected puppies are unable to properly pass food into their stomachs and consequently regurgitate their meals and show a failure to thrive, often leading to euthanasia. Here, we discovered that male GSDs are affected at a ratio of almost 2-to-1 over females, suggesting a protective biological advantage in females. In humans, estrogen is thought to play a role in the male predominance of esophageal disorders like reflux esophagitis and esophageal cancer. In a genome-wide scan, we identified an association with CIM on chromosome 12 and, within this region, a repetitive sequence in MCHR2. This gene encodes a receptor for melanin-concentrating hormone, a signaling molecule that is linked to appetite, weight, and gut motility. Together, sex and the MCHR2 repeat sequence accurately predict affection status in over 75% of dogs, and a genetic test is now available to facilitate breeding decisions aimed at reducing disease incidence.
Collapse
Affiliation(s)
- Sarah M. Bell
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Jacquelyn M. Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katy M. Evans
- The Seeing Eye Inc., Morristown, New Jersey, United States of America
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Kate L. Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, South Carolina, United States of America
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Dolores M. Holle
- The Seeing Eye Inc., Morristown, New Jersey, United States of America
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat Neurosci 2022; 25:61-71. [PMID: 34980924 PMCID: PMC8741735 DOI: 10.1038/s41593-021-00984-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Hypothalamic melanin-concentrating hormone (MCH) polypeptide contributes to regulating energy homeostasis, sleep, and memory, though the mechanistic bases of its effects are unknown. Here, in mice, we uncover the physiological mechanism underlying the functional role of MCH signaling in projections to the dorsolateral septum (dLS), a region involved in routing hippocampal firing rhythms and encoding spatial memory based on such rhythms. Firing activity within the dLS in response to dorsal CA3 (dCA3) excitation is limited by strong feed-forward inhibition (FFI). We find that MCH synchronizes dLS neuronal firing with its dCA3 inputs by enhancing GABA release, which subsequently reduces the FFI and augments dCA3 excitatory input strength, both via presynaptic mechanisms. At the functional level, our data reveal a role for MCH signaling in the dLS in facilitating spatial memory. These findings support a model in which peptidergic signaling within the dLS modulates dorsal hippocampal output and supports memory encoding.
Collapse
|
10
|
Ruiz-Viroga V, Urbanavicius J, Torterolo P, Lagos P. In vivo uptake of a fluorescent conjugate of melanin-concentrating hormone in the rat brain. J Chem Neuroanat 2021; 114:101959. [PMID: 33848617 DOI: 10.1016/j.jchemneu.2021.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide synthesized by posterior hypothalamic and incerto-hypothalamic neurons that project throughout the central nervous system. The MCHergic system modulates several important functions such as feeding behavior, mood and sleep. MCH exerts its biological functions through interaction with the MCHR-1 receptor, the only functional receptor present in rodents. The internalization process of MCHR-1 triggered by MCH binding was described in vitro in non-neuronal heterologous systems with over-expression of MCHR-1. Reports of in vivo MCHR-1 internalization dynamics are scarce, however, this is an important process to explore based on the critical functions of the MCHergic system. We had previously determined that 60 min after intracerebroventricular (i.c.v.) microinjections of MCH conjugated with fluorophore rhodamine (R-MCH), the dorsal and median raphe nucleus presented R-MCH positive labeled neurons. In the present work, we further studied the in vivo uptake process focusing on the distribution and time-dependent pattern of R-MCH positive cells 10, 20 and 60 min (T10, T20 and T60, respectively) after i.c.v. microinjection of R-MCH. We also explored this uptake process to see whether it was receptor- and clathrin-dependent and examined the phenotype of R-MCH positive cells and their proximity to MCHergic fibers. We found a great number of R-MCH positive cells with high fluorescence intensity in the lateral septum, nucleus accumbens and hippocampus at T20 and T60 (but not at T10), while a lower number with low intensity was observed in the dorsal raphe nucleus. At T20, in rats pre-treated with a MCHR-1 antagonist (ATC-0175) or with phenylarsine oxide (PAO), a clathrin endocytosis inhibitor, a robust decrease (> 50 %) of R-MCH uptake occurred in these structures. The R-MCH positive cells were identified as neurons (NeuN positive, GFAP negative) and some MCHergic fibers run in the vicinities of them. We concluded that neurons localized at structures that were close to the ventricular surfaces could uptake R-MCH in vivo through a receptor-dependent and clathrin-mediated process. Our results support volume transmission of MCH through the cerebrospinal fluid to reach distant targets. Finally, we propose that R-MCH would be an effective tool to study MCH-uptake in vivo.
Collapse
Affiliation(s)
- Vicente Ruiz-Viroga
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
11
|
Oh SG, Hwang YG, Lee HS. LIM homeobox 6 (Lhx6)+ neurons in the ventral zona incerta project to the core portion of the lateral supramammillary nucleus in the rat. Brain Res 2020; 1748:147125. [PMID: 32931819 DOI: 10.1016/j.brainres.2020.147125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
There was a recent report suggesting that LIM homeobox 6 (Lhx6)+ GABA-releasing neurons of the ventral zona incerta (ZI) promote sleep. We demonstrated in the previous study that Lhx6+ ZI neurons are activated during paradoxical sleep (PS) hypersomnia which was induced by 48-hour PS deprivation, implying their roles in the control of PS like melanin-concentrating hormone (MCH) cells. Since the core portion of the lateral supramammillary nucleus (SUMl) is the major hypothalamic area activating the dentate gyrus as well as other limbic cortices during PS, we examined in the present study whether Lhx6+ ZI cells provide efferent projections to the SUMl, using the retrograde-tracing method. The majority of Lhx6+ neurons projecting to the SUMl occupied the ventral border (or ventral one-third) of the ventral ZI. Based on the quantitative analysis, the mean number of retrogradely-labeled Lhx6+ neurons was comparable to that of retrogradely-labeled MCH cells in the ZI. However, the total (i.e., single- plus double-labeled) number of Lhx6+ cells was approximately three times larger than that of MCH cells in the ZI. Thus, the proportion (about 7.8%) of retrogradely-labeled Lhx6+ neurons over the total Lhx6+ cells was approximately one-third of the percentage (about 20.9%) of retrogradely-labeled MCH neurons over the total MCH cells. On the other hand, a combination of retrogradely-labeled, Lhx6 and MCH cells occupied approximately 43.7% of the total retrogradely-labeled neurons in the ventral ZI. The present observations suggested that Lhx6+ neurons in the ventral ZI might play an important role in the regulation of PS, partly via the neural network involving the SUMl.
Collapse
Affiliation(s)
- Sung-Gyoon Oh
- Dept of Anatomy, School of Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Young-Gi Hwang
- Dept of Anatomy, School of Medicine, Konkuk University, 05029 Seoul, Republic of Korea
| | - Hyun-Sook Lee
- Dept of Anatomy, School of Medicine, Konkuk University, 05029 Seoul, Republic of Korea; Research Institute of Medical Science, School of Medicine, Konkuk University, 05029 Seoul, Republic of Korea.
| |
Collapse
|
12
|
Chang GQ, Karatayev O, Boorgu DSSK, Leibowitz SF. Third Ventricular Injection of CCL2 in Rat Embryo Stimulates CCL2/CCR2 Neuroimmune System in Neuroepithelial Radial Glia Progenitor Cells: Relation to Sexually Dimorphic, Stimulatory Effects on Peptide Neurons in Lateral Hypothalamus. Neuroscience 2020; 443:188-205. [PMID: 31982472 PMCID: PMC7681774 DOI: 10.1016/j.neuroscience.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Clinical and animal studies show maternal alcohol consumption during pregnancy causes in offspring persistent alterations in neuroimmune and neurochemical systems known to increase alcohol drinking and related behaviors. Studies in lateral hypothalamus (LH) demonstrate in adolescent offspring that maternal oral administration of ethanol stimulates the neuropeptide, melanin-concentrating hormone (MCH), together with the inflammatory chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 which are increased in most MCH neurons. These effects, consistently stronger in females than males, are detected in embryos, not only in LH but hypothalamic neuroepithelium (NEP) along the third ventricle where neurons are born and CCL2 is stimulated within radial glia progenitor cells and their laterally projecting processes that facilitate MCH neuronal migration toward LH. With ethanol's effects similarly produced by maternal peripheral CCL2 administration and blocked by CCR2 antagonist, we tested here using in utero intracerebroventricular (ICV) injections whether CCL2 acts locally within the embryonic NEP. After ICV injection of CCL2 (0.1 µg/µl) on embryonic day 14 (E14) when neurogenesis peaks, we observed in embryos just before birth (E19) a significant increase in endogenous CCL2 within radial glia cells and their processes in NEP. These auto-regulatory effects, evident only in female embryos, were accompanied by increased density of CCL2 and MCH neurons in LH, more strongly in females than males. These results support involvement of embryonic CCL2/CCR2 neuroimmune system in radial glia progenitor cells in mediating sexually dimorphic effects of maternal challenges such as ethanol on LH MCH neurons that colocalize CCL2 and CCR2.
Collapse
|
13
|
Pascovich C, Lagos P, Urbanavicius J, Devera A, Rivas M, Costa A, López Hill X, Falconi A, Scorza C, Torterolo P. Melanin-concentrating hormone (MCH) in the median raphe nucleus: Fibers, receptors and cellular effects. Peptides 2020; 126:170249. [PMID: 31911169 DOI: 10.1016/j.peptides.2019.170249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
Serotonergic neurons of the median raphe nucleus (MnR) and hypothalamic melanin-concentrating hormone (MCH)-containing neurons, have been involved in the control of REM sleep and mood. In the present study, we examined in rats and cats the anatomical relationship between MCH-containing fibers and MnR neurons, as well as the presence of MCHergic receptors in these neurons. In addition, by means of in vivo unit recording in urethane anesthetized rats, we determined the effects of MCH in MnR neuronal firing. Our results showed that MCH-containing fibers were present in the central and paracentral regions of the MnR. MCHergic fibers were in close apposition to serotonergic and non-serotonergic neurons. By means of an indirect approach, we also analyzed the presence of MCHergic receptors within the MnR. Accordingly, we microinjected MCH conjugated with the fluorophore rhodamine (R-MCH) into the lateral ventricle. R-MCH was internalized into serotonergic and non-serotonergic MnR neurons; some of these neurons were GABAergic. Furthermore, we determined that intracerebroventricular administration of MCH induced a significant decrease in the firing rate of 53 % of MnR neurons, while the juxtacellular administration of MCH reduced the frequency of discharge in 67 % of these neurons. Finally, the juxtacellular administration of the MCH-receptor antagonist ATC-0175 produced an increase in the firing rate in 78 % of MnR neurons. Hence, MCH produces a strong regulation of MnR neuronal activity. We hypothesize that MCHergic modulation of the MnR neuronal activity may be involved in the promotion of REM sleep and in the pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Claudia Pascovich
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Andrea Devera
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costa
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ximena López Hill
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Atilio Falconi
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
15
|
Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, DeNardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020; 29:e12976. [DOI: 10.1111/jsr.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hyun‐Sook Lee
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
- Department of Anatomy School of Medicine Konkuk University Seoul Korea
- Research Institute of Medical Science School of Medicine Konkuk University Seoul Korea
| | - Risa Yamazaki
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Dianru Wang
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Sébastien Arthaud
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Patrice Fort
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| | - Laura A. DeNardo
- Department of Physiology University of California LA Los Angeles CA USA
| | - Pierre‐Hervé Luppi
- Centre de Recherche en Neurosciences de Lyon (CRNL) Université Claude Bernard Lyon 1 CNRS UMR5292 INSERM U1028 Bron France
| |
Collapse
|
16
|
Niño-Rivero S, Torterolo P, Lagos P. Melanin-concentrating hormone receptor-1 is located in primary cilia of the dorsal raphe neurons. J Chem Neuroanat 2019; 98:55-62. [DOI: 10.1016/j.jchemneu.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
17
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
18
|
Lippert J, Young P, Gross C, Meuth SG, Dräger B, Schirmacher A, Heidbreder A. Specific T-cell activation in peripheral blood and cerebrospinal fluid in central disorders of hypersomnolence. Sleep 2018; 42:5185207. [DOI: 10.1093/sleep/zsy223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Julian Lippert
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Peter Young
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Catharina Gross
- Clinic of Neurology with Institute for Translational Neurology, University of Muenster, Germany
| | - Sven G Meuth
- Clinic of Neurology with Institute for Translational Neurology, University of Muenster, Germany
| | - Bianca Dräger
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Anja Schirmacher
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| | - Anna Heidbreder
- Institute for Sleep Medicine and Neuromuscular Disorders, University of Muenster, Germany
| |
Collapse
|
19
|
Suyama S, Yada T. New insight into GABAergic neurons in the hypothalamic feeding regulation. J Physiol Sci 2018; 68:717-722. [PMID: 30003408 PMCID: PMC10717766 DOI: 10.1007/s12576-018-0622-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Several lines of study have suggested that GABA in the hypothalamic feeding center plays a role in promoting food intake. Recent studies revealed that not only NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) that co-express GABA but also other GABAergic neurons act as an orexigenic. Here, we review the progress of studies on hypothalamic GABAergic neurons distributed in ARC, dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH). Three advanced technologies have been applied and greatly contributed to the recent progress. Optogenetic (and chemogenetic) approaches map input and output pathways of particular subpopulations of GABAergic neurons. In vivo Ca2+ imaging using GRIN lens and GCaMP can correlate the activity of GABAergic neuron subpopulations with feeding behavior. Single-cell RNA-seq approach clarifies precise transcriptional profiles of GABAergic neuron subpopulations. These approaches have shown diversity of GABAergic neurons and the subpopulation-dependent role in feeding regulation.
Collapse
Affiliation(s)
- Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
- Kansai Electric Power Medical Research Institute, 1-5-6 Minatojimaminamimachi, Chuou-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
20
|
Microinjection of the melanin-concentrating hormone into the sublaterodorsal tegmental nucleus inhibits REM sleep in the rat. Neurosci Lett 2016; 630:66-69. [DOI: 10.1016/j.neulet.2016.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022]
|
21
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Ubaldi M, Giordano A, Severi I, Li H, Kallupi M, de Guglielmo G, Ruggeri B, Stopponi S, Ciccocioppo R, Cannella N. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S. Biol Psychiatry 2016; 79:452-62. [PMID: 26055195 DOI: 10.1016/j.biopsych.2015.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/04/2015] [Accepted: 04/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. METHODS Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. RESULTS Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. CONCLUSIONS Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Marsida Kallupi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | | | - Barbara Ruggeri
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino
| | | | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany..
| |
Collapse
|
23
|
Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015; 9:475. [PMID: 26733789 PMCID: PMC4681773 DOI: 10.3389/fnins.2015.00475] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 12/05/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Jessika Urbanavicius
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Luciana Benedetto
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Claudia Pascovich
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Ximena López-Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and University of California, Los Angeles School of Medicine Los Angeles, CA, USA
| | - Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Hospital de Clínicas, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
24
|
Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, Léger L, Fort P. Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res 2015; 298:100-10. [PMID: 26529469 DOI: 10.1016/j.bbr.2015.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 12/23/2022]
Abstract
Recent reports support a key role of tuberal hypothalamic neurons secreting melanin concentrating-hormone (MCH) in the promotion of Paradoxical Sleep (PS). Controversies remain concerning their concomitant involvement in Slow-Wave Sleep (SWS). We studied the effects of their selective loss achieved by an Ataxin 3-mediated ablation strategy to decipher the contribution of MCH neurons to SWS and/or PS. Polysomnographic recordings were performed on male adult transgenic mice expressing Ataxin-3 transgene within MCH neurons (MCH(Atax)) and their wild-type littermates (MCH(WT)) bred on two genetic backgrounds (FVB/N and C57BL/6). Compared to MCH(WT) mice, MCH(Atax) mice were characterized by a significant drop in MCH mRNAs (-70%), a partial loss of MCH-immunoreactive neurons (-30%) and a marked reduction in brain density of MCH-immunoreactive fibers. Under basal condition, such MCH(Atax) mice exhibited higher PS amounts during the light period and a pronounced SWS fragmentation without any modification of SWS quantities. Moreover, SWS and PS rebounds following 4-h total sleep deprivation were quantitatively similar in MCH(Atax)vs. MCH(WT) mice. Additionally, MCH(Atax) mice were unable to consolidate SWS and increase slow-wave activity (SWA) in response to this homeostatic challenge as observed in MCH(WT) littermates. Here, we show that the partial loss of MCH neurons is sufficient to disturb the fine-tuning of sleep. Our data provided new insights into their contribution to subtle process managing SWS quality and its efficiency rather than SWS quantities, as evidenced by the deleterious impact on two powerful markers of sleep depth, i.e., SWS consolidation/fragmentation and SWA intensity under basal condition and under high sleep pressure.
Collapse
Affiliation(s)
- Christophe Varin
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Sébastien Arthaud
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Denise Salvert
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Nadine Gay
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Paul-Antoine Libourel
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Pierre-Hervé Luppi
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Lucienne Léger
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France
| | - Patrice Fort
- Neuroscience Research Center of Lyon (CRNL), CNRS UMR 5292, INSERM U1028, SLEEP Team, Lyon, France; Université Claude Bernard, Lyon 1, Lyon, France.
| |
Collapse
|
25
|
Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 2015; 35:3644-51. [PMID: 25716862 DOI: 10.1523/jneurosci.4187-14.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Melanin-concentrating hormone (MCH) regulates vital physiological functions, including energy balance and sleep. MCH cells are thought to be GABAergic, releasing GABA to inhibit downstream targets. However, there is little experimental support for this paradigm. To better understand the synaptic mechanisms of mouse MCH neurons, we performed neuroanatomical mapping and characterization followed by optogenetics to test their functional connectivity at downstream targets. Synaptophysin-mediated projection mapping showed that the lateral septal nucleus (LS) contained the densest accumulation of MCH nerve terminals. We then expressed channel rhodopsin-2 in MCH neurons and photostimulated MCH projections to determine their effect on LS activity. Photostimulation of MCH projections evoked a monosynaptic glutamate release in the LS. Interestingly, this led to a feedforward inhibition that depressed LS firing by a robust secondary GABA release. This study presents a circuit analysis between MCH and LS neurons and confirms their functional connection via monosynaptic and polysynaptic pathways. Our findings indicate that MCH neurons are not exclusively GABAergic and reveal a glutamate-mediated, feedforward mechanism that inhibits LS cells.
Collapse
|
26
|
Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P. Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Res 2015; 1598:114-28. [DOI: 10.1016/j.brainres.2014.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/27/2022]
|
27
|
Haemmerle CAS, Campos AMP, Bittencourt JC. Melanin-concentrating hormone inputs to the nucleus accumbens originate from distinct hypothalamic sources and are apposed to GABAergic and cholinergic cells in the Long-Evans rat brain. Neuroscience 2015; 289:392-405. [PMID: 25613687 DOI: 10.1016/j.neuroscience.2015.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 01/12/2023]
Abstract
Melanin-concentrating hormone [MCH] is a neuropeptide that modulates several behaviors, such as feeding and reward. Because the hedonic and rewarding features of a food also influence feeding behavior, the nucleus accumbens [Acb] has been highlighted as a key area integrating these roles. Functional data confirm that MCH acts on a subdivision of the Acb; however, considering the importance of finding anatomical and neurochemical data that correlate the previously demonstrated function of MCH, we delineated this investigation based on the following points: (1) Is there a pattern of innervation by MCH fibers regarding the subregions within the Acb? (2) Specifically, which hypothalamic nuclei synthesize MCH and innervate the Acb? (3) Finally, what are the neurochemical identities of the accumbal neurons innervated by MCH inputs? We examined the MCH immunoreactivity [MCH-ir] in the Acb in rat brains using the peroxidase technique. Additionally, after injecting retrograde neuronal tracer [Fluoro-Gold® - FG®] into subdivisions of the Acb [shell or core], we mapped single- or double-labeled cells. Moreover, using a double immunoperoxidase protocol, we investigated the MCH-ir fibers for gamma-aminobutyric acid [GABA]-ir and choline acetyltransferase [ChAT]-ir cells in the shell subdivision of the Acb [AcbSh]. We found that the MCH-ir fibers preferentially innervate the medial AcbSh, particularly the septal pole. This innervation originated from the incerto-hypothalamic area [IHy], internuclear area, lateral hypothalamic area, perifornical area, periventricular nucleus and posterior hypothalamus. Moreover, the IHy has the highest relationship between double/single retrogradely labeled cells [n=5.33±0.66/16±0.93, i.e. 33.33%] in the whole hypothalamus. Furthermore, our data suggest that MCH-ir fibers are in apposition to GABAergic and cholinergic cells in the AcbSh. Therefore, we provide anatomical support to the ongoing functional studies investigating the relation among the hypothalamus, MCH transmission into the Acb and the involvement of known neuronal phenotypes within the AcbSh.
Collapse
Affiliation(s)
- C A S Haemmerle
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - A M P Campos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - J C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil; Center for Neuroscience and Behavior, Institute of Psychology, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
28
|
Parks GS, Olivas ND, Ikrar T, Sanathara NM, Wang L, Wang Z, Civelli O, Xu X. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal. J Physiol 2014; 592:2183-96. [PMID: 24639485 DOI: 10.1113/jphysiol.2013.268771] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Melanin-concentrating hormone (MCH)-producing neurons are known to regulate a wide variety of physiological functions such as feeding, metabolism, anxiety and depression, and reward. Recent studies have revealed that MCH neurons receive projections from several wake-promoting brain regions and are integral to the regulation of rapid eye movement (REM) sleep. Here, we provide evidence in both rats and mice that MCH neurons express histamine-3 receptors (H3R), but not histamine-1 (H1R) or histamine-2 (H2R) receptors. Electrophysiological recordings in brain slices from a novel line of transgenic mice that specifically express the reporter ZsGreen in MCH neurons show that histamine strongly inhibits MCH neurons, an effect which is TTX insensitive, and blocked by the intracellular presence of GDP-β-S. A specific H3R agonist, α-methylhistamine, mimicks the inhibitory effects of histamine, and a specific neutral H3R antagonist, VUF 5681, blocks this effect. Tertiapin Q (TPQ), a G protein-dependent inwardly rectifying potassium (GIRK) channel inhibitor, abolishes histaminergic inhibition of MCH neurons. These results indicate that histamine directly inhibits MCH neurons through H3R by activating GIRK channels and suggest that that inhibition of the MCH system by wake-active histaminergic neurons may be responsible for silencing MCH neurons during wakefulness and thus may be directly involved in the regulation of sleep and arousal.
Collapse
Affiliation(s)
- Gregory S Parks
- Department of Pharmacology, University of California Irvine, Irvine, CA, 92697, USA Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Nicholas D Olivas
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Taruna Ikrar
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Nayna M Sanathara
- Department of Pharmacology, University of California Irvine, Irvine, CA, 92697, USA
| | - Lien Wang
- Department of Pharmacology, University of California Irvine, Irvine, CA, 92697, USA
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, CA, 92697, USA
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, CA, 92697, USA Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92697, USA Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
29
|
MacNeil DJ. The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol (Lausanne) 2013; 4:49. [PMID: 23626585 PMCID: PMC3631741 DOI: 10.3389/fendo.2013.00049] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/09/2013] [Indexed: 01/25/2023] Open
Abstract
Extensive studies in rodents with melanin-concentrating hormone (MCH) have demonstrated that the neuropeptide hormone is a potent orexigen. Acutely, MCH causes an increase in food intake, while chronically it leads to increased weight gain, primarily as an increase in fat mass. Multiple knockout mice models have confirmed the importance of MCH in modulating energy homeostasis. Animals lacking MCH, MCH-containing neurons, or the MCH receptor all are resistant to diet-induced obesity. These genetic and pharmacologic studies have prompted a large effort to identify potent and selective MCH receptor antagonists, initially as tool compounds to probe pharmacology in models of obesity, with an ultimate goal to identify novel anti-obesity drugs. In animal models, MCH antagonists have consistently shown efficacy in reducing food intake acutely and inhibiting body-weight gain when given chronically. Five compounds have proceeded into clinical testing. Although they were reported as well-tolerated, none has advanced to long-term efficacy and safety studies.
Collapse
Affiliation(s)
- Douglas J. MacNeil
- Department of In Vitro Pharmacology, Merck Research LaboratoriesKenilworth, NJ, USA
- *Correspondence: Douglas J. MacNeil, Department of In Vitro Pharmacology, Merck Research Laboratories, K15-3-309D, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA. e-mail:
| |
Collapse
|
30
|
Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 2011; 59:686-94. [PMID: 21740944 DOI: 10.1016/j.neuint.2011.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/16/2011] [Accepted: 06/22/2011] [Indexed: 11/15/2022]
Abstract
Rapid eye movement (REM) sleep rebound following REM deprivation using the platform-on-water method is characterized by increased time spent in REM sleep and activation of melanin-concentrating hormone (MCH) expressing neurons. Orexinergic neurons discharge reciprocally to MCH-ergic neurons across the sleep-wake cycle. However, the relation between REM architecture and the aforementioned neuropeptides remained unclear. MCH-ergic neurons can be divided into two subpopulations regarding their cocaine- and amphetamine-regulated transcript (CART) immunoreactivity, and among them the activation of CART-immunoreactive subpopulation is higher during the REM rebound. However, the possible role of stress in this association has not been elucidated. Our aims were to analyze the relationship between the architecture of REM rebound and the activation of hypothalamic MCH-ergic and orexinergic neurons. We also intended to separate the effect of stress and REM deprivation on the subsequent activation of subpopulations of MCH-ergic neurons. In order to detect neuronal activity, we performed MCH/cFos and orexin/cFos double immunohistochemistry on home cage, sleep deprived and sleep-rebound rats using the platform-on-water method with small and large (stress control) platforms. Furthermore, REM architecture was analyzed and a triple MCH/CART/cFos immunohistochemistry was also performed on the rebound groups in the same animals. We found that the activity of MCH- and orexin-immunoreactive neurons during REM rebound was positively and negatively correlated with the number of REM bouts, respectively. A negative reciprocal correlation was also found between the activation of MCH- and orexin-immunoreactive neurons during REM rebound. Furthermore, difference between the activation of CART-immunoreactive (CART-IR) and non-CART-immunoreactive MCH-ergic neuron subpopulations was found only after selective REM deprivation, it was absent in the large platform (stress control) rebound group. These results support the role of CART-IR subpopulation of MCH-ergic neurons and the inverse relationship of MCH and orexin in the regulation of REM sleep after REM sleep deprivation.
Collapse
Affiliation(s)
- Tamas Kitka
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sears RM, Liu RJ, Narayanan NS, Sharf R, Yeckel MF, Laubach M, Aghajanian GK, DiLeone RJ. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J Neurosci 2010; 30:8263-73. [PMID: 20554878 PMCID: PMC2907886 DOI: 10.1523/jneurosci.5858-09.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/23/2010] [Accepted: 05/01/2010] [Indexed: 11/21/2022] Open
Abstract
The lateral hypothalamus and the nucleus accumbens shell (AcbSh) are brain regions important for food intake. The AcbSh contains high levels of receptor for melanin-concentrating hormone (MCH), a lateral hypothalamic peptide critical for feeding and metabolism. MCH receptor (MCHR1) activation in the AcbSh increases food intake, while AcbSh MCHR1 blockade reduces feeding. Here biochemical and cellular mechanisms of MCH action in the rodent AcbSh are described. A reduction of phosphorylation of GluR1 at serine 845 (pSer(845)) is shown to occur after both pharmacological and genetic manipulations of MCHR1 activity. These changes depend upon signaling through G(i/o), and result in decreased surface expression of GluR1-containing AMPA receptors (AMPARs). Electrophysiological analysis of medium spiny neurons (MSNs) in the AcbSh revealed decreased amplitude of AMPAR-mediated synaptic events (mEPSCs) with MCH treatment. In addition, MCH suppressed action potential firing MSNs through K(+) channel activation. Finally, in vivo recordings confirmed that MCH reduces neuronal cell firing in the AcbSh in freely moving animals. The ability of MCH to reduce cell firing in the AcbSh is consistent with a general model from other pharmacological and electrophysiological studies whereby reduced AcbSh neuronal firing leads to food intake. The current work integrates the hypothalamus into this model, providing biochemical and cellular mechanisms whereby metabolic and limbic signals converge to regulate food intake.
Collapse
Affiliation(s)
- Robert M. Sears
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut 06508
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
| | - Rong-Jian Liu
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Nandakumar S. Narayanan
- The John B. Pierce Laboratory, New Haven, Connecticut 06519
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Ruth Sharf
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Mark F. Yeckel
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Mark Laubach
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
- The John B. Pierce Laboratory, New Haven, Connecticut 06519
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - George K. Aghajanian
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Ralph J. DiLeone
- Department of Psychiatry, Ribicoff Research Facilities, Yale University School of Medicine, New Haven, Connecticut 06508
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06520
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
32
|
Veldhuis JD, Bowers CY. Integrating GHS into the Ghrelin System. INTERNATIONAL JOURNAL OF PEPTIDES 2010; 2010:879503. [PMID: 20798846 PMCID: PMC2925380 DOI: 10.1155/2010/879503] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/30/2009] [Indexed: 12/21/2022]
Abstract
Oligopeptide derivatives of metenkephalin were found to stimulate growth-hormone (GH) release directly by pituitary somatotrope cells in vitro in 1977. Members of this class of peptides and nonpeptidyl mimetics are referred to as GH secretagogues (GHSs). A specific guanosine triphosphatate-binding protein-associated heptahelical transmembrane receptor for GHS was cloned in 1996. An endogenous ligand for the GHS receptor, acylghrelin, was identified in 1999. Expression of ghrelin and homonymous receptor occurs in the brain, pituitary gland, stomach, endothelium/vascular smooth muscle, pancreas, placenta, intestine, heart, bone, and other tissues. Principal actions of this peptidergic system include stimulation of GH release via combined hypothalamopituitary mechanisms, orexigenesis (appetitive enhancement), insulinostasis (inhibition of insulin secretion), cardiovascular effects (decreased mean arterial pressure and vasodilation), stimulation of gastric motility and acid secretion, adipogenesis with repression of fat oxidation, and antiapoptosis (antagonism of endothelial, neuronal, and cardiomyocyte death). The array of known and proposed interactions of ghrelin with key metabolic signals makes ghrelin and its receptor prime targets for drug development.
Collapse
Affiliation(s)
- Johannes D. Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo School of Graduate Medical Education, Clinical Translational Science Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Cyril Y. Bowers
- Division of Endocrinology, Department of Internal Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
33
|
Gao XB, Wang AH. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold. Acta Physiol (Oxf) 2010; 198:251-62. [PMID: 19785627 DOI: 10.1111/j.1748-1716.2009.02047.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neuropeptide hypocretin is synthesized exclusively in the lateral hypothalamus and participates in many brain functions critical for animal survival, particularly in the promotion and maintenance of arousal in animals - a core process in animal behaviours. Consistent with its arousal-promoting role in animals, the neurones synthesizing hypocretin receive extensive innervations encoding physiological, psychological and environmental cues and send final outputs to key arousal-promoting brain areas. The activity in hypocretin neurones fluctuates and correlates with the behavioural state of animals and intensive activity has been detected in hypocretin neurones during wakefulness, foraging for food and craving for addictive drugs. Therefore, it is likely that hypocretin neurones undergo experience-dependent changes resulting from intensive activations by stimuli encoding changes in the internal and external environments. This review summarizes the most recent evidence supporting experience-dependent plasticity in hypocretin neurones. Current data suggest that nutritional and behavioural factors lead to synaptic plasticity and re-organization of synaptic architecture in hypocretin neurones. This may be the substrate of enhanced levels of arousal resulting from behavioural changes in animals and may help to explain the mechanisms underlying the changes in arousal levels induced by physiological, psychological and environmental factors.
Collapse
Affiliation(s)
- X-B Gao
- Department of OB/GYN and Reproductive Science, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|