1
|
Zhu X, Cheng F, Duan H, Fu S, Zhao C. Novel insights into the study of goblet cell hypersecretion in allergic rhinitis. Front Immunol 2025; 16:1525928. [PMID: 39958344 PMCID: PMC11825788 DOI: 10.3389/fimmu.2025.1525928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025] Open
Abstract
Goblet cell hypersecretion is a hallmark of airway inflammation and is driven by complex neuroimmune regulation involving submucosal glands and goblet cells. Although studies have focused on mast cell degranulation as a critical driver of nasal secretion, the role of goblet cells in this process is relatively under-researched. In allergic airway inflammation, goblet cells exhibit metaplasia and hypersecretion. However, allergen exposure does not directly trigger goblet cell degranulation, raising questions regarding the underlying mechanisms of these reactions. The activation of enteric neurons promotes goblet cell degranulation by stimulating the calcitonin gene-related peptide (CGRP)-receptor active modification protein-1 (RAMP1) axis. Meanwhile, airway goblet cells express various neuropeptide receptors, and their activation by neuropeptides such as substance P and CGRP induces mucus secretion, exacerbating allergic rhinitis-associated hypersecretion. Thus, although previously less recognised, the neuron-goblet cell signalling axis plays a critical role in allergic rhinitis mucus secretion. This review highlights current research on the neuroimmune mechanisms underlying goblet cell metaplasia and degranulation, focusing on allergic rhinitis, so as to guide clinical treatment strategies.
Collapse
Affiliation(s)
- Xiaojia Zhu
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Fengli Cheng
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Hongying Duan
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Sirui Fu
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology–Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Jiang M, Yan L, Li M, Ye F, Shang E, Sun S, Fan X. Computer-aided investigation of Traditional Chinese Medicine mechanisms: A case study of San-Ao decoction in asthma treatment. Comput Biol Med 2024; 169:107868. [PMID: 38211384 DOI: 10.1016/j.compbiomed.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
The San-Ao Decoction (SAD) is a well-known Traditional Chinese Medicine (TCM) formula used to alleviate respiratory symptoms, including asthma. However, its precise mechanisms of action have remained largely unknown. In this study, we utilized computer-aided approaches to explore these mechanisms. Firstly, we conducted a comprehensive analysis of the chemical composition of SAD, which allowed us to identify the 28 main ingredients. Then, we employed computer simulations to investigate the potential active ingredients of SAD and the corresponding binding sites of transient receptor potential vanilloid 1 (TRPV1). The simulations revealed that D509 and D647 were the potential binding sites for TRPV1. Notably, molecular dynamics (MD) studies indicated that site D509 may function as an allosteric site of TRPV1. Furthermore, to validate the computer-aided predictions, we performed experimental studies, including in vitro and in vivo assays. The results of these experiments confirmed the predictions made by our computational models, providing further evidence for the mechanisms of action of San-Ao Decoction in asthma treatment. Our findings demonstrated that: i) D509 and D647 of TRPV1 are the key binding sites for the main ingredients of SAD; ii) SAD or its main ingredients significantly reduce the influx of Ca2+ through TRPV1, following the TCM principle of "Jun, Chen, Zuo, Shi"; iii) SAD shows efficiency in comprehensive in vivo validation. In conclusion, our computer-aided investigation of San-Ao Decoction in asthma treatment has provided valuable insights into the therapeutic mechanisms of this TCM formula. The combination of computational analysis and experimental validation has proven effective in enhancing our understanding of TCM and may pave the way for future discoveries in the field.
Collapse
Affiliation(s)
- Minyue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lu Yan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
4
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
5
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
6
|
Aucoin R, Lewthwaite H, Ekström M, von Leupoldt A, Jensen D. Impact of trigeminal nerve and/or olfactory nerve stimulation on activity of human brain regions involved in the perception of breathlessness. Respir Physiol Neurobiol 2023; 311:104036. [PMID: 36804472 DOI: 10.1016/j.resp.2023.104036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Breathlessness is a centrally processed symptom, as evidenced by activation of distinct brain regions such as the insular cortex and amygdala, during the anticipation and/or perception of breathlessness. Inhaled L-menthol or blowing cool air to the face/nose, both selective trigeminal nerve (TGN) stimulants, relieve breathlessness without concurrent improvements in physiological outcomes (e.g., breathing pattern), suggesting a possible but hitherto unexplored central mechanism of action. Four databases were searched to identify published reports supporting a link between TGN stimulation and activation of brain regions involved in the anticipation and/or perception of breathlessness. The collective results of the 29 studies demonstrated that TGN stimulation activated 12 brain regions widely implicated in the anticipation and/or perception of breathlessness, including the insular cortex and amygdala. Inhaled L-menthol or cool air to the face activated 75% and 33% of these 12 brain regions, respectively. Our findings support the hypothesis that TGN stimulation contributes to breathlessness relief by altering the activity of brain regions involved in its central neural processing.
Collapse
Affiliation(s)
- Rachelle Aucoin
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada.
| | - Hayley Lewthwaite
- College of Engineering, Science and Environment, School of Environment & Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, NSW 2258, Australia
| | - Magnus Ekström
- Department of Respiratory Medicine, Allergology and Palliative Medicine, Institution for Clinical Sciences in Lund, Lund University, SE-221 00 Lund, Sweden
| | - Andreas von Leupoldt
- Health Psychology, University of Leuven, Tiensestraat 102 Box 3726, 3000 Leuven, Belgium
| | - Dennis Jensen
- Clinical Exercise & Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montréal, Quebec H2W 1S4, Canada; Research Institute of the McGill University Health Centre, Translational Research in Respiratory Diseases Program and Respiratory Epidemiology and Clinical Research Unit, 2155 Guy Street Suite 500, Montréal, Quebec H3H 2R9, Canada
| |
Collapse
|
7
|
Pascarel K, Colas J, Mirval S, Becq F, Vandebrouck C. [The impact of hypoxia on the ion channels in cystic fibrosis bronchial epithelial cells]. Rev Mal Respir 2023; 40:230-233. [PMID: 36775781 DOI: 10.1016/j.rmr.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/12/2023]
Abstract
Cystic fibrosis is a disease caused by a mutation on the CFTR gene coding for a chloride channel. The dominant mutation F508del eliminates the CFTR protein at the surface of epithelial cells, causing an accumulation of viscous mucus in the airways. In advanced stages of the disease, respiratory failure is associated with cellular hypoxia. Our project aims not only to describe the impact of hypoxia on ion channels and to highlight the underlying signaling pathways involved, but also to test the effectiveness of current CF treatments under the above-mentioned conditions.
Collapse
Affiliation(s)
- K Pascarel
- Université de Poitiers, PRéTI, Poitiers, France.
| | - J Colas
- Université de Poitiers, PRéTI, Poitiers, France
| | - S Mirval
- Université de Poitiers, PRéTI, Poitiers, France
| | - F Becq
- Université de Poitiers, PRéTI, Poitiers, France
| | | |
Collapse
|
8
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
TRPV4 Promotes Metastasis in Melanoma by Regulating Cell Motility through Cytoskeletal Rearrangement. Int J Mol Sci 2022; 23:ijms232315155. [PMID: 36499486 PMCID: PMC9737014 DOI: 10.3390/ijms232315155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The abnormal expression of Transient Receptor Potential cation channel subfamily V member 4 (TRPV4) is closely related to the progression of multiple tumors. In addition, TRPV4 is increasingly being considered a potential target for cancer therapy, especially in tumor metastasis prevention. However, the biological correlation between TRPV4 and tumor metastasis, as well as the specific role of TRPV4 in malignant melanoma metastasis, is poorly understood. In this study, we aimed to examine the role of TRPV4 in melanoma metastasis through experiments and clinical data analysis, and the underlying anticancer mechanism of Baicalin, a natural compound, and its inhibitory effect on TRPV4 with in vivo and in vitro experiments. Our findings suggested that TRPV4 promotes metastasis in melanoma by regulating cell motility via rearranging the cytoskeletal, and Baicalin can inhibit cancer metastasis, whose mechanisms reverse the recruitment of activated cofilin to leading-edge protrusion and the increasing phosphorylation level of cortactin, which is provoked by TRPV4 activation.
Collapse
|
10
|
Anwar F, Sparrow NA, Rashid MH, Guidry G, Gezalian MM, Ley EJ, Koronyo-Hamaoui M, Danovitch I, Ely EW, Karumanchi SA, Lahiri S. Systemic interleukin-6 inhibition ameliorates acute neuropsychiatric phenotypes in a murine model of acute lung injury. Crit Care 2022; 26:274. [PMID: 36100846 PMCID: PMC9469063 DOI: 10.1186/s13054-022-04159-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Acute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known. We hypothesized that a murine model of mechanical ventilation-induced acute lung injury (VILI) would induce neural injury to the amygdala and hippocampus, brain regions that are implicated in diverse neuropsychiatric conditions, and corresponding delirium- and anxiety-like functional impairments. Furthermore, we hypothesized that these structural and functional changes would reverse with systemic IL-6 inhibition. VILI was induced using high tidal volume (35 cc/kg) mechanical ventilation. Cleaved caspase-3 (CC3) expression was quantified as a neural injury marker and found to be significantly increased in the VILI group compared to spontaneously breathing or anesthetized and mechanically ventilated mice with 10 cc/kg tidal volume. VILI mice treated with systemic IL-6 inhibition had significantly reduced amygdalar and hippocampal CC3 expression compared to saline-treated animals and demonstrated amelioration in acute neuropsychiatric behaviors in open field, elevated plus maze, and Y-maze tests. Overall, these data provide evidence of a pathogenic role of systemic IL-6 in mediating structural and functional acute neuropsychiatric symptoms in VILI and provide preclinical justification to assess IL-6 inhibition as a potential intervention to ameliorate acute neuropsychiatric phenotypes following VILI.
Collapse
|
11
|
Sun YB, Ni Y, Fan XS, Zhou LP, Yue QF, Shang EX. Effect of Houpo-Mahuang Decoction on aggravated asthma induced by cigarette smoke and the expression of TRPA1 and tight junctions in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115217. [PMID: 35337920 DOI: 10.1016/j.jep.2022.115217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cigarette smoke (CS) is a common environmental irritant and a risk factor for asthma, as it induces as well as aggravates asthmatic attacks. The injured airway epithelial tight junctions (TJs) aggravate asthma. CS can aggravate asthma by activating the transient receptor potential ankyrin A1 (TRPA1) channel and enhancing TJs destruction. Houpo Mahuang decoction (HPMHD) is a classic traditional Chinese prescription for the treatment of asthma. However, its underlying action mechanism is unclear. AIM OF THE STUDY The present study aimed to evaluate the effect of HPMHD on the asthma phenotype and the regulation of TRPA1 and TJs in a CS-induced mouse model of aggravated asthma. MATERIALS AND METHODS Under optimized chromatographic and mass spectrometry conditions, the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technique was used to detect and analyze the major chemical components of HPMHD. C57BL/6 female mice were randomly divided into seven groups, viz, normal saline (NS) group, ovalbumin (OVA) + CS group, dexamethasone group, HPMHD high-dose group and low-dose groups, n-butanol extract group, and ethyl acetate extract group, with 10 mice in each group. OVA sensitization and challenge, and CS exposure were used to establish the aggravated asthma model. As the main indices to evaluate the protective effect of HPMHD, the eosinophils count in peripheral blood, percentages of inflammatory cells classified and the levels of interleukin (IL)-4, IL-5, IL-13 in the bronchoalveolar lavage fluid (BALF), airway responsiveness enhanced pause (Penh), and changes in lung histopathology were determined and compared among the groups. The mRNA and protein expression of TRPA1 and TJs in lung tissue was also examined. RESULTS Using UPLC-QTOF-MS, the chemical components of HPMHD, including ephedrine, pseudoephedrine, laetrile, and amygdalin amide, were identified by 51 signal peaks. Compared with those in the NS group, the eosinophil number in the peripheral blood and the eosinophils and neutrophils percentages in BALF of the OVA + CS group were remarkably increased. Following the inhalation of 50 μl of acetylcholine chloride (ACH) at doses of 25 and 50 mg/mL, the Penh increased significantly (p < 0.01). Moreover, in the OVA + CS group, hematoxylin and eosin (H&E) staining of lung tissue showed a significant number of infiltrated inflammatory cells, increased mucus secretion in the lumen, damaged bronchial mucosa, increased thickness of tracheal wall, and increased score of lung damage (p < 0.01). The IL-4/5/13 levels were also remarkably increased (p < 0.01). The protein as well as gene expression of both ZO-1 and occludin decreased markedly in the lung tissue, while the expression of TRPA1 and claudin-2 was increased (p < 0.05, p < 0.01). Next, the OVA + CS group and the treatment groups were compared. The inflammatory cells, Penh value, and levels of IL-4/5/13 were significantly reduced, and less lung injury was observed in the treatment groups. The gene and protein levels of TRPA1 and TJs were corrected (p < 0.05, p < 0.01); the effects on the HPMHD high-dose and ethyl acetate extract groups were particularly remarkable. CONCLUSIONS HPMHD reduced airway hyperresponsiveness, inflammatory cell recruitment and Th2 cytokine secretion in CS-induced aggravated asthma mice, in a manner potentially dependent on regulation of the expression of TRPA1 and TJ proteins. Both the n-butanol and ethyl acetate extracts contained the active ingredients, especially the ethyl acetate extract.
Collapse
Affiliation(s)
- Yu-Bo Sun
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Ni
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin-Sheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li-Ping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qin-Fei Yue
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
12
|
Fallah HP, Ahuja E, Lin H, Qi J, He Q, Gao S, An H, Zhang J, Xie Y, Liang D. A Review on the Role of TRP Channels and Their Potential as Drug Targets_An Insight Into the TRP Channel Drug Discovery Methodologies. Front Pharmacol 2022; 13:914499. [PMID: 35685622 PMCID: PMC9170958 DOI: 10.3389/fphar.2022.914499] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Transient receptor potential (TRP) proteins are a large group of ion channels that control many physiological functions in our body. These channels are considered potential therapeutic drug targets for various diseases such as neurological disorders, cancers, cardiovascular disease, and many more. The Nobel Prize in Physiology/Medicine in the year 2021 was awarded to two scientists for the discovery of TRP and PIEZO ion channels. Improving our knowledge of technologies for their study is essential. In the present study, we reviewed the role of TRP channel types in the control of normal physiological functions as well as disease conditions. Also, we discussed the current and novel technologies that can be used to study these channels successfully. As such, Flux assays for detecting ionic flux through ion channels are among the core and widely used tools for screening drug compounds. Technologies based on these assays are available in fully automated high throughput set-ups and help detect changes in radiolabeled or non-radiolabeled ionic flux. Aurora's Ion Channel Reader (ICR), which works based on label-free technology of flux assay, offers sensitive, accurate, and reproducible measurements to perform drug ranking matching with patch-clamp (gold standard) data. The non-radiolabeled trace-based flux assay coupled with the ICR detects changes in various ion types, including potassium, calcium, sodium, and chloride channels, by using appropriate tracer ions. This technology is now considered one of the very successful approaches for analyzing ion channel activity in modern drug discovery. It could be a successful approach for studying various ion channels and transporters, including the different members of the TRP family of ion channels.
Collapse
Affiliation(s)
| | - Ekta Ahuja
- Aurora Biomed Inc., Vancouver, BC, Canada
| | | | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qian He
- Aurora Discovery Inc., Foshan, China
| | - Shan Gao
- Aurora Discovery Inc., Foshan, China
| | | | | | | | - Dong Liang
- Aurora Biomed Inc., Vancouver, BC, Canada
- Aurora Discovery Inc., Foshan, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Li CH, Hsieh SW, Huang P, Liu HY, Chen CH, Hung CH. Pharmacological Management of Dysphagia in Patients with Alzheimer's Disease: A Narrative Review. Curr Alzheimer Res 2022; 19:743-753. [PMID: 36453507 DOI: 10.2174/1567205020666221130091507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) and dysphagia are important health and socioeconomic problems in the aging population. Currently, the medical treatment of dysphagia in AD patients remains insufficient, and there are significant gaps in the management and clinical needs to postpone tube feeding. Literatures published over the last 30 years were searched in the PubMed and Embase databases. All relevant and promising pharmacological management studies were included. Because of the heterogeneity in design and methodology, only narrative reports were mentioned. Nine studies were included with two case reports, two case series, and two observational and three randomized controlled trials. The key approaches and clinical problems related to dysphagia include onset pattern, dementia stage, review of offending drugs and polypharmacy, and comorbidities (cerebrovascular disease, hypertension, parkinsonism, depression, and anorexia). The corresponding strategies of pharmacological treatments are further proposed and discussed comprehensively, with transient receptor potential channel modulators as promising treatment. With the integration of adequate and potential pharmacomanagement, AD patients with dysphagia can achieve a good prognosis and postpone tube feeding to maintain a better quality of life. More rigorous studies are needed to verify the effectiveness of innovative strategies and develop targets for neurostimulation.
Collapse
Affiliation(s)
- Chien-Hsun Li
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dysphagia Functional Reconstructive Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Integrated Center of Healthy and Long-term Care, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, 812, Taiwan
| | - Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dysphagia Functional Reconstructive Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Poyin Huang
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiu-Yueh Liu
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Hung Chen
- Department of Neurology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Dysphagia Functional Reconstructive Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hsing Hung
- Dysphagia Functional Reconstructive Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Center of Teaching and Research, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Amini MR, Talebyan A, Payandeh N, Sheikhhossein F, Mohtashaminia F, Gholami F. The effects of capsinoids and fermented red pepper paste supplementation on Glycaemic Control: A systematic review and meta-analysis of randomised controlled trials. Int J Clin Pract 2021; 75:e14803. [PMID: 34487384 DOI: 10.1111/ijcp.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The present systematic review and meta-analysis were conducted to investigate the effects of capsinoids supplementation on glycaemic control. METHODS Relevant studies, published up to May 2020, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase and Google Scholar. All randomised clinical trials investigating the effect of capsinoids supplementation on glycaemic control were included. RESULTS Of 326 citations, eight trials with nine effect sizes that enrolled 530 subjects were included. Capsinoids and red pepper resulted in no significant reduction in glucose (Weighted mean differences (WMD): -0.27 mg/dL; 95% CI: -1.9 to 1.37, P = .75), insulin (WMD: -0.09 µU/mL; 95% CI: -1.76 to 1.57, P = .913), homeostatic model assessment for insulin resistance (HOMA-IR) (WMD: 0.52; 95% CI: -0.29 to 1.32, P = .208) and haemoglobin A1C (HbA1C) (WMD: 0.01%; 95% CI: -0.04 to 0.05, P = .712). Greater effects on glucose were detected in trials performed on both gender, using red pepper, lasted ≥12 weeks, and participants aged >40 years old and recruited greater sample size >50. Insulin and HOMA-IR were reduced by using red pepper. CONCLUSION Overall, these data suggest that capsinoids and red pepper supplementation did not have beneficial effects on glucose, insulin, HbA1C and HOMA-IR but significantly reduce glucose in people older than 40 years.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Talebyan
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Payandeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Mohtashaminia
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
15
|
Mechanism of Phosgene-Induced Acute Lung Injury and Treatment Strategy. Int J Mol Sci 2021; 22:ijms222010933. [PMID: 34681591 PMCID: PMC8535529 DOI: 10.3390/ijms222010933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.
Collapse
|
16
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
17
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
18
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
19
|
Mandlik DS, Mandlik SK. New perspectives in bronchial asthma: pathological, immunological alterations, biological targets, and pharmacotherapy. Immunopharmacol Immunotoxicol 2020; 42:521-544. [PMID: 32938247 DOI: 10.1080/08923973.2020.1824238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is the most common, long-lasting inflammatory airway disease that affects more than 10% of the world population. It is characterized by bronchial narrowing, airway hyperresponsiveness, vasodilatation, airway edema, and stimulation of sensory nerve endings that lead to recurring events of breathlessness, wheezing, chest tightness, and coughing. It is the main reason for global morbidity and occurs as a result of the weakening of the immune system in response to exposure to allergens or environmental exposure. In asthma condition, it results in the activation of numerous inflammatory cells like the mast and dendritic cells along with the accumulation of activated eosinophils and lymphocytes at the inflammation site. The structural cells such as airway epithelial cells and smooth muscle cells release inflammatory mediators that promote the bronchial inflammation. Long-lasting bronchial inflammation can cause pathological alterations, viz. the improved thickness of the bronchial epithelium and friability of airway epithelial cells, epithelium fibrosis, hyperplasia, and hypertrophy of airway smooth muscle, angiogenesis, and mucus gland hyperplasia. The stimulation of bronchial epithelial cell would result in the release of inflammatory cytokines and chemokines that attract inflammatory cells into bronchial airways and plays an important role in asthma. Asthma patients who do not respond to marketed antiasthmatic drugs needed novel biological medications to regulate the asthmatic situation. The present review enumerates various types of asthma, etiological factors, and in vivo animal models for the induction of asthma. The underlying pathological, immunological mechanism of action, the role of inflammatory mediators, the effect of inflammation on the bronchial airways, newer treatment approaches, and novel biological targets of asthma have been discussed in this review.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Bharat Vidyapeeth Deemed University, Poona College of Pharmacy, Erandawane, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon, Maharashtra, India
| |
Collapse
|
20
|
Wang J, He Y, Yang G, Li N, Li M, Zhang M. Transient receptor potential canonical 1 channel mediates the mechanical stress‑induced epithelial‑mesenchymal transition of human bronchial epithelial (16HBE) cells. Int J Mol Med 2020; 46:320-330. [PMID: 32319532 PMCID: PMC7255483 DOI: 10.3892/ijmm.2020.4568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 01/16/2023] Open
Abstract
Airway remodeling is a central event in the pathology of chronic obstructive pulmonary disease (COPD) that leads to airway narrowing and subsequently, to increased mechanical pressure. High mechanical pressure can exacerbate airway remodeling. Thus, a treatment regimen aimed at disrupting this high‑pressure airway remodeling vicious cycle may improve the prognosis of patients with COPD. Recent studies have demonstrated that mechanical stress induces lung epithelial‑mesenchymal transition (EMT), which is commonly present in airway epithelial cells of patients with COPD. As TRPC1 functions as a mechanosensitive channel that mediates non‑selective cation entry in response to increased membrane stretch, the present study investigated the role of TRPC1 in the occurrence of EMT induced by mechanical stress. In the present study, the expression of TRPC1 in the bronchial epithelium was examined in vivo by immunohistochemistry. In vitro, human bronchial epithelial (16HBE) cells were subjected to mechanical stretching for up to 48 h, and TRPC1 expression was then examined by RT‑qPCR and western blot analysis. In addition, TRPC1 receptor function was assessed by Ca2+ imaging and siRNA transfection. EMT was identified using immunofluorescence, western blot analysis and RT‑qPCR. It was found that TRPC1 expression was upregulated in patients with COPD and in 16HBE cells subjected to mechanical stretch. The mechanical stress‑induced activation of TRPC1 in 16HBE cells increased the intracellular calcium concentration and subsequently decreased the expression of cytokeratin 8 and E‑cadherin, and increased the expression of α‑smooth muscle actin, indicating the occurrence of EMT. On the whole, the findings of the present study demonstrate that TRPC1 plays a key role in the occurrence of EMT in human lung epithelial cells in response to mechanical stretch; thus, this protein may serve as a novel therapeutic target for progressive airway remodeling in COPD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing 400010
| | - Ye He
- Department of Geriatrics, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072
| | - Gang Yang
- Department of Neurosurgery, The First Clinical Hospital of Chongqing Medical University, Chongqing 400016
| | - Na Li
- Division of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Clinical Hospital of Chongqing Medical University, Chongqing 400010
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610072
| |
Collapse
|
21
|
Complex Regulatory Role of the TRPA1 Receptor in Acute and Chronic Airway Inflammation Mouse Models. Int J Mol Sci 2020; 21:ijms21114109. [PMID: 32526913 PMCID: PMC7312832 DOI: 10.3390/ijms21114109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022] Open
Abstract
The Transient Receptor Potential Ankyrin 1 (TRPA1) cation channel expressed on capsaicin-sensitive afferents, immune and endothelial cells is activated by inflammatory mediators and exogenous irritants, e.g., endotoxins, nicotine, crotonaldehyde and acrolein. We investigated its involvement in acute and chronic pulmonary inflammation using Trpa1 gene-deleted (Trpa1-/-) mice. Acute pneumonitis was evoked by intranasal Escherichia coli endotoxin (lipopolysaccharide: LPS) administration, chronic bronchitis by daily cigarette smoke exposure (CSE) for 4 months. Frequency, peak inspiratory/expiratory flows, minute ventilation determined by unrestrained whole-body plethysmography were significantly greater, while tidal volume, inspiratory/expiratory/relaxation times were smaller in Trpa1-/- mice. LPS-induced bronchial hyperreactivity, myeloperoxidase activity, frequency-decrease were significantly greater in Trpa1-/- mice. CSE significantly decreased tidal volume, minute ventilation, peak inspiratory/expiratory flows in wildtypes, but not in Trpa1-/- mice. CSE remarkably increased the mean linear intercept (histopathology), as an emphysema indicator after 2 months in wildtypes, but only after 4 months in Trpa1-/- mice. Semiquantitative histopathological scores were not different between strains in either models. TRPA1 has a complex role in basal airway function regulation and inflammatory mechanisms. It protects against LPS-induced acute pneumonitis and hyperresponsiveness, but is required for CSE-evoked emphysema and respiratory deterioration. Further research is needed to determine TRPA1 as a potential pharmacological target in the lung.
Collapse
|
22
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
23
|
Genova T, Gaglioti D, Munaron L. Regulation of Vessel Permeability by TRP Channels. Front Physiol 2020; 11:421. [PMID: 32431625 PMCID: PMC7214926 DOI: 10.3389/fphys.2020.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Deborah Gaglioti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
24
|
Liu Z, Wang P, Lu S, Guo R, Gao W, Tong H, Yin Y, Han X, Liu T, Chen X, Zhu MX, Yang Z. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020; 88:102198. [PMID: 32388008 DOI: 10.1016/j.ceca.2020.102198] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.
Collapse
Affiliation(s)
- Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiying Tong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yin Yin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuezhen Han
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangyun Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Zhen Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
25
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA. Dysfunction of transient receptor potential ion channels as an important pathophysiological mechanism in asthma. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic heterogeneous disease characterized by chronic inflammation and bronchial hyperreactivity. Neurogenic inflammation is one of the important causes of hyperreactivity. Dysfunction of transient receptor potential (TRP) ion channels underlies the development of neurogenic inflammation, bronchial hyperreactivity and respiratory symptoms of asthma such as bronchospasm and cough. TRP channels are expressed in the respiratory tract. Their activation is mediated by endogenous and exogenous factors involved in the pathogenesis of asthma. The study of functioning and regulation of TRP channels is relevant, as they could be important therapeutic targets for asthma. The aim of the review is to summarize modern ideas about the mechanisms of functioning and regulation of members of the TRP channel superfamily, the role of which in lung pathology and physiology are the best studied.
Collapse
Affiliation(s)
- Oxana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration – Institute of Medical Climatology and Rehabilitative Treatment
| |
Collapse
|
26
|
Li C, Song P, Lei F, Lu S, Xu D, Zheng G, Yang X, Wu Y, Ma P. The synergistic or adjuvant effect of DINP combined with OVA as a possible mechanism to promote an immune response. Food Chem Toxicol 2020; 140:111275. [PMID: 32209354 DOI: 10.1016/j.fct.2020.111275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Diisononyl phthalate (DINP) is commonly used as a plasticizer in industrial and consumer product applications. Several studies have suggested a possible link between exposure to DINP and the development of allergic asthma, and the synergistic effect of DINP combined with Ovalbumin (OVA) is a possible way to promote an immune response. These findings are still speculative, since there is insufficient evidence to assess the ability of DINP to influence "allergic asthma pathology". This study was designed to determine any effects of OVA/DINP exposure on airway reactivity, particularly when combined with allergen exposure. Experiments to determine these effects were conducted after 15 days of combined exposure and a subsequent challenge with aerosolized ovalbumin for one week. Airway hyper-responsiveness (lung function), lung tissue pathology, cytokines and oxidative stress biomarkers were investigated. We showed that oral exposure to OVA/DINP could induce airway hyper-responsiveness (AHR), and aggravate airway wall remodeling, and that this deterioration was concomitant with increased immunoglobulin-E and Th2 cytokines secretion. The data also demonstrated that DINP could promote oxidative damage in the lung. In summary, this study showed that DINP has an adjuvant effect on allergic asthma affecting lung function, lung histopathology, immune molecules and causes oxidative damage.
Collapse
Affiliation(s)
- Chongyao Li
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Peng Song
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Fan Lei
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Si Lu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Dongting Xu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Guangwei Zheng
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xu Yang
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
27
|
Leikauf GD, Kim SH, Jang AS. Mechanisms of ultrafine particle-induced respiratory health effects. Exp Mol Med 2020; 52:329-337. [PMID: 32203100 PMCID: PMC7156674 DOI: 10.1038/s12276-020-0394-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Particulate matter (PM) is the principal component of air pollution. PM includes a range of particle sizes, such as coarse, fine, and ultrafine particles. Particles that are <100 nm in diameter are defined as ultrafine particles (UFPs). UFPs are found to a large extent in urban air as both singlet and aggregated particles. UFPs are classified into two major categories based on their source. Typically, UFPs are incidentally generated in the environment, often as byproducts of fossil fuel combustion, condensation of semivolatile substances or industrial emissions, whereas nanoparticles are manufactured through controlled engineering processes. The primary exposure mechanism of PM is inhalation. Inhalation of PM exacerbates respiratory symptoms in patients with chronic airway diseases, but the mechanisms underlying this response remain unclear. This review offers insights into the mechanisms by which particles, including UFPs, influence airway inflammation and discusses several mechanisms that may explain the relationship between particulate air pollutants and human health, particularly respiratory health. Understanding the mechanisms of PM-mediated lung injury will enhance efforts to protect at-risk individuals from the harmful health effects of air pollutants.
Collapse
Affiliation(s)
- George D Leikauf
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, USA
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University, Seoul, Republic of Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
| |
Collapse
|
28
|
Atobe M. Activation of Transient Receptor Potential Vanilloid (TRPV) 4 as a Therapeutic Strategy in Osteoarthritis. Curr Top Med Chem 2019; 19:2254-2267. [DOI: 10.2174/1568026619666191010162850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 4 belongs to the TRPV subfamily of TRP ion
channels. TRPV4 channels play a critical role in chondrocytes and thus TRPV4 is an attractive target of
Disease-Modifying Osteoarthritis Drugs (DMOADs). Initial investigations of small molecules by Glaxo
Smith Klein (GSK) as both agonists and antagonists via oral/intravenous administration have led to the
use of existing agonists as lead compounds for biological studies. Our recent results suggest that local
injection of a TRPV4 agonist is a potential treatment for osteoarthritis (OA). This review briefly summarizes
updates regarding TRPV4 agonists based on recent advances in drug discovery, and particularly
the local administration of TRPV4 agonists.
Collapse
Affiliation(s)
- Masakazu Atobe
- Laboratory for Medicinal Chemistry, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
29
|
Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol 2019; 271:103292. [PMID: 31542455 DOI: 10.1016/j.resp.2019.103292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023]
Abstract
The interaction between chronic inflammation and neural dysfunction points to a link between the nervous and immune systems in the airways. In particular, environmental exposure to nanoparticles (NPs), defined as particulate matter having one dimension <100 nm, is associated with an enhanced risk of childhood and adult asthma. However, the impact of NPs on the neural response in asthma remains to be determined. This study determined the impact of NPs on neuroinflammation in a mouse model of allergic asthma. Ovalbumin (OVA) sensitized mice were treated with saline (Sham), OVA challenged and exposed to 200 μg/m3 NPs 1 h a day for 3 days on days 21-23 in a closed-system chamber attached to a ultrasonic nebulizer. The effect of NPs on the levels of neuropeptides, transient receptor potential vanilloid 1 (TRPV1), TRPV4, P2 × 4, and P2 × 7 was assessed by enzyme-linked immunosorbent assays, immunoblotting, and immunohistochemistry. NP exposure increased airway inflammation and responsiveness in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The lung tissue levels of TRPV1, TRPV4, P2 × 4, and P2 × 7 were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. The substance P, adenosine triphosphate (ATP), and calcitonin gene-related peptide (CGRP) levels in bronchoalveolar lavage fluid were increased in OVA mice, and these increases were augmented in OVA plus NP-exposed mice. Bradykinin, ATP, and CGRP were dose dependently increased in NP-exposed normal human bronchial epithelial (NHBE) cells. The calcium concentration was increased in NHBE cells exposed to NPs for 8 h. These results indicate that neuroinflammation can be involved in the pathogenesis of bronchial asthma and that NPs can exacerbate asthma via neuromediator release.
Collapse
|
30
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
31
|
Kim J, Ko J, Myeong J, Kwak M, Hong C, So I. TRPC1 as a negative regulator for TRPC4 and TRPC5 channels. Pflugers Arch 2019; 471:1045-1053. [PMID: 31222490 DOI: 10.1007/s00424-019-02289-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jinsung Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Juyeon Ko
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Misun Kwak
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Kwangju, South Korea
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
32
|
Sui X, Yu J, Wu J, Guo L, Shi X. Network and Pathway-Based Prioritization and Analyses of Genes Related to Chronic Obstructive Pulmonary Disease. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaojun Sui
- Department of Respiration, Weihai Central Hospital
| | - Junfang Yu
- Department of Respiration, Weihai Central Hospital
| | - Jingbo Wu
- Department of Respiration, Weihai Central Hospital
| | - Lijuan Guo
- Department of Respiration, Weihai Central Hospital
| | - Xinjie Shi
- Department of Respiration, Weihai Central Hospital
| |
Collapse
|
33
|
Steinritz D, Stenger B, Dietrich A, Gudermann T, Popp T. TRPs in Tox: Involvement of Transient Receptor Potential-Channels in Chemical-Induced Organ Toxicity-A Structured Review. Cells 2018; 7:cells7080098. [PMID: 30087301 PMCID: PMC6115949 DOI: 10.3390/cells7080098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemicals can exhibit significant toxic properties. While for most compounds, unspecific cell damaging processes are assumed, a plethora of chemicals exhibit characteristic odors, suggesting a more specific interaction with the human body. During the last few years, G-protein-coupled receptors and especially chemosensory ion channels of the transient receptor potential family (TRP channels) were identified as defined targets for several chemicals. In some cases, TRP channels were suggested as being causal for toxicity. Therefore, these channels have moved into the spotlight of toxicological research. In this review, we screened available literature in PubMed that deals with the role of chemical-sensing TRP channels in specific organ systems. TRPA1, TRPM and TRPV channels were identified as essential chemosensors in the nervous system, the upper and lower airways, colon, pancreas, bladder, skin, the cardiovascular system, and the eyes. Regarding TRP channel subtypes, A1, M8, and V1 were found most frequently associated with toxicity. They are followed by V4, while other TRP channels (C1, C4, M5) are only less abundantly expressed in this context. Moreover, TRPA1, M8, V1 are co-expressed in most organs. This review summarizes organ-specific toxicological roles of TRP channels.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Bernhard Stenger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
34
|
Pouwels S, Stepaniak PS, Buise MP, Bouwman RA, Nienhuijs SW. The RAQET Study: the Effect of Eating a Popsicle Directly After Bariatric Surgery on the Quality of Patient Recovery; a Randomised Controlled Trial. Indian J Surg 2018; 80:245-251. [PMID: 29973755 PMCID: PMC6014958 DOI: 10.1007/s12262-016-1560-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
Quality of recovery could be influenced positively if there is less postoperative sore throat (POST). Eating a popsicle might attenuate this sore throat. Especially for bariatric surgery, early recovery is important. Adding popsicles to the postoperative protocol could be beneficial. Our hypothesis is that offering a popsicle in the recovery room to patients after bariatric surgery will decrease POST and will increase quality of postoperative recovery. Patients undergoing elective bariatric surgery, between the 23 February 2015 and 3 April, were randomised to either the popsicle group or control group. Primary endpoint was the incidence of POST and secondly if a reduction in POST influences quality of recovery at the first day postoperative measured with the Bariatric Quality Of Recovery (BQoR) questionnaire. One hundred and thirty-three patients were assessed for eligibility. For the final analysis, 44 patients in the intervention and 65 in the control group were available. Eating a popsicle after bariatric surgery had no significant effect on the incidence of POST. Significant effects (in favour of the popsicle group) were seen in muscle pain score (p = 0.047) and sore mouth score (p = 0.012). Popsicle intragroup analysis revealed that eating the whole popsicle (compared to partially eating the popsicle) has positive effects on nausea (p = 0.059), feeling cold (p = 0.008), and mean total comfort score (p = 0.011). Of the patients who became nauseous and/or had to vomit because of the popsicle, n = 4 had more severe pain (p = 0.04) and the mean pain score was higher (p = 0.09). The present study demonstrates that offering a popsicle early during recovery after bariatric surgery is feasible without adverse effects, although eating popsicle did not reduce postoperative sore throat. There are possible beneficial effects, such as reduced muscle pains and less sore mouth, that may enhance the quality of recovery. More research is necessary to further substantiate the effect of eating popsicles on the quality of recovery in this patient population. TRIAL REGISTRATION Registration number: NTR4943 (http://www.trialregister.nl).
Collapse
Affiliation(s)
- Sjaak Pouwels
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands
- Department of Epidemiology, CAPHRI Research School, Maastricht University, Maastricht, The Netherlands
| | - Pieter S. Stepaniak
- Department of Operating Rooms, Catharina Hospital, Eindhoven, The Netherlands
| | - Marc P. Buise
- Department of Anesthesiology, Catharina Hospital, Eindhoven, The Netherlands
| | - R. Arthur Bouwman
- Department of Anesthesiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Simon W. Nienhuijs
- Department of Surgery, Catharina Hospital, Michelangelolaan 2, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands
| |
Collapse
|
35
|
An JY, Ahn C, Kang HY, Jeung EB. Inhibition of mucin secretion via glucocorticoid-induced regulation of calcium-related proteins in mouse lung. Am J Physiol Lung Cell Mol Physiol 2018; 314:L956-L966. [DOI: 10.1152/ajplung.00417.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Calcium is important for physiological functioning in many tissues and is essential in mucus secretion and muscle contraction. Intracellular concentrations of calcium are regulated by calcium-related proteins, such as transient receptor potential cation channel subfamily V member 4 (TRPV 4), TRPV6, Calbindin-D9k (CaBP-9k), sodium-calcium exchanger (NCX1), and plasma membrane Ca2+ ATPase 1 (PMCA1). In this study, the relationship between secretion of pulmonary mucus and calcium regulation was investigated. To confirm the effect of steroid hormones, immature mice were injected with estrogen (E2) or progesterone (P4), and mature mice were injected with dexamethasone (DEX). Subsequently, the location and expression of TRPV4, TRPV6, CaBP-9k, NCX1, and PMCA1 in lung tissue were examined. Periodic acid-Schiff staining was performed to investigate functional aspects of the protein expression. There were no significant differences in calcium-related gene expression in E2- and P4-treated mice, but TRPV4, NCX1, and PMCA1 were increased in DEX-treated mice and were recovered by RU486 treatment. DEX induces the expression of calcium-related proteins through the glucocorticoid receptor-mediated pathway and may involve decreased mucin secretion in the bronchiole. TRPV4, TRPV6, CaBP-9k, NCX1, and PMCA1 were specifically expressed in Clara and alveolar type 2 cells of mouse lung. CC10, a marker of Clara cells, was decreased by DEX. In addition, mucin secretion, which is a functional aspect of this cell, was also decreased by DEX treatment. Control of calcium-related gene expression may affect the control of mucus secretion in the lung. Such a control mechanism can form the basis of studies into diseases such as inflammation attributable to mucus secretion abnormalities, coughing, and respiratory disorders and distress.
Collapse
Affiliation(s)
- Jin Yong An
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
36
|
Cavaleiro Rufo J, Paciência I, Silva D, Martins C, Madureira J, de Oliveira Fernandes E, Padrão P, Moreira P, Delgado L, Moreira A. Swimming pool exposure is associated with autonomic changes and increased airway reactivity to a beta-2 agonist in school aged children: A cross-sectional survey. PLoS One 2018. [PMID: 29529048 PMCID: PMC5846785 DOI: 10.1371/journal.pone.0193848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Endurance swimming exercises coupled to disinfection by-products exposure has been associated with increased airways dysfunction and neurogenic inflammation in elite swimmers. However, the impact of swimming pool exposure at a recreational level on autonomic activity has never been explored. Therefore, this study aimed to investigate how swimming pool attendance is influencing lung and autonomic function in school-aged children. Methods A total of 858 children enrolled a cross sectional survey. Spirometry and airway reversibility to beta-2 agonist, skin-prick-tests and exhaled nitric oxide measurements were performed. Pupillometry was used to evaluate autonomic nervous function. Children were classified as current swimmers (CS), past swimmers (PS) and non-swimmers (NS), according to the amount of swimming practice. Results Current swimmers group had significantly lower maximum and average pupil constriction velocities when compared to both PS and NS groups (3.8 and 5.1 vs 3.9 and 5.3 vs 4.0 and 5.4 mm/s, p = 0.03 and p = 0.01, respectively). Moreover, affinity to the beta-2 agonist and levels of exhaled nitric oxide were significantly higher in CS when compared to NS (70 vs 60 mL and 12 vs 10 ppb, p<0.01 and p = 0.03, respectively). A non-significant trend for a higher risk of asthma, atopic eczema and allergic rhinitis was found with more years of swimming practice, particularly in atopic individuals (β = 1.12, 1.40 and 1.31, respectively). After case-case analysis, it was possible to observe that results were not influenced by the inclusion of individuals with asthma. Conclusions Concluding, swimming pool attendance appears to be associated with autonomic changes and increased baseline airway smooth muscle constriction even in children without asthma.
Collapse
Affiliation(s)
- João Cavaleiro Rufo
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
- Energy and Built Environment Group, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto, Portugal
- * E-mail:
| | - Inês Paciência
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
- Energy and Built Environment Group, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto, Portugal
| | - Diana Silva
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
| | - Carla Martins
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
| | - Joana Madureira
- Energy and Built Environment Group, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Eduardo de Oliveira Fernandes
- Energy and Built Environment Group, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Patrícia Padrão
- Faculty of Nutrition and Food Sciences of the University of Porto, Porto, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences of the University of Porto, Porto, Portugal
| | - Luís Delgado
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
| | - André Moreira
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto & Immunoalergology Department S. João Hospital Centre, Porto, Portugal
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto, Portugal
- Faculty of Nutrition and Food Sciences of the University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Johansson EL, Ternesten-Hasséus E, Gustafsson P, Pullerits T, Arvidsson M, Millqvist E. Small and large airway reactions to osmotic stimuli in asthma and chronic idiopathic cough. Pulm Pharmacol Ther 2018; 49:112-118. [PMID: 29438818 DOI: 10.1016/j.pupt.2018.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic cough is a common symptom and related to several pulmonary, airway and heart diseases. When all likely medical explanations for the coughing are excluded, there remains a large group of patients with chronic coughing, which is mostly a cough reflex easily triggered by environmental irritants and noxious stimuli. The main aim of this study was to improve the diagnostic ability to differentiate chronic idiopathic cough (CIC) from asthma. METHODS Twenty-three patients with CIC, 16 patients with mild asthma and 21 control participants were included. The study consisted of three randomised bronchial provocations with osmotic stimuli: mannitol, eucapnic dry air and hypertonic saline. At each provocation lung function was assessed by spirometry and impulse oscillometry (IOS). RESULTS In a comparison of the groups, while the FEV1 measurements did not differ, the CIC group had increased airway resistance and reactance after provocation with hypertonic saline compared to the control subjects. After mannitol provocation the patients with asthma had significantly increased airway resistance compared to the controls and from eucapnic dry air provocations these patients had a significant reduction in spirometry values and increased airway resistance compared to both the patients with CIC and the controls. CONCLUSION The asthma group reacted in a predictable way with impaired lung function from osmotic provocations, whereas the patients with CIC demonstrated peripheral airway changes from hypertonic saline, also known to be a noxious stimulus. The IOS method uncovers differences between patients with CIC and control participants that contribute to our ability to provide a correct diagnosis.
Collapse
Affiliation(s)
- Ewa-Lena Johansson
- Departments of Clinical Neuroscience and Rehabilitation, Physiotherapy, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Ewa Ternesten-Hasséus
- Department of Internal Medicine/Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Per Gustafsson
- Department of Paediatrics, Central Hospital, Skovde, Sweden.
| | - Teet Pullerits
- Department of Internal Medicine/Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Monica Arvidsson
- Department of Internal Medicine/Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Eva Millqvist
- Department of Internal Medicine/Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
38
|
Matsumoto K, Yamaba R, Inoue K, Utsumi D, Tsukahara T, Amagase K, Tominaga M, Kato S. Transient receptor potential vanilloid 4 channel regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2017; 175:84-99. [PMID: 29053877 DOI: 10.1111/bph.14072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 channels in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. EXPERIMENTAL APPROACH The role of TRPV4 channels in the progression of colonic inflammation was examined in a murine DSS-induced colitis model using immunohistochemical analysis, Western blotting and Evans blue dye extrusion assay. KEY RESULTS DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) as compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated the important role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment up-regulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. This DSS-induced increase in vascular permeability was further enhanced by i.v. administration of GSK1016790A, and this effect was abolished by the TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated i.v. administration of GSK1016790A during colitis. Furthermore, GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. CONCLUSION AND IMPLICATIONS These findings indicate that an up-regulation of TRPV4 channels in vascular endothelial cells contributes to the progression of colonic inflammation by increasing vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Riho Yamaba
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ken Inoue
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
39
|
Schwenk M. Chemical warfare agents. Classes and targets. Toxicol Lett 2017; 293:253-263. [PMID: 29197625 DOI: 10.1016/j.toxlet.2017.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action.
Collapse
Affiliation(s)
- Michael Schwenk
- Formerly: Medical School Hannover. Present address: In den Kreuzäckern 16/1, 72072 Tübingen, Germany.
| |
Collapse
|
40
|
Zhou LF, Chen QZ, Yang CT, Fu ZD, Zhao ST, Chen Y, Li SN, Liao L, Zhou YB, Huang JR, Li JH. TRPC6 contributes to LPS-induced inflammation through ERK1/2 and p38 pathways in bronchial epithelial cells. Am J Physiol Cell Physiol 2017; 314:C278-C288. [PMID: 29141922 DOI: 10.1152/ajpcell.00117.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
receptor potential canonical (TRPC) channels are presently an emerging target for airway disorders. Recent evidence has indicated that TRPC6 as a member of the TRPC family plays an important role in airway inflammation, but its precise function in bronchial epithelial cells remains unclear. The aim of this study was to investigate the role of TRPC6 in Toll-like receptor 4 (TLR4)-mediated inflammation in human bronchial epithelial cells stimulated by endotoxin [lipopolysaccharide (LPS)]. Hyp9 is a simplified phloroglucinol derivative of hyperforin that highly selectively activates TRPC6 channels. The results show that the activation of TRPC6 by Hyp9 induced the production of interleukin (IL)-8 and IL-6. LPS was also able to induce the release of IL-8 and IL-6, which was significantly aggravated by Hyp9 and reduced by knockdown of TRPC6. Treatment with LPS not only chronically induced the expression of TRPC6 mRNA and protein in a TLR4-dependent manner but also acutely increased Ca2+ influx through TRPC6 channels. In addition, LPS-induced overexpression of TRPC6 and Ca2+ influx were associated with the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt. Importantly, TRPC6 was required for the activation of ERK1/2, p38, and NF-κB. In conclusion, these data reveal that LPS induced the overexpression of TRPC6 and TRPC6-dependent Ca2+ influx via the TLR4/PI3K/Akt pathway resulting in Ca2+ mobilization, which subsequently promoted the activation of ERK1/2, p38, and NF-κB and the inflammatory response in bronchial epithelial cells.
Collapse
Affiliation(s)
- Li-Fen Zhou
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Qing-Zi Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Chun-Tao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Zhao-Di Fu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Shen-Ting Zhao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Yan Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Shu-Ni Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Li Liao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Yu-Bo Zhou
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Jian-Rong Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-Hua Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
41
|
Xu F, Liu XC, Li L, Ma CN, Zhang YJ. Effects of TRPC1 on epithelial mesenchymal transition in human airway in chronic obstructive pulmonary disease. Medicine (Baltimore) 2017; 96:e8166. [PMID: 29068985 PMCID: PMC5671818 DOI: 10.1097/md.0000000000008166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND We investigated the effects of TRPC1 on epithelial mesenchymal transition (EMT) in human airway in chronic obstructive pulmonary disease (COPD). METHODS A total of 94 patients who underwent lobectomy were selected and divided into COPD (49 cases) and control (45 cases) groups. Immunohistochemistry was applied to detect expression of E-cadherin and vimentin and TRPC1. Correlation of TRPC1 expression with E-cadherin and vimentin expression, and correlations of lung function indicators in COPD patients with expression of TRPC1, E-cadherin, and vimentin were analyzed. Human airway epithelial cells (16HBE) were used for cell experiments; and cigarette smoking extract (CSE) was adopted to establish the COPD model using TRPC1 recombinant plasmids and siRNA. Cells were assigned into the control, CSE, CSE + vector, CSE + TRPC1, CSE + si-NC, and CSE + si-TRPC1 groups. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were implemented to detect expression of TRPC1, E-cadherin, and vimentin. RESULTS Compared with the control group, expression of TRPC1 and vimentin significantly increased while expression of E-cadherin decreased in the COPD group, and protein expression of TRPC1 was positively correlated with the protein expression of vimentin but negatively correlated with the protein expression of E-cadherin. Patients exhibiting positive expression of TRPC1 had lower FEV1, FEV1%Pred, and FEV1/FVC, compared with the patients exhibiting negative expression of TRPC1. Compared with the control group, expression of TRPC1 and vimentin increased, whereas expression of E-cadherin decreased in the CSE, CSE + vector, CSE + TRPC1, and CSE + si-NC groups. Compared with the CSE and CSE + vector groups, the expression of TRPC1 and vimentin increased but the expression of E-cadherin decreased in the CSE + TRPC1 group. Compared with the CSE and CSE + si-NC groups, the expression of TRPC1 and vimentin decreased but the expression of E-cadherin increased in the CSE + si-TRPC1 group. No significant differences were observed among the CSE, CSE + vector and CSE + si-NC groups. CONCLUSION Overexpression of TRPC1 in COPD promoted EMT process and TRPC1 may be a new and interesting focus for COPD new treatment in the future.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiration, Huaihe Hospital of Henan University
| | - Xiao-Chun Liu
- Department of Respiration, Huaihe Hospital of Henan University
| | - Li Li
- College of Nursing and Health, Henan University, Kaifeng, P.R. China
| | - Chao-Nan Ma
- Department of Respiration, Huaihe Hospital of Henan University
| | - Ya-Jun Zhang
- Department of Respiration, Huaihe Hospital of Henan University
| |
Collapse
|
42
|
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are both common respiratory diseases that are associated with airflow reduction/obstruction and pulmonary inflammation. Whilst drug therapies offer adequate symptom control for many mild to moderate asthmatic patients, severe asthmatics and COPD patients symptoms are often not controlled, and in these cases, irreversible structural damage occurs with disease progression over time. Transient receptor potential (TRP) channels, in particular TRPV1, TRPA1, TRPV4 and TRPM8, have been implicated with roles in the regulation of inflammation and autonomic nervous control of the lungs. Evidence suggests that inflammation elevates levels of activators and sensitisers of TRP channels and additionally that TRP channel expression may be increased, resulting in excessive channel activation. The enhanced activity of these channels is thought to then play a key role in the propagation and maintenance of the inflammatory disease state and neuronal symptoms such as bronchoconstriction and cough. For TRPM8 the evidence is less clear, but as with TRPV1, TRPA1 and TRPV4, antagonists are being developed by multiple companies for indications including asthma and COPD, which will help in elucidating their role in respiratory disease.
Collapse
|
43
|
Song JX, Ren H, Gao YF, Lee CY, Li SF, Zhang F, Li L, Chen H. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice. Front Physiol 2017; 8:602. [PMID: 28890700 PMCID: PMC5575157 DOI: 10.3389/fphys.2017.00602] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice. Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%), or high-capsaicin (0.02%) diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured. Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1β, and IL-6 levels as compared with the normal diet. Conclusions: The beneficial effects of dietary capsaicin on glucose homeostasis are likely associated with the alterations of specific bacteria at the genus level. These alterations in bacteria induced by dietary capsaicin contribute to improved glucose homeostasis through increasing short-chain fatty acids, regulating gastrointestinal hormones and inhibiting pro-inflammatory cytokines. However, our results should be interpreted cautiously due to the lower caloric intake at the initial stage after capsaicin diet administration.
Collapse
Affiliation(s)
- Jun-Xian Song
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hui Ren
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Yuan-Feng Gao
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Chong-You Lee
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Su-Fang Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Feng Zhang
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Long Li
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's HospitalBeijing, China.,Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Peking University People's HospitalBeijing, China.,Center for Cardiovascular Translational Research, Peking University People's HospitalBeijing, China
| |
Collapse
|
44
|
Belvisi MG, Birrell MA. The emerging role of transient receptor potential channels in chronic lung disease. Eur Respir J 2017; 50:50/2/1601357. [PMID: 28775042 DOI: 10.1183/13993003.01357-2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are a major and increasing global health burden with a high unmet need. Drug discovery efforts in this area have been largely disappointing and so new therapeutic targets are needed. Transient receptor potential ion channels are emerging as possible therapeutic targets, given their widespread expression in the lung, their role in the modulation of inflammatory and structural changes and in the production of respiratory symptoms, such as bronchospasm and cough, seen in chronic lung disease.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
45
|
Liu SC, Lu HH, Fan HC, Wang HW, Chen HK, Lee FP, Yu CJ, Chu YH. The identification of the TRPM8 channel on primary culture of human nasal epithelial cells and its response to cooling. Medicine (Baltimore) 2017; 96:e7640. [PMID: 28767579 PMCID: PMC5626133 DOI: 10.1097/md.0000000000007640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been proposed that the transient receptor potential (TRP) channel Melastatin 8 (TRPM8) is a cold-sensing TRP channel. However, its presence and its role in the nasal cavity have not yet been fully studied. METHODS Immunohistology was used to study TRPM8 receptors in both the nasal mucosa tissue and the primary cultures of human nasal cells. Cells from primary cultures were immunostained with antibodies to TRPM8, mucin, cytokeratin (CK)-14, CK-18, and vimentin. Western blotting and real-time polymerase chain reaction (PCR) were used to determine the physiological role of TRPM8 in mucus production in the nasal cavity, with and without its agonist and antagonist. RESULTS The TRPM8 is clearly present in the epithelium, mucous glands, and vessels. No obvious TRPM8-immunoreactive cells were detected in the connective tissue. Immunostaining of cytospin preparations showed that epithelial cells test positive for CK-14, CK-18, TRPM8, and mucin 5AC (MUC5AC). Fibroblastic cells are stained negative for TRPM8. Secreted mucins in the cultured supernatant are detected after exposure to menthol and moderate cooling to 24°C. Both induce a statistically significant increase in the level of MUC5AC mRNA and mucin production. BCTC, a TRPM8 antagonist, has a statistically significant inhibitory effect on MUC5AC mRNA expression and MUC5AC protein production that is induced by menthol and moderate cooling to 24°C. CONCLUSIONS The study demonstrates that TRPM8 is present in the nasal epithelium. When it is activated by moderate cooling to 24°C or menthol, TRPM8 induces the secretion of mucin. This study shows that TRPM8 channels are important regulators of mucin production. Therefore, TRPM8 antagonists could be used to treat refractory rhinitis.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Hsuan-Hsuan Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital
| | - Hsing-Won Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei, Taiwan, Republic of China
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| | - Fei-Peng Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center
| |
Collapse
|
46
|
Prandini P, De Logu F, Fusi C, Provezza L, Nassini R, Montagner G, Materazzi S, Munari S, Gilioli E, Bezzerri V, Finotti A, Lampronti I, Tamanini A, Dechecchi MC, Lippi G, Ribeiro CM, Rimessi A, Pinton P, Gambari R, Geppetti P, Cabrini G. Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis. Am J Respir Cell Mol Biol 2017; 55:645-656. [PMID: 27281024 DOI: 10.1165/rcmb.2016-0089oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa colonization, prominent inflammation with massive expression of the neutrophil chemokine IL-8, and luminal infiltrates of neutrophils are hallmarks of chronic lung disease in patients with cystic fibrosis (CF). The nociceptive transient receptor potential ankyrin (TRPA) 1 calcium channels have been recently found to be involved in nonneurogenic inflammation. Here, we investigate the role of TRPA1 in CF respiratory inflammatory models in vitro. Expression of TRPA1 was evaluated in CF lung tissue sections and cells by immunohistochemistry and immunofluorescence. Epithelial cell lines (A549, IB3-1, CuFi-1, CFBE41o-) and primary cells from patients with CF were used to: (1) check TRPA1 function modulation, by Fura-2 calcium imaging; (2) down-modulate TRPA1 function and expression, by pharmacological inhibitors (HC-030031 and A-967079) and small interfering RNA silencing; and (3) assess the effect of TRPA1 down-modulation on expression and release of cytokines upon exposure to proinflammatory challenges, by quantitative RT-PCR and 27-protein Bioplex assay. TRPA1 channels are expressed in the CF pseudostratified columnar epithelium facing the bronchial lumina exposed to bacteria, where IL-8 is coexpressed. Inhibition of TRPA1 expression results in a relevant reduction of release of several cytokines, including IL-8 and the proinflammatory cytokines IL-1β and TNF-α, in CF primary bronchial epithelial cells exposed to P. aeruginosa and to the supernatant of mucopurulent material derived from the chronically infected airways of patients with CF. In conclusion, TRPA1 channels are involved in regulating the extent of airway inflammation driven by CF bronchial epithelial cells.
Collapse
Affiliation(s)
- Paola Prandini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Francesco De Logu
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Camilla Fusi
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Lisa Provezza
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Romina Nassini
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Giulia Montagner
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Serena Materazzi
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Silvia Munari
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Eliana Gilioli
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Valentino Bezzerri
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Alessia Finotti
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Maria Cristina Dechecchi
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Giuseppe Lippi
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Carla M Ribeiro
- 4 Departments of Medicine and of Cell Biology and Physiology, Marsico Lung Institute, Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, North Carolina; and
| | - Alessandro Rimessi
- 5 Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- 5 Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- 3 Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Pierangelo Geppetti
- 2 Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - Giulio Cabrini
- 1 Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| |
Collapse
|
47
|
van Manen MJG, Birring SS, Vancheri C, Cottin V, Renzoni EA, Russell AM, Wijsenbeek MS. Cough in idiopathic pulmonary fibrosis. Eur Respir Rev 2017; 25:278-86. [PMID: 27581827 DOI: 10.1183/16000617.0090-2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/30/2016] [Indexed: 01/22/2023] Open
Abstract
Many patients with idiopathic pulmonary fibrosis (IPF) complain of chronic refractory cough. Chronic cough is a distressing and disabling symptom with a major impact on quality of life. During recent years, progress has been made in gaining insight into the pathogenesis of cough in IPF, which is most probably "multifactorial" and influenced by mechanical, biochemical and neurosensory changes, with an important role for comorbidities as well. Clinical trials of cough treatment in IPF are emerging, and cough is increasingly included as a secondary end-point in trials assessing new compounds for IPF. It is important that such studies include adequate end-points to assess cough both objectively and subjectively. This article summarises the latest insights into chronic cough in IPF. It describes the different theories regarding the pathophysiology of cough, reviews the different methods to assess cough and deals with recent and future developments in the treatment of cough in IPF.
Collapse
Affiliation(s)
- Mirjam J G van Manen
- Dept of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Surinder S Birring
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Carlo Vancheri
- Dept of Clinical and Experimental Medicine, Section of Respiratory Disease, University of Catania, Catania, Italy
| | - Vincent Cottin
- Dept of Respiratory Medicine, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | | | - Anne-Marie Russell
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, UK National Heart and Lung Institute, Imperial College London, London, UK
| | - Marlies S Wijsenbeek
- Dept of Respiratory Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Spirli C, Mariotti V, Villani A, Fabris L, Fiorotto R, Strazzabosco M. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J Hepatol 2017; 66:571-580. [PMID: 27826057 PMCID: PMC5316496 DOI: 10.1016/j.jhep.2016.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Genetic defects in polycystin-1 or -2 (PC1 or PC2) cause polycystic liver disease associated with autosomal dominant polycystic kidney disease (PLD-ADPKD). Progressive cyst growth is sustained by a cAMP-dependent Ras/ERK/HIFα pathway, leading to increased vascular endothelial growth factor A (VEGF-A) signaling. In PC2-defective cholangiocytes, cAMP production in response to [Ca2+]ER depletion is increased, while store-operated Ca2+ entry (SOCE), intracellular and endoplasmic reticulum [Ca2+]ER levels are reduced. We investigated whether the adenylyl cyclases, AC5 and AC6, which can be inhibited by Ca2+, are activated by the ER chaperone STIM1. This would result in cAMP/PKA-dependent Ras/ERK/HIFα pathway activation in PC2-defective cells, in response to [Ca2+]ER depletion. METHODS PC2/AC6 double conditional knockout (KO) mice were generated (Pkd2/AC6 KO) and compared to Pkd2 KO mice. The AC5 inhibitor SQ22,536 or AC5 siRNA were used in isolated cholangiocytes while the inhibitor was used in biliary organoid and animals; liver tissues were harvested for histochemical analysis. RESULTS When comparing Pkd2/AC6 KO to Pkd2 KO mice, no decrease in liver cyst size was found, and cellular cAMP after [Ca2+]ER depletion only decreased by 12%. Conversely, in PC2-defective cells, inhibition of AC5 significantly reduced cAMP production, pERK1/2 expression and VEGF-A secretion. AC5 inhibitors significantly reduced growth of biliary organoids derived from Pkd2 KO and Pkd2/AC6 KO mice. In vivo treatment with SQ22,536 significantly reduced liver cystic area and cell proliferation in PC2-defective mice. After [Ca2+]ER depletion in PC2-defective cells, STIM1 interacts with AC5 but not with Orai1, the Ca2+ channel that mediates SOCE. CONCLUSION [Ca2+]ER depletion in PC2-defective cells activates AC5 and results in stimulation of cAMP/ERK1-2 signaling, VEGF production and cyst growth. This mechanism may represent a novel therapeutic target. LAY SUMMARY Polycystic liver diseases are characterized by progressive cyst growth until their complications mandate surgery or liver transplantation. In this manuscript, we demonstrate that inhibiting cell proliferation, which is induced by increased levels of cAMP, may represent a novel therapeutic target to slow the progression of the disease.
Collapse
Affiliation(s)
- Carlo Spirli
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA,Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Ambra Villani
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Italy
| | - Romina Fiorotto
- Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale University, New Haven, CT, USA; Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy.
| |
Collapse
|
49
|
Abstract
OBJECTIVE A 5-year follow-up study showed that a group of patients with airway symptoms from chemicals and scents had lasting symptoms, together with enduring increased capsaicin cough sensitivity. The aim was to follow up the same patients after another 5 years. METHODS All previously participants were invited for an additional follow-up. They visited the clinic twice; at one opportunity, they undertook a capsaicin inhalation provocation, and at the other, a methacholine provocation, and answered various questionnaires. RESULTS Sixteen patients attende the study after a median of 8 years. They reported unchanged symptoms from chemicals and scents; the capsaicin cough sensitivity was still increased, and the repeatability for the capsaicin inhalation was good. CONCLUSIONS Airway symptoms induced by chemicals and scents constitute a chronic disease, with unchanged trigger factors, persistent symptoms, and unchanged, long-lasting sensory hyperreactivity.All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.This study was supported by grants from the Herman Krefting Foundation Against Asthma/Allergy, the Swedish Heart and Lung Foundation, and the Swedish Cancer and Allergy Fund.
Collapse
|
50
|
Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas. PLoS One 2016; 11:e0167200. [PMID: 28030558 PMCID: PMC5193391 DOI: 10.1371/journal.pone.0167200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023] Open
Abstract
In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.
Collapse
|