1
|
Zou X, Yuan M, Zhou W, Cai A, Cheng Y, Zhan Z, Zhang Y, Pan Z, Hu X, Zheng S, Liu T, Huang P. SOX17 Prevents Endothelial-Mesenchymal Transition of Pulmonary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF-β/Smad2/3 Signaling. Am J Respir Cell Mol Biol 2025; 72:364-379. [PMID: 39392679 DOI: 10.1165/rcmb.2023-0355oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/11/2024] [Indexed: 10/12/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been reported to contribute to pulmonary vascular remodeling in patients with pulmonary hypertension (PH). Our study demonstrates that SOX17, a member of the SOX (SRY-Box) transcription factor family, plays a role in regulating pulmonary arterial homeostasis through extracellular vesicles in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) and its intracellular mechanisms remain unclear. Here we present evidence showing that downregulation of SOX17 expression is accompanied by significant pulmonary arterial EndMT and activation of the TGF-β/Smad2/3 signaling pathway in patients with idiopathic PH and rats with PH induced by Sugen 5416/hypoxia. In primary human PAECs, canonical TGF-β (transforming growth factor-β) signaling inhibits the expression of SOX17. Overexpression of SOX17 reverses TGF-β- and hypoxia-induced EndMT. These findings suggest that SOX17 is essential for human PAECs to undergo TGF-β-mediated EndMT. Mechanistically, our data demonstrate that SOX17 prevents TGF-β-induced EndMT by suppressing ROCK1 (Rho-associated kinase 1) expression through binding to the specific promoter region of ROCK1, thereby inhibiting MYPT1 (myosin phosphatase target subunit 1) and MLC (myosin light chain) phosphorylation. Furthermore, we show that Tie2-Cre rats with endothelial cell-specific overexpression of SOX17 are protected against Sugen/hypoxia-induced EndMT and subsequent pulmonary vascular remodeling. Consistent with the in vitro results, compared with Tie2-Cre rats treated with Sugen/hypoxia alone, rats overexpressing SOX17 exhibited reduced levels of ROCK1 as well as decreased phosphorylation levels of MYPT1 and MLC. Overall, our studies unveil a novel TGF-β/SOX17/ROCK1 pathway involved in regulating PAECs' EndMT process, and we propose the targeting of SOX17 as a potential therapeutic strategy for alleviating pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yili Cheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zibo Zhan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Duong-Quy S, Nguyen Hai C, Huynh-Anh T, Nguyen-Nhu V. Tackling pulmonary fibrosis risks in post-COVID-19: cutting-edge treatments. Expert Opin Pharmacother 2025; 26:75-84. [PMID: 39628270 DOI: 10.1080/14656566.2024.2438322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Pulmonary fibrosis (PF) post-COVID-19 has been identified as an important complication of Long-COVID, especially in patients with severe respiratory symptoms. High-resolution computed tomography (HRCT) is the main tool for detecting fibrotic lesions in patients with PF post-COVID-19. AREAS COVERED We conducted a systematic review with the following objectives: (1) to summarize the incidence and disease burden of post‑COVID‑19 pulmonary fibrosis, (2) to provide information on available therapies and drugs for its management, (3) to comprehensively evaluate the initial treatment efficacy of these drugs, and (4) to identify the limitations and challenges associated with current treatment approaches. EXPERT OPINION Cutting-edge treatments for PF post-COVID-19 are focused on the complex and multifactorial nature of the disease progreession during Long COVID, which involves chronic inflammation, fibroblast activation, and excessive extracellular matrix deposition leading to stiffening and fibrosis of lung tissue. While traditional antifibrotic drugs with nintedanid and pirfenidone are being used, novel therapies with anti-interleukines, mesenchymal stem cells, and Rho-kinase inhibitors promise the new treatment approaches for patients with PF post-COVID-19. Further research and clinical trials are needed to determine the most effective strategies for managing this complex condition, with the goal of improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sy Duong-Quy
- Biomedical Research Centre, Lam Dong Medical College, Dalat city, Vietnam
- Outpatient Department, Pham Ngoc Thach University, Ho Chi Minh city, Vietnam
- Immuno-Allergology and Respiratory Department, Hershey Medical Center, Hershey, PA, USA
| | - Cong Nguyen Hai
- Department of Respiratory Diseases and Tuberculosis, 175 Military Hospital, Ho Chi Minh city, Vietnam
| | - Tuan Huynh-Anh
- Department of Respiratory Diseases, Hoan My General Hospital, Can Tho province, Vietnam
| | - Vinh Nguyen-Nhu
- Department of Respiratory Functional Exploration, University Medical Centre, University of Medicine and Pharmacy, Ho Chi Minh city, Vietnam
| |
Collapse
|
3
|
Kaplish D, Vagha JD, Rathod S, Jain A. Current Pharmaceutical Strategies in the Management of Persistent Pulmonary Hypertension of the Newborn (PPHN): A Comprehensive Review of Therapeutic Agents. Cureus 2024; 16:e70307. [PMID: 39463604 PMCID: PMC11512740 DOI: 10.7759/cureus.70307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Persistent Pulmonary Hypertension of the Newborn (PPHN) is a life-threatening condition characterized by the failure of normal circulatory transition after birth, leading to sustained pulmonary hypertension and severe hypoxemia. Despite advancements in neonatal care, PPHN remains a significant cause of morbidity and mortality among newborns, particularly in full-term and near-term infants. This review provides a comprehensive overview of current pharmaceutical strategies for managing PPHN, focusing on various therapeutic agents' mechanisms, efficacy, and safety. Key interventions include inhaled nitric oxide, which has become the standard treatment for reducing pulmonary vascular resistance, alongside prostacyclin analogs, phosphodiesterase inhibitors, and endothelin receptor antagonists. Additionally, extracorporeal membrane oxygenation (ECMO) is highlighted as a critical intervention for severe, refractory cases. The review also discusses emerging therapies and the potential role of personalized medicine in improving treatment outcomes. Despite the progress made, challenges remain, including the timely diagnosis of PPHN and the need for accessible treatments in resource-limited settings. As research continues to uncover the underlying pathophysiology of PPHN, it is crucial to develop more targeted and effective pharmaceutical strategies. This review aims to inform clinicians and researchers of the current state of PPHN management and the ongoing advancements that may shape future therapeutic approaches.
Collapse
Affiliation(s)
- Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Rathod
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Tan D, Lu M, Cai Y, Qi W, Wu F, Bao H, Qv M, He Q, Xu Y, Wang X, Shen T, Luo J, He Y, Wu J, Tang L, Barkat MQ, Xu C, Wu X. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun 2023; 14:3887. [PMID: 37393345 PMCID: PMC10314948 DOI: 10.1038/s41467-023-39600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.
Collapse
Affiliation(s)
- Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Weibo Qi
- Department of Thoracic Surgery, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Fugen Wu
- Department of Paediatrics, the First People's Hospital of Wenling City, Wenling City, 317500, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangzhi Wang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiahao Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junsong Wu
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Avivi Kela S, Sethi K, Tan PY, Suresh D, Ong HT, Castaneda PG, Amin MR, Laviv T, Cram EJ, Faix J, Zaidel-Bar R. Tension-dependent RHGF-1 recruitment to stress fibers drives robust spermathecal tissue contraction. J Cell Biol 2022; 222:213784. [PMID: 36574264 PMCID: PMC9798103 DOI: 10.1083/jcb.202203105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/03/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2022] Open
Abstract
Contractile epithelial tubes are found in various organs, such as lung airways and blood capillaries. Their ability to sense luminal pressure and respond with adequate contractility is essential for their physiology, and its mis-regulation results in diseases such as asthma and hypertension. Here, we describe a mechanoresponsive regulatory pathway downstream of tissue stretching that controls contraction of the C. elegans spermatheca, a tubular structure where fertilization occurs. Using live-imaging, we show that ovulation-induced stretching of spermathecal cells leads to recruitment of the RhoGEF RHGF-1 to stress fibers, which activates RHO-1 and myosin II in a positive feedback loop. Through deletion analysis, we identified the PDZ domain of RHGF-1 as responsible for F-actin binding, and genetic epistasis analysis with the RhoGAP spv-1 demonstrated that tension-dependent recruitment of RHGF-1 to F-actin is required for robust spermathecal contractility. Our study illustrates how mechanosensitive regulators of Rho GTPases provide epithelial tubes the ability to tune their contractility in response to internal pressure.
Collapse
Affiliation(s)
- Shiri Avivi Kela
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kriti Sethi
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Pei Yi Tan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Danesha Suresh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Mustafi R. Amin
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Tal Laviv
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Correspondence to Ronen Zaidel-Bar:
| |
Collapse
|
6
|
Bioinformatic Exploration of Hub Genes and Potential Therapeutic Drugs for Endothelial Dysfunction in Hypoxic Pulmonary Hypertension. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3677532. [PMID: 36483920 PMCID: PMC9723419 DOI: 10.1155/2022/3677532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a fatal chronic pulmonary circulatory disease, characterized by hypoxic pulmonary vascular constriction and remodeling. Studies performed to date have confirmed that endothelial dysfunction plays crucial roles in HPH, while the underlying mechanisms have not been fully revealed. The microarray dataset GSE11341 was downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between hypoxic and normoxic microvascular endothelial cell, followed by Gene Ontology (GO) annotation/Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis, and protein-protein interaction (PPI) network construction. Next, GSE160255 and RT-qPCR were used to validate hub genes. Meanwhile, GO/KEGG and GSEA were performed for each hub gene to uncover the potential mechanism. A nomogram based on hub genes was established. Furthermore, mRNA-miRNA network was predicted by miRNet, and the Connectivity Map (CMAP) database was in use to identify similarly acting therapeutic candidates. A total of 148 DEGs were screened in GSE11341, and three hub genes (VEGFA, CDC25A, and LOX) were determined and validated via GSE160255 and RT-qPCR. Abnormalities in the pathway of vascular smooth muscle contraction, lysosome, and glycolysis might play important roles in HPH pathogenesis. The hub gene-miRNA network showed that hsa-mir-24-3p, hsa-mir-124-3p, hsa-mir-195-5p, hsa-mir-146a-5p, hsa-mir-155-5p, and hsa-mir-23b-3p were associated with HPH. And on the basis of the identified hub genes, a practical nomogram is developed. To repurpose known and therapeutic drugs, three candidate compounds (procaterol, avanafil, and lestaurtinib) with a high level of confidence were obtained from the CMAP database. Taken together, the identification of these three hub genes, enrichment pathways, and potential therapeutic drugs might have important clinical implications for HPH diagnosis and treatment.
Collapse
|
7
|
Wang W, Li C, Zhuang C, Zhang H, Wang Q, Fan X, Qi M, Sun R, Yu J. Research on the Mechanism and Prevention of Hypertension Caused by Apatinib Through the RhoA/ROCK Signaling Pathway in a Mouse Model of Gastric Cancer. Front Cardiovasc Med 2022; 9:873829. [PMID: 35811723 PMCID: PMC9262125 DOI: 10.3389/fcvm.2022.873829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension is one of the main adverse effects of antiangiogenic tumor drugs and thus limits their application. The mechanism of hypertension caused by tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factors is mainly related to inhibition of the nitric oxide (NO) pathway and activation of the endothelin pathway, as well as vascular rarefaction and increased salt sensitivity; consequently, prevention and treatment differ for this type of hypertension compared with primary hypertension. Apatinib is a highly selective TKI approved in China for the treatment of advanced or metastatic gastric cancer. The RhoA/ROCK pathway is involved in the pathogenesis of hypertension and mediates smooth muscle contraction, eNOS inhibition, endothelial dysfunction and vascular remodeling. In this study, in vivo experiments were performed to explore whether the RhoA/ROCK signaling pathway is part of a possible mechanism of apatinib in the treatment of gastric cancer-induced hypertension and the impairment of vascular remodeling and left ventricular function. Y27632, a selective small inhibitor of both ROCK1 and ROCK2, was combined with apatinib, and its efficacy was evaluated, wherein it can reduce hypertension induced by apatinib treatment in gastric cancer mice and weaken the activation of the RhoA/ROCK pathway by apatinib and a high-salt diet (HSD). Furthermore, Y-27632 improved aortic remodeling, fibrosis, endothelial dysfunction, superior mesenteric artery endothelial injury, left ventricular dysfunction and cardiac fibrosis in mice by weakening the activation of the RhoA/ROCK pathway. The expression of RhoA/ROCK pathway-related proteins and relative mRNA levels in mice after apatinib intervention were analyzed by various methods, and blood pressure and cardiac function indexes were compared. Endothelial and cardiac function and collagen levels in the aorta were also measured to assess vascular and cardiac fibrosis and to provide a basis for the prevention and treatment of this type of hypertension.
Collapse
|
8
|
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022; 621:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is the progressive increase in mean pulmonary arterial pressure (mPAP) (≥ 20 mmHg at rest). Current treatment strategies include the drugs targeting at nitric oxide pathway, endothelin receptors, prostaglandin receptors, thromboxane receptors and phosphodiesterase inhibitors, which provides the symptomatic relief. Despite of these treatments, the mortality amongst the PAH patients remains high due to non-reversal of the condition. This review primarily covers the introduction of PAH and the current treatments of the disease. This is followed by the newer disease targets expressed in the pathobiology of the disease like Rho Kinase Pathway, Vasoactive Intestinal Peptide Pathway, Receptor Tyrosine Kinases, Serotonin signalling pathway, Voltage-gated potassium (Kv) channel pathway. Newer formulation strategies for targeting at these specific receptors were covered and includes nano formulations like liposomes, Micelles, Polymeric Nanoparticles, Solid Lipid Nanoparticles (SLN), Bioresorbable stents, NONOates, Cell-Based Therapies, miRNA therapy for PAH. Novel targets were identified for their role in the pathogenesis of the PAH and needs to be targeted with new molecules or existing molecules effectively. Nanosystems have shown their potential as alternative carriers on the virtue of their better performance than traditional drug delivery systems.
Collapse
Affiliation(s)
- Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai 400 019, India.
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| | - Tanmay Patravale
- Department of General Surgery, Jawaharlal Nehru Medical College, KLE Academy of Higher Education and Research, Belagavi 590 010, India
| |
Collapse
|
9
|
Lv Y, Ma P, Wang J, Xu Q, Fan J, Yan L, Ma P, Zhou R. Betaine alleviates right ventricular failure via regulation of Rho A/ROCK signaling pathway in rats with pulmonary arterial hypertension. Eur J Pharmacol 2021; 910:174311. [PMID: 34245749 DOI: 10.1016/j.ejphar.2021.174311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Pulmonary vascular remodeling was shown to lead to pulmonary arterial hypertension (PAH), further trigger excessive apoptosis of cardiomyocytes, and ultimately cause right ventricular failure (RVF), which involves the activation of Rho A/ROCK signaling pathway. Betaine has been found efficacious for attenuating PAH through its anti-inflammatory effects in our previous research while its effects on RVF due to PAH remains inconclusive. Thus, we attempted to elucidate the protective effects of betaine on PAH, RVF due to PAH as well as the potential mechanisms. To this end, male Sprague Dawley rats received a single subcutaneous injection of monocrotaline (50 mg/kg) to imitate PAH and RVF, and subsequently oral administration of betaine (100, 200, and 400 mg/kg/day). Betaine treatment improved the hemodynamics and histomorphological parameters and echocardiographic changes. Moreover, betaine also alleviated the pulmonary vascular remodeling and cardiomyocyte apoptosis. The mechanisms study revealed that administration of betaine significantly increased the expression of Rho A, ROCK1, and ROCK2. Furthermore, betaine alleviated the changes of its downstream molecules P53, Bcl-2, Bax, phosphorylated MYPT1 (p-MYPT1), total MYPT1 (t-MYPT1), p27kip1, and Cleaved Caspase-3. According to what we observed, this study indicated that betaine treatment could protect RVF due to PAH, which may be achieved through an altered Rho A/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yingjie Lv
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Pengsheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jialing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qingbin Xu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun Fan
- Shizuishan Center for Disease Control and Prevention, Shizuishan, China
| | - Lin Yan
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
10
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
11
|
Beik A, Najafipour H, Joukar S, Rajabi S, Iranpour M, Kordestani Z. Perillyl alcohol suppresses monocrotaline-induced pulmonary arterial hypertension in rats via anti-remodeling, anti-oxidant, and anti-inflammatory effects. Clin Exp Hypertens 2021; 43:270-280. [PMID: 33322932 DOI: 10.1080/10641963.2020.1860080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Background: Pulmonary arterial hypertension (PAH) is a disastrous disease that current treatments cannot prevent its progression. The present study investigated the effects of perillyl alcohol (PA), a natural monoterpene, on the experimental PAH in male Wistar rats. Methods: Rats divided into eight groups of control, Monocrotaline (MCT), MCT+vehicle, and MCT+PA with doses of 20, 30, 40, 50, and 60 mg/kg. PAH was induced by a single injection of monocrotaline (60 mg/kg) on day 0. The animals in the groups of MCT+vehicle and MCT+PA received the vehicle or PA from day 22 to 42 once a day. On day 43, under general anesthesia, right ventricular systolic pressure (RVSP), as an index of pulmonary artery systolic pressure, and the ratio of the right ventricle to the left ventricle plus septum weight, as the right ventricular hypertrophy index (RVHI), were measured. Also, some histological and biochemical indices were assessed in the lung tissue. Results: MCT significantly (p < .001) enhanced the RVSP and RVHI compared to the control group (89.4 ± 8.2 vs 23 ± 3.3 mmHg & 0.63 ± 0.08 vs 0.26 ± 0.04 respectively). It also increased oxidative stress and inflammatory cytokines and reduced Bax/Bcl2 ratio. Treatment with PA significantly recovered RVSP and hypertrophy index and suppressed vascular cell proliferation, oxidant production, and inflammatory processes. Conclusion: PA exerted noticeable protective and curative effects against MCT-induced PAH and pulmonary vascular remodeling through inhibiting cellular proliferation, oxidative stress, and inflammation. Therefore, PA can be considered as a new therapeutic goal for the treatment of PAH.
Collapse
Affiliation(s)
- Ahmad Beik
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, and Physiology Research Center, Kerman University of Medical Sciences , Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science , Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science , Kerman, Iran
| | - Soodeh Rajabi
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, and Physiology Research Center, Kerman University of Medical Sciences , Kerman, Iran
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences , Kerman, Iran
| | - Zeinab Kordestani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|
12
|
Yamamura A, Nayeem MJ, Sato M. The Rho kinase 2 (ROCK2)-specific inhibitor KD025 ameliorates the development of pulmonary arterial hypertension. Biochem Biophys Res Commun 2021; 534:795-801. [PMID: 33160621 DOI: 10.1016/j.bbrc.2020.10.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that is characterized by the irreversible remodeling of the pulmonary artery. Although several PAH drugs have been developed, additional drugs are needed. Rho kinases (ROCKs) are involved in the pathogenesis of PAH, and thus, their inhibitors may prevent the development of PAH. However, the therapeutic benefits of ROCK isoform-specific inhibitors for PAH remain largely unknown. The in vitro and in vivo effects of the ROCK2-specific inhibitor, KD025, were examined herein using pulmonary arterial smooth muscle cells (PASMCs) from idiopathic pulmonary arterial hypertension (IPAH) patients and monocrotaline (MCT)-induced pulmonary hypertensive (PH) rats. The expression of ROCK1 was similar between normal- and IPAH-PASMCs, whereas that of ROCK2 was markedly higher in IPAH-PASMCs than in normal-PASMCs. KD025 inhibited the accelerated proliferation of IPAH-PASMCs in a concentration-dependent manner (IC50 = 289 nM). Accelerated proliferation was also reduced by the siRNA knockdown of ROCK2. In MCT-PH rats, the expression of ROCK2 was up-regulated in PASMCs. Elevated right ventricular systolic pressure in MCT-PH rats was attenuated by KD025 (1 mg/kg/day). These results strongly suggest that enhanced ROCK2 signaling is involved in the pathogenic mechanism underlying the development of PAH, including accelerated PASMC proliferation and vascular remodeling in patients with PAH. Therefore, ROCK2 may be a novel therapeutic target for the treatment of PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Md Junayed Nayeem
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
13
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
14
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
15
|
Lei S, Peng F, Li ML, Duan WB, Peng CQ, Wu SJ. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H377-H391. [PMID: 32559140 DOI: 10.1152/ajpheart.00717.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal progressive disease characterized by an increased blood pressure in the pulmonary arteries. RhoA/Rho-kinase (RhoA/ROCK) signaling activation is often associated with PAH. The purpose of this study is to investigate the role and mechanisms of long noncoding RNA (lncRNA) smooth muscle-induced lncRNA (SMILR) to activate the RhoA/ROCK pathway in PAH. SMILR, microRNA-141 (miR-141), and RhoA were identified by qRT-PCR in PAH patients' serum. 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), wound-healing assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were performed to determine cell viability, migration, proliferation, and cell cycle in human pulmonary arterial smooth muscle cells (hPASMCs) and primary PASMCs from PAH patients. We also performed bioinformatical prediction, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) to assess the interaction among SMILR, miR-141, and RhoA. The RhoA/ROCK pathway and proliferation-related proteins were measured by Western blotting. Finally, we introduced the small hairpin (sh)SMILR to monocrotaline-induced PAH rat model and used the hemodynamic measurement, qRT-PCR, and immunohistochemistry to examine the therapeutic effects of shSMILR. SMILR and RhoA expression were upregulated, while miR-141 expression was downregulated in PAH patients. SMILR directly interacted with miR-141 and negatively regulated its expression. Knockdown of SMILR suppressed PASMC proliferation and migration induced by hypoxia. Furthermore, overexpression of miR-141 could inhibit the RhoA/ROCK pathway by binding to RhoA, thereby repressing cell proliferation-related signals. Knockdown of SMILR significantly inhibited the Rho/ROCK activation and vascular remodeling in monocrotaline-induced rats. Knockdown of SMILR effectively elevated miR-141 expression and in turn inhibited the RhoA/ROCK pathway to regulate vascular remodeling and reduce blood pressure in PAH.NEW & NOTEWORTHY Smooth muscle enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.
Collapse
Affiliation(s)
- Si Lei
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Mei-Lei Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Wen-Bing Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Cai-Qin Peng
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| | - Shang-Jie Wu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University; Research Unit of Respiratory Disease, Central South University; Hunan Centre for Evidence-based Medicine, Changsha, Hunan, China
| |
Collapse
|
16
|
Abedi F, Hayes AW, Reiter R, Karimi G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol Res 2020; 155:104736. [PMID: 32135249 DOI: 10.1016/j.phrs.2020.104736] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/18/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a pulmonary illness with high rates of mortality and morbidity. Rho GTPase and its downstream effector, Rho kinase (ROCK), have been demonstrated to be involved in cell adhesion, motility, and contraction which can play a role in ALI. The electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies regarding the role of the Rho/ROCK signaling pathway in the pathophysiology of ALI and the effects of specific Rho kinase inhibitors in prevention and treatment of ALI. Upregulation of the RhoA/ROCK signaling pathway causes an increase of inflammation, immune cell migration, apoptosis, coagulation, contraction, and cell adhesion in pulmonary endothelial cells. These effects are involved in endothelium barrier dysfunction and edema, hallmarks of ALI. These effects were significantly reversed by Rho kinase inhibitors. Rho kinase inhibition offers a promising approach in ALI [ARDS] treatment.
Collapse
Affiliation(s)
- Farshad Abedi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Li C, Peng G, Long J, Xiao P, Zeng X, Yang H. Protective effects of resveratrol and SR1001 on hypoxia-induced pulmonary hypertension in rats. Clin Exp Hypertens 2020; 42:519-526. [PMID: 31973589 DOI: 10.1080/10641963.2020.1714643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a fatal disease with limited therapeutic strategies. Combination therapy is regarded as the standard of care in PH and becoming widely used in clinical practice. However, many PH patients treated with combinations of available clinical drugs still have a poor prognosis. Therefore, identifying innovative therapeutic strategies is essential for PH. This study is designed to examine the effects of combined prevention with resveratrol and SR1001 on HPH in rats. The effects of combined prevention with resveratrol and SR1001 and each mono-prevention on the development of HPH, Th17 cells differentiation, expression of guanine nucleotide exchange factor-H1 (GEF-H1), Ras homolog gene family member A (RhoA) and Phosphorylated myosin phosphatase target subunit (MYPT1) were examined. HPH and RV hypertrophy occurred in rats exposed to hypoxia. Compared with normoxia group, the hypoxia group showed significantly increased ratio of Th17 cells. After treatment with resveratrol, HPH rats showed an obvious reduction of Th17 cells. SR1001 significantly reduced the increased p-MYPY1, RhoA, and GEF-H1 expression in the hypoxic rats. The mono-prevention with resveratrol or SR1001 significantly inhibited the Th17 cells differentiation, p-STAT3, p-MYPY1, RhoA, and GEF-H1 protein expression, which was further inhibited by their combination prevention. The combination of resveratrol and SR1001 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to exert further beneficial effects on HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Ganlin Peng
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Jing Long
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Pan Xiao
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Xiaoyuan Zeng
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Hongzhong Yang
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Norton CE, Weise-Cross L, Ahmadian R, Yan S, Jernigan NL, Paffett ML, Naik JS, Walker BR, Resta TC. Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. Am J Respir Cell Mol Biol 2020; 62:709-718. [PMID: 31945301 DOI: 10.1165/rcmb.2018-0318oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 μm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
19
|
Leong ZP, Hikasa Y. Effects of masitinib compared with tadalafil for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. Vascul Pharmacol 2019; 122-123:106599. [PMID: 31629919 DOI: 10.1016/j.vph.2019.106599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/20/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Targeting vascular remodeling in pulmonary arterial hypertension (PAH) remains a challenge given the lack of potent anti-remodeling abilities of the therapeutic drugs. Although sildenafil has been shown to ameliorate cardiopulmonary remodeling, that of tadalafil is questionable. Masitinib, a tyrosine kinase inhibitor appears safer and more potent than imatinib for treatment of malignancies, but its efficacy on PAH is unknown. Therefore, we investigated the anti-remodeling properties of masitinib (5, 15, 50 mg/kg) and tadalafil (5, 10 mg/kg) using a monocrotaline-induced rat model of PAH. The 14-day treatment with masitinib (15, 50 mg/kg) resulted in significantly decreased right ventricular (RV) systolic pressure (RVSP) and hypertrophy (RVH), and pulmonary vascular remodeling, whereas tadalafil showed weaker anti-remodeling properties. Besides, masitinib significantly blocked the mitogen-associated protein kinase (MAPK) pathway, and reduced phosphodiesterase (PDE)-5 mRNA expression in the lungs. By contrast, tadalafil did not significantly inhibit the MAPK pathway. Further, the 28-day treatment extension revealed that masitinib-treated rats (15 mg/kg) had significantly lower RVSP, and higher heart rate and serum cyclic guanosine monophosphate (cGMP) level, whereas those treated with tadalafil (10 mg/kg) showed insignificantly lower RVSP and higher cGMP level. Moreover, the RVH indices, heart rates, body weight gains, and survival rates of rats in both groups were comparable. Collectively, these results suggest that the treatment with a low-dose masitinib was non-inferior than tadalafil. A lower dose of masitinib may represent a novel approach to target both the cardiopulmonary remodeling and the dysregulated vasoconstriction in PAH.
Collapse
Affiliation(s)
- Zi Ping Leong
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Yoshiaki Hikasa
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan; Joint Department of Veterinary Medicine, Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan.
| |
Collapse
|
20
|
Ruan H, Zhang Y, Liu R, Yang X. The acute effects of 30 mg vs 60 mg of intravenous Fasudil on patients with congenital heart defects and severe pulmonary arterial hypertension. CONGENIT HEART DIS 2019; 14:645-650. [PMID: 31166081 DOI: 10.1111/chd.12764] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/08/2018] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Hongyun Ruan
- Department of Cardiology The First Affiliated Hospital, Soochow University Suzhou China
| | - Yigang Zhang
- Department of Cardiology Xuzhou Central Hospital Xuzhou China
| | - Ru Liu
- Department of Ultrasonography Xuzhou Central Hospital Xuzhou China
| | - Xiangjun Yang
- Department of Cardiology The First Affiliated Hospital, Soochow University Suzhou China
| |
Collapse
|
21
|
Abstracts of International Society for Aerosols in Medicine e.V. 22nd ISAM Congress Montreux, Switzerland May 25–29, 2019. J Aerosol Med Pulm Drug Deliv 2019. [DOI: 10.1089/jamp.2019.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Sun XZ, Li SY, Tian XY, Hong Z, Li JX. Effect of Rho kinase inhibitor fasudil on the expression ET-1 and NO in rats with hypoxic pulmonary hypertension. Clin Hemorheol Microcirc 2019; 71:3-8. [PMID: 29660902 DOI: 10.3233/ch-160232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xing-Zhen Sun
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Shu-Yan Li
- Department of Ophthalmology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Xiang-Yang Tian
- Department of Neurology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Ze Hong
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| | - Jia-Xin Li
- Department of Pediatrics, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, China
| |
Collapse
|
23
|
Xu X, Shi L, Ma X, Su H, Ma G, Wu X, Ying K, Zhang R. RhoA-Rho associated kinase signaling leads to renin-angiotensin system imbalance and angiotensin converting enzyme 2 has a protective role in acute pulmonary embolism. Thromb Res 2019; 176:85-94. [PMID: 30784777 DOI: 10.1016/j.thromres.2019.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute pulmonary embolism (APE) is a cardiovascular disease with high morbidity and mortality. Although the anatomical obstruction of the pulmonary vascular bed initiates APE, recent studies have suggested that vasoconstrictors in the renin-angiotensin system (RAS) play a role in the severity of APE. MATERIALS AND METHODS We performed a 5-year retrospective clinical study to analyze the key RAS components in APE patients, including angiotensin converting enzyme (ACE), ACE2, angiotensin II (Ang II) and angiotensin 1-7(Ang(1-7)). The role of RhoA-Rho associated kinase (ROCK) signaling in regulating RAS vasoconstrictors was detected in rat pulmonary artery endothelial cells and in an APE rat model. RESULTS In clinical study, we found that the levels of RAS vasoconstrictors were correlated with the clinical classification of APE patients, ACE and Ang II were unregulated, whereas ACE2 and Ang(1-7) were downregulated in the high-risk group compared to the healthy volunteers. In animal study, we found that activated RhoA-ROCK signaling was responsible for the imbalance in RAS vasoconstrictors both in vitro and in vivo, and further evidence indicated that ROCK inhibitors (Y27632 or HA1077) and an ACE2 activator (Resorcinol naphthalein) restored the dysregulated RAS vasoconstrictors significantly and had a protective role in an APE rat model. CONCLUSIONS Our study revealed that RhoA-ROCK signaling leads to RAS imbalance in APE patients, and ACE2 activation might be a novel therapeutic target in APE treatment.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liuhong Shi
- Department of Ultrasound, the Second Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiuqing Ma
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hua Su
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guofeng Ma
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiaohong Wu
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ruifeng Zhang
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Hobson AD, Judge RA, Aguirre AL, Brown BS, Cui Y, Ding P, Dominguez E, DiGiammarino E, Egan DA, Freiberg GM, Gopalakrishnan SM, Harris CM, Honore MP, Kage KL, Kapecki NJ, Ling C, Ma J, Mack H, Mamo M, Maurus S, McRae B, Moore NS, Mueller BK, Mueller R, Namovic MT, Patel K, Pratt SD, Putman CB, Queeney KL, Sarris KK, Schaffter LM, Stoll V, Vasudevan A, Wang L, Wang L, Wirthl W, Yach K. Identification of Selective Dual ROCK1 and ROCK2 Inhibitors Using Structure-Based Drug Design. J Med Chem 2018; 61:11074-11100. [DOI: 10.1021/acs.jmedchem.8b01098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adrian D. Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Russell A. Judge
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ana L. Aguirre
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Brian S. Brown
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Yifang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Ping Ding
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Eric Dominguez
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Enrico DiGiammarino
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David A. Egan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Gail M. Freiberg
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | | | - Christopher M. Harris
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Marie P. Honore
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Karen L. Kage
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Nicolas J. Kapecki
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Christopher Ling
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Junli Ma
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Helmut Mack
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Mulugeta Mamo
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Stefan Maurus
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Bradford McRae
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nigel S. Moore
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Bernhard K. Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Reinhold Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse 50, 67061, Ludwigshafen, Germany
| | - Marian T. Namovic
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kaushal Patel
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Steve D. Pratt
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - C. Brent Putman
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Kara L. Queeney
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kathy K. Sarris
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lisa M. Schaffter
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Vincent Stoll
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Anil Vasudevan
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Lei Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - William Wirthl
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kimberly Yach
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
25
|
Li JR, Zhao YS, Chang Y, Yang SC, Guo YJ, Ji ES. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway. PLoS One 2018; 13:e0195604. [PMID: 29641598 PMCID: PMC5895022 DOI: 10.1371/journal.pone.0195604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial dysfunction is one of the main pathological changes in Obstructive sleep apnoea (OSA). The Rho kinase (ROCK) pathway is associated with endothelial dysfunction. However, the interaction between ROCK and nuclear factor of activated T cells isoform c3 (NFATc3) in the development of this pathological response under chronic intermittent hypoxia (CIH) is unclear. To simulate the OSA model, we established a moderate CIH rat model by administering the fraction of inspired O2 (FiO2) from 21% to 9%, 20 times/h, 8 h/day for 3 weeks. Fasudil (ROCK inhibitor, 8 mg/kg/d, i.p.) was administrated in the rats exposed to CIH for 3 weeks. Our results demonstrated that CIH caused significantly endothelial dysfunction, accompanying with increased ET-1 level, decreased eNOS expression and NO production, which reduced ACh-induced vascular relaxation responses. Moreover, RhoA/ROCK-2/NFATc3 expressions were up-regulated. Fasudil significantly improved CIH induced endothelial dysfunction. Data suggested that the ROCK activation is necessary for endothelial dysfunction during CIH.
Collapse
Affiliation(s)
- Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Yue Chang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - Ya-Jing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, P.R. China
- * E-mail:
| |
Collapse
|
26
|
Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya J, Bhattacharya S, Bonsignore MR, Dewachter L, Dinh-Xuan AT, Dorfmüller P, Gladwin MT, Humbert M, Kotsimbos T, Vassilakopoulos T, Sanchez O, Savale L, Testa U, Wilkins MR. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. Eur Respir J 2018; 51:13993003.00745-2017. [DOI: 10.1183/13993003.00745-2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/03/2018] [Indexed: 12/15/2022]
Abstract
The European Respiratory Society (ERS) Research Seminar entitled “Pulmonary vascular endothelium: orchestra conductor in respiratory diseases - highlights from basic research to therapy” brought together international experts in dysfunctional pulmonary endothelium, from basic science to translational medicine, to discuss several important aspects in acute and chronic lung diseases. This review will briefly sum up the different topics of discussion from this meeting which was held in Paris, France on October 27–28, 2016. It is important to consider that this paper does not address all aspects of endothelial dysfunction but focuses on specific themes such as: 1) the complex role of the pulmonary endothelium in orchestrating the host response in both health and disease (acute lung injury, chronic obstructive pulmonary disease, high-altitude pulmonary oedema and pulmonary hypertension); and 2) the potential value of dysfunctional pulmonary endothelium as a target for innovative therapies.
Collapse
|
27
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
28
|
Nagaraj C, Tabeling C, Nagy BM, Jain PP, Marsh LM, Papp R, Pienn M, Witzenrath M, Ghanim B, Klepetko W, Weir EK, Heschl S, Kwapiszewska G, Olschewski A, Olschewski H. Hypoxic vascular response and ventilation/perfusion matching in end-stage COPD may depend on p22phox. Eur Respir J 2017; 50:50/1/1601651. [PMID: 28729471 DOI: 10.1183/13993003.01651-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease in which the amount of emphysema and airway disease may be very different between individuals, even in end-stage disease. Emphysema formation may be linked to the involvement of the small pulmonary vessels. The NAPDH oxidase (Nox) family is emerging as a key disease-related factor in vascular diseases, but currently its role in hypoxia-induced pulmonary remodelling in COPD remains unclear.Here we investigate the role of p22phox, a regulatory subunit of Nox, in COPD lungs, hypoxic pulmonary vasoconstriction (HPV), hypoxia-induced pulmonary vascular remodelling and pulmonary hypertension.In COPD, compared to control lungs, p22phox expression was significantly reduced. The expression was correlated positively with mean pulmonary arterial pressure and oxygenation index and negatively with the diffusing capacity of the lung for carbon monoxide (p<0.02). This suggests a role of p22phox in ventilation/perfusion ratio matching, vascular remodelling and loss of perfused lung area. In p22phox-/- mice, HPV was significantly impaired. In the chronic hypoxic setting, lack of p22phox was associated with improved right ventricular function and decreased pulmonary vascular remodelling.p22phox-dependent Nox plays an important role in the COPD phenotype, by its action on phase II HPV and chronic vascular remodelling.
Collapse
Affiliation(s)
- Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Christoph Tabeling
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Pritesh P Jain
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Michael Pienn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bahil Ghanim
- Dept of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | - Walter Klepetko
- Dept of Thoracic Surgery, Division of Surgery, Medical University Vienna, Vienna, Austria
| | - E Kenneth Weir
- Dept of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Stefan Heschl
- Dept of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria .,Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Vaidya B, Pangallo M, Ruffenach G, Cunningham CM, Perron JC, Kolluru S, Eghbali M, Gupta V. Advances in treatment of pulmonary arterial hypertension: patent review. Expert Opin Ther Pat 2017; 27:907-918. [DOI: 10.1080/13543776.2017.1313232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Matthew Pangallo
- School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Gregoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christine Marie Cunningham
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeanette C. Perron
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | | | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| |
Collapse
|
30
|
Wong MJ, Kantores C, Ivanovska J, Jain A, Jankov RP. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling. Am J Physiol Lung Cell Mol Physiol 2016; 311:L985-L999. [DOI: 10.1152/ajplung.00345.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic neonatal pulmonary hypertension (PHT) frequently results in early death. Systemically administered Rho-kinase (ROCK) inhibitors prevent and reverse chronic PHT in neonatal rats, but at the cost of severe adverse effects, including systemic hypotension and growth restriction. Simvastatin has pleiotropic inhibitory effects on isoprenoid intermediates that may limit activity of RhoA, which signals upstream of ROCK. We therefore hypothesized that statin treatment would safely limit pulmonary vascular RhoA activity and prevent and reverse experimental chronic neonatal PHT via downstream inhibitory effects on pathological ROCK activity. Sprague-Dawley rats in normoxia (room air) or moderate normobaric hypoxia (13% O2) received simvastatin (2 mg·kg−1·day−1 ip) or vehicle from postnatal days 1–14 (prevention protocol) or from days 14–21 (rescue protocol). Chronic hypoxia increased RhoA and ROCK activity in lung tissue. Simvastatin reduced lung content of the isoprenoid intermediate farnesyl pyrophosphate and decreased RhoA/ROCK signaling in the hypoxia-exposed lung. Preventive or rescue treatment of chronic hypoxia-exposed animals with simvastatin decreased pulmonary vascular resistance, right ventricular hypertrophy, and pulmonary arterial remodeling. Preventive simvastatin treatment improved weight gain, did not lower systemic blood pressure, and did not cause apparent toxic effects on skeletal muscle, liver or brain. Rescue therapy with simvastatin improved exercise capacity. We conclude that simvastatin limits RhoA/ROCK activity in the chronic hypoxia-exposed lung, thus preventing or ameliorating hemodynamic and structural markers of chronic PHT and improving long-term outcome, without causing adverse effects.
Collapse
Affiliation(s)
- Mathew J. Wong
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Bei Y, Hua-Huy T, Nicco C, Duong-Quy S, Le-Dong NN, Tiev KP, Chéreau C, Batteux F, Dinh-Xuan AT. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp Lung Res 2016; 42:44-55. [PMID: 26873329 DOI: 10.3109/01902148.2016.1141263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective-tissue disease characterized by vascular injury, immune-system disorders, and excessive fibrosis of the skin and multiple internal organs. Recent reports found that RhoA/Rho-kinase (ROCK) pathway is implicated in various fibrogenic diseases. Intradermal injection of hypochlorous acid (HOCl)-generating solution induced inflammation, autoimmune activation, and fibrosis, mimicking the cutaneous diffuse form of SSc in humans. Our study aimed firstly to describe pulmonary inflammation and fibrosis induced by HOCl in mice, and secondly to determine whether fasudil, a selective inhibitor of ROCK, could prevent lung and skin fibroses in HOCl-injected mice. METHODS Female C57BL/6 mice received daily intradermal injection of hypochlorous acid (HOCl) for 6 weeks to induce SSc, with and without daily treatment with fasudil (30 mg·kg(-1)·day(-1)) by oral gavage. RESULTS HOCl intoxication induced significant lung inflammation (macrophages and neutrophils infiltration), and fibrosis. These modifications were prevented by fasudil treatment. Simultaneously, HOCl enhanced ROCK activity in lung and skin tissues. Inhibition of ROCK reduced skin fibrosis, expression of α-smooth-muscle actin and 3-nitrotyrosine, as well as the activity of ROCK in the fibrotic skin of HOCl-treated mice, through inhibition of phosphorylation of Smad2/3 and ERK1/2. Fasudil significantly decreased the serum levels of anti-DNA-topoisomerase-1 antibodies in mice with HOCl-induced SSc. CONCLUSIONS Our findings confirm HOCl-induced pulmonary inflammation and fibrosis in mice, and provide further evidence for a key role of RhoA/ROCK pathway in several pathological processes of experimental SSc. Fasudil could be a promising therapeutic approach for the treatment of SSc.
Collapse
Affiliation(s)
- Yihua Bei
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Thong Hua-Huy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Carole Nicco
- c Laboratoire d'Immunologie Clinique, Universite Paris Descartes, Sorbonne Paris Cite, Equipe Batteux, Institut Cochin, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP) , Paris , France
| | - Sy Duong-Quy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Nhat-Nam Le-Dong
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,d Department of Pneumology, St. Elisabeth Hospital , Namur , Belgium
| | - Kiet-Phong Tiev
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,e Department of Internal Medicine, Hospital of Vitry sur Seine , Site Pasteur , Vitry sur Seine , France
| | - Christiane Chéreau
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Frédéric Batteux
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Anh Tuan Dinh-Xuan
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| |
Collapse
|
32
|
Korol A, Taiyab A, West-Mays JA. RhoA/ROCK signaling regulates TGFβ-induced epithelial-mesenchymal transition of lens epithelial cells through MRTF-A. Mol Med 2016; 22:713-723. [PMID: 27704140 DOI: 10.2119/molmed.2016.00041] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) leads to the formation of ocular fibrotic pathologies, such as anterior subcapsular cataract and posterior capsule opacification. Remodeling of the actin cytoskeleton, mediated by the Rho family of GTPases, plays a key role in EMT, however, how actin dynamics affect downstream markers of EMT has not been fully determined. Our previous work suggests that myocardin related transcription factor A (MRTF-A), an actin-binding protein, might be an important mediator of TGFβ-induced EMT in lens epithelial cells. The aim of the current study was to determine the requirement of RhoA/ROCK signaling in mediating TGFβ-induced nuclear accumulation of MRTF-A, and ultimate expression of α-smooth muscle actin (αSMA), a marker of a contractile, myofibroblast phenotype. Using rat lens epithelial explants, we demonstrate that ROCK inhibition using Y-27632 prevents TGFβ-induced nuclear accumulation of MRTF-A, E-cadherin/β-catenin complex disassembly, and αSMA expression. Using a novel inhibitor specifically targeting MRTF-A signaling, CCG-203971, we further demonstrate the requirement of MRTF-A nuclear localization and activity in the induction of αSMA expression. Overall, our findings suggest that TGFβ-induced cytoskeletal reorganization through RhoA/ROCK/MRTF-A signaling is critical to EMT of lens epithelial cells.
Collapse
Affiliation(s)
- Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
33
|
Zhang Y, Zeng W, Cheng S, Chen Z, Xue J, Wang Q, Ou M, Cheng K. Efficacy and Safety of Statins for Pulmonary Hypertension: A Meta-Analysis of Randomised Controlled Trials. Heart Lung Circ 2016; 26:425-432. [PMID: 27769753 DOI: 10.1016/j.hlc.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a serious disease, and treatment is a continuing challenge. Some in vitro and in vivo studies identified that statins were effective for PH. However, results of some randomised controlled trials (RCTs) have been controversial. The objective of our study was to clarify whether statins are effective and safe for pulmonary hypertension. METHODS We systematically searched for eligible RCTs from PubMed, EMBASE, Web of Science, and the Cochrane Library during January 2016. Two reviewers independently extracted data. Standard mean differences (SMDs) and weighted mean differences (WMDs) with 95% confidence intervals (CIs) were estimated for continuous data (exercise capacity cardiac, pulmonary arterial pressure (PAP), cardiac index, and low-density lipoprotein (LDL)). Risk ratios (RRs) were estimated for dichotomous data (adverse events and clinical deterioration). RESULTS A total of 496 patients from six RCTs were included. Low-density lipoprotein in the statin group decreased significantly compared with the placebo group (WMD = -22.79; 95% CI: -34.33 ∼ -11.24). However, we did not find a statistically significant effect on exercise capacity (SMD = 0.18; 95% CI: -0.34 - 0.71), PAP (WMD = -3.01; 95% CI: -8.68 - 2.65), or CI (WMD = -0.04; 95% CI: -0.15 - 0.23). Additionally, there was no difference between statins and placebo with respect to hepatic injury (RR: 1.12; 95% CI: 0.43 - 2.92), myalgia (RR: 0.81; 95% CI: 0.32 - 2.03), or clinical deterioration (RR: 0.98; 95% CI: 0.58 - 1.67). CONCLUSIONS Statin treatment appears to be safe but may have no effect on PH.
Collapse
Affiliation(s)
- Yitao Zhang
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Weijie Zeng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| | - Shiyao Cheng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Zhichong Chen
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Jiaojie Xue
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Qing Wang
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Maode Ou
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Kanglin Cheng
- Cardiovascular Department, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
34
|
Velayati A, Valerio MG, Shen M, Tariq S, Lanier GM, Aronow WS. Update on pulmonary arterial hypertension pharmacotherapy. Postgrad Med 2016; 128:460-473. [PMID: 27232660 DOI: 10.1080/00325481.2016.1188664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Pulmonary artery hypertension (PAH) refers to several subgroups of disease in which the mean pulmonary artery pressure (mPAP) is elevated to more than 25 mm Hg, pulmonary artery wedge pressure (PAWP) ≤ 15 mmHg, and an elevated pulmonary vascular resistance (PVR) > 3 Wood units as confirmed by right heart catheterization. The prevalence and geographic distribution of PAH vary depending on the type and etiology of the disease. Despite enormous efforts in the research and development of therapeutic agents in the last twenty years, the disease remains relatively incurable and the overall prognosis remains guarded. Median survival for an untreated patient is 2.8 years. In the last three decades, there have been dramatic advances in understanding the molecular mechanisms and signaling pathways involved in the disease, resulting in emerging new treatment strategies. In the following pages, we will review currently approved treatments for PAH, as well as a new generation of investigational drugs.
Collapse
Affiliation(s)
- Arash Velayati
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Marcos G Valerio
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Michael Shen
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Sohaib Tariq
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Gregg M Lanier
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- a Department of Medicine, Division of Cardiology , Westchester Medical Center/New York Medical College , Valhalla , NY , USA
| |
Collapse
|
35
|
Abstract
In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5′-triphosphate and in the synthesis of inosine 3′,5′-cyclic monophosphate (cIMP) by soluble guanylyl cyclase. The administration of exogenous cIMP or inosine 5′-triphosphate causes augmented vasoconstriction to hypoxia. Furthermore, the vasoconstriction evoked by hypoxia and cIMP is associated with increased activity of Rho kinase (ROCK), indicating that cIMP may mediate the hypoxic effect by sensitizing the myofilaments to Ca2+ through ROCK. Hypoxia is implicated in exaggerated vasoconstriction in the pathogenesis of coronary artery disease, myocardial infarction, hypertension, and stroke. The newly found role of cIMP may help to identify unique therapeutic targets for certain cardiovascular disorders.
Collapse
|
36
|
Non-muscle myosin light chain promotes endothelial progenitor cells senescence and dysfunction in pulmonary hypertensive rats through up-regulation of NADPH oxidase. Eur J Pharmacol 2016; 775:67-77. [PMID: 26872992 DOI: 10.1016/j.ejphar.2016.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/26/2016] [Accepted: 02/08/2016] [Indexed: 02/06/2023]
Abstract
Non-muscle myosin regulatory light chain (nmMLC20) is reported to exert transcriptional function in regulation of gene expression, and NADPH oxidase (NOX)-derived reactive oxygen species contribute to vascular remodeling of pulmonary artery hypertension (PAH). This study aims to determine if nmMLC20 can promote endothelial progenitor cells (EPCs) senescence and dysfunction through up-regulation of NOX in PAH rats. The rats were exposed to10% hypoxia for 3 weeks to establish a PAH model, which showed an increase in right ventricle systolic pressure, right ventricular and pulmonary vascular remodeling, and the accelerated senescence and impaired functions in EPCs, accompanied by an increase in Rho-kinase (ROCK) and NOX activities, p-nmMLC20 level, NOX expression and H2O2 content; these phenomena were reversed by fasudil, a selective inhibitor of ROCK. Next, normal EPCs were cultured under hypoxia to induce senescence in vitro. Consistent with the in vivo findings, hypoxia increased the senescence and dysfunction of EPCs concomitant with an increase in ROCK and NOX activities, p-nmMLC20 level, NOX expression and H2O2 content; these phenomena were reversed by fasudil. Knockdown of nmMLC20 showed similar results to that of fasudil except no effect on ROCK activity. Based on these observations, we conclude that nmMLC20 could promote the senescence and dysfunctions of EPCs in PAH through up-regulation of NOX in a phosphorylation-dependent manner.
Collapse
|
37
|
Affiliation(s)
- Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Chien-Huan Weng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- Graduate Program in Biochemistry Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065;
| | - Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; , ,
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
38
|
Change in vascular smooth muscle response to 5-HT due to short- or long-term endothelial denudation of the bovine digital vein. Vet J 2016; 207:154-159. [DOI: 10.1016/j.tvjl.2015.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 09/27/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022]
|
39
|
Dumas SJ, Humbert M, Cohen-Kaminsky S. [The cancer paradigm in pulmonary arterial hypertension: towards anti-remodeling therapies targeting metabolic dysfunction?]. Biol Aujourdhui 2016; 210:171-189. [PMID: 28327277 DOI: 10.1051/jbio/2016022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 11/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, complex and multifactorial disease in which pulmonary vascular remodeling plays a major role ending in right heart failure and death. Current specific therapies of PAH that mainly target the vasoconstriction/vasodilatation imbalance are not curative. Bi-pulmonary transplantation remains the only option in patients resistant to current therapies. It is thus crucial to identify novel vascular anti-remodeling therapeutic targets. This remodeling displays several properties of cancer cells, especially overproliferation and apoptosis resistance of pulmonary vascular cells, hallmarks of cancer related to the metabolic shift known as the "Warburg effect". The latter is characterized by a shift of ATP production, from oxidative phosphorylation to low rate aerobic glycolysis. In compensation, the cancer cells exhibit exacerbated glutaminolysis thus resulting in glutamine addiction, necessary to their overproliferation. Glutamine intake results in glutamate production, a molecule at the crossroads of energy metabolism and cancer cell communication, thus contributing to cell proliferation. Accordingly, therapeutic strategies targeting glutamate production, its release into the extracellular space and its membrane receptors have been suggested to treat different types of cancers, not only in the central nervous system but also in the periphery. We propose that similar strategies targeting glutamatergic signaling may be considered in PAH, especially as they could affect not only the vascular remodeling but also the right heart hypertrophy known to involve the glutaminolysis pathway. Ongoing studies aim to characterize the involvement of the glutamate pathway and its receptors in vascular remodeling, and the therapeutic potential of specific molecules targeting this pathway.
Collapse
Affiliation(s)
- Sébastien J Dumas
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France - AP-HP Assistance Publique-Hôpitaux de Paris, Service de Pneumologie, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Sylvia Cohen-Kaminsky
- INSERM UMR-S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France - Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
40
|
Cho JY, Park KH, Hwang DY, Chanmuang S, Jaiswal L, Park YK, Park SY, Kim SY, Kim HR, Moon JH, Ham KS. Antihypertensive Effects of Artemisia scoparia Waldst in Spontaneously Hypertensive Rats and Identification of Angiotensin I Converting Enzyme Inhibitors. Molecules 2015; 20:19789-804. [PMID: 26540035 PMCID: PMC6332079 DOI: 10.3390/molecules201119657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
We investigated the antihypertensive effects of Artemisia scoparia (AS) in spontaneously hypertensive rats (SHR). The rats were fed diets containing 2% (w/w) hot water extracts of AS aerial parts for 6 weeks. The AS group had significantly lower systolic and diastolic blood pressure levels than the control group. The AS group also had lower angiotensin I converting enzyme (ACE) activity and angiotensin II content in serum compared to the control group. The AS group showed higher vascular endothelial growth factor and lower ras homolog gene family member A expression levels in kidney compared to the control group. The AS group had significantly lower levels of plasma lipid oxidation and protein carbonyls than the control group. One new and six known compounds were isolated from AS by guided purification. The new compound was determined to be 4'-O-β-D-glucopyranoyl (E)-4-hydroxy-3-methylbut-2-enyl benzoate, based on its nuclear magnetic resonance and electrospray ionization-mass spectroscopy data.
Collapse
Affiliation(s)
- Jeong-Yong Cho
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Kyung-Hee Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Do Young Hwang
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Saoraya Chanmuang
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Lily Jaiswal
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Yang-Kyun Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Sun-Young Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - So-Young Kim
- Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA), Jeonbuk 560-500, Korea.
| | - Haeng-Ran Kim
- Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA), Jeonbuk 560-500, Korea.
| | - Jae-Hak Moon
- Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea.
| | - Kyung-Sik Ham
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| |
Collapse
|
41
|
Su H, Yan J, Xu J, Fan XZ, Sun XL, Chen KY. Stepwise high-throughput virtual screening of Rho kinase inhibitors from natural product library and potential therapeutics for pulmonary hypertension. PHARMACEUTICAL BIOLOGY 2015; 53:1201-1206. [PMID: 25853972 DOI: 10.3109/13880209.2014.970287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling. The activation of RhoA/Rho-kinase (ROCK) pathway plays a central role in the pathologic progression of PH and thus the Rho kinase, an essential effector of the ROCK pathway, is considered as a potential therapeutic target to attenuate PH. OBJECTIVE In the current study, a synthetic pipeline is used to discover new potent Rho inhibitors from various natural products. MATERIALS AND METHODS In the pipeline, the stepwise high-throughput virtual screening, quantitative structure-activity relationship (QSAR)-based rescoring, and kinase assay were integrated. The screening was performed against a structurally diverse, drug-like natural product library, from which six identified compounds were tested to determine their inhibitory potencies agonist Rho by using a standard kinase assay protocol. RESULTS With this scheme, we successfully identified two potent Rho inhibitors, namely phloretin and baicalein, with activity values of IC50 = 0.22 and 0.95 μM, respectively. DISCUSSION AND CONCLUSION Structural examination suggested that complicated networks of non-bonded interactions such as hydrogen bonding, hydrophobic forces, and van der Waals contacts across the complex interfaces of Rho kinase are formed with the screened compounds.
Collapse
Affiliation(s)
- Hao Su
- Department of Cardiology, Anhui Provincial Hospital , Hefei , China
| | | | | | | | | | | |
Collapse
|
42
|
Gosal K, Dunlop K, Dhaliwal R, Ivanovska J, Kantores C, Desjardins JF, Connelly KA, McNamara PJ, Jain A, Jankov RP. Rho Kinase Mediates Right Ventricular Systolic Dysfunction in Rats with Chronic Neonatal Pulmonary Hypertension. Am J Respir Cell Mol Biol 2015; 52:717-27. [DOI: 10.1165/rcmb.2014-0201oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
43
|
Vaidya B, Gupta V. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery. J Control Release 2015; 211:118-33. [PMID: 26036906 DOI: 10.1016/j.jconrel.2015.05.287] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, United States.
| |
Collapse
|
44
|
Jerkic M, Letarte M. Increased endothelial cell permeability in endoglin-deficient cells. FASEB J 2015; 29:3678-88. [PMID: 25972355 DOI: 10.1096/fj.14-269258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
Endoglin (ENG) is a TGF-β superfamily coreceptor essential for vascular endothelium integrity. ENG mutations lead to a vascular dysplasia associated with frequent hemorrhages in multiple organs, whereas ENG null mouse embryos die at midgestation with impaired heart development and leaky vasculature. ENG interacts with several proteins involved in cell adhesion, and we postulated that it regulates vascular permeability. The current study assessed the permeability of ENG homozygous null (Eng(-/-)), heterozygous (Eng(+/-)), and normal (Eng(+/+)) mouse embryonic endothelial cell (EC) lines. Permeability, measured by passage of fluorescent dextran through EC monolayers, was increased 2.9- and 1.7-fold for Eng(-/-) and Eng(+/-) ECs, respectively, compared to control ECs and was not increased by TGF-β1 or VEGF. Prolonged starvation increased Eng(-/-) EC permeability by 3.7-fold with no effect on control ECs; neutrophils transmigrated faster through Eng(-/-) than Eng(+/+) monolayers. Using a pull-down assay, we demonstrate that Ras homolog gene family (Rho) A is constitutively active in Eng(-/-) and Eng(+/-) ECs. We show that the endothelial barrier destabilizing factor thrombospondin-1 and its receptor-like protein tyrosine phosphatase are increased, whereas stabilizing factors VEGF receptor 2, vascular endothelial-cadherin, p21-activated kinase, and Ras-related C3 botulinum toxin substrate 2 are decreased in Eng(-/-) cells. Our findings indicate that ENG deficiency leads to EC hyperpermeability through constitutive activation of RhoA and destabilization of endothelial barrier function.
Collapse
Affiliation(s)
- Mirjana Jerkic
- *Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Immunology and Keenan Research Centre for Biomedical Science, Anesthesia Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Letarte
- *Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and Department of Immunology and Keenan Research Centre for Biomedical Science, Anesthesia Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Li T, Yang GM, Zhu Y, Wu Y, Chen XY, Lan D, Tian KL, Liu LM. Diabetes and hyperlipidemia induce dysfunction of VSMCs: contribution of the metabolic inflammation/miRNA pathway. Am J Physiol Endocrinol Metab 2015; 308:E257-69. [PMID: 25425000 DOI: 10.1152/ajpendo.00348.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vascular endothelial cell injury is considered to be the major factor inducing vascular complications in metabolic diseases and plays an important role in other organ damage. With diabetic and hyperlipidemic rats and cultured VSMCs, the present study was aimed at investigating whether the early damage of VSMCs during metabolic diseases plays a critical role in vascular dysfunction and the underlying mechanisms and would be a promising treatment target. With diabetic and hyperlipidemic rats and cultured VSMCs, the changes and relationships of vascular relaxation and contractile function to the vital organ damage and the underlying mechanisms were investigated; meanwhile, the protective and preventive effects of lowering blood lipid and glucose and inhibition of diabetes and hyperlipidemia-induced vascular hyperreactivity were observed. Diabetic and hyperlipidemic rats presented hyperreactivity in vascular contractile response in the early stages. Hyperglycemia and hyperlipidemia directly affected the contractile function of VSMCs. Early application of fasudil, a specific antagonist of Rho kinase, significantly alleviated diabetes and hyperlipidemia-induced organ damage by inhibiting vascular hyperreactivity. Diabetes and hyperlipidemia-induced inflammatory response could upregulate the expression of connexins and Rho kinase by selective downregulation of the expression of miR-10a, miR-139b, miR-206, and miR-222. These findings suggest that hyperglucose and lipid may directly impair VSMCs and induce vascular hyperreactivity in the early stages. Metabolic inflammation-induced changes in the miRNA-connexin/Rho kinase regulatory pathway are the main mechanism for vascular hyperreactivity and organ damage. Measures inhibiting vascular hyperreactivity are promising for the prevention of organ damage induced by metabolic diseases.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- Animals
- Cells, Cultured
- Connexins/genetics
- Connexins/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/prevention & control
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/prevention & control
- Drug Therapy, Combination
- Female
- Hyperlipidemias/drug therapy
- Hyperlipidemias/metabolism
- Hyperlipidemias/pathology
- Hyperlipidemias/physiopathology
- Hypoglycemic Agents/therapeutic use
- Hypolipidemic Agents/therapeutic use
- Male
- Metformin/therapeutic use
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Rats, Sprague-Dawley
- Renal Artery/drug effects
- Renal Artery/metabolism
- Renal Artery/pathology
- Renal Artery/physiopathology
- Simvastatin/therapeutic use
- Vasculitis/complications
- Vasculitis/etiology
- Vasculitis/prevention & control
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/genetics
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dan Lan
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kun-lun Tian
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Verstrepen L, Beyaert R. Receptor proximal kinases in NF-κB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol 2014; 92:519-29. [PMID: 25449604 DOI: 10.1016/j.bcp.2014.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/12/2023]
Abstract
Many signaling pathways leading to activation of transcription factors and gene expression are characterized by phosphorylation events mediated by specific kinases. The transcription factor NF-κB plays a key role in multiple cellular processes, including immune signaling, inflammation, development, proliferation and survival. Dysregulated NF-κB activation is associated with autoimmunity, chronic inflammation and cancer. Activation of NF-κB requires IκB kinase (IKK)α or β, the activity of which is regulated via phosphorylation by specific IKK kinases and by autophosphorylation. Receptor specificity is further obtained by the use of multiple upstream receptor proximal kinases. We review the identities of several IKK regulatory kinases as well as the proposed molecular mechanisms. In addition, we discuss the potential for therapeutic targeting of some of these kinases in the context of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Lynn Verstrepen
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
47
|
Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, Clegg DO. ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium. Stem Cells Transl Med 2014; 3:1066-78. [PMID: 25069775 PMCID: PMC4149306 DOI: 10.5966/sctm.2014-0079] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/04/2014] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) offer a potentially unlimited supply of cells for emerging cell-based therapies. Unfortunately, the process of deriving distinct cell types can be time consuming and expensive. In the developed world, age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with more than 7.2 million people afflicted in the U.S. alone. Both hESC-derived retinal pigmented epithelium (hESC-RPE) and induced pluripotent stem cell-derived RPE (iPSC-RPE) are being developed for AMD therapies by multiple groups, but their potential for expansion in culture is limited. To attempt to overcome this passage limitation, we examined the involvement of Rho-associated, coiled-coil protein kinase (ROCK) in hESC-RPE and iPSC-RPE culture. We report that inhibiting ROCK1/2 with Y-27632 allows extended passage of hESC-RPE and iPSC-RPE. Microarray analysis suggests that ROCK inhibition could be suppressing an epithelial-to-mesenchymal transition through various pathways. These include inhibition of key ligands of the transforming growth factor-β pathway (TGFB1 and GDF6) and Wnt signaling. Two important processes are affected, allowing for an increase in hESC-RPE expansion. First, ROCK inhibition promotes proliferation by inducing multiple components that are involved in cell cycle progression. Second, ROCK inhibition affects many pathways that could be converging to suppress RPE-to-mesenchymal transition. This allows hESC-RPE to remain functional for an extended but finite period in culture.
Collapse
Affiliation(s)
- Roxanne H Croze
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - David E Buchholz
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Monte J Radeke
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - William J Thi
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Qirui Hu
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Peter J Coffey
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Center for the Study of Macular Degeneration, Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
48
|
Gao Y, Vanhoutte PM. Tissues cIMPly do not lie. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:901-3. [PMID: 25052042 DOI: 10.1007/s00210-014-1022-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | | |
Collapse
|
49
|
Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M. Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro 2014; 6:6/4/1759091414538134. [PMID: 25289646 PMCID: PMC4189421 DOI: 10.1177/1759091414538134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In inflammatory demyelinating diseases such as multiple sclerosis (MS), myelin
degradation results in loss of axonal function and eventual axonal degeneration.
Differentiation of resident oligodendrocyte precursor cells (OPCs) leading to
remyelination of denuded axons occurs regularly in early stages of MS but halts as
the pathology transitions into progressive MS. Pharmacological potentiation of
endogenous OPC maturation and remyelination is now recognized as a promising
therapeutic approach for MS. In this study, we analyzed the effects of modulating the
Rho-A/Rho-associated kinase (ROCK) signaling pathway, by the use of selective
inhibitors of ROCK, on the transformation of OPCs into mature, myelinating
oligodendrocytes. Here we demonstrate, with the use of cellular cultures from rodent
and human origin, that ROCK inhibition in OPCs results in a significant generation of
branches and cell processes in early differentiation stages, followed by accelerated
production of myelin protein as an indication of advanced maturation. Furthermore,
inhibition of ROCK enhanced myelin formation in cocultures of human OPCs and neurons
and remyelination in rat cerebellar tissue explants previously demyelinated with
lysolecithin. Our findings indicate that by direct inhibition of this signaling
molecule, the OPC differentiation program is activated resulting in morphological and
functional cell maturation, myelin formation, and regeneration. Altogether, we show
evidence of modulation of the Rho-A/ROCK signaling pathway as a viable target for the
induction of remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Carlos E Pedraza
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Albertina Pereira
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Michelle Seng
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | - Chui-Se Tham
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| | | | - Michael Webb
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
| |
Collapse
|
50
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|