1
|
Wu Y, Foollee A, Chan AY, Hille S, Hauke J, Challis MP, Johnson JL, Yaron TM, Mynard V, Aung OH, Cleofe MAS, Huang C, Lim Kam Sian TCC, Rahbari M, Gallage S, Heikenwalder M, Cantley LC, Schittenhelm RB, Formosa LE, Smith GC, Okun JG, Müller OJ, Rusu PM, Rose AJ. Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon. Nat Commun 2024; 15:8390. [PMID: 39333498 PMCID: PMC11436942 DOI: 10.1038/s41467-024-52703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Collapse
Affiliation(s)
- Yuqin Wu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Ashish Foollee
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Andrea Y Chan
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Susanne Hille
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jana Hauke
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Matthew P Challis
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Victoria Mynard
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Okka H Aung
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Maria Almira S Cleofe
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | | | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Surgery, Theodor-Kutzer-Ufer 1-3, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard-Karls University, Tübingen, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Patricia M Rusu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
2
|
Horie I, Abiru N. Advances in clinical research on glucagon. Diabetol Int 2024; 15:353-361. [PMID: 39101175 PMCID: PMC11291794 DOI: 10.1007/s13340-024-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
We are now celebrating the 100th anniversary of the discovery of an important pancreatic hormone, glucagon. Glucagon is historically described as a diabetogenic hormone elevating glucose levels via increases in insulin resistance and hepatic gluconeogenesis. The more recently identified actions of glucagon include not only its pathophysiologic effects on glucose metabolism but also its significant roles in amino-acid metabolism in the liver. The possibility that abnormalities in α-cells' secretion of glucagon in metabolic disorders are a compensatory adaptation for the maintenance of metabolic homeostasis is another current issue. However, the clinical research concerning glucagon has been considerably behind the advances in basic research due to the lack of suitable methodology for obtaining precise measurements of plasma glucagon levels in humans. The precise physiology of glucagon secretory dynamics in individuals with metabolic dysfunction (including diabetes) has been clarified since the development in 2014 of a quantitative measurement technique for glucagon. In this review, we summarize the advances in the clinical research concerning glucagon, including those of our studies and the relevant literature.
Collapse
Affiliation(s)
- Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Medical Health Examination Center, Midori Clinic, 32-20 Joei-Machi, Nagasaki, 852-8034 Japan
| |
Collapse
|
3
|
Rehfeld JF, Goetze JP. Gastrointestinal hormones: History, biology, and measurement. Adv Clin Chem 2024; 118:111-154. [PMID: 38280804 DOI: 10.1016/bs.acc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This chapter attempts to provide an all-round picture of a dynamic and major branch of modern endocrinology, i.e. the gastrointestinal endocrinology. The advances during the last half century in our understanding of the dimensions and diversity of gut hormone biology - inside as well as outside the digestive tract - are astounding. Among major milestones are the dual brain-gut relationship, i.e. the comprehensive expression of gastrointestinal hormones as potent transmitters in central and peripheral neurons; the hormonal signaling from the enteroendocrine cells to the brain and other extraintestinal targets; the role of gut hormones as growth and fertility factors; and the new era of gut hormone-derived drugs. Accordingly, gastrointestinal hormones have pathogenetic roles in major metabolic disorders (diabetes mellitus and obesity); in tumor development (common cancers, sarcomas, and neuroendocrine tumors); and in cerebral diseases (anxiety, panic attacks, and probably eating disorders). Such clinical aspects require accurate pathogenetic and diagnostic measurements of gastrointestinal hormones - an obvious responsibility for clinical chemistry/biochemistry. In order to obtain a necessary insight into today's gastrointestinal endocrinology, the chapter will first describe the advances in gastrointestinal endocrinology in a historical context. The history provides a background for the subsequent description of the present biology of gastrointestinal hormones, and its biomedical consequences - not least for clinical chemistry/biochemistry with its specific responsibility for selection of appropriate assays and reliable measurements.
Collapse
Affiliation(s)
- Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Neumann J, Hofmann B, Dhein S, Gergs U. Glucagon and Its Receptors in the Mammalian Heart. Int J Mol Sci 2023; 24:12829. [PMID: 37629010 PMCID: PMC10454195 DOI: 10.3390/ijms241612829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097 Halle (Saale), Germany;
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| |
Collapse
|
5
|
Pérez-Arana GM, Díaz-Gómez A, Bancalero-de los Reyes J, Gracia-Romero M, Ribelles-García A, Visiedo F, González-Domínguez Á, Almorza-Gomar D, Prada-Oliveira JA. The role of glucagon after bariatric/metabolic surgery: much more than an "anti-insulin" hormone. Front Endocrinol (Lausanne) 2023; 14:1236103. [PMID: 37635984 PMCID: PMC10451081 DOI: 10.3389/fendo.2023.1236103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
The biological activity of glucagon has recently been proposed to both stimulate hepatic glucose production and also include a paradoxical insulinotropic effect, which could suggest a new role of glucagon in the pathophysiology type 2 diabetes mellitus (T2DM). An insulinotropic role of glucagon has been observed after bariatric/metabolic surgery that is mediated through the GLP-1 receptor on pancreatic beta cells. This effect appears to be modulated by other members of the proglucagon family, playing a key role in the beneficial effects and complications of bariatric/metabolic surgery. Glucagon serves a dual role after sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). In addition to maintaining blood glucose levels, glucagon exhibits an insulinotropic effect, suggesting that glucagon has a more complex function than simply an "anti-insulin hormone".
Collapse
Affiliation(s)
- Gonzalo-Martín Pérez-Arana
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | | | | | | | | | - Francisco Visiedo
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - Álvaro González-Domínguez
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| | - David Almorza-Gomar
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
- Operative Statistic and Research Department, University of Cádiz, Cádiz, Spain
| | - José-Arturo Prada-Oliveira
- Department of Human Anatomy and Embryology, University of Cadiz, Cádiz, Spain
- Institute for Biomedical Science Research and Innovation (INIBICA), University of Cadiz, Cádiz, Spain
| |
Collapse
|
6
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Kang Q, Zheng J, Jia J, Xu Y, Bai X, Chen X, Zhang XK, Wong FS, Zhang C, Li M. Disruption of the glucagon receptor increases glucagon expression beyond α-cell hyperplasia in zebrafish. J Biol Chem 2022; 298:102665. [PMID: 36334626 PMCID: PMC9719020 DOI: 10.1016/j.jbc.2022.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The glucagon receptor (GCGR) is a potential target for diabetes therapy. Several emerging GCGR antagonism-based therapies are under preclinical and clinical development. However, GCGR antagonism, as well as genetically engineered GCGR deficiency in animal models, are accompanied by α-cell hyperplasia and hyperglucagonemia, which may limit the application of GCGR antagonism. To better understand the physiological changes in α cells following GCGR disruption, we performed single cell sequencing of α cells isolated from control and gcgr-/- (glucagon receptor deficient) zebrafish. Interestingly, beyond the α-cell hyperplasia, we also found that the expression of gcga, gcgb, pnoca, and several glucagon-regulatory transcription factors were dramatically increased in one cluster of gcgr-/- α cells. We further confirmed that glucagon mRNA was upregulated in gcgr-/- animals by in situ hybridization and that glucagon promoter activity was increased in gcgr-/-;Tg(gcga:GFP) reporter zebrafish. We also demonstrated that gcgr-/- α cells had increased glucagon protein levels and increased granules after GCGR disruption. Intriguingly, the increased mRNA and protein levels could be suppressed by treatment with high-level glucose or knockdown of the pnoca gene. In conclusion, these data demonstrated that GCGR deficiency not only induced α-cell hyperplasia but also increased glucagon expression in α cells, findings which provide more information about physiological changes in α-cells when the GCGR is disrupted.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jihong Zheng
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ying Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Bai
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Khalifa O, H. Mroue K, Mall R, Ullah E, S. Al-Akl N, Arredouani A. Investigation of the Effect of Exendin-4 on Oleic Acid-Induced Steatosis in HepG2 Cells Using Fourier Transform Infrared Spectroscopy. Biomedicines 2022; 10:2652. [PMID: 36289914 PMCID: PMC9599706 DOI: 10.3390/biomedicines10102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver lesion that is untreatable with medications. Glucagon-like peptide-1 receptor (GLP-1R) agonists have recently emerged as a potential NAFLD pharmacotherapy. However, the molecular mechanisms underlying these drugs' beneficial effects are not fully understood. Using Fourier transform infrared (FTIR) spectroscopy, we sought to investigate the biochemical changes in a steatosis cell model treated or not with the GLP-1R agonist Exendin-4 (Ex-4). HepG2 cells were made steatotic with 400 µM of oleic acid and then treated with 200 nM Ex-4 in order to reduce lipid accumulation. We quantified steatosis using the Oil Red O staining method. We investigated the biochemical alterations induced by steatosis and Ex-4 treatment using Fourier transform infrared (FTIR) spectroscopy and chemometric analyses. Analysis of the Oil Red O staining showed that Ex-4 significantly reduces steatosis. This reduction was confirmed by FTIR analysis, as the phospholipid band (C=O) at 1740 cm-1 in Ex-4 treated cells is significantly decreased compared to steatotic cells. The principal component analysis score plots for both the lipid and protein regions showed that the untreated and Ex-4-treated samples, while still separated, are clustered close to each other, far from the steatotic cells. The biochemical and structural changes induced by OA-induced lipotoxicity are at least partially reversed upon Ex-4 treatment. FTIR and chemometric analyses revealed that Ex-4 significantly reduces OA-induced lipid accumulation, and Ex-4 also restored the lipid and protein biochemical alterations caused by lipotoxicity-induced oxidative stress. In combination with chemometric analyses, FTIR spectroscopy may offer new approaches for investigating the mechanisms underpinning NAFLD.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kamal H. Mroue
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Nayla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
9
|
Khalifa O, Al-Akl NS, Errafii K, Arredouani A. Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/-catenin signaling pathway. Sci Rep 2022; 12:2226. [PMID: 35140289 PMCID: PMC8828858 DOI: 10.1038/s41598-022-06143-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating the cells with 400 µM oleic acid (OA) overnight. Further treatment with 200 nM Ex-4 for 3 h significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of β-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/β-catenin pathway. Additionally, after β-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake and transport via FABP1 downregulation.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Neyla S Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
| | - Khaoula Errafii
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box: 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
10
|
Wang Y, Li M, Liang W, Shi X, Fan J, Kong R, Liu Y, Zhang J, Chen T, Lu S. Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Comput Struct Biotechnol J 2022; 20:628-639. [PMID: 35140883 PMCID: PMC8801358 DOI: 10.1016/j.csbj.2022.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/09/2023] Open
Abstract
Class B G protein-coupled receptors (GPCRs) are important targets in the treatment of metabolic syndrome and diabetes. Although multiple structures of class B GPCRs-G protein complexes have been elucidated, the detailed activation mechanism of the receptors remains unclear. Here, we combine Gaussian accelerated molecular dynamics simulations and Markov state models (MSM) to investigate the activation mechanism of a canonical class B GPCR, human glucagon receptor-GCGR, including the negative allosteric modulator-bound inactive state, the agonist glucagon-bound active state, and both glucagon- and Gs-bound fully active state. The free-energy landscapes of GCGR show the conformational ensemble consisting of three activation-associated states: inactive, active, and fully active. The structural analysis indicates the high dynamics of GCGR upon glucagon binding with both active and inactive conformations in the ensemble. Significantly, the H8 and TM6 exhibits distinct features from the inactive to the active states. The additional simulations demonstrate the role of H8 in the recruitment of Gs. Gs binding presents a crucial function of stabilizing the glucagon binding site and MSM highlights the absolute requirement of Gs to help the GCGR reach the fully active state. Together, our results reveal the detailed activation mechanism of GCGR from the view of conformational dynamics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Wenqi Liang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchao Shi
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200023, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Albrechtsen NJW, Rehfeld JF. On premises and principles for measurement of gastrointestinal peptide hormones. Peptides 2021; 141:170545. [PMID: 33811948 DOI: 10.1016/j.peptides.2021.170545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022]
Abstract
Gastrointestinal hormones are peptides, and the gastrointestinal tract is the largest endocrine organ in the body for production of peptide hormones. As a premise for accurate measurement of gastrointestinal hormones, the present review provides first an overview over the complex biology of the hormones: The structures and structural homologies; biogenetic aspects; phenotype variabilities; and cellular expression in- and outside the digestive tract. Second, the different methodological principles for measurement are discussed: Bioassay, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), mass-spectrometry (LC-MS/MS) and processing-independent analysis (PIA). Third, the variability of secretion patterns for some of the gut hormones is illustrated. Finally, the diagnostic value of gut hormone measurement is discussed. The review concludes that measurement of gastrointestinal peptide hormones is relevant not only for examination of digestive functions and diseases, but also for extra-intestinal functions. Moreover, it concludes that, so far, immunoassay technologies (RIA and ELISA) in modernized forms are still the most feasible for accurate measurements of gastrointestinal hormones in biological fluids. Mass-spectrometry technologies are promising, but still too insensitive and expensive.
Collapse
Affiliation(s)
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
13
|
Modrzynska J, Klein CF, Iversen K, Bundgaard H, Hartmann B, Mose M, Rittig N, Møller N, Holst JJ, Wewer Albrechtsen NJ. Plasma levels of glucagon but not GLP-1 are elevated in response to inflammation in humans. Endocr Connect 2021; 10:205-213. [PMID: 33480865 PMCID: PMC7983524 DOI: 10.1530/ec-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Glucagon and glucagon-like peptide-1 (GLP-1) originate from the common precursor, proglucagon, and their plasma concentrations have been reported to be increased during inflammatory conditions. Increased blood glucose levels are frequently observed in septic patients, and therefore we hypothesized that glucagon, but not GLP-1, is increased in individuals with inflammation. DESIGN Prospective longitudinal cohort study. MATERIALS AND METHODS We measured glucagon and GLP-1 in plasma sampled consecutively in three cohorts consisting of patients with infective endocarditis (n = 16), urosepsis (n = 28) and post-operative inflammation following percutaneous aortic valve implantation or thoracic endovascular aortic repair (n = 5). Correlations between C-reactive protein (CRP), a marker of systemic inflammation, and glucagon and GLP-1 concentrations were investigated. Additionally, glucagon and GLP-1 concentrations were measured after a bolus infusion of lipopolysaccharide (LPS, 1 ng/kg) in nine healthy young males. RESULTS Glucagon and CRP were positively and significantly correlated (r = 0.27; P = 0.0003), whereas no significant association between GLP-1 and CRP was found (r = 0.08, P = 0.30). LPS infusion resulted in acute systemic inflammation reflected by increased temperature, pulse, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6) and concomitantly increased concentrations of glucagon (P < 0.05) but not GLP-1. CONCLUSIONS Systemic inflammation caused by bacterial infections or developed as a non-infected condition is associated with increased plasma concentration of glucagon, but not GLP-1. Hyperglucagonemia may contribute to the impaired glucose control in patients with systemic inflammatory diseases.
Collapse
Affiliation(s)
- Justyna Modrzynska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Iversen
- Department of Clinical Medicine, Herlev Gentofte Hospital, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maike Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to N J Wewer Albrechtsen:
| |
Collapse
|
14
|
Bai X, Jia J, Kang Q, Fu Y, Zhou Y, Zhong Y, Zhang C, Li M. Integrated Metabolomics and Lipidomics Analysis Reveal Remodeling of Lipid Metabolism and Amino Acid Metabolism in Glucagon Receptor-Deficient Zebrafish. Front Cell Dev Biol 2021; 8:605979. [PMID: 33520988 PMCID: PMC7841139 DOI: 10.3389/fcell.2020.605979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The glucagon receptor (GCGR) is activated by glucagon and is essential for glucose, amino acid, and lipid metabolism of animals. GCGR blockade has been demonstrated to induce hypoglycemia, hyperaminoacidemia, hyperglucagonemia, decreased adiposity, hepatosteatosis, and pancreatic α cells hyperplasia in organisms. However, the mechanism of how GCGR regulates these physiological functions is not yet very clear. In our previous study, we revealed that GCGR regulated metabolic network at transcriptional level by RNA-seq using GCGR mutant zebrafish (gcgr -/-). Here, we further performed whole-organism metabolomics and lipidomics profiling on wild-type and gcgr -/- zebrafish to study the changes of metabolites. We found 107 significantly different metabolites from metabolomics analysis and 87 significantly different lipids from lipidomics analysis. Chemical substance classification and pathway analysis integrated with transcriptomics data both revealed that amino acid metabolism and lipid metabolism were remodeled in gcgr-deficient zebrafish. Similar to other studies, our study showed that gcgr -/- zebrafish exhibited decreased ureagenesis and impaired cholesterol metabolism. More interestingly, we found that the glycerophospholipid metabolism was disrupted, the arachidonic acid metabolism was up-regulated, and the tryptophan metabolism pathway was down-regulated in gcgr -/- zebrafish. Based on the omics data, we further validated our findings by revealing that gcgr -/- zebrafish exhibited dampened melatonin diel rhythmicity and increased locomotor activity. These global omics data provide us a better understanding about the role of GCGR in regulating metabolic network and new insight into GCGR physiological functions.
Collapse
Affiliation(s)
- Xuanxuan Bai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianxin Jia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Qi Kang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yadong Fu
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Yingbin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, China.,School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Cheng C, Jabri S, Taoka BM, Sinz CJ. Small molecule glucagon receptor antagonists: an updated patent review (2015–2019). Expert Opin Ther Pat 2020; 30:509-526. [DOI: 10.1080/13543776.2020.1769600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chen Cheng
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Salman Jabri
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Brandon M Taoka
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
| | - Christopher J Sinz
- Merck & Co., Inc, South San Francisco, California, USA (MSD)
- Current Address: Maze Therapeutics, South San Francisco, California, USA
| |
Collapse
|
16
|
Gilon P. The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. J Mol Biol 2020; 432:1367-1394. [PMID: 31954131 DOI: 10.1016/j.jmb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Pancreatic α-cells are the major source of glucagon, a hormone that counteracts the hypoglycemic action of insulin and strongly contributes to the correction of acute hypoglycemia. The mechanisms by which glucose controls glucagon secretion are hotly debated, and it is still unclear to what extent this control results from a direct action of glucose on α-cells or is indirectly mediated by β- and/or δ-cells. Besides its hyperglycemic action, glucagon has many other effects, in particular on lipid and amino acid metabolism. Counterintuitively, glucagon seems also required for an optimal insulin secretion in response to glucose by acting on its cognate receptor and, even more importantly, on GLP-1 receptors. Patients with diabetes mellitus display two main alterations of glucagon secretion: a relative hyperglucagonemia that aggravates hyperglycemia, and an impaired glucagon response to hypoglycemia. Under metabolic stress states, such as diabetes, pancreatic α-cells also secrete GLP-1, a glucose-lowering hormone, whereas the gut can produce glucagon. The contribution of extrapancreatic glucagon to the abnormal glucose homeostasis is unclear. Here, I review the possible mechanisms of control of glucagon secretion and the role of α-cells on islet function in healthy state. I discuss the possible causes of the abnormal glucagonemia in diabetes, with particular emphasis on type 2 diabetes, and I briefly comment the current antidiabetic therapies affecting α-cells.
Collapse
Affiliation(s)
- Patrick Gilon
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), Brussels, B-1200, Belgium.
| |
Collapse
|
17
|
Albinsson-Stenholm E, Bergsén J, Ingves S, Vilhelmsson N, Guldbrand H, Nystrom FH. Subjects with high fasting insulin also have higher postprandial GLP-1 and glucagon levels than controls with lower insulin. Nutr Res 2019; 72:111-120. [PMID: 31759769 DOI: 10.1016/j.nutres.2019.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
Abstract
Little is known about postprandial release of serum ghrelin, glucagon, and glucagon-like peptide-1 (GLP-1) in relation with differing fasting insulin levels. We hypothesized that these hormones are affected by insulin resistance, and hence, we compared different postprandial responses of GLP-1, glucagon, and ghrelin in subjects with relatively high (RHI) or relatively low (RLI) fasting insulin levels. The trial was a randomized crossover study with 4 different meal conditions. Fourteen nonobese or obese, healthy, men and 14 women were randomly assigned to the order of supervised intake of a 750 kcal drink with the same protein contents but with 20 energy-percent (E%) or 55 E% from carbohydrates, and the remaining energy from fat. Participants were also randomized to consume the drinks as 1 large beverage or as five 150-kcal portions every 30 minutes. The 28 subjects were divided into 2 equally sized groups based on fasting insulin levels. Statistics were done with general linear mixed model. Fasting insulin levels were 3-fold higher in the group with RHI compared with the RLI group (RHI: 1004 ± 510 pg/mL, RLI: 324 ± 123 pg/mL, P < .0005). Serum GLP-1 was highest in the RHI group after both single meals and after 5 drinks and following high- and low-carbohydrate meals (both P ≤ .002), and this was the case also for glucagon levels (both P ≤ .018), whereas ghrelin levels did not differ between groups. Thus, subjects with RHI displayed both higher postprandial serum GLP-1 and glucagon than the participants with RLI, suggesting that glucagon could play a role in the advent of dysglycemia by insulin resistance.
Collapse
Affiliation(s)
- Erina Albinsson-Stenholm
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johannes Bergsén
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Simon Ingves
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Nathalie Vilhelmsson
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Hans Guldbrand
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fredrik H Nystrom
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Xu J, Ou K, Chen C, Li B, Guo J, Zuo Z, Wang C. Tributyltin exposure disturbs hepatic glucose metabolism in male mice. Toxicology 2019; 425:152242. [PMID: 31306684 DOI: 10.1016/j.tox.2019.152242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Some previous studies showed that organotin compounds induced diabetes in animal models. The underlying mechanisms should be further revealed. In this study, male KM mice were exposed to tributyltin (TBT) at 0.5, 5 and 50 μg/kg once every three days for 45 days. The TBT-treated mice exhibited an elevation of fasting blood glucose level and glucose intolerance. The fasting serum insulin levels were increased and reached a significant difference in the 50 μg/kg group; the glucagon levels were significantly decreased in all the treatments. Pancreatic β-cell mass was significantly decreased in all the treatments; α-cell mass showed a significant decrease in the 5 and 50 ug/kg groups. The transcription of pancreatic insulin gene (Ins2) showed an up-regulation and reached a significant difference in the 5 and 50 μg/kg groups, which would be responsible for the increased serum insulin levels. The transcription of glucagon gene (Gcg) in the pancreas was significantly down-regulated in the 5 and 50 ug/kg groups. The protein expression of hepatic glucagon receptor was down-regulated, while the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was up-regulated accompanied by increased hepatic glycogen content. These results indicated that hepatic gluconeogenesis was enhanced during insulin resistance stage caused by TBT exposure, which would exert a potential risk inducing the development of diabetes mellitus.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chuqiao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Binshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
20
|
Janah L, Kjeldsen S, Galsgaard KD, Winther-Sørensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Glucagon Resistance. Int J Mol Sci 2019; 20:E3314. [PMID: 31284506 PMCID: PMC6651628 DOI: 10.3390/ijms20133314] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/08/2023] Open
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Collapse
Affiliation(s)
- Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sasha Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, 3400 Hillerød, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2820 Gentofte, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Guo J, Li B, Zuo Z, Chen M, Wang C. Maternal Supplementation with β‐Carotene During Pregnancy Disturbs Lipid Metabolism and Glucose Homoeostasis in F1 Female Mice. Mol Nutr Food Res 2019; 63:e1900072. [DOI: 10.1002/mnfr.201900072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
| | - Meng Chen
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem ResearchXiamen University Xiamen 36110 P. R. China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen University Xiamen 36110 P. R. China
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem ResearchXiamen University Xiamen 36110 P. R. China
| |
Collapse
|
22
|
Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsbøll T. Future Perspectives on GLP-1 Receptor Agonists and GLP-1/glucagon Receptor Co-agonists in the Treatment of NAFLD. Front Endocrinol (Lausanne) 2018; 9:649. [PMID: 30459715 PMCID: PMC6232120 DOI: 10.3389/fendo.2018.00649] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Along the obesity pandemic, the prevalence of non-alcoholic fatty liver disease (NAFLD), often regarded as the hepatic manifestation of the metabolic syndrome, increases worldwide representing now the prevalent liver disease in western countries. No pharmacotherapy is approved for the treatment of NAFLD and, currently, the cornerstone treatment is lifestyle modifications focusing on bodyweight loss, notoriously difficult to obtain and even more difficult to maintain. Thus, novel therapeutic approaches are highly demanded. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are approved for the treatment of type 2 diabetes and obesity. They exert their body weight-lowering effect by reducing satiety and food intake. GLP-1RAs have also been shown to reduce liver inflammation and fibrosis. Furthermore, glucagon receptor agonism is being investigated for the treatment of NAFLD due to its appetite and food intake-reducing effects, as well as its ability to increase lipid oxidation and thermogenesis. Recent studies suggest that glucagon receptor signaling is disrupted in NAFLD, indicating that supra-physiological glucagon receptor agonism might represent a new NAFLD treatment target. The present review provides (1) an overview in the pathophysiology of NAFLD, including the potential involvement of GLP-1 and glucagon, (2) an introduction to the currently available GLP-1RAs and (3) outlines the potential of emerging GLP-1RAs and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD.
Collapse
Affiliation(s)
- Marta Seghieri
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alexander S. Christensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Andersen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Filip K. Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Tina Vilsbøll
| |
Collapse
|