1
|
Estep AS, Sanscrainte ND, Farooq M, Lucas KJ, Heinig RL, Norris EJ, Becnel JJ. Impact of Aedes aegypti V1016I and F1534C knockdown resistance genotypes on operational interventions. Sci Rep 2025; 15:10146. [PMID: 40128542 PMCID: PMC11933297 DOI: 10.1038/s41598-025-94738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Resistance to pyrethroids is common in Aedes aegypti populations. Mutations in the voltage gated sodium channel have an influence on the insecticide resistance (IR) phenotype. In much of the Western hemisphere, two of these knockdown resistance (kdr) mutations, V1016I and F1534C, result in six kdr genotype combinations in field populations. Strong pyrethroid IR and the failure of permethrin treated uniforms have been linked to the presence of the homozygous double kdr genotype (IICC) but the effects of the other five kdr combinations have not been rigorously examined, particularly with regard to operational efficacy. To better understand the impacts of these common kdr genotypes, we isolated three kdr haplotypes (VF, VC, & IC) from a field collected strain to produce six Ae. aegypti isoline strains with all the common V1016I/F1534C kdr genotypes. We then characterized the effects of these genotypes by CDC bottle bioassay and topical application and found increasing resistance to permethrin and deltamethrin as the number of IC haplotypes increased. Neither enzymatic activity nor malathion resistance increased with increasing pyrethroid resistance. We then assessed the operational impacts of these kdr genotypes. Field and wind tunnel spray of a pyrethrin formulation showed that even moderate resistance could significantly reduce knockdown and mortality. Studies with a synergized pyrethroid formulation showed effective recovery of mortality against all genotypes except for the IICC. In human bite studies, one or two IC haplotypes compromised the efficacy of permethrin treated fabrics. This study demonstrates that kdr mutations have distinct phenotypic effects in both the laboratory and operational interventions, and that the strength of pyrethroid resistance varies with the number of IC haplotypes present. Assessing kdr genotype is therefore critical for understanding IR in Ae. aegypti.
Collapse
Affiliation(s)
- Alden S Estep
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Mosquito & Fly Research Unit, Gainesville, FL, USA.
| | - Neil D Sanscrainte
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Mosquito & Fly Research Unit, Gainesville, FL, USA
| | | | | | - Rebecca L Heinig
- Collier Mosquito Control District, Naples, FL, USA
- Thermacell Repellents, Inc., Hampton, FL, USA
| | - Edmund J Norris
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Mosquito & Fly Research Unit, Gainesville, FL, USA
| | - James J Becnel
- USDA-ARS Center for Medical Agricultural and Veterinary Entomology, Mosquito & Fly Research Unit, Gainesville, FL, USA
| |
Collapse
|
2
|
Tennessen JA, Brosula R, Chabanol E, Bickersmith S, Early AM, Laws M, Kelley KA, Grillet ME, Gamboa D, Lucas ER, Duchemin JB, Quiñones ML, Sallum MAM, Bergo ES, Moreno JE, Nagi S, Arisco NJ, Sooklall M, Niles-Robin R, Castro MC, Cox H, Gendrin M, Conn JE, Neafsey DE. Population genomics of Anopheles darlingi, the principal South American malaria vector mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643102. [PMID: 40161849 PMCID: PMC11952511 DOI: 10.1101/2025.03.13.643102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Malaria in South America remains a serious public health problem. Anopheles (Nyssorhynchus) darlingi is the most important malaria vector across tropical Latin America. Vector-targeted disease control efforts require a thorough understanding of mosquito demographic and evolutionary patterns. We present and analyze whole genomes of 1094 A. darlingi (median depth 18x) from six South American countries. We observe deep geographic population structure, high genetic diversity including thirteen putative segregating inversions, and no evidence for cryptic sympatric taxa despite high interpopulation divergence. Strong signals of selection are plausibly driven by insecticides, especially on cytochrome P450 genes, one of which we validated experimentally. Our results will facilitate effective mosquito surveillance and control, while highlighting ongoing challenges that a diverse vector poses for malaria elimination in the western hemisphere.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | | | | | - Sara Bickersmith
- New York State Department of Health, Wadsworth Center; Albany, NY USA
| | | | - Margaret Laws
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | - Katrina A. Kelley
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| | - Maria Eugenia Grillet
- Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela; Caracas, Venezuela
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia; Lima, Peru
| | - Eric R. Lucas
- Liverpool School of Tropical Medicine; Liverpool, UK
| | | | | | | | | | - Jorge E. Moreno
- Instituto de Altos Estudios Dr. Arnoldo Gabaldón, Centro de Investigaciones de Campo Francesco Vitanza; Bolivar, Venezuela
| | - Sanjay Nagi
- Liverpool School of Tropical Medicine; Liverpool, UK
| | | | - Mohini Sooklall
- Vector Control Services, Ministry of Health; Georgetown, Guyana
| | | | | | - Horace Cox
- Vector Control Services, Ministry of Health; Georgetown, Guyana
| | | | - Jan E. Conn
- New York State Department of Health, Wadsworth Center; Albany, NY USA
- Department of Biomedical Sciences, College of Integrated Health Sciences, State University of New York at Albany; Albany, NY USA
| | - Daniel E. Neafsey
- Harvard T.H. Chan School of Public Health; Boston, MA USA
- Broad Institute; Cambridge, MA USA
| |
Collapse
|
3
|
de Oliveira AC, da Silva FMA, de Sá IS, Leocadio BRC, Lima SC, Lima da Costa ML, Roque RA, Nunomura RDCS. Bioassay-Guided Isolation of Piplartine from Piper purusanum Yunck (Piperaceae) and Evaluation of Its Toxicity Against Aedes aegypti Linnaeus, 1762, Anopheles darlingi Root, 1926 (Culicidae), and Non-Target Animals. PLANTS (BASEL, SWITZERLAND) 2025; 14:774. [PMID: 40094716 PMCID: PMC11901690 DOI: 10.3390/plants14050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Aedes aegypti and Anopheles darlingi are the primary vectors of dengue and malaria in Brazil. Natural products are currently regarded as promising alternatives for their control, offering environmentally friendly solutions for larval management due to their low toxicity to non-target organisms. Thus, Piplartine, isolated for the first time from Piper purusanum, exhibited larvicidal activity against Ae. aegypti and An. darlingi (LC50 of 14.56 and 26.44 μg/mL), occasioned by the overproduction of reactive oxygen and nitrogen species (66.67 ± 7% and 86.33 ± 6%). Furthermore, piplartine enhanced the activity of key detoxifying enzymes, including catalase (87.00 ± 9 and 94.67 ± 9 μmol of H2O2 consumed per minute per mg of protein), glutathione S-transferase (76.00 ± 1 and 134.00 ± 1 μmol/min/mg), mixed-function oxidase (26.67 ± 5 and 55.00 ± 1 nmol cti mg⁻¹ protein), α-esterase, and β-esterase (27.67 ± 7 to 46.33 ± 1 nmol cti mg⁻¹ protein). In contrast, piplartine inhibited acetylcholinesterase activity (43.33 ± 7 and 48.00 ± 2 μmol/min/mg) compared to the negative control DMSO (87.33 ± 1 and 146.30 ± 3 μmol/min/mg). It is important to highlight that piplartine showed no lethal effects on non-target aquatic insects, with 100% survival observed at a concentration of 264.4 μg/mL. In contrast, α-cypermethrin demonstrated acute and rapid toxicity to non-target organisms, with only 9.1% survival. These findings highlight piplartine as a promising larvicide with selective toxicity and low environmental impact, suitable for integrated larval management strategies.
Collapse
Affiliation(s)
- André Correa de Oliveira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil (M.L.L.d.C.)
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil
- Laboratório de Abertura de Amostras e Ensaios Químicos, Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas 69080-900, Brazil; (I.S.d.S.); (B.R.C.L.)
| | - Felipe Moura Araujo da Silva
- Laboratório de Cromatografia e Espectrometria de Massas, Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas 69067-375, Brazil
| | - Ingrity Suelen de Sá
- Laboratório de Abertura de Amostras e Ensaios Químicos, Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas 69080-900, Brazil; (I.S.d.S.); (B.R.C.L.)
| | - Brenda Reis Coelho Leocadio
- Laboratório de Abertura de Amostras e Ensaios Químicos, Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas 69080-900, Brazil; (I.S.d.S.); (B.R.C.L.)
| | - Suelen Costa Lima
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil (M.L.L.d.C.)
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil
| | - Maria Luiza Lima da Costa
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil (M.L.L.d.C.)
| | - Rosemary Aparecida Roque
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas 69067-375, Brazil (M.L.L.d.C.)
| | - Rita de Cássia Saraiva Nunomura
- Laboratório de Abertura de Amostras e Ensaios Químicos, Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas 69080-900, Brazil; (I.S.d.S.); (B.R.C.L.)
| |
Collapse
|
4
|
Tzotzos G. Properties of "Stable" Mosquito Cytochrome P450 Enzymes. INSECTS 2025; 16:184. [PMID: 40003814 PMCID: PMC11855896 DOI: 10.3390/insects16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The use of insecticides is widespread in the control of debilitating mosquito-borne diseases. P450 enzymes (CYPs) play essential roles in mosquito physiological function but also in the enzymatic detoxification of xenobiotics. Broadly speaking, CYPs can be classified as "stable", meaning those that have no or very few paralogs, and "labile", constituting gene families with many paralogous members. The evolutionary dichotomy between "stable" and "labile" P450 genes is fuzzy and there is not a clear phylogenetic demarcation between P450s involved in detoxification and P450s involved in essential metabolic processes. In this study, bioinformatic methods were used to explore differences in the sequences of "stable" and "labile" P450s that may facilitate their functional classification. Genomic and sequence data of Anopheles gambiae (Agam), Aedes aegypti (Aaeg), and Culex quinquefasciatus (Cqui) CYPs were obtained from public databases. The results of this study show that "stable" CYPs are encoded by longer genes, have longer introns and more exons, and contain a higher proportion of hydrophobic amino acids than "labile" CYPs. Compared to "labile" CYPs, a significantly higher proportion of "stable" CYPs are associated with biosynthetic and developmental processes.
Collapse
Affiliation(s)
- George Tzotzos
- Visiting Research Fellow, Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60100 Ancona, Italy
| |
Collapse
|
5
|
Chen X, Zhou X, Xie X, Li B, Zhao T, Yu H, Xing D, Wu J, Li C. Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses 2025; 17:67. [PMID: 39861856 PMCID: PMC11769442 DOI: 10.3390/v17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The dengue virus (DENV) is primarily transmitted by Aedes aegypti. Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from Aedes aegypti infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of Aedes aegypti infection with DENV2 were selected. By establishing transient transfection and overexpression models of Aedes aegypti Aag2 cells, and mosquito target gene interference models, the difference in viral load before and after treatment was compared, and the effects of DEGs on viral replication were evaluated. After overexpressing 24 DEGs in Aag2 cells, 19 DEGs showed a significant difference in DENV2 RNA copies in the cell supernatant (p < 0.05). In adult mosquitoes, knocking down defensin-A, defensin-A-like, and SMCT1 respectively reduced the DENV2 RNA copies, while knocking down UGT2B1 and ND4 respectively increased the DENV2 RNA copies. In this study, to assess the role of genes related to DENV2 replication, and transient transfection and overexpression models in Aag2 cells and mosquito gene knockdown models were established, and five genes, defensin-A, defensin-A-like, SMCT1, UGT2B1, and ND4, were found to have an impact on the replication of DENV2, providing a reference basis for studying the complex mechanism of mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoli Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Haotian Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Kabula B, Mlacha YP, Serbantez N, Nhiga SL, Mkude S, Kiware S, Michael JS, Mero V, Ballard SB, Chan A, Abbasi S, Mwalimu CD, Govella NJ. Pyrethroid-resistant malaria vector Anopheles gambiae restored susceptibility after pre-exposure to piperonyl-butoxide: results from country-wide insecticide resistance monitoring in Tanzania, 2023. Malar J 2024; 23:395. [PMID: 39709444 DOI: 10.1186/s12936-024-05211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Effective vector control interventions, notably insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are indispensable for malaria control in Tanzania and elsewhere. However, the emergence of widespread insecticide resistance threatens the efficacy of these interventions. Monitoring of insecticide resistance is, therefore, critical for the selection and assessment of the programmatic impact of insecticide-based interventions. METHODS The study was conducted country-wide across 22 sentinel districts of Tanzania between May and July 2023 using standard World Health Organization susceptibility test with 1×, 5×, and 10× of deltamethrin, permethrin, and alpha-cypermethrin and discriminating concentrations of 0.25% pirimiphos-methyl. Synergist assays were conducted to explore the underlying mechanisms of the observed phenotypic pyrethroid-resistant mosquitoes. Three- to five-day-old wild adult females in the first filiar generation of Anopheles gambiae sensu lato (s.l.) were used for the susceptibility bioassays. RESULTS Anopheles gambiae s.l. were resistant to all pyrethroids at the discriminating dose in most sentinel districts except in Rorya, which remains fully susceptible, and Ushetu, which remains susceptible to deltamethrin but not permethrin. In 5 sites (Bukombe, Ukerewe, Kilwa, Kibondo, and Kakonko), the An. gambiae s.l. species exhibited strong resistance to pyrethroids surviving the 10 X concentrations (mortality rate < 98%). However, they remained fully susceptible to pirimiphos-methyl in almost all the sites except in Kibondo and Shinyanga. Likewise, there was full restoration to susceptibility to pyrethroid following pre-exposure of An. gambiae s.l. to piperonyl-butoxide (PBO) in 13 out of 16 sites. The 3 sites that exhibited partial restoration include Kakonko, Tandahimba, and Newala. CONCLUSION The evidence of widespread pyrethroid resistance of the major malaria vector justifies the decision made by the Tanzania National Malaria Control Programme to transition to PBO-based ITNs. Without this switch, the gains achieved in malaria control could be compromised. Equally important, the lack of full restoration to susceptibility observed in three sentinel districts upon pre-exposure to PBO merits close monitoring, as there could be other underlying resistance mechanisms besides oxidase metabolic resistance.
Collapse
Affiliation(s)
- Bilali Kabula
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Yeromin P Mlacha
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania.
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, US Agency for International Development, Dar es Salaam, Tanzania
| | - Samwel L Nhiga
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Sigsbert Mkude
- University of Dar es Salaam, College of Information and Communication Technologies, Department of Electronics & Telecommunication Engineering, P.O. Box 33335, Dar es Salaam, Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - James S Michael
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar es Salaam, Tanzania
| | - Victor Mero
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - Sarah-Blythe Ballard
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Adeline Chan
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Said Abbasi
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - Charles D Mwalimu
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
- University of Dar es Salaam, College of Information and Communication Technologies, Department of Electronics & Telecommunication Engineering, P.O. Box 33335, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
Correa M, Lopes J, Sousa CA, Rocha G, Oriango R, Cardetas A, Viegas J, Cornel AJ, Lanzaro GC, Pinto J. The status of insecticide resistance of Anopheles coluzzii on the islands of São Tomé and Príncipe, after 20 years of malaria vector control. Malar J 2024; 23:390. [PMID: 39695583 DOI: 10.1186/s12936-024-05212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Insecticide-based malaria vector control has been implemented on the islands of São Tomé and Príncipe (STP) for more than 20 years. During this period malaria incidence was significantly reduced to pre-elimination levels. While cases remained low since 2015, these have significantly increased in the last year, challenging the commitment of the country to achieve malaria elimination by 2025. To better understand the reasons for increasing malaria cases, levels and underlying mechanisms of insecticide resistance in the local Anopheles coluzzii populations were characterized. METHODS Mosquito larval collections were performed in the rainy and dry seasons, between 2022 and 2024, in two localities of São Tomé and one locality in Príncipe. Susceptibility to permethrin, α-cypermethrin, pirimiphos-methyl and DDT was assessed using WHO bioassays and protocols. Intensity of resistance and reversal by PBO pre-exposure were determined for pyrethroid insecticides. The kdr locus was genotyped by PCR assays in subsamples of the mosquitoes tested. RESULTS Anopheles coluzzii populations were fully susceptible to pirimiphos-methyl, but high levels of resistance to pyrethroids and DDT were detected, particularly in São Tomé rainy season collections. Increasing the pyrethroid and DDT dosages to 5 × and 10 × did not restore full susceptibility in all populations. Pre-exposure to PBO resulted into partial reversal of the resistance phenotype suggesting the presence of cytochrome P450 oxidases-mediated metabolic resistance. The L1014F knockdown resistance mutation was present in An. coluzzii on both islands but at much higher frequency in São Tomé where it was associated with the resistant phenotype. CONCLUSIONS Future vector control interventions should consider the use of non-pyrethroid insecticides or combination with synergists to overcome the high levels of pyrethroid resistance. Alternative control methods not dependent on the use of insecticides should be additionally implemented to achieve malaria elimination in STP.
Collapse
Affiliation(s)
- Maria Correa
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Janete Lopes
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Carla A Sousa
- Global Health and Tropical Medicine, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gustavo Rocha
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Robin Oriango
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Andreia Cardetas
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - Joao Viegas
- Programa Nacional de Eliminação do Paludismo, Centro Nacional de Endemias, São Tomé, São Tomé and Príncipe
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California, Parlier, CA, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA
| | - João Pinto
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, University of California, Davis, CA, USA.
- Global Health and Tropical Medicine, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
Son JS, Lee S, Hwang S, Jeong J, Jang S, Gong J, Choi JY, Je YH, Ryu CM. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136264. [PMID: 39500186 DOI: 10.1016/j.jhazmat.2024.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Polyethylene is widely used but highly resistant to biodegradation, owing to its composition of only a hydrocarbon backbone. For biodegradation to occur, oxidation within the polymer needs to be initiated. Galleria mellonella was the first insect discovered to autonomously oxidize polyethylene without the aid of gut microbes. However, the specific enzyme remains unidentified. Here, we identified for the first time two polyethylene oxidation enzyme candidates of cytochrome P450 (CYP) 6B2-GP04 and CYP6B2-13G08 from the G. mellonella midgut. Both candidate clones oxidized polyethylene efficiently, generating short-chain aliphatic compounds, with CYP6B2-GP04 exhibiting higher activity than CYP6B2-13G08 in yeast and insect cells. In silico structural modeling approaches revealed that the CYP6B2-GP04 Phe118 was essential for interacting with hydrocarbons, which was further validated by mutating phenylalanine to glycine. Furthermore, directed enzyme evolution led to the identification of an enzyme variant with significantly increased oxidation efficiency. Our findings offer promising enzyme-based solutions for polyethylene biodegradation, potentially mitigating polyethylene-driven plastic pollution.
Collapse
Affiliation(s)
- Jin-Soo Son
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Sungbo Hwang
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141 South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Seonghan Jang
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Jiyoung Gong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea; Department of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0380, USA.
| |
Collapse
|
9
|
Soumalia Issa M, Johnson R, Park Y, Zhu KY. Functional Roles of Five Cytochrome P450 Transcripts in the Susceptibility of the Yellow Fever Mosquito to Pyrethroids Revealed by RNAi Coupled With Insecticide Bioassay. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70013. [PMID: 39635832 DOI: 10.1002/arch.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
We evaluated the possible roles of five cytochrome P450 transcripts in the susceptibility of both adults and larvae of Aedes aegypti to three pyrethroids using RNA interference (RNAi) coupled with insecticide bioassays. RNAi by feeding larvae with chitosan/dsRNA nanoparticles led to reductions of CYP6AA5, CYP6AL1, CYP9J32, CYP4J16A, and CYP4J16B transcripts by 38.7%, 46.0%, 46.52%, 44.0%, and 41.0%, respectively, and increased larval mortality by 46.0% to permethrin when CYP9J32 was silenced and by 41.2% to cypermethrin when CYP6AA5 was silenced. RNAi by injecting dsRNA in adults led to reductions of CYP6AA5, CYP6AL1, and CY4J16A transcripts by 77.9%, 80.0%, and 87.1% (p < 0.05), respectively, at 96 h and reduction of CYP9J32 transcript by 46.5% at 24 h after injection. In contrast, CYP4J16B was repressed by 78.2% at 72 h after injection. Exposure of the adults injected with CYP6AA5 dsRNA resulted in 1.5- to 2.0-fold increased susceptibility to cypermethrin as compared with the control. Homology modeling of CYP6AA5 followed by ligand docking showed that distances between the heme iron and the putative aromatic hydroxylation site were 9.2, 7.2, and 9.1 Å for permethrin, cypermethrin, and deltamethrin, respectively. For the aliphatic hydroxylation site, these distances were 5.3, 4.9, and 3.1 Å. These results supported that CYP6AA5 may be able to metabolize cypermethrin preferentially by aliphatic hydroxylation as indicated by the close interaction with the heme iron. Our study also suggests that the detoxification roles of cytochrome P450 genes in A. aegypti may vary according to the mosquito developmental stages, cytochrome P450 genes, and insecticides.
Collapse
Affiliation(s)
| | - Rachel Johnson
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Nanfack-Minkeu F, Poelstra JW, Sirot LK. Gene regulation by mating depends on time, diet, and body region in female Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104715. [PMID: 39419439 DOI: 10.1016/j.jinsphys.2024.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Aedes aegypti is a major vector of several arboviruses that cause human mortality and morbidity. One method for controlling the spread of these viruses is to control mosquito reproduction. During mating, seminal fluid molecules and sperm are transferred and these stimuli influence female post-mating physiology and behavior. Yet, little is known about the mechanisms underlying these post-mating responses. To fill this gap, short-read RNA sequencing was used to identify differentially expressed genes between unmated (control) and mated females in the head/thorax (HT), abdomen (Ab) and the lower reproductive tract (LRT), of mosquitoes reared with 3% and 12% sucrose. The results revealed that at 3% sucrose, four, 408 and 415 significantly differential expressed genes (DEGs) were identified in the HT, Ab and LRT, respectively, at six hours post mating (hpm). The number of DEGs dropped dramatically at 24 hpm with no DEGs in the HT, three in the Ab, and 112 in the LRT. In contrast, the number of DEGs was lower at 6 hpm than 24 hpm in the LRT at 12% sucrose. Comparing our results to a similar study which used 10% sucrose revealed evidence in support of condition-dependent regulation of gene expression by mating in this species. This study shows that mating-induced transcriptional changes depend on time point after mating, body region, and diet. Our results provide foundational knowledge for future functional analyses to identify genes and pathways involved in the post-mating behavioral and physiological changes of female mosquitoes.
Collapse
Affiliation(s)
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, USA
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH, USA.
| |
Collapse
|
11
|
Guo YA, Si FL, Han BZ, Qiao L, Chen B. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera Culicidae). Acta Trop 2024; 260:107413. [PMID: 39343287 DOI: 10.1016/j.actatropica.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s), a multifunctional protein superfamily, are one of three major classes of detoxification enzymes. However, the diversity and functions of P450 genes from pyrethroid-resistant populations of Anopheles sinensis have not been fully explored. In this study, P450 genes associated with pyrethroid resistance were systematically screened using RNA-seq in three field pyrethroid-resistant populations (AH-FR, CQ-FR, YN-FR) and one laboratory resistant strain (WX-LR) at developmental stages, tissues, and post blood-meal in comparison to the laboratory susceptible strain (WX-LS) in An. sinensis. Importantly, the expression of significantly upregulated P450s was verified using RT-qPCR, and the function of selected P450s in pyrethroid detoxification was determined with RNA interference using four laboratory pyrethroid-resistant strains (WX-LR, AH-LR, CQ-LR, YN-LR). Sixteen P450 genes were significantly upregulated in at least one field-resistant population, and 44 were significantly upregulated in different developmental stages, tissues or post blood-meal. A total of 19 P450s were selected to verify their association with pyrethroid resistance, and four of them (AsCYP6P3v1, AsCYP6P3v2, AsCYP9J10, and AsCYP9K1) demonstrated significant upregulation in laboratory pyrethroid-resistant strains using RT-qPCR. Knockdown of these four genes all significantly reduced pyrethroid resistance and increased the mortality by 57.19% (AsCYP6P3v1 and AsCYP6P3v2 knockdown group), 38.39% (AsCYP9K1 knockdown group) and 48.87% (AsCYP9J10 knockdown group) in An. sinensis by RNAi, which determined the pyrethroid detoxification function of these four genes. This study revealed the diversity of P450 genes and provided functional evidence for four P450s in pyrethroid detoxification in An. sinensis for the first time, which increases our understanding of the pyrethroid resistance mechanism, and is of potential value for pyrethroid resistance detection and surveillance.
Collapse
Affiliation(s)
- Ying-Ao Guo
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
12
|
Vasantha-Srinivasan P, Srinivasan K, Radhakrishnan N, Han YS, Karthi S, Senthil-Nathan S, Chellappandian M, Babu P, Ganesan R, Park KB. Larvicidal and enzyme inhibition effects of Phoenix pusilla derived Methyl oleate and malathion on Aedes aegypti strains. Sci Rep 2024; 14:29327. [PMID: 39592649 PMCID: PMC11599377 DOI: 10.1038/s41598-024-79988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the larvicidal potential of methanolic flower extracts from Phoenix pusilla (Pp-Fe), its major compound, and malathion (MLT), against laboratory strain (LS) and field strain (FS) of Aedes aegypti, the dengue mosquito vector. We identified thirty-one derivatives, with methyl oleate (MO) comprising 28.5% of Pp-Fe. Comparative efficacy evaluations were performed using peak dosages of Pp-Fe (500 ppm), MO (5 ppm), and MLT (5 ppm) on LS and FS larvae. Both LS and FS second instars showed higher susceptibility to Pp-Fe (95% and 93%, respectively) and MO (85% and 83%, respectively). MLT resulted in significant mortality rates among LS larvae (98%) and notable reductions among FS larvae (71%). The expression levels of key biomarker enzymes (carboxylesterase, GST, and CYP450) exhibited a consistent decrease and subsequent upregulation in LS and FS larvae following exposure to Pp-Fe and MO, contrasting with the significant expression variations observed in LS and FS larvae exposed to MLT. LS larvae demonstrated heightened susceptibility and evident midgut cell damage following all treatments, suggesting potential disparities in susceptibility and adaptive responses between LS and FS strains towards MLT. These observations underscore the promising larvicidal attributes of Pp-Fe and MO, emphasizing the need for further exploration of their mechanisms of action in the development of environmentally sustainable mosquito control strategies and resistance management.
Collapse
Affiliation(s)
- Prabhakaran Vasantha-Srinivasan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kumaraswamy Srinivasan
- Department of Biochemistry, St. Peter's Institute of Higher Education and Research (SPIHER), Avadi, Chennai, 600054, Tamil Nadu, India
| | - Narayanaswamy Radhakrishnan
- Department of Bio-Chemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105, Thandalam, Chennai, India
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sengodan Karthi
- Department of Entomology, University of Kentucky, Lexington, 40503, USA
| | - Sengottayan Senthil-Nathan
- Division of Bio-pesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, 627412, Tamil Nadu, India.
| | - Muthiah Chellappandian
- PG and Research Department of Botany, V.O. Chidambaram College, Thoothukudi, Tamil Nadu, India
| | - Prasanth Babu
- Department of Biochemistry, St. Peter's Institute of Higher Education and Research (SPIHER), Avadi, Chennai, 600054, Tamil Nadu, India
| | - Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ki Beom Park
- Research & Development Center, Invirustech Co., Inc, Gwangju, 61222, Korea
| |
Collapse
|
13
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
14
|
Zhang H, Gao H, Lin X, Yang B, Wang J, Yuan X, Zhang Z, He T, Liu Z. Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect. J Adv Res 2024:S2090-1232(24)00498-3. [PMID: 39510378 DOI: 10.1016/j.jare.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Ongoing interactions between host and herbivorous insect trigger a co-evolutionary arms race. Genetic diversity within insects facilitates their adaptation to phytochemicals and their derivatives, including plant-derived insecticides. Cytochrome P450s play important roles in metabolizing phytochemicals and insecticides, due to their diversity and almost perfect evolution. OBJECTIVES This study aims to uncover a common molecular mechanism in herbivorous insects by investigating the role of kinase-transcription factor regulation of P450s in conferring tolerance to both insecticides and phytochemicals. METHODS RNA interference, transcriptome sequencing, insecticide, and phytochemical bioassays were conducted to validate the functions of Akt, FoxO, and candidate P450s. Dual-luciferase activity assays were employed to identify the regulation of P450s by the Akt-FoxO signaling pathway. Recombinant P450 enzymes were utilized to investigate the metabolism of insecticides and phytochemicals. RESULTS We identified an Akt-FoxO signaling cascade, a representative of kinase-transcription factor pathways. This cascade mediates the expression of eight P450 enzymes involved in the metabolism of insecticides and phytochemicals in Nilaparvata lugens. These P450s are from different families and with different substrate selectivity, enabling them to respectively metabolize insecticides and phytochemicals with structure diversity. Nevertheless, the eight P450 genes were up-regulated by FoxO, which was inhibited in a higher cascade by Akt through phosphorylation. The discovery of the Akt-FoxO signaling pathway regulating a series of P450 genes elucidates the finely tuned regulatory mechanism in insects for adapting to phytochemicals and insecticides. CONCLUSION These finding sheds light on the physiological balance maintained by these regulatory processes. The work provides the experimental evidence of co-adaptation to the stresses imposed by host plant and insecticide within the model of the kinase-TF involving various P450s. This model provides a comprehensive view of how pests adapt to multiple environmental stresses.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhen Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
15
|
de Souza RF, Amaro TR, Palacio-Cortés AM, da Silva MAN, Dionisio JF, Pezenti LF, Lopes TBF, Mantovani MS, Zequi JAC, da Rosa R. Comparative transcriptional analysis between susceptible and resistant populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) after malathion exposure. Mol Genet Genomics 2024; 299:92. [PMID: 39367967 DOI: 10.1007/s00438-024-02185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Aedes aegypti is an important vector of arboviruses, including dengue, chikungunya and Zika. The application of synthetic insecticides is a frequently used strategy to control this insect. Malathion is an organophosphate insecticide that was widely used in Brazil in the 1980s and 1990s to control the adult form of A. aegypti. In situations where resistance to currently used insecticides is detected, the use of malathion may be resumed as a control measure. Many studies have confirmed resistance to malathion, however, comparative studies of differential gene expression of the entire transcriptome of resistant and susceptible insects are scarce. Therefore, understanding the molecular basis of resistance to this insecticide in this species is extremely important. In this paper, we present the first transcriptomic description of susceptible and resistant strains of A. aegypti challenged with malathion. Guided transcriptome assembly resulted in 39,904 transcripts, where 2133 differentially expressed transcripts were detected, and three were validated by RT-qPCR. Enrichment analysis for these identified transcripts resulted in 13 significant pathways (padj < 0.05), 8 associated with down-regulated and 5 with up-regulated transcripts in treated resistant insects. It was possible to divide the transcripts according to the mechanism of action into three main groups: (i) genes involved in detoxification metabolic pathways; (ii) genes of proteins located in the membrane/extracellular region; and (iii) genes related to DNA integration/function. These results are important in advancing knowledge of genes related to resistance mechanisms in this insect, enabling the development of effective technologies and strategies for managing insecticide resistance.
Collapse
Affiliation(s)
- Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Tafarel Ribeiro Amaro
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Angela Maria Palacio-Cortés
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mário Antônio Navarro da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jaqueline Fernanda Dionisio
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Larissa Forim Pezenti
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Thayná Bisson Ferraz Lopes
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - João Antônio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil.
| |
Collapse
|
16
|
Moss S, Pretorius E, Ceesay S, da Silva ET, Hutchins H, Ndiath MO, Acford-Palmer H, Collins EL, Higgins M, Phelan J, Jones RT, Vasileva H, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Whole genome sequence analysis of population structure and insecticide resistance markers in Anopheles melas from the Bijagós Archipelago, Guinea-Bissau. Parasit Vectors 2024; 17:396. [PMID: 39294791 PMCID: PMC11412053 DOI: 10.1186/s13071-024-06476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Anopheles melas is an understudied malaria vector with a potential role in malaria transmission on the Bijagós Archipelago of Guinea-Bissau. This study presents the first whole-genome sequencing and population genetic analysis for this species from the Bijagós. To our knowledge, this also represents the largest population genetic analysis using WGS data from non-pooled An. melas mosquitoes. METHODS WGS was conducted for 30 individual An. melas collected during the peak malaria transmission season in 2019 from six different islands on the Bijagós Archipelago. Bioinformatics tools were used to investigate the population structure and prevalence of insecticide resistance markers in this mosquito population. RESULTS Insecticide resistance mutations associated with pyrethroid resistance in Anopheles gambiae s.s. from the Bijagós were absent in the An. melas population, and no signatures of selective sweeps were identified in insecticide resistance-associated genes. Analysis of structural variants identified a large duplication encompassing the cytochrome-P450 gene cyp9k1. Phylogenetic analysis using publicly available mitochondrial genomes indicated that An. melas from the Bijagós split into two phylogenetic groups because of differentiation on the mitochondrial genome attributed to the cytochrome C oxidase subunits COX I and COX II and the NADH dehydrogenase subunits 1, 4, 4L and 5. CONCLUSIONS This study identified an absence of insecticide-resistant SNPs common to An. gambiae in the An. melas population, but did identify structural variation over insecticide resistance-associated genes. Furthermore, this study presents novel insights into the population structure of this malaria vector using WGS analysis. Additional studies are required to further understand the role of this vector in malaria transmission.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sainey Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Harry Hutchins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut Für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
17
|
Charamis J, Balaska S, Ioannidis P, Dvořák V, Mavridis K, McDowell MA, Pavlidis P, Feyereisen R, Volf P, Vontas J. Comparative Genomics Uncovers the Evolutionary Dynamics of Detoxification and Insecticide Target Genes Across 11 Phlebotomine Sand Flies. Genome Biol Evol 2024; 16:evae186. [PMID: 39224065 PMCID: PMC11412322 DOI: 10.1093/gbe/evae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Sand flies infect more than 1 million people annually with Leishmania parasites and other bacterial and viral pathogens. Progress in understanding sand fly adaptations to xenobiotics has been hampered by the limited availability of genomic resources. To address this gap, we sequenced, assembled, and annotated the transcriptomes of 11 phlebotomine sand fly species. Subsequently, we leveraged these genomic resources to generate novel evolutionary insights pertaining to their adaptations to xenobiotics, including those contributing to insecticide resistance. Specifically, we annotated over 2,700 sand fly detoxification genes and conducted large-scale phylogenetic comparisons to uncover the evolutionary dynamics of the five major detoxification gene families: cytochrome P450s (CYPs), glutathione-S-transferases (GSTs), UDP-glycosyltransferases (UGTs), carboxyl/cholinesterases (CCEs), and ATP-binding cassette (ABC) transporters. Using this comparative approach, we show that sand flies have evolved diverse CYP and GST gene repertoires, with notable lineage-specific expansions in gene groups evolutionarily related to known xenobiotic metabolizers. Furthermore, we show that sand flies have conserved orthologs of (i) CYP4G genes involved in cuticular hydrocarbon biosynthesis, (ii) ABCB genes involved in xenobiotic toxicity, and (iii) two primary insecticide targets, acetylcholinesterase-1 (Ace1) and voltage gated sodium channel (VGSC). The biological insights and genomic resources produced in this study provide a foundation for generating and testing hypotheses regarding the molecular mechanisms underlying sand fly adaptations to xenobiotics.
Collapse
Affiliation(s)
- Jason Charamis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Sofia Balaska
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vít Dvořák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Pavlos Pavlidis
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
18
|
Das P, Das S, Saha A, Raha D, Saha D. Effects of deltamethrin exposure on the cytochrome P450 monooxygenases of Aedes albopictus (Skuse) larvae from a dengue-endemic region of northern part of West Bengal, India. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:269-279. [PMID: 38478926 DOI: 10.1111/mve.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 08/07/2024]
Abstract
Aedes albopictus is highly prevalent in the northern part of West Bengal and is considered to be responsible for the recent dengue outbreaks in this region. Control of this vector is largely relied on the use of synthetic pyrethroids, which can lead to the development of resistance. In the present study, larvae of three wild Ae. albopictus populations from the dengue-endemic regions were screened for deltamethrin resistance, and the role of cytochrome P450 monooxygenases (CYPs) was investigated in deltamethrin exposed and unexposed larvae. Two populations were incipient resistant, and one population was completely resistant against deltamethrin. Monooxygenase titration assay revealed the involvement of CYPs in deltamethrin resistance along with an induction effect of deltamethrin exposure. Gene expression studies revealed differential expression of five CYP6 family genes, CYP6A8, CYP6P12, CYP6A14, CYP6N3 and CYP6N6, with high constitutive expression of CYP6A8 and CYP6P12 in all the populations before and after deltamethrin exposure. From these findings, it was evident that CYPs play an important role in the development of deltamethrin resistance in the Ae. albopictus populations in this region.
Collapse
Affiliation(s)
- Prapti Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Subhajit Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Abhirup Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Debayan Raha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| |
Collapse
|
19
|
Sharma N, Au V, Martin K, Edgley ML, Moerman D, Mains PE, Gilleard JS. Multiple UDP glycosyltransferases modulate benzimidazole drug sensitivity in the nematode Caenorhabditis elegans in an additive manner. Int J Parasitol 2024; 54:535-549. [PMID: 38806068 DOI: 10.1016/j.ijpara.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.
Collapse
Affiliation(s)
- Nidhi Sharma
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Vinci Au
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Kiana Martin
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Mark L Edgley
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Don Moerman
- Department of Zoology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | - Paul E Mains
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John S Gilleard
- Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Perugini E, Pichler V, Guelbeogo WM, Micocci M, Poggi C, Manzi S, Ranson H, Della Torre A, Mancini E, Pombi M. Longitudinal survey of insecticide resistance in a village of central region of Burkina Faso reveals co-occurrence of 1014F, 1014S and 402L mutations in Anopheles coluzzii and Anopheles arabiensis. Malar J 2024; 23:250. [PMID: 39164725 PMCID: PMC11334353 DOI: 10.1186/s12936-024-05069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Pyrethroid resistance is one of the major threats for effectiveness of insecticide-treated bed nets (ITNs) in malaria vector control. Genotyping of mutations in the voltage gated sodium channel (VGSC) gene is widely used to easily assess the evolution and spread of pyrethroid target-site resistance among malaria vectors. L1014F and L1014S substitutions are the most common and best characterized VGSC mutations in major African malaria vector species of the Anopheles gambiae complex. Recently, an additional substitution involved in pyrethroid resistance, i.e. V402L, has been detected in Anopheles coluzzii from West Africa lacking any other resistance alleles at locus 1014. The evolution of target-site resistance mutations L1014F/S and V402L was monitored in An. coluzzii and Anopheles arabiensis specimens from a Burkina Faso village over a 10-year range after the massive ITN scale-up started in 2010. METHODS Anopheles coluzzii (N = 300) and An. arabiensis (N = 362) specimens collected both indoors and outdoors by different methods (pyrethrum spray catch, sticky resting box and human landing collections) in 2011, 2015 and 2020 at Goden village were genotyped by TaqMan assays and sequencing for the three target site resistance mutations; allele frequencies were statistically investigated over the years. RESULTS A divergent trend in resistant allele frequencies was observed in the two species: 1014F decreased in An. coluzzii (from 0.76 to 0.52) but increased in An. arabiensis (from 0.18 to 0.70); 1014S occurred only in An. arabiensis and slightly decreased over time (from 0.33 to 0.23); 402L increased in An. coluzzii (from 0.15 to 0.48) and was found for the first time in one An. arabiensis specimen. In 2020 the co-occurrence of different resistance alleles reached 43% in An. coluzzii (alleles 410L and 1014F) and 32% in An. arabiensis (alleles 1014F and 1014S). CONCLUSIONS Overall, an increasing level of target-site resistance was observed among the populations with only 1% of the two malaria vector species being wild type at both loci, 1014 and 402, in 2020. This, together with the co-occurrence of different mutations in the same specimens, calls for future investigations on the possible synergism between resistance alleles and their phenotype to implement local tailored intervention strategies.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Verena Pichler
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation Sur le Paludisme, Ouagadougou, Burkina Faso
| | - Martina Micocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Manzi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, UK
| | - Alessandra Della Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Emiliano Mancini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
22
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
23
|
Kambou SS, Valente A, Agnew P, Hien DFDS, Yerbanga RS, Moiroux N, Dabire KR, Pennetier C, Cohuet A, Carrasco D. Non-contact detection of pyrethroids widely used in vector control by Anopheles mosquitoes. PLoS One 2024; 19:e0298512. [PMID: 38995958 PMCID: PMC11244766 DOI: 10.1371/journal.pone.0298512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.
Collapse
Affiliation(s)
- Sassan Simplice Kambou
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Adeline Valente
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Philip Agnew
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Domonbabele François de Sales Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé Serge Yerbanga
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
- Institut des Sciences et Techniques (InSTech), Bobo-Dioulasso, Burkina Faso
| | - Nicolas Moiroux
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - Kounbobr Roch Dabire
- Institut de Recherche en Sciences de la Santé (IRSS), Centre National de Recherche Scientifique et Technique (CNRST), Bobo-Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| | - David Carrasco
- MIVEGEC, University Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
24
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
25
|
Barbosa RC, Godoy RSM, Ferreira PG, Mendes TAO, Ramalho-Ortigão M, Ribeiro JMC, Martins GF. Exploring the midgut physiology of the non-haematophagous mosquito Toxorhynchites theobaldi. Open Biol 2024; 14:230437. [PMID: 38955221 DOI: 10.1098/rsob.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.
Collapse
Affiliation(s)
- Renata C Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Raquel S M Godoy
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Priscila G Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | - Tiago A O Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | | | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
26
|
Spadar A, Collins E, Messenger LA, Clark TG, Campino S. Uncovering the genetic diversity in Aedes aegypti insecticide resistance genes through global comparative genomics. Sci Rep 2024; 14:13447. [PMID: 38862628 PMCID: PMC11166649 DOI: 10.1038/s41598-024-64007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
27
|
de Oliveira JC, de Melo Katak R, Muniz VA, de Oliveira MR, Rocha EM, da Silva WR, do Carmo EJ, Roque RA, Marinotti O, Terenius O, Astolfi-Filho S. Bacteria isolated from Aedes aegypti with potential vector control applications. J Invertebr Pathol 2024; 204:108094. [PMID: 38479456 DOI: 10.1016/j.jip.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
Highly anthropophilic and adapted to urban environments, Aedes aegypti mosquitoes are the main vectors of arboviruses that cause human diseases such as dengue, zika, and chikungunya fever, especially in countries with tropical and subtropical climates. Microorganisms with mosquitocidal and larvicidal activities have been suggested as environmentally safe alternatives to chemical or mechanical mosquito control methods. Here, we analyzed cultivable bacteria isolated from all stages of the mosquito life cycle for their larvicidal activity against Ae. aegypti. A total of 424 bacterial strains isolated from eggs, larvae, pupae, or adult Ae. aegypti were analyzed for the pathogenic potential of their crude cultures against larvae of this same mosquito species. Nine strains displayed larvicidal activity comparable to the strain AM65-52, reisolated from commercial BTi-based product VectoBac® WG. 16S rRNA gene sequencing revealed that the set of larvicidal strains contains two representatives of the genus Bacillus, five Enterobacter, and two Stenotrophomonas. This study demonstrates that some bacteria isolated from Ae. aegypti are pathogenic for the mosquito from which they were isolated. The data are promising for developing novel bioinsecticides for the control of these medically important mosquitoes.
Collapse
Affiliation(s)
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo - ESALQ - USP, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multiuser Laboratory, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | - Edson Júnior do Carmo
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden.
| | - Spartaco Astolfi-Filho
- Programa de Pós-Graduação em Biotecnologia - PPGBIOTEC/UFAM, Brazil; Instituto de Ciências Biológicas - ICB/UFAM, Brazil
| |
Collapse
|
28
|
Estep AS, Sanscrainte ND, Okech BA. Aedes aegypti Knockdown Resistance Mutations and Dengue Virus Infection in Haiti. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:102-108. [PMID: 38547924 DOI: 10.2987/23-7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Haiti is home to approximately 11 million people and has a high incidence of vector-borne disease, including more than 70,000 cases of dengue per year. Vector control is difficult in Haiti and adulticide spray of malathion is the main method of control employed during the outbreak of disease although pyrethroids are used in both bed net campaigns and in widely available aerosol cans for personal use. However, limited pathogen or insecticide resistance surveillance data are available for making operational decisions. In this study, we assessed Aedes aegypti from serial surveillance collections from 3 locations for the presence of dengue virus serotypes 1-3 (DENV1-3) by polymerase chain reaction and assessed, by melt curve analysis, samples from 10 locations in 2 departments for the presence of two mutations (V1016I and F1534C), that in combination, are linked to strong pyrethroid insecticide resistance. Only one of the 32 tested pools was positive for the presence of dengue virus. The two knockdown resistance (kdr) mutations were present in all locations. The 1016I mutation frequency varied from 0.29 to 0.91 and was in all sites lower than the 0.58-1.00 frequency of the 1534C mutation. We also observed that the genotype homozygous for both mutations (IICC), which has been linked to strong pyrethroid resistance, varied from 13 to 86% in each population. Notably, 3 locations - Ti Cousin and Christianville in Ouest department and Camp Coq in Nord department had more than 30% of the tested population without the presence of kdr mutations. These results indicate that the kdr markers of pyrethroid resistance are present in Haiti, at high frequency in several locations and, based on previous studies linking kdr genotypes and phenotypic resistance, that operational interventions with pyrethroids are not likely to be as effective as expected.
Collapse
|
29
|
Marcombe S, Doeurk B, Thammavong P, Veseli T, Heafield C, Mills MA, Kako S, Prado MF, Thomson S, Millett S, Hill T, Kentsley I, Davies S, Pathiraja G, Daniels B, Browne L, Nyamukanga M, Harvey J, Rubinstein L, Townsend C, Allen Z, Davey-Spence C, Hupi A, Jones AK, Boyer S. Metabolic Resistance and Not Voltage-Gated Sodium Channel Gene Mutation Is Associated with Pyrethroid Resistance of Aedes albopictus (Skuse, 1894) from Cambodia. INSECTS 2024; 15:358. [PMID: 38786914 PMCID: PMC11122440 DOI: 10.3390/insects15050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
- Vector Control Consulting—South East Asia Sole Co., Ltd., Vientiane P.O. Box 3463, Laos
| | - Bros Doeurk
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| | - Phoutmany Thammavong
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
| | - Tuba Veseli
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Derby DE65 5NX, UK
| | - Christian Heafield
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX14 2RN, UK
| | - Molly-Ann Mills
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sedra Kako
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Marcelly Ferreira Prado
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford University Hospitals, Churchill Hospital, Genetics Laboratories, Old Rd, Headington, Oxford OX3 7LE, UK
| | - Shakira Thomson
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Burnham-On-Sea TA8 1AZ, UK
| | - Saffron Millett
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Timothy Hill
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Imogen Kentsley
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Brighton BN8 4HR, UK
| | - Shereena Davies
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Shrewsbury SY1 4YP, UK
| | - Geethika Pathiraja
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Wallingford OX10 7EA, UK
| | - Ben Daniels
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Lucianna Browne
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Reading RG31 4SE, UK
| | - Miranda Nyamukanga
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Wythenshawe Hospital, Southmoor Rd, Wythenshawe M23 9LT, Manchester, UK
| | - Jess Harvey
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford Nanopore Technologies plc, Unit 3, Genesis Building, Library Avenue, Harwell, Didcot OX11 0SG, Oxfordshire, UK
| | - Lyranne Rubinstein
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, 69009 Lyon, France
| | - Chloe Townsend
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Zack Allen
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Christopher Davey-Spence
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Adina Hupi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX3 8HP, UK
| | - Andrew K. Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| |
Collapse
|
30
|
Ateutchia-Ngouanet S, Nanfack-Minkeu F, Mavridis K, Wanji S, Demanou M, Vontas J, Djouaka R. Monitoring Aedes populations for arboviruses, Wolbachia, insecticide resistance and its mechanisms in various agroecosystems in Benin. Acta Trop 2024; 253:107178. [PMID: 38461924 DOI: 10.1016/j.actatropica.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aedes mosquitoes are the main vectors of arboviruses in Benin. Cases of dengue have been reported in Benin with all four serotypes of the virus actively circulating in this region. Some agricultural settings are known to harbor Aedes vectors responsible for the transmission of arboviruses. The massive use of certain insecticides in agricultural settings has probably contributed to insecticide resistance in these vectors. In Benin, the susceptibility of arbovirus vectors to insecticides is poorly studied. In addition, the distribution of Wolbachia spp., which is used against some arboviruses is unknown. Moreover, there is limited information regarding the vectors responsible for the transmission of arboviruses in Benin. This present study monitored the species composition, arboviruses, and Wolbachia symbiont status, as well as the phenotypic and molecular insecticide resistance profile of Aedes populations from three agroecosystems in Benin. Aedes species identification was performed morphologically and confirmed using qPCR. (RT)-qPCR assay was applied for monitoring the presence of DENV, CHIKV, ZIKV, and WNV pathogens as well as for naturally occurring Wolbachia symbionts. Insecticide resistance was assessed phenotypically, by permethrin (0.75%) exposure of Adults (F0) using World Health Organization (WHO) bioassay protocols, and at the molecular level, using TaqMan (RT)-qPCR assays for assessing knock-down resistance (kdr) mutations (F1534C, V1016G/I, and S989P) and the expression levels of eight detoxification genes (P450s from the CYP9 and CYP6 families, carboxylesterases and glutathione-S-transferases). Aedes aegypti (Ae. aegypti) mosquitoes were the most abundant (93.9%) in the three agroecosystems studied, followed by Aedes albopictus (Ae. albopictus) mosquitoes (6.1%). No arboviruses were detected in the study's mosquito populations. Naturally occurring Wolbachia symbionts were present in 7 pools out of 15 pools tested. This could influence the effectiveness of vector control strategies based on exogenously introduced Wolbachia, all present in the three agroecosystems. Full susceptibility to permethrin was observed in all tested populations of Ae. albopictus. On the contrary, Ae. aegypti were found to be resistant in all three agroecosystem sites except for banana plantation sites, where full susceptibility was observed. Molecular analysis revealed that individual target site resistance kdr mutations F1534C and V1016G/I were detected in most Ae. aegypti populations. Additionally, double mutant (F1534C + V1016G/I) mosquitoes were found in some populations, and in one case, triple mutant (F1534C + V1016G/I + S989P) mosquitoes were detected. Metabolic resistance, as reflected by overexpression of three P450 genes (CYP6BB2, CYP9J26, and CYP9J32), was also detected in Ae. aegypti mosquitoes. Our study provides information that could be used to strategize future vector control strategies and highlights the importance of continuing vector surveillance. Future studies should assess the effect of piperonyl butoxide (PBO) on metabolic resistance and identify the different strains of Wolbachia spp., to choose the best vector control strategies in Benin.
Collapse
Affiliation(s)
- S Ateutchia-Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon.
| | - F Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department of Biology, The College of Wooster, OH, USA
| | - K Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - S Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - M Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 PO BOX 7019 Ouagadougou 03, Burkina Faso
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens 11855, Greece
| | - R Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| |
Collapse
|
31
|
Du J, Yin H, Li J, Zhang W, Ding G, Zhou D, Sun Y, Shen B. Transcription factor B-H2 regulates CYP9J34 expression conveying deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2024; 80:1991-2000. [PMID: 38092527 DOI: 10.1002/ps.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Mosquitoes are vectors of various diseases, posing significant health threats worldwide. Chemical pesticides, particularly pyrethroids like deltamethrin, are commonly used for mosquito control, but the emergence of resistant mosquito populations has become a concern. In the deltamethrin-resistant (DR) strain of Culex pipiens pallens, the highly expressed cytochrome P450 9 J34 (CYP9J34) gene is believed to play a role in resistance, yet the underlying mechanism remains unclear. RESULTS Quantitative polymerase chain reaction with reverse transcription (qRT-PCR) analysis revealed that the expression of CYP9J34 was 14.6-fold higher in DR strains than in deltamethrin-susceptible (DS) strains. The recombinant production of CYP9J34 protein of Cx. pipiens pallens showed that the protein could directly metabolize deltamethrin, yielding the major metabolite 4'-OH deltamethrin. Through dual luciferase reporter assays and RNA interference, the transcription factor homeobox protein B-H2-like (B-H2) was identified to modulate the expression of the CYP9J34 gene, contributing to mosquito resistance to deltamethrin. CONCLUSIONS Our findings demonstrate that the CYP9J34 protein could directly degrade deltamethrin, and the transcription factor B-H2 could regulate CYP9J34 expression, influencing the resistance of mosquitoes to deltamethrin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Wielkopolan B, Szabelska‐Beręsewicz A, Gawor J, Obrępalska‐Stęplowska A. Cereal leaf beetle-associated bacteria enhance the survival of their host upon insecticide treatments and respond differently to insecticides with different modes of action. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13247. [PMID: 38644048 PMCID: PMC11033208 DOI: 10.1111/1758-2229.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
The cereal leaf beetle (CLB, Oulema melanopus) is one of the major cereal pests. The effect of insecticides belonging to different chemical classes, with different mechanisms of action and the active substances' concentrations on the CLB bacterial microbiome, was investigated. Targeted metagenomic analysis of the V3-V4 regions of the 16S ribosomal gene was used to determine the composition of the CLB bacterial microbiome. Each of the insecticides caused a decrease in the abundance of bacteria of the genus Pantoea, and an increase in the abundance of bacteria of the genus Stenotrophomonas, Acinetobacter, compared to untreated insects. After cypermethrin application, a decrease in the relative abundance of bacteria of the genus Pseudomonas was noted. The dominant bacterial genera in cypermethrin-treated larvae were Lactococcus, Pantoea, while in insects exposed to chlorpyrifos or flonicamid it was Pseudomonas. Insecticide-treated larvae were characterized, on average, by higher biodiversity and richness of bacterial genera, compared to untreated insects. The depletion of CLB-associated bacteria resulted in a decrease in larval survival, especially after cypermethrin and chlorpyrifos treatments. The use of a metagenome-based functional prediction approach revealed a higher predicted function of bacterial acetyl-CoA C-acetyltransferase in flonicamid and chlorpyrifos-treated larvae and tRNA dimethyltransferase in cypermethrin-treated insects than in untreated insects.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Monitoring and Signaling of AgrophagesInstitute of Plant Protection–National Research InstitutePoznanPoland
| | | | - Jan Gawor
- DNA Sequencing and Synthesis FacilityInstitute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
| | | |
Collapse
|
33
|
Wood MJ, Bull JC, Kanagachandran K, Butt TM. Development and laboratory validation of a plant-derived repellent blend, effective against Aedes aegypti [Diptera: Culicidae], Anopheles gambiae [Diptera: Culicidae] and Culex quinquefasciatus [Diptera: Culicidae]. PLoS One 2024; 19:e0299144. [PMID: 38512948 PMCID: PMC10956804 DOI: 10.1371/journal.pone.0299144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Mosquitoes of the genera Aedes, Anopheles and Culex vector a wide range of pathogens seriously affecting humans and livestock on a global scale. Over-reliance on insecticides and repellents has driven research into alternative, naturally-derived compounds to fulfil the same objectives. Steam distilled extracts of four plants with strong, yet attractive, volatile profiles were initially assessed for repellency in a dual-port olfactometer using Aedes aegypti as the model species. Picea sitchensis was found to be the most repellent, proving comparable to leading products when applied at 100% (p = 1.000). Key components of conifer-derived volatile profiles were then screened via electroantennography before those components eliciting an electrophysiological response were assayed individually in the olfactometer; according to WHO protocol. The most promising 5 were selected for reductive analyses to produce an optimised semiochemical blend. This combination, and a further two variations of the blend, were then progressed to a multi-species analysis using the BG-test whereby bite-attempt frequency on hands was assessed under different repellent treatments; assays were compared between Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Efficacy was found against all three species, although it was found that Ae. aegypti was the most susceptible to the repellent, with An. gambiae being the least. Here, a novel, naturally-derived blend is presented with weak spatial repellency, as confirmed in laboratory assays. Further work will be required to assess the full extent of the potential of the products, both in terms of field application and species screening; however, the success of the products developed demonstrate that plant metabolites have great capacity for use in the repellent sector; both to improve upon known compounds and to reduce the usage of toxic products currently on the market.
Collapse
Affiliation(s)
- Martyn J. Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - James C. Bull
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | | | - Tariq M. Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| |
Collapse
|
34
|
Sadia CG, Bonneville JM, Zoh MG, Fodjo BK, Kouadio FPA, Oyou SK, Koudou BG, Adepo-Gourene BA, Reynaud S, David JP, Mouahamadou CS. The impact of agrochemical pollutant mixtures on the selection of insecticide resistance in the malaria vector Anopheles gambiae: insights from experimental evolution and transcriptomics. Malar J 2024; 23:69. [PMID: 38443984 PMCID: PMC10916200 DOI: 10.1186/s12936-023-04791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/14/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.
Collapse
Affiliation(s)
- Christabelle G Sadia
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire.
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Marius G Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
- Vector Control Product Evaluation Centre (VCPEC)/Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - France-Paraudie A Kouadio
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Sebastien K Oyou
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Benjamin G Koudou
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | | |
Collapse
|
35
|
Odufuwa OG, Bradley J, Ngonyani S, Mpelepele AB, Matanila I, Muganga JB, Bosselmann R, Skovmand O, Mboma ZM, Moore SJ. Time of exposure and assessment influence the mortality induced by insecticides against metabolic resistant mosquitoes. Parasit Vectors 2024; 17:103. [PMID: 38431631 PMCID: PMC10908098 DOI: 10.1186/s13071-024-06190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Increasing metabolic resistance in malaria vector mosquitoes resulted in the development of insecticide-treated nets (ITNs) with active ingredients (AI) that target them. Bioassays that accurately measure the mortality induced by these AIs on ITNs are needed. Mosquito metabolic enzyme expression follows a circadian rhythm. Thus, this study assessed (i) influence of the time of day of mosquito exposure and (ii) timing of assessment of mortality post exposure (24 and 72 h) to ITNs against vectors that are susceptible to pyrethroids and those with metabolic and knockdown resistance mechanisms. METHODS Two cone bioassay experiments were conducted following World Health Organization (WHO) guidelines. Firstly, on ITNs incorporated with 2 g AI/kg of deltamethrin (DM) alone, or combined with 8 g AI/kg piperonyl butoxide (PBO) synergist, during the day (9:00-14:00 h) and repeated in the evening (18:00-20:00 h). This was followed by a confirmatory experiment during the afternoon (12:00-14:00 h) and repeated in the night (22:00-24:00 h) using mosquitoes unexposed or pre-exposed to PBO for 1 h before exposure to DM ITNs. Each net piece was tested with a minimum of eight cones per time (N = 24). The outcome was mortality after 24 h (M24) or 72 h (M72) of holding. RESULTS The cone bioassays performed using metabolic resistant mosquitoes during the evening showed significantly lower M24 than those performed in the day for DM: odds ratio (OR) 0.14 [95% confidence interval (CI) 0.06-0.30, p < 0.0001] and DM PBO [OR 0.29 (95% CI 0.18-0.49, p < 0.0001). M72 was higher than M24 for metabolic resistant mosquitoes exposed to DM [OR 1.44 (95% CI 1.09-1.88), p = 0.009] and DM PBO [OR 1.82 (95% CI 1.42-2.34), p < 0.0001]. An influence of hour of experiment and time of assessment was not observed for mosquitoes that had knockdown resistance or that were pyrethroid-susceptible. CONCLUSIONS Time of day of experiment and hour of assessment of delayed mortality after exposure of mosquitoes are important considerations in evaluating insecticides that interact with mosquito metabolism to counter metabolic resistant mosquitoes. This is important when evaluating field-aged ITNs that may have lower concentrations of AI.
Collapse
Affiliation(s)
- Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania.
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, Allschwill, 4123, Basel, Switzerland.
- Faculty of Science, University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Safina Ngonyani
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Ahmadi Bakari Mpelepele
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Isaya Matanila
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Joseph B Muganga
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | | | | | - Zawadi Mageni Mboma
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Sarah Jane Moore
- Vector Control Product Testing Unit (VCPTU) Ifakara Health Institute, Environmental Health, and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, Allschwill, 4123, Basel, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
36
|
Xu L, Zhao J, Xu D, Xu G, Peng Y, Zhang Y. New insights into chlorantraniliprole metabolic resistance mechanisms mediated by the striped rice borer cytochrome P450 monooxygenases: A case study of metabolic differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169229. [PMID: 38072259 DOI: 10.1016/j.scitotenv.2023.169229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The anthranilic diamide insecticide chlorantraniliprole has been extensively applied to control Lepidoptera pests. However, its overuse leads to the development of resistance and accumulation of residue in the environment. Four P450s (CYP6CV5, CYP9A68, CYP321F3, and CYP324A12) were first found to be constitutively overexpressed in an SSB CAP-resistant strain. It is imperative to further elucidate the molecular mechanisms underlying P450s-mediated CAP resistance for mitigating its environmental contamination. Here, we heterologously expressed these four P450s in insect cells and evaluated their abilities to metabolize CAP. Western blotting and reduced CO difference spectrum tests showed that these four P450 proteins had been successfully expressed in Sf9 cells, which are indicative of active functional enzymes. The recombinant proteins CYP6CV5, CYP9A68, CYP321F3, and CYP324A12 exhibited a preference for metabolizing the fluorescent P450 model probe substrates EC, BFC, EFC, and EC with enzyme activities of 0.54, 0.67, 0.57, and 0.46 pmol/min/pmol P450, respectively. In vitro metabolism revealed distinct CAP metabolic rates (0.97, 0.86, 0.75, and 0.55 pmol/min/pmol P450) and efficiencies (0.45, 0.37, 0.30, and 0.17) of the four recombinant P450 enzymes, thereby elucidating different protein catalytic activities. Furthermore, molecular model docking confirmed metabolic differences and efficiencies of these P450s and unveiled the hydroxylation reaction in generating N-demethylation and methylphenyl hydroxylation during CAP metabolism. Our findings not only first provide new insights into the mechanisms of P450s-mediated metabolic resistance to CAP at the protein level in SSB but also demonstrate significant differences in the capacities of multiple P450s for insecticide degradation and facilitate the evaluation and mitigation of toxic risks associated with CAP application in the environment.
Collapse
Affiliation(s)
- Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Zhao
- Key Laboratory of Green Preservation and Control of Tobacco Diseases and Pests in the Huanghuai Growing Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Dejin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangchun Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
37
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
38
|
Kweyamba PA, Hofer LM, Kibondo UA, Mwanga RY, Sayi RM, Matwewe F, Austin JW, Stutz S, Moore SJ, Müller P, Tambwe MM. Sub-lethal exposure to chlorfenapyr reduces the probability of developing Plasmodium falciparum parasites in surviving Anopheles mosquitoes. Parasit Vectors 2023; 16:342. [PMID: 37789458 PMCID: PMC10546750 DOI: 10.1186/s13071-023-05963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Pyrethroid resistance in the key malaria vectors threatens the success of pyrethroid-treated nets. To overcome pyrethroid resistance, Interceptor® G2 (IG2), a 'first-in-class' dual insecticidal net that combines alpha-cypermethrin with chlorfenapyr, was developed. Chlorfenapyr is a pro-insecticide, requiring bio-activation by oxidative metabolism within the insect's mitochondria, constituting a mode of action preventing cross-resistance to pyrethroids. Recent epidemiological trials conducted in Benin and Tanzania confirm IG2's public health value in areas with pyrethroid-resistant Anopheles mosquitoes. As chlorfenapyr might also interfere with the metabolic mechanism of the Plasmodium parasite, we hypothesised that chlorfenapyr may provide additional transmission-reducing effects even if a mosquito survives a sub-lethal dose. METHODS We tested the effect of chlorfenapyr netting to reduce Plasmodium falciparum transmission using a modified WHO tunnel test with a dose yielding sub-lethal effects. Pyrethroid-resistant Anopheles gambiae s.s. with L1014F and L1014S knockdown resistance alleles and expression levels of pyrethroid metabolisers CYP6P3, CYP6M2, CYP4G16 and CYP6P1 confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) prior to conducting experiments were exposed to untreated netting and netting treated with 200 mg/m3 chlorfenapyr for 8 h overnight and then fed on gametocytemic blood meals from naturally infected individuals. Prevalence and intensity of oocysts and sporozoites were determined on day 8 and day 16 after feeding. RESULTS Both prevalence and intensity of P. falciparum infection in the surviving mosquitoes were substantially reduced in the chlorfenapyr-exposed mosquitoes compared to untreated nets. The odds ratios in the prevalence of oocysts and sporozoites were 0.33 (95% confidence interval; 95% CI 0.23-0.46) and 0.43 (95% CI 0.25-0.73), respectively, while only the incidence rate ratio for oocysts was 0.30 (95% CI 0.22-0.41). CONCLUSION We demonstrated that sub-lethal exposure of pyrethroid-resistant mosquitoes to chlorfenapyr substantially reduces the proportion of infected mosquitoes and the intensity of the P. falciparum infection. This will likely also contribute to the reduction of malaria in communities beyond the direct killing of mosquitoes.
Collapse
Affiliation(s)
- Prisca A Kweyamba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Lorenz M Hofer
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Ummi A Kibondo
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rehema Y Mwanga
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu M Sayi
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Fatuma Matwewe
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - James W Austin
- Professional & Specialty Solutions, BASF Corporation, Global Development, Public Health Insecticides, Research Triangle Park, NC, 27709, USA
| | - Susanne Stutz
- Professional & Specialty Solutions, BASF SE, Public Health, 67117, Limburgerhof, Germany
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru, P.O. Box 447, Arusha, Tanzania
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mgeni M Tambwe
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| |
Collapse
|
39
|
Bickersmith SA, Jurczynski JD, Sallum MAM, Chaves LSM, Bergo ES, Rodriguez GAD, Morante CA, Rios CT, Saavedra MP, Alava F, Gamboa D, Vinetz JM, Conn JE. Mutations Linked to Insecticide Resistance Not Detected in the Ace-1 or VGSC Genes in Nyssorhynchus darlingi from Multiple Localities in Amazonian Brazil and Peru. Genes (Basel) 2023; 14:1892. [PMID: 37895241 PMCID: PMC10606710 DOI: 10.3390/genes14101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.
Collapse
Affiliation(s)
- Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
| | - John D. Jurczynski
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Leonardo S. M. Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, Brazil; (M.A.M.S.); (L.S.M.C.)
| | - Eduardo S. Bergo
- Secretaria de Estado da Saúde de São Paulo, Instituto Pasteur, São Paulo 01027-000, Brazil;
| | - Gloria A. D. Rodriguez
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Clara A. Morante
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Carlos T. Rios
- Laboratorio de Referencia Regional de Loreto, Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru; (G.A.D.R.); (C.A.M.); (C.T.R.)
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Loreto 16001, Peru;
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (M.P.S.); (D.G.); (J.M.V.)
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; (S.A.B.); (J.D.J.)
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
40
|
Wang Y, Wang X, Brown DJ, An M, Xue RD, Liu N. Insecticide resistance: Status and potential mechanisms in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105577. [PMID: 37666603 DOI: 10.1016/j.pestbp.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and β-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, β-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Dylan J Brown
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Mengru An
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. Johns County, 120 EOC Drive, St. Augustine, FL 32092, United States of America.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
41
|
Ji M, Vandenhole M, De Beer B, De Rouck S, Villacis-Perez E, Feyereisen R, Clark RM, Van Leeuwen T. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat Commun 2023; 14:4990. [PMID: 37591878 PMCID: PMC10435515 DOI: 10.1038/s41467-023-40778-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.
Collapse
Affiliation(s)
- Meiyuan Ji
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
42
|
Jobe NB, Huijben S, Paaijmans KP. Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. Lancet Planet Health 2023; 7:e706-e717. [PMID: 37558351 DOI: 10.1016/s2542-5196(23)00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 08/11/2023]
Abstract
Public health insecticides play a crucial role in malaria control and elimination programmes. Many other arthropods, including mechanical and biological vectors of infectious diseases, have similar indoor feeding or resting behaviours, or both, as malaria mosquitoes, and could be exposed to the same insecticides. In this Personal View, we show that little is known about the insecticide susceptibility status and the extent of exposure to malaria interventions of other arthropod species. We highlight that there is an urgent need to better understand the selection pressure for insecticide resistance in those vectors, to ensure current and future active ingredients remain effective in targeting a broad range of arthropod species, allowing us to prevent and control future outbreaks of infectious diseases other than malaria.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA; The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA; ISGlobal, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| |
Collapse
|
43
|
Ricardo Dos Santos Correia P, Duarte de Freitas J, André Zeoly L, Silva Porto R, José da Paz Lima D. Discovery and structure-activity relationship of Morita-Baylis-Hillman adducts as larvicides against dengue mosquito vector, Aedes aegypti (Diptera: Culicidae). Bioorg Med Chem 2023; 90:117315. [PMID: 37253304 DOI: 10.1016/j.bmc.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Neglected tropical diseases (NTDs) have become a significant public health problem worldwide, notably the life-threatening dengue hemorrhagic fever borne by the Aedes aegypti mosquito. Thus, mosquito vector control measures remain essential in public health vector surveillance and control to combat Aedes-borne infections. Therefore, a series of MBH adducts were synthesized and assessed towards the fourth instar mosquito larvae, Aedes aegypti, along with the preliminary structure-activity relationship (SAR). Noteworthy, this compound class might be synthetized by an efficient eco-friendly synthesismethod and a rapid route for the synthesis of commercial larvicide through a single synthetic step. The bioassays showed that this compound class is a promising larvicide to control Aedes aegypti mosquito larvae, mainly 3g, with an LC50 of 41.35 µg/mL, which was higher than evaluated positive controls. Nevertheless, it is a viable larvicidalhit candidate for further hit-to-leadproperties optimization of its biphenyl backbone scaffold with enhanced insecticidalbioactivity. Moreover, scanning electron microscopy analysis suggested a disruption of the osmoregulatory/ionoregulatory functions by the complete deterioration of the terminal exoskeleton hindgut and anal papillae. Therefore, this new study shows the larvicidal efficacy of the tested compounds against the Aedes aegypti larvae.
Collapse
Affiliation(s)
- Paulo Ricardo Dos Santos Correia
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | | | - Lucas André Zeoly
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970 Campinas, São Paulo, Brazil
| | - Ricardo Silva Porto
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil
| | - Dimas José da Paz Lima
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Avenida Lourival Melo Mota, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
44
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
45
|
Araújo MF, Castanheira EMS, Sousa SF. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023; 28:molecules28083641. [PMID: 37110875 PMCID: PMC10144373 DOI: 10.3390/molecules28083641] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Insecticides play a critical role in controlling the spread of insect-borne diseases and preserving crop health. These chemical substances are specifically formulated to kill or manage insect populations. Over the years, various types of insecticides have been developed, including organophosphates, carbamates, pyrethroids, and neonicotinoids, each with unique modes of action, physiological targets, and efficacy. Despite the advantages that insecticides offer, it is imperative to recognize the potential consequences on non-target species, the environment, and human health. It is therefore crucial to follow recommended label instructions and employ integrated pest management practices for the judicious use of insecticides. This review article provides an in-depth examination of the various types of insecticides, including their modes of action, physiological targets, environmental and human health impacts, and alternatives. The aim is to furnish a comprehensive overview of insecticides and to emphasize the significance of responsible and sustainable utilization.
Collapse
Affiliation(s)
- Maria F Araújo
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM-Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
46
|
Tan S, Li G, Guo H, Wang C, Wang H, Liu Z, Xu B, Wang Y, Guo X. RNAi-mediated silencing of AccCYP6k1 revealed its role in the metabolic detoxification of Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105377. [PMID: 36963945 DOI: 10.1016/j.pestbp.2023.105377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s or CYPs) perform important functions in the metabolic detoxification of both endogenous and exogenous substrates. However, the mechanism of action of the P450 genes in bees is unclear. In this study, we investigated the effects of AccCYP6k1 on the metabolism and detoxification of Apis cerana cerana. Spatiotemporal expression profiling revealed that the expression of AccCYP6k1 was the highest in foragers (A15) and was mainly expressed in the leg, midgut and head. RT-qPCR results showed that AccCYP6k1 exhibited different expression patterns following exposure to xenobiotics. In addition, silencing AccCYP6k1 increased the pesticides sensitivity and affected the detoxification system and antioxidant process of A. cerana cerana. In brief, the induced expression of AccCYP6k1 is related to the resistance of A. cerana cerana, while knockdown AccCYP6k1 affect the pesticides resistance and metabolic detoxification system of A. cerana cerana. These findings not only support the theoretical basis of metabolic detoxification in bees but also provide a better understanding of P450-mediated resistance to pesticides in insects.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
47
|
Nolden M, Velten R, Paine MJI, Nauen R. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105356. [PMID: 36963931 DOI: 10.1016/j.pestbp.2023.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert Velten
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
48
|
Kouamé RM, Lynd A, Kouamé JK, Vavassori L, Abo K, Donnelly MJ, Edi C, Lucas E. Widespread occurrence of copy number variants and fixation of pyrethroid target site resistance in Anopheles gambiae ( s.l.) from southern Côte d'Ivoire. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100117. [PMID: 36970448 PMCID: PMC10031352 DOI: 10.1016/j.crpvbd.2023.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides in the malaria vector Anopheles gambiae (s.l.) is conferred by a variety of genetic mutations, including single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Knowledge of the distribution of these mutations in mosquito populations is a prerequisite for establishing better strategies for their management. In this study, a total of 755 Anopheles gambiae (s.l.) from southern Côte d'Ivoire were exposed to deltamethrin or pirimiphos-methyl insecticides and were screened to assess the distribution of SNPs and CNVs known or believed to confer resistance to one or other of the insecticide classes. Most individuals from the An. gambiae (s.l.) complex were identified by molecular tests as Anopheles coluzzii. Survival to deltamethrin (from 94% to 97%) was higher than to pirimiphos-methyl (from 10% to 49%). In An. gambiae (s.s.), the SNP in the Voltage Gated Sodium Channel (Vgsc) at the 995F locus (Vgsc-995F) was fixed, while other target site mutations were rare or absent (Vgsc-402L: 0%; Vgsc-1570Y: 0%, Acetylcholinesterase Acel-280S: 14%). In An. coluzzii, Vgsc-995F was the target site SNP found at highest frequency (65%) followed by other target site mutations (Vgsc-402L: 36%; Vgsc-1570Y: 0.33%; Acel-280S: 45%). The Vgsc-995S SNP was not present. The presence of the Ace1-280S SNP was found to be significantly linked to the presence of the Ace1-CNV, Ace1_AgDup. Significant association was found between the presence of the Ace1_AgDup and pirimiphos-methyl resistance in An. gambiae (s.s.) but not in An. coluzzii. The deletion Ace1_Del97 was found in one specimen of An. gambiae (s.s.). Four CNVs in the Cyp6aa/Cyp6p gene cluster, which contains genes of known importance for resistance, were detected in An. coluzzii, the most frequent being Dup 7 (42%) and Dup 14 (26%). While none of these individual CNV alleles were significantly associated with resistance, copy number in the Cyp6aa gene region in general was associated with increased resistance to deltamethrin. Elevated expression of Cyp6p3 was nearly associated with deltamethrin resistance, although there was no association of resistance with copy number. Use of alternative insecticides and control methods to arrest resistance spread in An. coluzzii populations is merited.
Collapse
Affiliation(s)
- Ruth M.A. Kouamé
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackson K.I. Kouamé
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
| | - Laura Vavassori
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Kouabénan Abo
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
49
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
50
|
de Oliveira AC, Simões RC, Tavares CPS, Lima CAP, Costa Sá IS, da Silva FMA, Figueira EAG, Nunomura SM, Nunomura RCS, Roque RA. Toxicity of the essential oil from Tetradenia riparia (Hochstetter.) Codd (Lamiaceae) and its principal constituent against malaria and dengue vectors and non-target animals. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105265. [PMID: 36464370 DOI: 10.1016/j.pestbp.2022.105265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Malaria and dengue are diseases transmitted by mosquitoes of the genera Anopheles and Aedes resistant to commercial insecticides, which are toxic to non-target animals. Alternatively, eco-friendly strategies have focused on searching for essential oil (EO) from plants to control these mosquitoes. In this aspect, this study was carried out to investigate the toxicity of the EO from Tetradenia riparia and its main constituent against Anopheles and Aedes larvae and non-target animals Toxorhynchites haemorrhoidalis and Gambusia affinis. The mechanism of the larvicidal action of the EO and its main compound was investigated by the acetylcholinesterase (AChE) inhibition. The EO from T. riparia was extracted by hydrodistillation with yield of 1.4 ± 0.17%. The analysis of the EO by GC-MS and GC-FID revealed fenchone (38.62%) as the main compound. The EO (100 ppm) showed larvicidal activity against Anopheles and Aedes larvae (91 to 100% of mortality) (LC50 from 29.31 to 40.76 ppm). On the other hand, fenchone (10 ppm) showed more activity (89 to 100% of mortality) (LC50 from 5.93 to 7.00 ppm) than the EO. The EO and fenchone caused the inhibition of AChE (IC50 from 1.93 to 2.65 ppm), suggesting the inhibition of this enzyme as a possible mechanism of larvicidal action. Regarding toxicity, the EO (1000 ppm) and fenchone (100 ppm) showed low toxicity against T. haemorrhoidalis and G. affinis (9 to 74% of mortality) (LC50 from 170.50 to 924.89 ppm) (SI/PSF from 17.99 to 31.91) than the α-cypermethrin (0.52 ppm) which was extremally toxic against these non-target animals (100% of mortality, LC50 from 0.22 to 0.29 ppm). This significant larvicidal activity of the T. riparia EO and its main constituent, along with the low toxicity towards non-target organisms indicate these samples as a possible eco-friendly alternative for the control of malaria and dengue vectors.
Collapse
Affiliation(s)
- André C de Oliveira
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, 69080-900 Manaus, Amazonas, Brazil; Laboratório de Malária e Dengue, Coordenação da Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil.
| | - Rejane C Simões
- Laboratório de Malária e Dengue, Coordenação da Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil; Fundação de Vigilância em Saúde do Amazonas, Dr Rosemary Costa Pinto, 69093-018 Manaus, Amazonas, Brazil
| | - Cláudia P S Tavares
- Laboratório de Malária e Dengue, Coordenação da Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil
| | - Carlos A P Lima
- Laboratório de Malária e Dengue, Coordenação da Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil
| | - Ingrity S Costa Sá
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, 69080-900 Manaus, Amazonas, Brazil
| | - Felipe M A da Silva
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, 69080-900 Manaus, Amazonas, Brazil
| | - Elder A G Figueira
- Fundação de Vigilância em Saúde do Amazonas, Dr Rosemary Costa Pinto, 69093-018 Manaus, Amazonas, Brazil
| | - Sergio M Nunomura
- Laboratório de Princípios Ativos da Amazônia, Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil
| | - Rita C S Nunomura
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, 69080-900 Manaus, Amazonas, Brazil
| | - Rosemary A Roque
- Laboratório de Malária e Dengue, Coordenação da Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, 69067-375 Manaus, Amazonas, Brazil
| |
Collapse
|