1
|
Pierzynowski SG, Stier C, Pierzynowska K. Hypothesis that alpha-amylase evokes regulatory mechanisms originating in the pancreas, gut and circulation, which govern glucose/insulin homeostasis. World J Diabetes 2023; 14:1341-1348. [PMID: 37771332 PMCID: PMC10523231 DOI: 10.4239/wjd.v14.i9.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
The anti-incretin theory involving the abolishment of diabetes type (DT) II by some of methods used in bariatric surgery, first appeared during the early years of the XXI century and considers the existence of anti-incretin substances. However, to date no exogenous or endogenous anti-incretins have been found. Our concept of the acini-islet-acinar axis assumes that insulin intra-pancreatically stimulates alpha-amylase synthesis ("halo phenomenon") and in turn, alpha-amylase reciprocally inhibits insulin production, thus making alpha-amylase a candidate for being an anti-incretin. Additionally, gut as well as plasma alpha-amylase, of pancreatic and other origins, inhibits the appearance of dietary glucose in the blood, lowering the glucose peak after iv or oral glucose loading. This effect of alpha-amylase can be interpreted as an insulin down regulatory mechanism, possibly limiting the depletion of pancreatic beta cells and preventing their failure. Clinical observations agree with the above statements, where patients with high blood alpha-amylase concentrations are seldom obese and seldom develop DT2. Obese-DT2, as well as DT1 patients, usually develop exo-crine pancreatic insufficiency (EPI) and vice versa. Ultimately, DT2 patients develop DT1, when the pancreatic beta cells are exhausted and insulin production ceases. Studies on biliopancreatic diversion (BPD) and on BPD with duodenal switch, a type of bariatric surgery, as well as studies on EPI pigs, allow us to observe and investigate the above-mentioned phenomena of intra-pancreatic interactions.
Collapse
Affiliation(s)
- Stefan G Pierzynowski
- Department of Medical Biology, Institute of Rural Health, Lublin 20090, Poland
- Department of Biology, Lund University, Lund 22362, Sweden
- Anara AB, Trelleborg 23132, Sweden
| | - Christine Stier
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery and Division of Endocrinology, University Hospital Würzburg, Würzburg 97080, Germany
- Department of Surgical Endoscopy, Sana Hospital, Huerth 50354, Germany
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund 22362, Sweden
- Anara AB, Trelleborg 23132, Sweden
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Jablonna 05110, Poland
- Anagram Therapeutics, Inc, Framingham, MA 01701, United States
| |
Collapse
|
2
|
Pérez-Arana GM, Gómez AD, Camacho-Ramírez A, Ribelles-García A, Almorza-Gomar D, Gracia-Romero M, Mateo-Gavira I, Castro-Santiago MJ, Casar-García J, Prada-Oliveira JA. Dual effect of RYGB on the entero-insular axis: how GLP-1 is enhanced by surgical duodenal exclusion. Ann Anat 2023; 249:152094. [PMID: 37011826 DOI: 10.1016/j.aanat.2023.152094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND The role of the ileum and Glucagon Like Peptide-1 (GLP-1) secretion in the pathophysiological processes underlying the effects of Roux-en-Y gastric bypass (RYGB) on type 2 Diabetes mellitus (T2DM) improvement has been previously determined. However, the roles of duodenal exclusion and Glucose Insulinotropic Peptide (GIP) secretion change is not clear. To clarify this aspect, we compared the pathophysiological mechanisms triggered by RYGB, which implies the early arrival of food to the ileum with duodenal exclusion, and through pre-duodenal ileal transposition (PdIT), with early arrival of food to the ileum but without duodenal exclusion, in a nondiabetic rodent model. METHODS We compared plasma and insulin, glucose (OGTT), GIP and GLP-1 plasma levels, ileal and duodenal GIP and GLP-1 tissue expression and beta-cell mass for n=12 Sham-operated, n=6 RYGB-operated, and n=6 PdIT-operated Wistar rats. RESULTS No surgery induced changes in blood glucose levels after the OGTT. However, RYGB induced a significant and strong insulin response that increased less in PdIT animals. Increased beta-cell mass was found in RYGB and PdIT animals as well as similar GLP-1 secretion and GLP-1 intestinal expression. However, differential GIP secretion and GIP duodenal expression were found between RYGB and PdIT. CONCLUSION The RYGB effect on glucose metabolism is mostly due to early ileal stimulation; however, duodenal exclusion potentiates the ileal response within RYGB effects through enhanced GIP secretion.
Collapse
|
3
|
Villegas-Novoa C, Wang Y, Sims CE, Allbritton NL. Development of a Primary Human Intestinal Epithelium Enriched in L-Cells for Assay of GLP-1 Secretion. Anal Chem 2022; 94:9648-9655. [PMID: 35758929 DOI: 10.1021/acs.analchem.2c00912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a chronic disease associated with obesity and dysregulated human feeding behavior. The hormone glucagon-like peptide 1 (GLP-1), a critical regulator of body weight, food intake, and blood glucose levels, is secreted by enteroendocrine L-cells. The paucity of L-cells in primary intestinal cell cultures including organoids and monolayers has made assays of GLP-1 secretion from primary human cells challenging. In the current paper, an analytical assay pipeline consisting of an optimized human intestinal tissue construct enriched in L-cells paired with standard antibody-based GLP-1 assays was developed to screen compounds for the development of pharmaceuticals to modulate L-cell signaling. The addition of the serotonin receptor agonist Bimu 8, optimization of R-spondin and Noggin concentrations, and utilization of vasoactive intestinal peptide (VIP) increased the density of L-cells in a primary human colonic epithelial monolayer. Additionally, the incorporation of an air-liquid interface culture format increased the L-cell number so that the signal-to-noise ratio of conventional enzyme-linked immunoassays could be used to monitor GLP-1 secretion in compound screens. To demonstrate the utility of the optimized analytical method, 21 types of beverage sweeteners were screened for their ability to stimulate GLP-1 secretion. Stevioside and cyclamate were found to be the most potent inducers of GLP-1 secretion. This platform enables the quantification of GLP-1 secretion from human primary L-cells and will have broad application in understanding L-cell formation and physiology and will improve the identification of modulators of human feeding behavior.
Collapse
Affiliation(s)
- Cecilia Villegas-Novoa
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Wierdak M, Korbut E, Hubalewska-Mazgaj M, Surmiak M, Magierowska K, Wójcik-Grzybek D, Pędziwiatr M, Brzozowski T, Magierowski M. Impact of Vagotomy on Postoperative Weight Loss, Alimentary Intake, and Enterohormone Secretion After Bariatric Surgery in Experimental Translational Models. Obes Surg 2022; 32:1586-1600. [PMID: 35277793 DOI: 10.1007/s11695-022-05987-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Obesity may be treated by bariatric procedures and is related to enterohormone release modulation. Nevertheless, a majority of commonly used surgical procedures have a significant impact on vagus nerve function by breaking the connections with its gastric branches. In the case of an intragastric balloon (BAL), this interaction is unclear. However, BAL-induced weight reduction is not long-lasting. Interestingly, this method has not been used in combination with vagotomy (VAG). Thus, we evaluated, for the first time, the short- and long-term effects of combined BAL and VAG using the animal-based translational model and compared these effects with sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). Wistar rats were fed a high-calorie diet for 8 weeks to induce obesity before SG, RYGB, BAL + / - VAG. Animals' weight and eating behaviors were monitored weekly. After 90 days, serum samples were collected to evaluate postprandial and fasting GLP-1, GIP, PYY, ghrelin, glucagon, insulin, leptin, and pancreatic polypeptide concentrations by fluorescent assay. VAG, SG, RYGB, and BAL + VAG significantly reduced body weight 30 and 90 days after surgery. BAL alone induced temporal weight reduction observed after 30 days, reversed after 90 days. Calories intake was reduced at the first half of the observation period in all groups. Fluid intake was reduced in all groups except SG and BAL. Enterohormone profile for BAL + VAG was comparable to SG and RYGB but not BAL. VAG and BAL + VAG but not BAL alone maintain weight reduction, alimentary intake changes, and enterohormone release after long-term observation. VAG may improve the effectiveness of bariatric procedures for obesity treatment in clinical practice.
Collapse
Affiliation(s)
- Mateusz Wierdak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
- 2Nd Department of Surgery, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688, Kraków, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066, Kraków, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Michał Pędziwiatr
- 2Nd Department of Surgery, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688, Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Krakow, Poland.
| |
Collapse
|
5
|
A pilot study about the development and characterization of a Roux en Y gastric bypass model in obese Yucatan minipigs. Sci Rep 2021; 11:20190. [PMID: 34642370 PMCID: PMC8511153 DOI: 10.1038/s41598-021-98575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Performing the Roux-en-Y gastric bypass (RYGBP) in obese Yucatan minipigs provides an opportunity to explore the mechanisms behind the effects of this surgery in controlled environmental and nutritional conditions. We hypothesized that RYGBP in these minipigs would induce changes at multiple levels, as in obese humans. We sought to characterize RYGBP in a diet-induced obese minipig model, compared with a pair-fed sham group. After inducing obesity with an ad libitum high-fat/high-sugar diet, we performed RYGBP (n = 7) or sham surgery (n = 6). Oral glucose tolerance tests (OGTT) were performed before and after surgery. Histological analyses were conducted to compare the alimentary limb at sacrifice with tissue sampled during RYGBP surgery. One death occurred in the RYGBP group at postoperative day (POD) 3. Before sacrifice, weight loss was the same across groups. GLP-1 secretion (OGTT) was significantly higher at 15, 30 and 60 min at POD 7, and at 30 and 60 min at POD 30 in the RYGBP group. Incremental insulin area under the curve increased significantly after RYGBP (p = 0.02). RYGBP induced extensive remodeling of the alimentary limb. Results show that RYGBP can be safely performed in obese minipigs, and changes mimic those observed in humans.
Collapse
|
6
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Courtney CM, Shyr ZA, Yan Z, Onufer EJ, Steinberger AE, Tecos ME, Barron LK, Guo J, Remedi MS, Warner BW. Alterations in pancreatic islet cell function in response to small bowel resection. Am J Physiol Gastrointest Liver Physiol 2020; 319:G36-G42. [PMID: 32463335 PMCID: PMC7468758 DOI: 10.1152/ajpgi.00282.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
After 50% proximal small bowel resection (SBR) in mice, we have demonstrated hepatic steatosis, impaired glucose metabolism without insulin resistance, and increased pancreatic islet area. We sought to determine the consequences of SBR on pancreatic β-cell morphology, proliferation, and expression of a key regulatory hormone, glucagon-like peptide-1 (GLP-1). C57BL/6 mice underwent 50% SBR or sham operation. At 10 wk, pancreatic insulin content and secretion was measured by ELISA. Immunohistochemistry was performed to determine structural alterations in pancreatic α-and β-cells. Western blot analysis was used to measure GLP-1R expression, and immunoassay was used to measure plasma insulin and GLP-1. Experiments were repeated by administering a GLP-1 agonist (exendin-4) to a cohort of mice following SBR. After SBR, there was pancreatic islet hypertrophy and impaired glucose tolerance. The proportion of α and β cells was not grossly altered. Whole pancreas and pancreatic islet insulin content was not significantly different; however, SBR mice demonstrated decreased insulin secretion in both static incubation and islet perfusion experiments. The expression of pancreatic GLP-1R was decreased approximately twofold after SBR, compared with sham and serum GLP-1, was decreased. These metabolic derangements were mitigated after administration of the GLP-1 agonist. Following massive SBR, there is significant hypertrophy of pancreatic islet cells with morphologically intact α- and β-cells. Significantly reduced pancreatic insulin release in both static and dynamic conditions demonstrate a perturbed second phase of insulin secretion. GLP-1 is a key mediator of this amplification pathway. Decreased expression of serum GLP-1 and pancreatic GLP-1R in face of no change in insulin content presents a novel pathway for enteropancreatic glucose regulation following SBR.NEW & NOTEWORTHY Metabolic changes occur following intestinal resection; however, the effects on pancreatic function are unknown. Prior studies have demonstrated that glucagon-like protein-1 (GLP-1) signaling is a crucial player in the improved insulin sensitivity after bariatric surgery. In this study, we explore the effect of massive small bowel resection on gut hormone physiology and provide novel insights into the enteropancreatic axis.
Collapse
Affiliation(s)
- Cathleen M. Courtney
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Zeenat A. Shyr
- 2Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, Missouri
| | - Zihan Yan
- 2Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, Missouri
| | - Emily Jean Onufer
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Allie E. Steinberger
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Maria E. Tecos
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren K. Barron
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Jun Guo
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Maria S. Remedi
- 2Division of Endocrinology, Metabolism, and Lipid Research, Washington University in St. Louis, Missouri
| | - Brad W. Warner
- 1Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Val-Laillet D. Review: Impact of food, gut-brain signals and metabolic status on brain activity in the pig model: 10 years of nutrition research using in vivo brain imaging. Animal 2019; 13:2699-2713. [PMID: 31354119 DOI: 10.1017/s1751731119001745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The purpose of this review is to offer a panorama on 10 years of nutrition research using in vivo brain imaging in the pig model. First, we will review some work describing the brain responses to food signals, including basic tastants such as sweet and bitter at both oral and visceral levels, as well as conditioned preferred and aversive flavours. Second, we will have a look at the impact of weight gain and obesity on brain metabolism and functional responses, drawing the parallel with obese human patients. Third, we will evoke the concept of the developmental origins of health and diseases, and how the pig model can shed light on the importance of maternal nutrition during gestation and lactation for the development of the gut-brain axis and adaptation abilities of the progeny to nutritional environments. Finally, three examples of preventive or therapeutic strategies will be introduced: the use of sensory food ingredients or pre-, pro-, and postbiotics to improve metabolic and cognitive functions; the implementation of chronic vagus nerve stimulation to prevent weight gain and glucose metabolism alterations; and the development of bariatric surgery in the pig model for the understanding of its complex mechanisms at the gut-brain level. A critical conclusion will brush the limitations of neurocognitive studies in the pig model and put in perspective the rationale and ethical concerns underlying the use of pig experimentation in nutrition and neurosciences.
Collapse
Affiliation(s)
- D Val-Laillet
- INRA, INSERM, Univ Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, St Gilles, France
| |
Collapse
|
9
|
Pierzynowska KG, Lozinska L, Woliński J, Pierzynowski S. The inverse relationship between blood amylase and insulin levels in pigs during development, bariatric surgery, and intravenous infusion of amylase. PLoS One 2018; 13:e0198672. [PMID: 29874296 PMCID: PMC5991419 DOI: 10.1371/journal.pone.0198672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
The purpose of this research is to explore the link between plasma amylase and insulin levels in growing pigs. Blood was obtained from piglets ranging in age from preterm (8 days to full gestation period), up to postnatal day 90 (2 months post-weaning) that underwent either duodenal-jejunal bariatric interposition surgery or a sham-operation. Plasma amylase activities in preterm and full-term neonates ranged between 500–600 U/L and were decreased by 50% two months post-weaning. Preprandial insulin and C-peptide levels in neonate piglets were not detectable, however they rose gradually after weaning. An increase in plasma amylase activity was observed in the young pigs that underwent duodenal-jejunum bypass (metabolic) surgery. The increase in blood pancreatic amylase activity after an intravenous amylase infusion lowered the subsequent glucose-stimulated insulin/C-peptide release. We suggest a role for blood amylase in the regulation of glucose homeostasis after observing high blood amylase levels in neonate pigs, in pigs that underwent metabolic surgery, and as a result of the reduced glucose-stimulated insulin response following intravenous amylase administration. Blood amylase level is a dynamic physiological parameter, which is not merely a consequence of exocrine pancreatic digestive enzyme production, but rather a regulated factor involved in glucose assimilation and prandial insulin regulation.
Collapse
Affiliation(s)
| | - Liudmyla Lozinska
- Department of Biology, Lund University, Lund, Sweden
- PROF, Lublin, Poland
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Stefan Pierzynowski
- Department of Biology, Lund University, Lund, Sweden
- Anara AB, Trelleborg, Sweden
- PROF, Lublin, Poland
- Department of Biology, Institute Rural Medicine, Lublin, Poland
- * E-mail: (SGP); (KP)
| |
Collapse
|
10
|
Gao X, Lindqvist A, Sandberg M, Groop L, Wierup N, Jansson L. Effects of GIP on regional blood flow during normoglycemia and hyperglycemia in anesthetized rats. Physiol Rep 2018; 6:e13685. [PMID: 29673130 PMCID: PMC5907939 DOI: 10.14814/phy2.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) potentiates glucose-stimulated insulin secretion, and affects β-cell turnover. This study aimed at evaluating if some of the beneficial effects of GIP on glucose homeostasis can be explained by modulation of islet blood flow. Anesthetized Sprague-Dawley rats were infused intravenously with different doses of GIP (10, 20, or 60 ng/kg*min) for 30 min. Subsequent organ blood flow measurements were performed with microspheres. In separate animals, islets were perfused ex vivo with GIP (10-6 -10-12 mol/L) during normo- and hyperglycemia and arteriolar responsiveness was recorded. The highest dose of GIP potentiated insulin secretion during hyperglycemia, but had no effect in normoglycemic rats. The highest GIP concentration decreased blood perfusion of whole pancreas, pancreatic islets, duodenum, colon, liver and kidneys. The decrease in blood flow was unaffected by ganglion blockade or adenosine receptor inhibition. In contrast to this, in single perfused islets GIP induced a dose-dependent arteriolar dilation. Thus, high doses of GIP exert a direct dilatory effect on islet arterioles in isolated islets, but induce a generalized vasoconstriction in splanchnic organs, including the whole pancreas and islets, in vivo. The latter effect is unlikely to be mediated by adenosine, the autonomic nervous system, or endothelial mediators.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Andreas Lindqvist
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Monica Sandberg
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Leif Groop
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Nils Wierup
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Leif Jansson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
11
|
Pluschke AM, Williams BA, Zhang D, Anderson ST, Roura E, Gidley MJ. Male grower pigs fed cereal soluble dietary fibres display biphasic glucose response and delayed glycaemic response after an oral glucose tolerance test. PLoS One 2018; 13:e0193137. [PMID: 29494594 PMCID: PMC5832219 DOI: 10.1371/journal.pone.0193137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/05/2018] [Indexed: 01/10/2023] Open
Abstract
Acute and sustained soluble dietary fibre (SDF) consumption are both associated with improved glucose tolerance in humans and animal models (e.g. porcine). However, the effects on glucose tolerance in grower pigs, adapted to diets with a combination of SDF have not been studied previously. In this experiment, cereal SDF wheat arabinoxylan (AX) and oat β-glucan (BG) were fed individually and in combination to determine the effect on glucose tolerance in jugular vein catheterized grower pigs. Five groups of Large White male grower pigs were fed highly digestible diets containing either 10% AX, 10% BG, 5% AX with 5% BG, a model cereal whole wheat flour (WWF), or a control wheat starch diet (WS) with no SDF. Blood was collected via jugular vein catheters over 240 minutes following a feed challenge and an oral glucose tolerance test (OGTT) on two separate days. Postprandial blood samples were used to determine plasma glucose, insulin, non-esterified fatty acids (NEFA), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), peptide tyrosine tyrosine (PYY), ghrelin, glucagon and cortisol concentrations. No dietary effects on glycaemic response were observed following the feed challenge or the OGTT as determined by the area under the curve (AUC). A biphasic glucose and insulin response was detected for all pigs following the OGTT. The current study showed male grower pigs have tight glycaemic control and glucose tolerance regardless of diet. In addition, pigs fed the combined SDF had a reduced GIP response and delayed insulin peak following the feed challenge. Incretin (GLP-1 and GIP) secretion appeared asynchronous reflecting their different enteroendocrine cell locations and response to nutrient absorption.
Collapse
Affiliation(s)
- Anton M. Pluschke
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
- * E-mail: (AP); (MJG)
| | - Barbara A. Williams
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Dagong Zhang
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Stephen T. Anderson
- School of Biomedical Science, The University of Queensland, St Lucia Brisbane, Australia
| | - Eugeni Roura
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
| | - Michael J. Gidley
- Queensland Alliance for Agriculture and Food Innovation, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia Brisbane, Australia
- * E-mail: (AP); (MJG)
| |
Collapse
|
12
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
13
|
Experiments suggesting extra-digestive effects of enteral pancreatic amylase and its peptides on glucose homeostasis in a pig model. Sci Rep 2017; 7:8628. [PMID: 28819193 PMCID: PMC5561192 DOI: 10.1038/s41598-017-07387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
The studies presented were designed to highlight the impact of pancreatic enzymes on glycemic control and insulin response. Blood glucose and plasma insulin levels were monitored after intravenous, oral or direct gut glucose tolerance tests (GTT) in 6 pigs with an intact gastrointestinal tract and in 12 pigs following duodenal-jejunal bypass (DJB) surgery. In the intact pigs, pancreatic enzymes (Creon®) given orally 1 h prior to the GTT, lowered the blood glucose levels during the oral and meal GTT and reduced the plasma insulin response during the intravenous and meal GTT. In DJB pigs, blood glucose and plasma insulin levels were higher following glucose loading into the by-passed biliopancreatic limb as compared to that following glucose loading orally or into the common intestinal limb. Infusion of amylase or amylase peptides together with glucose into the biliopancreatic limb lowered blood glucose levels in DJB pigs. These preliminary data suggest new, extra-digestive, actions of enteral pancreatic enzymes – probably amylase or its peptides – on glucose homeostasis, with an reduction in net glucose absorption into the blood and in insulin response. This ability of digestive enzymes (amylase) to reduce post-prandial hyperglycaemia in an insulin-independent manner could aid in preventing the development of obesity and diabetes.
Collapse
|