1
|
Takaiwa F. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Mol Biotechnol 2023; 65:1869-1886. [PMID: 36856922 DOI: 10.1007/s12033-023-00666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
To exploit the rice seed-based oral vaccine against Sjögren's syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.
- National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
2
|
Schwestka J, Zeh L, Tschofen M, Schubert F, Arcalis E, Esteve-Gasent M, Pedrazzini E, Vitale A, Stoger E. Generation of multi-layered protein bodies in N. benthamiana for the encapsulation of vaccine antigens. FRONTIERS IN PLANT SCIENCE 2023; 14:1109270. [PMID: 36733717 PMCID: PMC9887037 DOI: 10.3389/fpls.2023.1109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs. While this procedure has proven successful for several, but not all recombinant proteins, the aim of this study was to refine the technology by using a combination of PB-forming proteins, thereby generating multi-layered protein assemblies in N. benthamiana. We used fluorescent proteins to demonstrate that up to three proteinaceous components can be incorporated into different layers. In addition to 27-kDa-γ-zein, which is essential for PB initiation, 16-kDa-γ-zein was identified as a key element to promote the incorporation of a third zein-component into the core of the PBs. We show that a vaccine antigen could be incorporated into the matrix of multi-layered PBs, and the protein microparticles were characterized by confocal and electron microscopy as well as flow cytometry. In future, this approach will enable the generation of designer PBs that serve as drug carriers and integrate multiple components that can be functionalized in different ways.
Collapse
Affiliation(s)
- Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Zeh
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marc Tschofen
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Schubert
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine, College Station, TX, United States
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Recent advances in molecular farming using monocot plants. Biotechnol Adv 2022; 58:107913. [DOI: 10.1016/j.biotechadv.2022.107913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
4
|
Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines (Basel) 2021; 9:vaccines9040369. [PMID: 33920425 PMCID: PMC8069552 DOI: 10.3390/vaccines9040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.
Collapse
|
5
|
Saito S, Takagi H, Wakasa Y, Ozawa K, Takaiwa F. Safety and efficacy of rice seed-based oral allergy vaccine for Japanese cedar pollinosis in Japanese monkeys. Mol Immunol 2020; 125:63-69. [DOI: 10.1016/j.molimm.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
|
6
|
Kudo H, Tsuboi H, Asashima H, Takahashi H, Ono Y, Abe S, Honda F, Kondo Y, Wakasa Y, Takaiwa F, Takano M, Matsui M, Matsumoto I, Sumida T. Transgenic rice seeds expressing altered peptide ligands against the M3 muscarinic acetylcholine receptor suppress experimental sialadenitis-like Sjögren's syndrome. Mod Rheumatol 2019; 30:884-893. [PMID: 31490711 DOI: 10.1080/14397595.2019.1664368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: We previously reported that Rag1-/- mice inoculated with splenocytes from M3 muscarinic acetylcholine receptor (M3R) knockout mice immunized with an M3R peptide mixture developed sialadenitis-like Sjögren's syndrome (M3R-induced sialadenitis [MIS]). We also found that intravenous administration of altered peptide ligand (APL) of N-terminal 1 (N1), which is one of the T-cell epitopes of M3R, suppressed MIS. In this study, we aimed to evaluate the suppressive ability and its mechanisms of rice seeds expressing N1-APL7 against MIS.Methods: Rice seeds expressing N1 and N1-APL7 were orally administered to MIS mice for 2 weeks. The changes in saliva flow and sialadenitis (salivary gland inflammation) were analyzed. The M3R-specific T-cell response in the spleen and the expression of regulatory molecules in the cervical lymph nodes and mesenteric lymph nodes were also analyzed.Results: Oral administration of N1-APL7-expressing rice seeds significantly recovered reduction in saliva flow and suppressed sialadenitis when compared with treatment with nontransgenic rice seeds and N1 rice seeds. IFNγ production from M3R-reactive T cells tended to decline in the N1-APL7 rice-treated group as compared with those in the other groups. In the N1-APL7 rice-treated group, the mRNA expression levels of Foxp3 in the cervical-lymph-node CD4+ T cells were higher than those in the other groups.Conclusion: Oral administration of N1-APL7-expressing rice suppressed MIS via suppression of M3R-specific IFNγ and IL-17 production and via enhancement of regulatory molecule expression.Key messagesWe generated N1-peptide- or N1-APL7-expressing rice seeds. Oral administration of N1-APL7-expressing rice seeds significantly recovered the reduction of saliva flow and suppressed sialadenitis via the suppression of M3R specific IFNγ and IL-17 production and via enhancement of regulatory T (Treg) cells.
Collapse
Affiliation(s)
- Hanae Kudo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Ono
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Saori Abe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumika Honda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Makoto Takano
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | | | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Bundó M, Shi X, Vernet M, Marcos JF, López-García B, Coca M. Rice Seeds as Biofactories of Rationally Designed and Cell-Penetrating Antifungal PAF Peptides. FRONTIERS IN PLANT SCIENCE 2019; 10:731. [PMID: 31231409 PMCID: PMC6566136 DOI: 10.3389/fpls.2019.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
PAFs are short cationic and tryptophan-rich synthetic peptides with cell-penetrating antifungal activity. They show potent and selective killing activity against major fungal pathogens and low toxicity to other eukaryotic and bacterial cells. These properties make them a promising alternative to fulfill the need of novel antifungals with potential applications in crop protection, food preservation, and medical therapies. However, the difficulties of cost-effective manufacturing of PAFs by chemical synthesis or biotechnological production in microorganisms have hampered their development for practical use. This work explores the feasibility of using rice seeds as an economical and safe production system of PAFs. The rationally designed PAF102 peptide with improved antifungal properties was selected for assessing PAF biotechnological production. Two different strategies are evaluated: (1) the production as a single peptide targeted to protein bodies and (2) the production as an oleosin fusion protein targeted to oil bodies. Both strategies are designed to offer stability to the PAF peptide in the host plant and to facilitate its downstream purification. Our results demonstrate that PAF does not accumulate to detectable levels in rice seeds when produced as a single peptide, whereas it is successfully produced as fusion protein to the Oleosin18, up to 20 μg of peptide per gram of grain. We show that the expression of the chimeric Ole18-PAF102 gene driven by the Ole18 promoter results in the specific accumulation of the fusion protein in the embryo and aleurone layer of the rice seed. Ole18-PAF102 accumulation has no deleterious effects on seed yield, germination capacity, or seedling growth. We also show that the Oleosin18 protein serves as carrier to target the fusion protein to oil bodies facilitating PAF102 recovery. Importantly, the recovered PAF102 is active against the fungal phytopathogen Fusarium proliferatum. Altogether, our results prove that the oleosin fusion technology allows the production of PAF bioactive peptides to assist the exploitation of these antifungal compounds.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Mar Vernet
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jose F. Marcos
- Institute of Agrochemistry and Food Technology (IATA, CSIC), Paterna, Spain
| | - Belén López-García
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Barcelona, Spain
| |
Collapse
|
8
|
Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S. An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 2019; 19:587-599. [PMID: 30892096 DOI: 10.1080/14712598.2019.1597048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Over the last two decades, genetically engineered plants became attractive and mature platforms for producing vaccines and other relevant biopharmaceuticals. Autoimmune and inflammatory disorders demand the availability of accessible treatments, and one alternative therapy is based on therapeutic vaccines able to downregulate immune responses that favor pathology progression. AREAS COVERED The current status of plant-made tolerogenic vaccines is presented with emphasis on the candidates under evaluation in test animals. Nowadays, this concept has been assessed in models of food and pollen allergies, autoimmune diabetes, asthma, arthritis, and prevention of blocking antibodies induction against a biopharmaceutical used in replacement therapies. EXPERT OPINION According to the current evidence generated at the preclinical level, plant-made tolerogenic therapies are a promise to treat several immune-related conditions, and the beginning of clinical trials is envisaged for the next decade. Advantages and limitations for this technology are discussed.
Collapse
Affiliation(s)
- Dania O Govea-Alonso
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Jaime I Arevalo-Villalobos
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Verónica A Márquez-Escobar
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Sornkanok Vimolmangkang
- c Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok , Thailand.,d Research Unit for Plant-Produced Pharmaceuticals , Chulalongkorn University , Bangkok , Thailand
| | - Sergio Rosales-Mendoza
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| |
Collapse
|
9
|
Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain. Int J Mol Sci 2017; 18:ijms18112458. [PMID: 29156580 PMCID: PMC5713424 DOI: 10.3390/ijms18112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice.
Collapse
|
10
|
Montesinos L, Bundó M, Badosa E, San Segundo B, Coca M, Montesinos E. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC PLANT BIOLOGY 2017; 17:63. [PMID: 28292258 PMCID: PMC5351061 DOI: 10.1186/s12870-017-1011-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND BP178 peptide is a synthetic BP100-magainin derivative possessing strong inhibitory activity against plant pathogenic bacteria, offering a great potential for future applications in plant protection and other fields. Here we report the production and recovery of a bioactive BP178 peptide using rice seeds as biofactories. RESULTS A synthetic gene encoding the BP178 peptide was prepared and introduced in rice plants. The gene was efficiently expressed in transgenic rice under the control of an endosperm-specific promoter. Among the three endosperm-specific rice promoters (Glutelin B1, Glutelin B4 or Globulin 1), best results were obtained when using the Globulin 1 promoter. The BP178 peptide accumulated in the seed endosperm and was easily recovered from rice seeds using a simple procedure with a yield of 21 μg/g. The transgene was stably inherited for at least three generations, and peptide accumulation remained stable during long term storage of transgenic seeds. The purified peptide showed in vitro activity against the bacterial plant pathogen Dickeya sp., the causal agent of the dark brown sheath rot of rice. Seedlings of transgenic events showed enhanced resistance to the fungal pathogen Fusarium verticillioides, supporting that the in planta produced peptide was biologically active. CONCLUSIONS The strategy developed in this work for the sustainable production of BP178 peptide using rice seeds as biofactories represents a promising system for future production of peptides for plant protection and possibly in other fields.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| |
Collapse
|
11
|
Takaiwa F, Yang L, Maruyama N, Wakasa Y, Ozawa K. Deposition mode of transforming growth factor-β expressed in transgenic rice seed. PLANT CELL REPORTS 2016; 35:2461-2473. [PMID: 27580728 DOI: 10.1007/s00299-016-2047-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Mouse TGF-β highly accumulated by expressing as a secretory homodimeric protein in transgenic rice endosperm. It was tightly deposited in ER-derived PBs by interaction with cysteine-rich prolamins. TGF-β is one of the key players involved in the induction and maintenance of mucosal immune tolerance to dietary proteins through the induction of regulatory T cells. In order to utilize rice-based TGF-β as a tool to promote oral immune tolerance induction, high production of TGF-β is essentially required. When the codon-optimized mTGF-β was expressed as a secretory protein by ligating an N-terminal signal peptide and C-terminal KDEL ER retention signal under the control of the endosperm-specific rice storage protein glutelin GluB-1 promoter, accumulation level was low in stable transgenic rice seeds. Then, to increase the accumulation level of mTGF-β, it was expressed as fusion proteins by inserting into the C terminus of acidic subunit of glutelin GluA and the variable region of 26 kDa globulin. When fused with the glutelin, it could accumulate well as visible bands by CBB staining gel, but not for the 26 kDa globulin. Unexpectedly, expression of homodimeric mTGF-β linked by a 6×Gly1×Ser linker as secretory protein resulted in higher level of accumulation. This expression level was further enhanced by reduction of some endogenous prolamins by RNA interference. The monomeric and dimeric mTGF-βs were deposited in ER-derived PBs containing prolamins. When highly produced in rice seed, it is notable that most of ER-derived PBs were distorted and granulated. Step-wise extraction of storage proteins from rice seeds suggested that the mTGF-β strongly interacted with cysteine-rich prolamins via disulfide bonds. This result was also supported by the finding that reducing agent was absolutely required for mTGF-β extraction.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Lijun Yang
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nobuyuki Maruyama
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuhya Wakasa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Kenjiro Ozawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
12
|
Sasou A, Shigemitsu T, Saito Y, Tanaka M, Morita S, Masumura T. Control of foreign polypeptide localization in specific layers of protein body type I in rice seed. PLANT CELL REPORTS 2016; 35:1287-1295. [PMID: 26910860 PMCID: PMC4865541 DOI: 10.1007/s00299-016-1960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 05/30/2023]
Abstract
Prolamin-GFP fusion proteins, expressed under the control of native prolamin promoters, were localized in specific layers of PB-Is. Prolamin-GFP fusion proteins were gradually digested from outside by pepsin digestion. In rice seed endosperm, protein body type I (PB-I) has a layered structure consisting of prolamin species and is the resistant to digestive juices in the intestinal tract. We propose the utilization of PB-Is as an oral vaccine carrier to induce mucosal immune response effectively. If vaccine antigens are localized in a specific layer within PB-Is, they could be protected from gastric juice and be delivered intact to the small intestine. We observed the localization of GFP fluorescence in transgenic rice endosperm expressing prolamin-GFP fusion proteins with native prolamin promoters, and we confirmed that the foreign proteins were located in specific layers of PB-Is artificially. Each prolamin-GFP fusion protein was localized in specific layers of PB-Is, such as the outer-most layer, middle layer, and core region. Furthermore, to investigate the resistance of prolamin-GFP fusion proteins against pepsin digestion, we performed in vitro pepsin treatment. Prolamin-GFP fusion proteins were gradually digested from the peripheral region and the contours of PB-Is were made rough by in vitro pepsin treatment. These findings suggested that prolamin-GFP fusion proteins accumulating specific layers of PB-Is were gradually digested and exposed from the outside by pepsin digestion.
Collapse
Affiliation(s)
- Ai Sasou
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Takanari Shigemitsu
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Yuhi Saito
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Manami Tanaka
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry, and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan.
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry, and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan.
| |
Collapse
|
13
|
Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLoS One 2016; 11:e0146919. [PMID: 26760761 PMCID: PMC4711921 DOI: 10.1371/journal.pone.0146919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.
Collapse
|
14
|
Saberianfar R, Sattarzadeh A, Joensuu JJ, Kohalmi SE, Menassa R. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2016; 7:693. [PMID: 27242885 PMCID: PMC4876836 DOI: 10.3389/fpls.2016.00693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 05/22/2023]
Abstract
Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.
Collapse
Affiliation(s)
- Reza Saberianfar
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Amirali Sattarzadeh
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | | | | | - Rima Menassa
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
- *Correspondence: Rima Menassa
| |
Collapse
|
15
|
Takaiwa F, Wakasa Y, Takagi H, Hiroi T. Rice seed for delivery of vaccines to gut mucosal immune tissues. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1041-55. [PMID: 26100952 DOI: 10.1111/pbi.12423] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 05/09/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is the biggest lymphoid organ in the body. It plays a role in robust immune responses against invading pathogens while maintaining immune tolerance against nonpathogenic antigens such as foods. Oral vaccination can induce mucosal and systemic antigen-specific immune reactions and has several advantages including ease of administration, no requirement for purification and ease of scale-up of antigen. Thus far, taking advantage of these properties, various plant-based oral vaccines have been developed. Seeds provide a superior production platform over other plant tissues for oral vaccines; they offer a suitable delivery vehicle to GALT due to their high stability at room temperature, ample and stable deposition space, high expression level, and protection from digestive enzymes in gut. A rice seed production system for oral vaccines was established by combining stable deposition in protein bodies or protein storage vacuoles and enhanced endosperm-specific expression. Various types of rice-based oral vaccines for infectious and allergic diseases were generated. Efficacy of these rice-based vaccines was evaluated in animal models.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuhya Wakasa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hidenori Takagi
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
16
|
Jiang N, Leithold LHE, Post J, Ziehm T, Mauler J, Gremer L, Cremer M, Schartmann E, Shah NJ, Kutzsche J, Langen KJ, Breitkreutz J, Willbold D, Willuweit A. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease. PLoS One 2015; 10:e0128553. [PMID: 26046986 PMCID: PMC4457900 DOI: 10.1371/journal.pone.0128553] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.
Collapse
Affiliation(s)
- Nan Jiang
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Leonie H. E. Leithold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julia Post
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Mauler
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lothar Gremer
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Cremer
- Structural and functional organisation of the brain, Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Schartmann
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janine Kutzsche
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Josef Langen
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (DW); (AW)
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (DW); (AW)
| |
Collapse
|
17
|
Concentrated protein body product derived from rice endosperm as an oral tolerogen for allergen-specific immunotherapy--a new mucosal vaccine formulation against Japanese cedar pollen allergy. PLoS One 2015; 10:e0120209. [PMID: 25774686 PMCID: PMC4361645 DOI: 10.1371/journal.pone.0120209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation.
Collapse
|
18
|
Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem 2015; 179:290-5. [PMID: 25722167 DOI: 10.1016/j.foodchem.2015.01.137] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 01/31/2015] [Indexed: 10/24/2022]
Abstract
Multiple proteases were optimized to hydrolyze the rice residue protein (RRP) to produce novel antioxidant peptides. An antioxidant peptide fraction (RRPB3) with IC50 of 0.25 mg/ml was purified from the RRP hydrolysate using membrane ultrafiltration followed by size exclusion chromatography and reversed-phase FPLC. RRPB3 was found to include four peptides (RRPB3 I-IV) and their amino acid sequences were RPNYTDA (835.9 Da), TSQLLSDQ (891.0 Da), TRTGDPFF (940.0 Da) and NFHPQ (641.7 Da), respectively. Furthermore, four peptides were chemically synthesized and their antioxidant activities were assessed by DPPH radical scavenging, ABTS radical scavenging assay and FRAP-Fe(3+) reducing assay, respectively. Both RRPB3 I and III showed synergistic antioxidant activity compared to each of them used alone. All four synthetic peptides showed excellent stability against simulated gastrointestinal proteases. Therefore, the peptides isolated from RRP may be used as potential antioxidants in the food and drug industries.
Collapse
Affiliation(s)
- Qiao-Juan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lin-Hua Huang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qian Sun
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China
| | - Zheng-Qiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| | - Xia Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Hofbauer A, Peters J, Arcalis E, Rademacher T, Lampel J, Eudes F, Vitale A, Stoger E. The Induction of Recombinant Protein Bodies in Different Subcellular Compartments Reveals a Cryptic Plastid-Targeting Signal in the 27-kDa γ-Zein Sequence. Front Bioeng Biotechnol 2014; 2:67. [PMID: 25566533 PMCID: PMC4263181 DOI: 10.3389/fbioe.2014.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
Naturally occurring storage proteins such as zeins are used as fusion partners for recombinant proteins because they induce the formation of ectopic storage organelles known as protein bodies (PBs) where the proteins are stabilized by intermolecular interactions and the formation of disulfide bonds. Endogenous PBs are derived from the endoplasmic reticulum (ER). Here, we have used different targeting sequences to determine whether ectopic PBs composed of the N-terminal portion of mature 27 kDa γ-zein added to a fluorescent protein could be induced to form elsewhere in the cell. The addition of a transit peptide for targeting to plastids causes PB formation in the stroma, whereas in the absence of any added targeting sequence PBs were typically associated with the plastid envelope, revealing the presence of a cryptic plastid-targeting signal within the γ-zein cysteine-rich domain. The subcellular localization of the PBs influences their morphology and the solubility of the stored recombinant fusion protein. Our results indicate that the biogenesis and budding of PBs does not require ER-specific factors and therefore, confirm that γ-zein is a versatile fusion partner for recombinant proteins offering unique opportunities for the accumulation and bioencapsulation of recombinant proteins in different subcellular compartments.
Collapse
Affiliation(s)
- Anna Hofbauer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Jenny Peters
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - Thomas Rademacher
- Institute of Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Johannes Lampel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| | - François Eudes
- Agriculture and Agri-Food Canada , Lethbridge, AB , Canada
| | - Alessandro Vitale
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR) , Milan , Italy
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences , Vienna , Austria
| |
Collapse
|
20
|
Nishimura T, Saeki M, Kaminuma O, Takaiwa F, Hiroi T. Transgenic plants for allergen-specific immunotherapy. World J Immunol 2014; 4:141-148. [DOI: 10.5411/wji.v4.i3.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/14/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Allergen-specific immunotherapy (IT) is an effective treatment for allergic diseases. Although subcutaneous and sublingual ITs are currently used, safer, easier, and more effective IT is under development. Induction of immune tolerance by oral administration of allergen has been proven, though oral IT has not been applied clinically. It is mainly because a large amount of purified allergen is required to induce oral tolerance. To overcome this problem, plants, peculiarly rice, have been investigated as allergen vehicles for oral IT. Rice can store a considerable amount of expressed allergen in its seeds and the accumulated allergen is stable and resistant to gastrointestinal digestion. Therefore, we have developed transgenic rice seeds (Tg rice) in which major epitopes of cedar pollen or house dust mites are expressed. We are establishing Tg rice with demonstrated efficacy in murine models of allergic rhinitis and bronchial asthma by oral administration at practical doses. In addition, the amount, distribution, and allergenicity of the expressed allergen have been improved in our Tg rice. Rice-based oral IT is a promising new concept in IT for the treatment of allergic diseases.
Collapse
|
21
|
Iizuka M, Wakasa Y, Tsuboi H, Asashima H, Hirota T, Kondo Y, Matsumoto I, Takaiwa F, Sumida T. Suppression of collagen-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of type II collagen. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1143-52. [PMID: 24989432 DOI: 10.1111/pbi.12223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/25/2014] [Accepted: 06/01/2014] [Indexed: 05/09/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We previously reported that altered peptide ligands (APLs) of type II collagen (CII256-271) suppress the development of collagen-induced arthritis (CIA). In this study, we generated transgenic rice expressing CII256-271 and APL6 contained in fusion proteins with the rice storage protein glutelin in the seed endosperm. These transgene products successfully and stably accumulated at high levels (7-24 mg/g seeds) in protein storage vacuoles (PB-II) of mature seeds. We examined the efficacy of these transgenic rice seeds by performing oral administration of the seeds to CIA model mice that had been immunized with CII. Treatment with APL6 transgenic rice for 14 days significantly inhibited the development of arthritis (based on clinical score) and delayed disease onset during the early phase of arthritis. These effects were mediated by the induction of IL-10 from CD4(+ ) CD25(-) T cells against CII antigen in splenocytes and inguinal lymph nodes (iLNs), and treatment of APL had no effect on the production of IFN-γ, IL-17, IL-2 or Foxp3(+) Treg cells. These findings suggest that abnormal immune suppressive mechanisms are involved in the therapeutic effect of rice-based oral vaccine expressing high levels of APLs of type II collagen on the autoimmune disease CIA, suggesting that the seed-based mucosal vaccine against CIA functions via a unique mechanism.
Collapse
Affiliation(s)
- Mana Iizuka
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D, Guiderdoni E, Rossignol M, Badosa E, Montesinos E, San Segundo B, Coca M. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC PLANT BIOLOGY 2014; 14:102. [PMID: 24755305 PMCID: PMC4032361 DOI: 10.1186/1471-2229-14-102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/14/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. RESULTS Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. CONCLUSIONS Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Esther Izquierdo
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Delphine Mieulet
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Michel Rossignol
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
23
|
Takaiwa F, Yang L. Development of a rice-based peptide vaccine for Japanese cedar and cypress pollen allergies. Transgenic Res 2014; 23:573-84. [DOI: 10.1007/s11248-014-9790-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/05/2014] [Indexed: 01/22/2023]
|
24
|
Arcalis E, Ibl V, Peters J, Melnik S, Stoger E. The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:439. [PMID: 25232360 PMCID: PMC4153030 DOI: 10.3389/fpls.2014.00439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/15/2014] [Indexed: 05/22/2023]
Abstract
Cereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins, which are ultimately deposited either within protein bodies derived from the endoplasmic reticulum, or in protein storage vacuoles (PSVs). During seed maturation endosperm cells undergo a rapid sequence of developmental changes, including extensive reorganization and rearrangement of the endomembrane system and protein transport via several developmentally regulated trafficking routes. Storage organelles have been characterized in great detail by the histochemical analysis of fixed immature tissue samples. More recently, in vivo imaging and the use of tonoplast markers and fluorescent organelle tracers have provided further insight into the dynamic morphology of PSVs in different cell layers of the developing endosperm. This is relevant for biotechnological applications in the area of molecular farming because seed storage organelles in different cereal crops offer alternative subcellular destinations for the deposition of recombinant proteins that can reduce proteolytic degradation, allow control over glycan structures and increase the efficacy of oral delivery. We discuss how the specialized architecture and developmental changes of the endomembrane system in endosperm cells may influence the subcellular fate and post-translational modification of recombinant glycoproteins in different cereal species.
Collapse
Affiliation(s)
| | | | | | | | - Eva Stoger
- *Correspondence: Eva Stoger, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
25
|
Stoger E, Fischer R, Moloney M, Ma JKC. Plant molecular pharming for the treatment of chronic and infectious diseases. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:743-68. [PMID: 24579993 DOI: 10.1146/annurev-arplant-050213-035850] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant molecular pharming has emerged as a niche technology for the manufacture of pharmaceutical products indicated for chronic and infectious diseases, particularly for products that do not fit into the current industry-favored model of fermenter-based production campaigns. In this review, we explore the areas where molecular pharming can make the greatest impact, including the production of pharmaceuticals that have novel glycan structures or that cannot be produced efficiently in microbes or mammalian cells because they are insoluble or toxic. We also explore the market dynamics that encourage the use of molecular pharming, particularly for pharmaceuticals that are required in small amounts (such as personalized medicines) or large amounts (on a multi-ton scale, such as blood products and microbicides) and those that are needed in response to emergency situations (pandemics and bioterrorism). The impact of molecular pharming will increase as the platforms become standardized and optimized through adoption of good manufacturing practice (GMP) standards for clinical development, offering a new opportunity to produce inexpensive medicines in regional markets that are typically excluded under current business models.
Collapse
Affiliation(s)
- Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | | | | | | |
Collapse
|
26
|
Peters J, Sabalza M, Ramessar K, Christou P, Capell T, Stöger E, Arcalís E. Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins. Biotechnol J 2013; 8:1203-12. [PMID: 23960004 DOI: 10.1002/biot.201300068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
Cereal seeds are versatile platforms for the production of recombinant proteins because they provide a stable environment for protein accumulation. Endogenous seed storage proteins, however, include several prolamin-type polypeptides that aggregate and crosslink via intermolecular disulfide bridges, which could potentially interact with multimeric recombinant proteins such as antibodies, which assemble in the same manner. We investigated this possibility by sequentially extracting a human antibody expressed in maize endosperm, followed by precipitation in vitro with zein. We provide evidence that a significant proportion of the antibody pool interacts with zein and therefore cannot be extracted using non-reducing buffers. Immunolocalization experiments demonstrated that antibodies targeted for secretion were instead retained within zein bodies because of such covalent interactions. Our findings suggest that the production of soluble recombinant antibodies in maize could be enhanced by eliminating or minimizing interactions with endogenous storage proteins.
Collapse
Affiliation(s)
- Jenny Peters
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
27
|
Wakasa Y, Takaiwa F. The use of rice seeds to produce human pharmaceuticals for oral therapy. Biotechnol J 2013; 8:1133-43. [PMID: 24092672 DOI: 10.1002/biot.201300065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/14/2013] [Accepted: 08/23/2013] [Indexed: 11/09/2022]
Abstract
Rice (Oryza sativa L.) is the major staple food consumed by half of the world's population. Rice seeds have gained recent attention as bioreactors for the production of human pharmaceuticals such as therapeutic proteins or peptides. Rice seed production platforms have many advantages over animal cell or microbe systems in terms of cost-effectiveness, scalability, safety, product stability and productivity. Rice seed-based human pharmaceuticals are expected to become innovative therapies as edible drugs. Therapeutic proteins can be sequestered within natural cellular compartments in rice seeds and protected from harsh gastrointestinal environments. This review presents the state-of-the-art on the construction of gene cassettes for accumulation of pharmaceutical proteins or peptides in rice seeds, the generation of transgenic rice plants, and challenges involved in the use of rice seeds to produce human pharmaceuticals.
Collapse
Affiliation(s)
- Yuhya Wakasa
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | |
Collapse
|
28
|
Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. PLANT MOLECULAR BIOLOGY 2013; 83:105-17. [PMID: 23553222 DOI: 10.1007/s11103-013-0049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Many plant-based systems have been developed as bioreactors to produce recombinant proteins. The choice of system for large-scale production depends on its intrinsic expression efficiency and its propensity for scale-up, post-harvest storage and downstream processing. Factors that must be considered include the anticipated production scale, the value and intended use of the product, the geographical production area, the proximity of processing facilities, intellectual property, safety and economics. It is also necessary to consider whether different species and organs affect the subcellular trafficking, structure and qualitative properties of recombinant proteins. In this article we discuss the subcellular localization and N-glycosylation of two commercially-relevant recombinant glycoproteins (Aspergillus niger phytase and anti-HIV antibody 2G12) produced in different plant species and organs. We augment existing data with novel results based on the expression of the same recombinant proteins in Arabidopsis and tobacco seeds, focusing on similarities and subtle differences in N-glycosylation that often reflect the subcellular trafficking route and final destination, as well as differences generated by unique enzyme activities in different species and tissues. We discuss the potential consequences of such modifications on the stability and activity of the recombinant glycoproteins.
Collapse
Affiliation(s)
- Elsa Arcalis
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang S, Takahashi H, Kajiura H, Kawakatsu T, Fujiyama K, Takaiwa F. Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies. PLANT & CELL PHYSIOLOGY 2013; 54:917-33. [PMID: 23539245 DOI: 10.1093/pcp/pct043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A versatile hypoallergenic allergen derivative against multiple allergens is an ideal tolerogen for allergen-specific immunotherapy. Such a tolerogen should exhibit high efficacy, without side effects, when administered at high doses and should be applicable to several allergens. Tree pollen chimera 7 (TPC7), a hypoallergenic Bet v 1 tolerogen against birch pollen allergy, was previously selected by DNA shuffling of 14 types of Fagales tree pollen allergens. In this study, transgenic rice seed accumulating TPC7 was generated as an oral vaccine against birch pollen allergy by expressing this protein as a secretory protein using the N-terminal signal peptide and the C-terminal KDEL tag under the control of an endosperm-specific glutelin promoter. The highest level of TPC7 accumulation was approximately 207 µg grain(-1). Recombinant TPC7 is a glycoprotein with high mannose-type N-glycan, but without β1,2-xylose or α1,3-fucose, suggesting that TPC7 is retained in the endoplasmic reticulum (ER). TPC7 is deposited as a novel, giant spherical ER-derived protein body, >20 µm in diameter, which is referred to as the TPC7 body. Removal of the KDEL retention signal or mutation of a cysteine residue resulted in an alteration of TPC7 body morphology, and deletion of the signal peptide prevented the accumulation of TPC7 in rice seeds. Therefore, the novel TPC7 bodies may have formed aggregates within the ER lumen, primarily due to the intrinsic physicochemical properties of the protein.
Collapse
Affiliation(s)
- Shuyi Wang
- Functional Transgenic Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | | | | | |
Collapse
|
30
|
Takaiwa F. Update on the use of transgenic rice seeds in oral immunotherapy. Immunotherapy 2013; 5:301-12. [DOI: 10.2217/imt.13.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rice seed provides an ideal production platform for pharmaceuticals in terms of high productivity and stability, as well as the scalability, safety and economy that are expected in plant production systems. Furthermore, these therapeutic products are bioencapsulated in protein bodies, which are seed-specific storage organelles that provide protection from digestion by gastrointestinal enzymes during delivery to the gut-associated lymphoid tissue. Thus, rice seed provides an ideal delivery system for the mucosal immune system. Oral immunotherapy using unprocessed transgenic rice seed containing therapeutic products has been demonstrated to induce effective mucosal immune tolerance and immune reactions against allergies and pathogens.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Transgenic Crop Research Unit, National Institute of Agrobiological Sciences, Kannondai 2–1–2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
31
|
Characterization of a Novel Glutelin Subunit OsGluBX by the Experimental Approach and Molecular Dynamics Simulations. Appl Biochem Biotechnol 2013; 169:1482-96. [DOI: 10.1007/s12010-012-0058-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023]
|
32
|
Wakasa Y, Takagi H, Hirose S, Yang L, Saeki M, Nishimura T, Kaminuma O, Hiroi T, Takaiwa F. Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:66-76. [PMID: 23066780 DOI: 10.1111/pbi.12007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 05/09/2023]
Abstract
Transgenic rice accumulating the modified major Japanese cedar pollen allergens, Cryptomeria japonica 1 (Cry j 1) and Cryptomeria japonica 2 (Cry j 2), which were deconstructed by fragmentation and shuffling, respectively, in the edible part of the seed was generated by transformation of a good-tasting rice variety, 'Koshihikari'. These modified cedar pollen antigens were deposited in ER-derived protein bodies (PB-I), which are suitable for delivery to the mucosal immune system in gut-associated lymphoid tissue when orally administered because antigens bioencapsulated in PB-I are resistant against hydrolysis by intestinal enzymes and harsh environments. Mice fed transgenic seeds daily for three weeks and then challenged with crude cedar pollen allergen showed marked suppression of allergen-specific CD4(+) T-cell proliferation, IgE and IgG levels compared with mice fed nontransgenic rice seeds. As clinical symptoms of pollinosis, sneezing frequency and infiltration of inflammatory cells such as eosinophils and neutrophils were also significantly reduced in the nasal tissue. These results imply that oral administration of transgenic rice seeds containing the structurally disrupted Cry j 1 and Cry j 2 antigens, serving as universal antigens, is a promising approach for specific immunoprophylaxis against Japanese cedar pollinosis.
Collapse
Affiliation(s)
- Yuhya Wakasa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang L, Hirose S, Takahashi H, Kawakatsu T, Takaiwa F. Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1035-45. [PMID: 22882653 DOI: 10.1111/j.1467-7652.2012.00731.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Human IL-10 (hIL-10) is a therapeutic treatment candidate for inflammatory allergy and autoimmune diseases. Rice seed-produced IL-10 can be effectively delivered directly to gut-associated lymphoreticular tissue (GALT) via bio-encapsulation. Previously, the codon-optimized hIL-10 gene was expressed in transgenic rice with the signal peptide and endoplasmic reticulum (ER) retention signal (KDEL) at its 5' and 3' ends, respectively, under the control of the endosperm-specific glutelin GluB-1 promoter. The resulting purified hIL-10 was biologically active. In this study, the yield of hIL-10 in transgenic rice seed was improved. This protein accumulated at the intended deposition sites, which had been made vacant through the selective reduction, via RNA interference, of the endogenous seed storage proteins prolamins or glutelins. Upon suppression of prolamins that were sequestered into ER-derived protein bodies (PB-I), hIL-10 accumulation increased approximately 3-fold as compared to rice seed with no such suppression and reached 219 μg/grain. In contrast, reducing the majority of the glutelins stored in protein-storage vacuoles (PB-II) did not significantly affect the accumulation of hIL-10. Considering that hIL-10 is synthesized in the ER lumen and subsequently buds off in ER-derived granules called IL-10 granules in a manner similar to PB-Is, these results indicate that increases in the available deposition space for the desired recombinant proteins may be crucial for improvements in yield. Furthermore, efficient dimeric intermolecular formation of hIL-10 by inhibiting interaction with Cys-rich prolamins also contributed to the enhanced formation of IL-10 bodies. Higher yield of hIL-10 produced in rice seeds is expected to have broad application in the future.
Collapse
Affiliation(s)
- Lijun Yang
- Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
34
|
Yang L, Hirose S, Suzuki K, Hiroi T, Takaiwa F. Expression of hypoallergenic Der f 2 derivatives with altered intramolecular disulphide bonds induces the formation of novel ER-derived protein bodies in transgenic rice seeds. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2947-59. [PMID: 22378952 PMCID: PMC3350914 DOI: 10.1093/jxb/ers006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 05/24/2023]
Abstract
House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy.
Collapse
Affiliation(s)
- Lijun Yang
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| | - Sakiko Hirose
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| | - Kazuya Suzuki
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Setagaya-ku 156-8609, Tokyo, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Setagaya-ku 156-8609, Tokyo, Japan
| | - Fumio Takaiwa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Ibaraki, Japan
| |
Collapse
|
35
|
Khan I, Twyman RM, Arcalis E, Stoger E. Using storage organelles for the accumulation and encapsulation of recombinant proteins. Biotechnol J 2012; 7:1099-108. [DOI: 10.1002/biot.201100089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 11/06/2022]
|
36
|
Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. PLANT CELL REPORTS 2012; 31:439-51. [PMID: 22218674 DOI: 10.1007/s00299-011-1215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 05/17/2023]
Abstract
Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratorio di Biotecnologie, Unità Tecnica BIORAD, ENEA CR Casaccia, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|
37
|
Hiroi T, Kaminuma O, Takaiwa F. Vaccination with transgenic rice seed expressing mite allergen: a new option for asthma sufferers? Expert Rev Vaccines 2012; 10:1249-51. [PMID: 21919612 DOI: 10.1586/erv.11.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Suzuki K, Kaminuma O, Yang L, Takai T, Mori A, Umezu-Goto M, Ohtomo T, Ohmachi Y, Noda Y, Hirose S, Okumura K, Ogawa H, Takada K, Hirasawa M, Hiroi T, Takaiwa F. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:982-990. [PMID: 21447056 DOI: 10.1111/j.1467-7652.2011.00613.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study tested the feasibility of oral immunotherapy for bronchial asthma using a newly developed subunit vaccine in which a fragment (p45-145) of mite allergen (Der p 1) containing immunodominant human and mouse T cell epitopes was encapsulated in endoplasmic reticulum-derived protein bodies of transgenic (Tg) rice seed. Allergen-specific serum immunoglobulin responses, T cell proliferation, Th1/Th2 cytokine production, airway inflammatory cell infiltration, bronchial hyper-responsiveness (BHR) and lung histology were investigated in allergen-immunized and -challenged mice. Prophylactic oral vaccination with the Tg rice seeds clearly reduced the serum levels of allergen-specific IgE and IgG. Allergen-induced CD4(+) T cell proliferation and production of Th2 cytokines in vitro, infiltration of eosinophils, neutrophils and mononuclear cells into the airways and BHR were also inhibited by oral vaccination. The effects of the vaccine were antigen-specific immune response because the levels of specific IgE and IgG in mice immunized with Der f 2 or ovalbumin were not significantly suppressed by oral vaccination with the Der p 1 expressing Tg rice. Thus, the vaccine does not induce nonspecific bystander suppression, which has been a problem with many oral tolerance regimens. These results suggest that our novel vaccine strategy is a promising approach for allergen-specific oral immunotherapy against allergic diseases including bronchial asthma.
Collapse
MESH Headings
- Animals
- Antibody Formation
- Antigens, Dermatophagoides/genetics
- Antigens, Dermatophagoides/immunology
- Antigens, Dermatophagoides/metabolism
- Arthropod Proteins/genetics
- Arthropod Proteins/immunology
- Arthropod Proteins/metabolism
- Asthma/immunology
- Asthma/prevention & control
- Asthma/therapy
- Bystander Effect
- Cell Proliferation
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- Desensitization, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immunity, Cellular
- Immunoglobulin E/immunology
- Lung/immunology
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Oryza/genetics
- Oryza/immunology
- Oryza/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Plasmids/genetics
- Plasmids/metabolism
- Pyroglyphidae/immunology
- Seeds/genetics
- Seeds/immunology
- Seeds/metabolism
- Vaccination
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Kazuya Suzuki
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:939-53. [PMID: 20731787 DOI: 10.1111/j.1467-7652.2010.00559.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Transgenic Crop Research & Development Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|