1
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Himani, Kaur C, Kumar R, Mishra R, Singh G. Targeting TGF-β: a promising strategy for cancer therapy. Med Oncol 2025; 42:142. [PMID: 40155496 DOI: 10.1007/s12032-025-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Transforming growth factor β (TGF-β) has important role in regulating the cellular processes including cell growth, differentiation, and migration. TGF-β exerts its effect by binding with transcellular membranes and kinases. Our findings demonstrate that TGF- β possess dual role as tumor suppressor and tumor promoter in different stages of cancer. TGF-β emerged as a promising anticancer agent that exhibits the apoptosis by acting on the suppressor of mothers against decapentaplegic (SMAD) and non-SMAD pathways. In this review we are focusing on the different types of TGF- β inhibitors active against skin cancer, breast cancer, colorectal cancer, lung cancer and ovarian cancer. TGF-β inhibitors includes ligand traps, monoclonal antibodies and receptor kinase inhibitors. In recent studies, TGF- β inhibitors have also been used in combination therapies in the treatment of cancer. The TGF-β has important role in vaccine therapy, Chemo and Radio Resistance in Cancer. TGF-β inhibitors present the novel therapeutic approach for the cancer therapy, highlighting the mechanism of action involved, clinical trials, challenges and exploring therapeutic opportunities. This will help to develop the novel TGF-β inhibitors as anticancer agents as well as help to resolve the problem of drug resistance by developing new drugs as anticancer agents.
Collapse
Affiliation(s)
- Himani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
3
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
4
|
F R, L L, C C, B F, C H, D H, S BV, J L C, J C, S B, I C. The nucleolin antagonist N6L and paclitaxel combination treatment could be a new promising therapeutic strategy for pancreatic ductal adenocarcinoma therapy. Eur J Pharmacol 2025; 991:177310. [PMID: 39870230 DOI: 10.1016/j.ejphar.2025.177310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Pancreatic cancer (PCa) is one of the most devastating cancers with few clinical signs and no truly effective therapy. In recent years, our team has demonstrated that nucleolin antagonists such as N6L could be a therapeutic alternative for this disease. In order to study a possible clinic development of N6L (multivalent pseudopeptide), we undertook to study the effect of combination of N6L with chemotherapies classically used for PCa on the survival of pancreatic cancer cells. Thus, the combined effect of N6L with either gemcitabine, FOLFOX and paclitaxel (PTX) on the survival of PANC-1, Mia-PaCa-2 and BxPC3 was studied and shown additive effect. In addition, analysis of the data by Combenefit software indicates that there are synergistic effects between N6L and the 3 chemotherapy molecules tested with more sensitive effects with the N6L-PTX combination. This result was confirmed by associating N6L and paclitaxel on porous calcium carbonate particles loaded with cyclodextrin (CD) encapsulating PTX and carrying N6L at their surface. Porous calcium carbonate particles present highly benefits for biological purposes because of their large surface area and their high stability in neutral media. As for CD, it presents the advantage of owing hydrophilic exterior and a less polar cavity in the center. We have then combined the advantageous features of both porous and negatively charged surfaces of calcium carbonate (CaCO3) particles and host molecules CD for developing carrier enabling all at once the loading of PTX (hydrophobic drug) and N6L (cationic drug). This association generates water-soluble particles capable of targeting via N6L and delivering paclitaxel to tumor cells.
Collapse
Affiliation(s)
- Raineri F
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Larue L
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France
| | - Cojocaru C
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Ferrara B
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Houppe C
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Habert D
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Bourgoin-Voillard S
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-Inserm U1055-CHUGA, Grenoble, France
| | - Cohen J L
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France
| | - Courty J
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France
| | - Belbekhouche S
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France.
| | - Cascone I
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France.
| |
Collapse
|
5
|
Kalyoncu M, Demirci D, Eris S, Dayanc B, Cakiroglu E, Basol M, Uysal M, Cakan-Akdogan G, Liu F, Ozturk M, Karakülah G, Senturk S. Escape from TGF-β-induced senescence promotes aggressive hallmarks in epithelial hepatocellular carcinoma cells. Mol Oncol 2025. [PMID: 40083231 DOI: 10.1002/1878-0261.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/16/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Transforming growth factor-β (TGF-β) signaling and cellular senescence are key hallmarks of hepatocellular carcinoma (HCC) pathogenesis. Despite provoking senescence-associated growth arrest in epithelial HCC cells, elevated TGF-β activity paradoxically correlates with increased aggressiveness and poor prognosis in advanced tumors. Whether the transition between these dichotomous functions involves modulation of the senescence phenotype during disease progression remains elusive. Exploiting the epithelial HCC cell line Huh7 as a robust model, we demonstrate that chronic exposure to TGF-β prompts escape from Smad3-mediated senescence, leading to the development of TGF-β resistance. This altered state is characterized by an optimal proliferation rate and the acquisition of molecular and functional traits of less-differentiated mesenchymal cells, coinciding with differential growth capacity in 2D and 3D culture conditions, epithelial-to-mesenchymal transition (EMT), and increased invasiveness in vitro, and metastasis in vivo. Mechanistically, resistant cells exhibit defective activation and nuclear trafficking of Smad molecules, particularly Smad3, as ectopic activation of the TGF-β/Smad3 axis is able to reinstate TGF-β sensitivity. An integrated transcriptomic landscape reveals both shared and distinct gene signatures associated with senescent and TGF-β resistant states. Importantly, genetic ablation and molecular studies identify microtubule affinity regulating kinase 1 (MARK1) and glutamate metabotropic receptor 8 (GRM8) as critical modulators of the resistance phenomenon, potentially by impairing spatiotemporal signaling dynamics of Smad activity. Our findings unveil a novel phenomenon wherein epithelial HCC cells may exploit senescence plasticity as a mechanism to oppose TGF-β anti-tumor responses and progress towards more aggressive HCC phenotypes.
Collapse
Affiliation(s)
| | | | - Sude Eris
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Bengisu Dayanc
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ece Cakiroglu
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Merve Uysal
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Turkey
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mehmet Ozturk
- Department of Medical Biology, Izmir Tinaztepe University School of Medicine, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Serif Senturk
- Izmir Biomedicine and Genome Center, Turkey
- Department of Genomics and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
6
|
Tang M, Rong D, Gao X, Lu G, Tang H, Wang P, Shao NY, Xia D, Feng XH, He WF, Chen W, Lu JH, Liu W, Shen HM. A positive feedback loop between SMAD3 and PINK1 in regulation of mitophagy. Cell Discov 2025; 11:22. [PMID: 40064862 PMCID: PMC11894195 DOI: 10.1038/s41421-025-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/14/2025] [Indexed: 03/14/2025] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a crucial player in selective clearance of damaged mitochondria via the autophagy-lysosome pathway, a process termed mitophagy. Previous studies on PINK1 mainly focused on its post-translational modifications, while the transcriptional regulation of PINK1 is much less understood. Herein, we reported a novel mechanism in control of PINK1 transcription by SMAD Family Member 3 (SMAD3), an essential component of the transforming growth factor beta (TGFβ)-SMAD signaling pathway. First, we observed that mitochondrial depolarization promotes PINK1 transcription, and SMAD3 is likely to be the nuclear transcription factor mediating PINK1 transcription. Intriguingly, SMAD3 positively transactivates PINK1 transcription independent of the canonical TGFβ signaling components, such as TGFβ-R1, SMAD2 or SMAD4. Second, we found that mitochondrial depolarization activates SMAD3 via PINK1-mediated phosphorylation of SMAD3 at serine 423/425. Therefore, PINK1 and SMAD3 constitute a positive feedforward loop in control of mitophagy. Finally, activation of PINK1 transcription by SMAD3 provides an important pro-survival signal, as depletion of SMAD3 sensitizes cells to cell death caused by mitochondrial stress. In summary, our findings identify a non-canonical function of SMAD3 as a nuclear transcriptional factor in regulation of PINK1 transcription and mitophagy and a positive feedback loop via PINK1-mediated SMAD3 phosphorylation and activation. Understanding this novel regulatory mechanism provides a deeper insight into the pathological function of PINK1 in the pathogenesis of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Mingzhu Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dade Rong
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Xiangzheng Gao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haimei Tang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Peng Wang
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Ning-Yi Shao
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Feng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wei Liu
- Center for Metabolism Research, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Healthy Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
7
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Nedeljković M, Vuletić A, Mirjačić Martinović K. Divide and Conquer-Targeted Therapy for Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1396. [PMID: 40003864 PMCID: PMC11855393 DOI: 10.3390/ijms26041396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and malignant type of breast cancer with limited treatment options and poor prognosis. One of the most significant impediments in TNBC treatment is the high heterogeneity of this disease, as highlighted by the detection of several molecular subtypes of TNBC. Each subtype is driven by distinct mutations and pathway aberrations, giving rise to specific molecular characteristics closely connected to clinical behavior, outcomes, and drug sensitivity. This review summarizes the knowledge regarding TNBC molecular subtypes and how it can be harnessed to devise tailored treatment strategies instead of blindly using targeted drugs. We provide an overview of novel targeted agents and key insights about new treatment modalities with an emphasis on the androgen receptor signaling pathway, cancer stem cell-associated pathways, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, growth factor signaling, and immunotherapy.
Collapse
Affiliation(s)
- Milica Nedeljković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.V.); (K.M.M.)
| | | | | |
Collapse
|
9
|
Piraner DI, Abedi MH, Duran Gonzalez MJ, Chazin-Gray A, Lin A, Zhu I, Ravindran PT, Schlichthaerle T, Huang B, Bearchild TH, Lee D, Wyman S, Jun YW, Baker D, Roybal KT. Engineered receptors for soluble cellular communication and disease sensing. Nature 2025; 638:805-813. [PMID: 39542025 PMCID: PMC11839477 DOI: 10.1038/s41586-024-08366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Despite recent advances in mammalian synthetic biology, there remains a lack of modular synthetic receptors that can robustly respond to soluble ligands and, in turn, activate bespoke cellular functions. Such receptors would have extensive clinical potential to regulate the activity of engineered therapeutic cells, but so far only receptors against cell-surface targets have approached clinical translation1. To address this gap, here we adapt a receptor architecture called the synthetic intramembrane proteolysis receptor (SNIPR) for activation by soluble ligands. Our SNIPR platform can be activated by both natural and synthetic soluble factors, with notably low baseline activity and high fold activation, through an endocytic, pH-dependent cleavage mechanism. We demonstrate the therapeutic capabilities of the receptor platform by localizing the activity of chimeric antigen receptor (CAR) T cells to solid tumours in which soluble disease-associated factors are expressed, bypassing the major hurdle of on-target off-tumour toxicity in bystander organs. We further apply the SNIPR platform to engineer fully synthetic signalling networks between cells orthogonal to natural signalling pathways, expanding the scope of synthetic biology. Our design framework enables cellular communication and environmental interactions, extending the capabilities of synthetic cellular networking in clinical and research contexts.
Collapse
Affiliation(s)
- Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mohamad H Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Lin
- Joint Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, CA, USA
| | - Iowis Zhu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Pavithran T Ravindran
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Penn Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Tyler H Bearchild
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - David Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sarah Wyman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Young-Wook Jun
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA, USA.
- UCSF Cell Design Institute, San Francisco, CA, USA.
| |
Collapse
|
10
|
Krauss T, Gürcinar IH, Bourquain U, Hieber M, Krohmer EN, Wu N, Tokalov S, Goess R, Reyes CM, Saur D, Friess H, Ceyhan GO, Demir IE, Safak O. Pancreatic cancer cells infiltrate nerves through TGFbeta1-driven perineural epithelial-to-mesenchymal-like transdifferentiation. Neoplasia 2025; 60:101126. [PMID: 39842382 PMCID: PMC11763858 DOI: 10.1016/j.neo.2025.101126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Neural invasion is a prognostic hallmark of pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms behind the disruption of perineural barriers and access of cancer cells into intrapancreatic nerves remain poorly understood. This study aimed to investigate the role of epithelial-mesenchymal transformation (EMT) in perineural epithelial cells during neural invasion.Histopathological analysis of human and murine primary tumors using perineurium-specific GLUT1 antibody revealed a reduction in perineural integrity, which positively correlated with the extent of neural invasion in human PDAC cases. Human pancreatic cancer cell lines were found to secrete TGFbeta1, which induced EMT of perineural epithelial cells, characterized by the loss of epithelial markers (CK19-9) and the acquisition of mesenchymal markers (alphaSMA, N-Cadherin). Additionally, these transitioning perineural epithelial cells demonstrated increased matrix-degrading capabilities through the upregulation of matrix-metalloproteases 3 and 9 via SMAD2. In an autochthonous mouse model with elevated endogenous TGFbeta1 levels in addition to oncogenic Kras activation (Ptf1aCre/+, LSL-KrasG12D/+, LSL-R26Tgfβ/+), decreased perineural integrity could be reproduced in vivo.Collectively, these findings underscore the role played by TGFbeta1-overexpressing pancreatic cancer cells in the dismantling of perineural barriers during neural invasion.
Collapse
Affiliation(s)
- Theresa Krauss
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ibrahim Halil Gürcinar
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Ulrike Bourquain
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Maren Hieber
- Institute of Translational Cancer Research and Experimental Cancer Therapy, TranslaTUM, Munich, Germany; Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of HPB Surgery, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Evelyn N Krohmer
- Institute of Translational Cancer Research and Experimental Cancer Therapy, TranslaTUM, Munich, Germany; German Cancer Consortium (DKTK), Munich site, Germany
| | - Nan Wu
- Comprehensive Cancer Center München, Institute for Tumor Metabolism, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Germany
| | - Sergey Tokalov
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rüdiger Goess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Dieter Saur
- Institute of Translational Cancer Research and Experimental Cancer Therapy, TranslaTUM, Munich, Germany; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; Division of HPB Surgery, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; Division of HPB Surgery, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey; German Cancer Consortium (DKTK), Munich site, Germany; SFB 1321, Modelling and Targeting Pancreatic Cancer, Munich, Germany; Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Germany; Neural Influences in Cancer (NIC) Research Consortium, Germany
| | - Okan Safak
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
11
|
Snider S, De Domenico P, Roncelli F, Bisoglio A, Braga M, Ghelfi A, Barzaghi LR, Mura C, Mortini P, Gagliardi F. Pre‑operative mean platelet volume is associated with overall survival in patients with IDH‑wildtype glioblastoma undergoing maximal safe resection. Oncol Lett 2024; 28:576. [PMID: 39397801 PMCID: PMC11467840 DOI: 10.3892/ol.2024.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/13/2024] [Indexed: 10/15/2024] Open
Abstract
Glioblastoma (GBM) is the most common, fast-growing, and aggressive malignant primary CNS tumor, with a survival time of ~15 months despite the use of surgery and adjuvant treatments. In recent years, there has been a growing interest in exploring the potential contribution of hemostasis and platelet activation in GBM biology. The present study assessed the association between the pre-operative coagulation profile [as indicated by prothrombin time (PT) ratio and activated partial thromboplastin time (aPTT) ratio], overall platelets (PLT) count and the mean platelet volume (MPV) with tumoral characteristics and overall survival in patients with isocitrate dehydrogenase-wildtype (IDH-wt) GBM.
Collapse
Affiliation(s)
- Silvia Snider
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Pierfrancesco De Domenico
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Francesca Roncelli
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Andrea Bisoglio
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Matteo Braga
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Anna Ghelfi
- Department of Neurosurgery, Duke University, Durham, NC 27701, USA
| | - Lina Raffaella Barzaghi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Cinzia Mura
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), I-20132 Milan, Italy
| |
Collapse
|
12
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Patton A, Horn N, Upadhaya P, Sarchet P, Pollock RE, Oghumu S, Iwenofu OH. Targeted transcriptomic analysis of well-differentiated and dedifferentiated liposarcoma reveals multiple dysregulated pathways including glucose metabolism, TGF-β, and HIF-1 signaling. Front Oncol 2024; 14:1456071. [PMID: 39659782 PMCID: PMC11628955 DOI: 10.3389/fonc.2024.1456071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024] Open
Abstract
Liposarcoma is the most prevalent sarcoma in adults representing 20% of all sarcomas with well-differentiated/dedifferentiated among the most common subtypes represented. Despite multimodality treatment approaches, there has not been any appreciable change in survival benefit in the past 10 years. The future of targeted therapy for WD/DDLPS is promising with the intention to spare multi-visceral removal due to radical surgical resection. Therefore, there is a need to expand upon the molecular landscape of WDLPS and DDLPS which can help identify potential therapeutic targets for the treatment of this disease. Targeted transcriptome analysis using the NanoString tumor signaling 360 panel revealed a dysregulation in glucose metabolism and HIF1 signaling pathways in both WDLPS and DDLPS when compared to normal fat controls. WDLPS, however, demonstrated upregulation of HIF-1A and TGF-β when compared to DDLPS by targeted transcriptome analysis and orthogonal validation by RT-qPCR suggesting activation of EMT pathway in WDLPS when compared to DDLPS. Our findings implicate a putative role for dysregulation in glucose metabolism, TGF-β and HIF1 signaling in the pathogenesis of both WD/DDLPS suggesting a possible proinflammatory tumor environment within WDLPS and subsequent activation of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Ashley Patton
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Natalie Horn
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Puja Upadhaya
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Patricia Sarchet
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, United States
| | - Raphael E. Pollock
- Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH, United States
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Medical Center, Columbus, OH, United States
| | - Steve Oghumu
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Obiajulu Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, OH, United States
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
14
|
Yu EJ, Bell DW. The endometrial cancer A230V-ALK5 (TGFBR1) mutant attenuates TGF-β signaling and exhibits reduced in vitro sensitivity to ALK5 inhibitors. PLoS One 2024; 19:e0312806. [PMID: 39576826 PMCID: PMC11584080 DOI: 10.1371/journal.pone.0312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
The ALK5 (TGFBR1) receptor serine/threonine kinase transduces TGF-β (Transforming Growth Factor beta) signaling to activate SMAD2/3-dependent and -independent pathways. Here, we aimed to determine the functional consequences of ALK5 mutations in human endometrial cancer (EC). Somatic mutation data were retrieved from publicly available databases. Using seven in silico algorithms, 78.5% (11 of 14) of ALK5 kinase domain mutations in EC, including A230V-ALK5, were predicted to impact protein function. For in vitro studies, we focused on A230V-ALK5 because it was the only mutated residue located within the ATP-binding pocket, which is an important region for both ATP-binding and binding of ATP-competitive inhibitors. Constructs expressing wildtype-, constitutively-active-, kinase-dead-, or mutant A230V-ALK5, were transfected into NIH/3T3 cells. Following TGF-β1 stimulation, transient exogenous expression of A230V-ALK5 resulted in attenuated SMAD2/3 signal transduction and reduced AKT activation. We further showed that the A230V-ALK5 mutant had reduced stability resulting from increased ubiquitin-dependent protein degradation. Our structural modeling predicted that SB-431542, a small molecule ATP-competitive inhibitor of ALK5, binds to the A230V-ALK5 mutant with reduced affinity compared to wildtype-ALK5. We therefore examined the inhibitory effect of SB-431542 and galunisertib on wildtype- and mutant-ALK5 activity using a Smad-binding element (SBE) luciferase reporter assay combined with TGF-β1 stimulation, in NIH/3T3 cells and HEC-265 EC cells. SBE luciferase activity in A230V-ALK5 transfected cells was inhibited less by SB-431542 and galunisertib than in wildtype-ALK5 transfected cells indicating that A230V-ALK5 is less sensitive to inhibition by these agents than wildtype-ALK5, potentially due to changes in SB-431542/A230V-ALK5 binding affinity. Our findings are novel and show that A230V-ALK5 is a partial loss-of-function mutant that attenuates TGF-β1 signal transduction and has reduced sensitivity to ALK5 small molecule inhibitors.
Collapse
Affiliation(s)
- Eun-Jeong Yu
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
di Miceli N, Baioni C, Barbieri L, Danielli D, Sala E, Salvioni L, Garbujo S, Colombo M, Prosperi D, Innocenti M, Fiandra L. TGF-β Signaling Loop in Pancreatic Ductal Adenocarcinoma Activates Fibroblasts and Increases Tumor Cell Aggressiveness. Cancers (Basel) 2024; 16:3705. [PMID: 39518142 PMCID: PMC11545076 DOI: 10.3390/cancers16213705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting transforming growth factor beta (TGF-β), amongst other cytokines. In turn, CAFs produce soluble factors that promote tumor-cell invasiveness and chemoresistance, including TGF-β itself, which has a major role in myofibroblastic CAFs. Such a high level of complexity has hampered progress toward a clear view of the TGFβ signaling loop between stromal fibroblasts and PDAC cells. METHODS Here, we tackled this issue by using co-culture settings that allow paracrine signaling alone (transwell systems) or paracrine and contact-mediated signaling (3D spheroids). RESULTS We found that TGF-β is critically involved in the activation of normal human fibroblasts into alpha-smooth muscle actin (α-SMA)-positive CAFs. The TGF-β released by CAFs accounted for the enhanced proliferation and resistance to gemcitabine of PDAC cells. This was accompanied by a partial epithelial-to-mesenchymal transition in PDAC cells, with no increase in their migratory abilities. Nevertheless, 3D heterospheroids comprising PDAC cells and fibroblasts allowed monitoring the pro-invasive effects of CAFs on cancer cells, possibly due to combined paracrine and physical contact-mediated signals. CONCLUSIONS We conclude that TGF-β is only one of the players that mediates the communication between PDAC cells and fibroblasts and controls the acquisition of aggressive phenotypes. Hence, these advanced in vitro models may be exploited to further investigate these events and to design innovative anti-PDAC therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy; (N.d.M.); (C.B.); (L.B.); (D.D.); (E.S.); (L.S.); (S.G.); (M.C.); (D.P.)
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy; (N.d.M.); (C.B.); (L.B.); (D.D.); (E.S.); (L.S.); (S.G.); (M.C.); (D.P.)
| |
Collapse
|
16
|
Luo Y, Lu J, Lei Z, Rao D, Wang T, Fu C, Zhu H, Zhang Z, Liao Z, Liang H, Huang W. GPR56 facilitates hepatocellular carcinoma metastasis by promoting the TGF-β signaling pathway. Cell Death Dis 2024; 15:715. [PMID: 39353900 PMCID: PMC11445230 DOI: 10.1038/s41419-024-07095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
The metastasis of hepatocellular carcinoma (HCC) poses a significant threat to the survival of patients. G protein-coupled receptor 56 (GPR56) has garnered extensive attention within malignant tumor research and plays a crucial role in cellular surface signal transmission. Nonetheless, its precise function in HCC remains ambiguous. Our investigation reveals a notable rise in GPR56 expression levels in human HCC cases, with heightened GPR56 levels correlating with unfavorable prognoses. GPR56 regulates TGF-β pathway by interacting with TGFBR1, thereby promoting HCC metastasis. At the same time, GPR56 is subject to regulation by the canonical cascade of TGF-β signaling, thereby establishing a positive feedback loop. Furthermore, the combination application of TGFBR1 inhibitor galunisertib (GAL) and GPR56 inhibitor Dihydromunduletone (DHM), significantly inhibits HCC metastasis. Interventions towards this signaling pathway could offer a promising therapeutic approach to effectively impede the metastasis of GPR56-mediated HCC.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
- Transforming Growth Factor beta/metabolism
- Animals
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Neoplasm Metastasis
- Cell Line, Tumor
- Mice
- Mice, Nude
- Quinolines/pharmacology
- Gene Expression Regulation, Neoplastic
- Male
- Pyrazoles
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| | - Huifang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
Behrooz AB, Shojaei S. Mechanistic insights into mesenchymal-amoeboid transition as an intelligent cellular adaptation in cancer metastasis and resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167332. [PMID: 38960056 DOI: 10.1016/j.bbadis.2024.167332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Zhao Z, Li L, He M, Li Y, Ma X, Zhao B. Prognostic and Predictive Markers for Early Stage Triple-Negative Breast Cancer Treated With Platinum-Based Neoadjuvant Chemotherapy. Cancer Med 2024; 13:e70336. [PMID: 39445528 PMCID: PMC11499949 DOI: 10.1002/cam4.70336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Emerging evidence has indicated possible efficacy benefit of platinum-based chemotherapy as neoadjuvant treatment for invasive ductal carcinoma triple-negative breast cancer (TNBC). However, it has not been endorsed by current guidelines due to highly controversial results. MATERIALS AND METHODS Present study aims to investigate predictive and prognostic roles concerning single nucleotide polymorphisms (SNPs) in XRCC1 and BRCA1, BRCA2 genes for early stage TNBC patients that received platinum-based neoadjuvant treatment. We prospectively enrolled women with stage IIB-IIIB TNBC that had progressed on neoadjuvant taxane and anthracycline-based chemotherapy at Xinjiang Medical University Affiliated Cancer Hospital. Tumor response and pathological complete response (pCR) rate were assessed. Invasive disease-free survival (iDFS) and overall survival (OS) were analyzed. Patients' blood samples were subject to Sanger sequencing to genotype XRCC1 Arg194Trp and Arg399Gln, BRCA1 s1799949, and BRCA2 rs206115. Univariate and multivariate logistic regressions were employed to investigate associations between SNPs and clinical characteristics with treatment response and pCR. A total of 45 patients were enrolled. RESULTS The cohort showcased ORR of 44.4%, pCR of 28.9%, median iDFS of 22 months, and a 3-year OS of 73.3%. The A/G and G/G genotypes of BRCA1 rs1799949, and the T/T genotype of BRCA2 rs206115 were associated with higher responsive rate. Histologic grade of III and Ki67 expression > 65% were associated with low responsive rate. Moreover, the A/G genotype of BRCA1 rs1799949 and T/T genotype of BRCA2 rs206115 correlated to high pCR. The histologic III and T4 stage correlated to inferior iDFS. Carrier of BRCA1 rs1799949 G/G had the most favorable OS, carriers of A/A showed the poorest OS, and those with A/G genotype showed an intermediate OS. CONCLUSIONS Platinum-based chemotherapy might serve as a therapeutic option for TNBC patients who were resistant to anthracycline- and taxane-based neoadjuvant therapy. Our study identified several genetic and clinical features that might function as prognostic and predictive markers.
Collapse
Affiliation(s)
- Zhenhui Zhao
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Li Li
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Mei He
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Yan Li
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Xiaoping Ma
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| | - Bing Zhao
- Breast Internal Medicine DepartmentThe 3rd Affiliated Teaching Hospital of XinJiang Medical University (Affiliated Cancer Hospital)UrumqiChina
| |
Collapse
|
19
|
Hu J, Dai S, Yuan M, Li F, Xu S, Gao L. Isoliensinine suppressed gastric cancer cell proliferation and migration by targeting TGFBR1 to regulate TGF-β-smad signaling pathways. Front Pharmacol 2024; 15:1438161. [PMID: 39364054 PMCID: PMC11446791 DOI: 10.3389/fphar.2024.1438161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Background Gastric cancer (GC) ranks as the fifth most prevalent cancer globally, and its pronounced invasiveness and propensity to spread provide significant challenges for therapy. At present, there are no efficacious medications available for the treatment of patients with GC. Isoliensinine (ISO), a bisbenzylisoquinoline alkaloid, was isolated from Nelumbo nucifera Gaertn. It possesses anti-tumor, antioxidant, and other physiological effects. Nevertheless, there is currently no available study on the impact of ISO on GC, and further investigation is needed to understand its molecular mechanism. Methods ISO target points and GC-related genes were identified, and the cross-target points of ISO and GC were obtained. We then examined cross-targeting and found genes that were differentially expressed in GCs. Kaplan-Meier survival curves were used to screen target genes, and the STRING database and Cytoscape 3.9.1 were used to construct protein-protein interactions and drug-target networks. In addition, molecular docking studies confirmed the interactions between ISO screen targets. Finally, in vitro tests were used to establish the impact of ISO on GC cells. Results Through bioinformatics research, we have identified TGFBR1 as the target of ISO in GC. In addition, we noticed a substantial inhibition in GC cell proliferation, migration, and invasion activities following ISO treatment. Moreover, we noticed that ISO treatment effectively suppressed TGF-β-induced epithelial-mesenchymal transition (EMT) and activation of the TGF-β-Smad pathway. Furthermore, we discovered that siTGFBR1 nullified the impact of ISO on TGF-β-triggered migration, invasion, and activation of the TGF-β-Smad pathway. Conclusion Our research suggests that ISO specifically targets TGFBR1 and regulates the TGF-β-Smad signaling pathway to suppress the proliferation and migration of GC cells.
Collapse
Affiliation(s)
- Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Mengqin Yuan
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
20
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
21
|
Li H, Hou M, Zhang P, Ren L, Guo Y, Zou L, Cao J, Bai Z. Wedelolactone suppresses breast cancer growth and metastasis via regulating TGF-β1/Smad signaling pathway. J Pharm Pharmacol 2024; 76:1038-1050. [PMID: 38848454 DOI: 10.1093/jpp/rgae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Breast cancer is a malignant tumor with high invasion and metastasis. TGF-β1-induced epithelial-mesenchymal transition (EMT) is crucially involved in the growth and metastasis of breast cancer. Wedelolactone (Wed) is extracted from herbal medicine Ecliptae Herba, which is reported to have antineoplastic activity. Here, we aimed to elucidate the efficacy and mechanism of Wed against breast cancer. METHODS The effects of Wed on migration and invasion of 4T1 were detected. The expression of EMT-related markers was detected by Western blot and qPCR. The 4T1 orthotopic murine breast cancer model was established to evaluate the therapeutic effect of Wed on the growth and metastasis of breast cancer through TGF-β1/Smad pathway. RESULTS Wed inhibited the proliferation, migration and invasion of 4T1. It exhibited concentration-dependent inhibition of p-Smad2/3. Wed also reversed the expression of EMT-markers induced by TGF-β1. In addition, Wed suppressed the growth and metastasis of breast cancer in mice. It also affected p-Smad3 expression as well as EMT-related genes, suggesting that its anti-breast cancer effect may be related to the TGF-β1/Smad pathway. CONCLUSION Wed reverses EMT by regulating TGF-β1/Smad pathway, potentially serving as a therapeutic agent for breast cancer. Wed is expected to be a potential drug to inhibit TGF-β1/Smad pathway-related diseases.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Lutong Ren
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot 010010, China
| | - Yuanyuan Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
22
|
Liang P, Peng M, Tao J, Wang B, Wei J, Lin L, Cheng B, Xiong S, Li J, Li C, Yu Z, Li C, Wang J, Li H, Chen Z, Fan J, Liang W, He J. Development of a genome atlas for discriminating benign, preinvasive, and invasive lung nodules. MedComm (Beijing) 2024; 5:e644. [PMID: 39036344 PMCID: PMC11258453 DOI: 10.1002/mco2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
To tackle misdiagnosis in lung cancer screening with low-dose computed tomography (LDCT), we aimed to compile a genome atlas for differentiating benign, preinvasive, and invasive lung nodules and characterize their molecular pathogenesis. We collected 432 lung nodule tissue samples from Chinese patients, spanning benign, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA). We performed comprehensive sequencing, examining somatic variants, gene expressions, and methylation levels. Our findings uncovered EGFR and TP53 mutations as key drivers in - early lung cancer development, with EGFR mutation frequency increasing with disease progression. Both EGFR mutations and EGF/EGFR hypo-methylation activated the EGFR pathway, fueling cancer growth. Transcriptome analysis identified four lung nodule subtypes (G1-4) with distinct molecular features and immune cell infiltrations: EGFR-driven G1, EGFR/TP53 co-mutation G2, inflamed G3, stem-like G4. Estrogen/androgen response was associated with the EGFR pathway, proposing a new therapy combining tyrosine kinase inhibitors with antiestrogens. Preinvasive nodules exhibited stem cell pathway enrichment, potentially hindering invasion. Epigenetic regulation of various genes was essential for lung cancer initiation and development. This study provides insights into the molecular mechanism of neoplastic progression and identifies potential diagnostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Peng Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Minhua Peng
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinsheng Tao
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Bo Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinwang Wei
- Department of Data ScienceGenomicare Biotechnology (Shanghai) Co., Ltd.ShanghaiChina
- Department of Data ScienceShanghai CreateCured Biotechnology Co., Ltd.ShanghaiChina
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Bo Cheng
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Shan Xiong
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianfu Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Caichen Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Chunyan Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jun Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Hui Li
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Zhiwei Chen
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- AnchorDx Inc.FremontCaliforniaUSA
| | - Jian‐Bing Fan
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- Department of PathologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianxing He
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| |
Collapse
|
23
|
Mansour MA, Hassan GS, Serya RAT, Jaballah MY, Abouzid KAM. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg Chem 2024; 147:107332. [PMID: 38581966 DOI: 10.1016/j.bioorg.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Activin receptor‑like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-β (TGF-β) family. (TGF-β) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.
Collapse
Affiliation(s)
- Mai A Mansour
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt.
| | - Ghaneya S Hassan
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Maiy Y Jaballah
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
24
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Stojnev S, Conic I, Ristic Petrovic A, Petkovic I, Radic M, Krstic M, Jankovic Velickovic L. The Association of Death Receptors and TGF-β1 Expression in Urothelial Bladder Cancer and Their Prognostic Significance. Biomedicines 2024; 12:1123. [PMID: 38791085 PMCID: PMC11117556 DOI: 10.3390/biomedicines12051123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Death receptor signalization that triggers the extrinsic apoptotic pathway and TGF-β1 have important roles in urothelial carcinogenesis, with a complex interplay between them. The aim of this research was to assess the association of death receptors DR4, DR5, and FAS as well as TGF-β1 immunohistochemical expression with the clinicopathological characteristics of urothelial bladder cancer (UBC) and to evaluate their prognostic significance. The decrease or loss of death receptors' expression was significantly associated with muscle-invasive tumors, while non-invasive UBC often retains the expression of death receptors, which are mutually strongly linked. High DR4 expression is a marker of low-grade tumors and UBC associated with exposition to known carcinogens. Conversely, TGF-β1 was significantly associated with high tumor grade and advanced stage. High expression of DR4 and FAS indicates longer overall survival. High TGF-β1 signifies an inferior outcome and is an independent predictor of adverse prognosis in UBC patients. This study reveals the expression profile of death receptors in UBC and their possible interconnection with TGF-β1 and indicates independent prognostic significance of high FAS and TGF-β1 expression in UBC, which may contribute to deciphering the enigma of UBC heterogeneity in light of the rapid development of novel and effective therapeutic approaches, including targeting of the TRAIL-induced apoptotic pathway.
Collapse
Affiliation(s)
- Slavica Stojnev
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Irena Conic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ana Ristic Petrovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ivan Petkovic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Milica Radic
- Clinic of Oncology, University Clinical Center Nis, 18000 Nis, Serbia; (I.C.)
- Department of Oncology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miljan Krstic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Ljubinka Jankovic Velickovic
- Center for Pathology, University Clinical Center Nis, 18000 Nis, Serbia
- Department of Pathology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
26
|
Lin Z, Wang Q, Zheng Z, Zhang B, Zhou S, Zheng D, Chen Z, Zheng S, Zhu S, Zhang X, Lan E, Zhang Y, Lin X, Zhuang Q, Qian H, Hu X, Zhuang Y, Jin Z, Jiang S, Ma Y. Identification and validation of a platelet-related signature for predicting survival and drug sensitivity in multiple myeloma. Front Pharmacol 2024; 15:1377370. [PMID: 38818376 PMCID: PMC11137312 DOI: 10.3389/fphar.2024.1377370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Significant progress has been achieved in the management of multiple myeloma (MM) by implementing high-dose therapy and stem cell transplantation. Moreover, the prognosis of patients has been enhanced due to the introduction of novel immunomodulatory drugs and the emergence of new targeted therapies. However, predicting the survival rates of patients with multiple myeloma is still tricky. According to recent researches, platelets have a significant impact in affecting the biological activity of tumors and are essential parts of the tumor microenvironment. Nonetheless, it is still unclear how platelet-related genes (PRGs) connect to the prognosis of multiple myeloma. Methods: We analyzed the expression of platelet-related genes and their prognostic value in multiple myeloma patients in this study. We also created a nomogram combining clinical metrics. Furthermore, we investigated disparities in the biological characteristics, immunological microenvironment, and reaction to immunotherapy, along with analyzing the drug susceptibility within diverse risk groups. Results: By using the platelet-related risk model, we were able to predict patients' prognosis more accurately. Subjects in the high-risk cohort exhibited inferior survival outcomes, both in the training and validation datasets, as compared to those in the low-risk cohort (p < 0.05). Moreover, there were differences in the immunological microenvironments, biological processes, clinical features, and chemotherapeutic drug sensitivity between the groups at high and low risk. Using multivariable Cox regression analyses, platelet-related risk score was shown to be an independent prognostic influence in MM (p < 0.001, hazard ratio (HR) = 2.001%, 95% confidence interval (CI): 1.467-2.730). Furthermore, the capacity to predict survival was further improved when a combined nomogram was utilized. In training cohort, this outperformed the predictive value of International staging system (ISS) alone from a 5-years area under curve (AUC) = 0.668 (95% CI: 0.611-0.725) to an AUC = 0.721 (95% CI: 0.665-0.778). Conclusion: Our study revealed the potential benefits of PRGs in terms of survival prognosis of MM patients. Furthermore, we verified its potential as a drug target for MM patients. These findings open up novel possibilities for prognostic evaluation and treatment choices for MM.
Collapse
Affiliation(s)
- Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuxia Zhu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Enqing Lan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|
27
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
28
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
29
|
Yan LJ, Y. Lau AT, Xu YM. The regulation of microRNAs on chemoresistance in triple-negative breast cancer: a recent update. Epigenomics 2024; 16:571-587. [PMID: 38639712 PMCID: PMC11160456 DOI: 10.2217/epi-2023-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has negative expressions of ER, PR and HER2. Due to the insensitivity to both endocrine therapy and HER2-targeted therapy, the main treatment method for TNBC is cytotoxic chemotherapy. However, the curative effect of chemotherapy is limited because of the existence of acquired or intrinsic multidrug resistance. MicroRNAs (miRNAs) are frequently dysregulated in malignant tumors and involved in tumor occurrence and progression. Interestingly, growing studies show that miRNAs are involved in chemoresistance in TNBC. Thus, targeting dysregulated miRNAs could be a plausible way for better treatment of TNBC. Here, we present the updated knowledge of miRNAs associated with chemoresistance in TNBC, which may be helpful for the early diagnosis, prognosis and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Li-Jun Yan
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology & Epigenetics, Department of Cell Biology & Genetics, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
30
|
Längle D, Wojtowicz-Piotrowski S, Priegann T, Keller N, Wesseler F, Reckzeh ES, Steffens K, Grathwol C, Lemke J, Flasshoff M, Näther C, Jonson AC, Link A, Koch O, Di Guglielmo GM, Schade D. Expanding the Chemical Space of Transforming Growth Factor-β (TGFβ) Receptor Type II Degraders with 3,4-Disubstituted Indole Derivatives. ACS Pharmacol Transl Sci 2024; 7:1069-1085. [PMID: 38633593 PMCID: PMC11020067 DOI: 10.1021/acsptsci.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The TGFβ type II receptor (TβRII) is a central player in all TGFβ signaling downstream events, has been linked to cancer progression, and thus, has emerged as an auspicious anti-TGFβ strategy. Especially its targeted degradation presents an excellent goal for effective TGFβ pathway inhibition. Here, cellular structure-activity relationship (SAR) data from the TβRII degrader chemotype 1 was successfully transformed into predictive ligand-based pharmacophore models that allowed scaffold hopping. Two distinct 3,4-disubstituted indoles were identified from virtual screening: tetrahydro-4-oxo-indole 2 and indole-3-acetate 3. Design, synthesis, and screening of focused amide libraries confirmed 2r and 3n as potent TGFβ inhibitors. They were validated to fully recapitulate the ability of 1 to selectively degrade TβRII, without affecting TβRI. Consequently, 2r and 3n efficiently blocked endothelial-to-mesenchymal transition and cell migration in different cancer cell lines while not perturbing the microtubule network. Hence, 2 and 3 present novel TβRII degrader chemotypes that will (1) aid target deconvolution efforts and (2) accelerate proof-of-concept studies for small-molecule-driven TβRII degradation in vivo.
Collapse
Affiliation(s)
- Daniel Längle
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Stephanie Wojtowicz-Piotrowski
- Department
of Physiology and Pharmacology, Schulich
School of Medicine and Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Till Priegann
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Niklas Keller
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Fabian Wesseler
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Elena S. Reckzeh
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Karsten Steffens
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Christoph Grathwol
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Jana Lemke
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Maren Flasshoff
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christian Näther
- Institute
of Inorganic Chemistry, Christian-Albrechts-University
of Kiel, Max-Eyth-Straße
2, 24118 Kiel, Germany
| | - Anna C. Jonson
- Early Chemical
Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca Gothenburg, Mölndal SE-43183, Sweden
| | - Andreas Link
- Institute
of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 17, 17489 Greifswald, Germany
| | - Oliver Koch
- Faculty
of Chemistry and Chemical Biology, Technical
University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Institute
of Pharmaceutical and Medicinal Chemistry and German Center of Infection
Research, Münster 48149, Germany
| | - Gianni M. Di Guglielmo
- Department
of Physiology and Pharmacology, Schulich
School of Medicine and Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
31
|
Guo Y, Wang Z, Zhou H, Pan H, Han W, Deng Y, Li Q, Xue J, Ge X, Wang S, Wang J, Zhang Y, Zhao C, Zhu H, Wang Y, Shen H, Liu D, Li J. First-in-human study of GFH018, a small molecule inhibitor of transforming growth factor-β receptor I inhibitor, in patients with advanced solid tumors. BMC Cancer 2024; 24:444. [PMID: 38600507 PMCID: PMC11007962 DOI: 10.1186/s12885-024-12216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) is a cytokine with multiple functions, including cell growth regulation, extracellular matrix production, angiogenesis homeostasis adjustment and et al. TGF-β pathway activation promotes tumor metastasis/progression and mediates epithelial-mesenchymal transmission suppressing immunosurveillance in advanced tumors. GFH018, a small molecule inhibitor blocking TGF-β signal transduction, inhibits the progression and/or metastasis of advanced cancers. This first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and efficacy of GFH018 monotherapy in patients with advanced solid tumors. METHODS This phase I, open-label, multicenter study used a modified 3+3 dose escalation and expansion design. Adult patients with advanced solid tumors failing the standard of care were enrolled. Starting at 5 mg, eight dose levels up to 85 mg were evaluated. Patients received GFH018 BID (14d-on/14d-off) starting on the 4th day after a single dose on cycle 1, day 1. Subsequent cycles were defined as 28 days. The study also explored the safety of 85 mg BID 7d-on/7d-off. Adverse events were graded using NCI criteria for adverse events (NCI-CTCAE v5.0). PK was analyzed using a noncompartmental method. Efficacy was evaluated using RECIST 1.1. Blood samples were collected for biomarker analysis. RESULTS Fifty patients were enrolled and received at least one dose of GFH018. No dose-limiting toxicity occurred, and the maximum tolerated dose was not reached. Forty-three patients (86.0%) had at least one treatment-related adverse event (TRAE), and three patients (6.0%) had ≥ G3 TRAEs. The most common TRAEs (any grade/grade ≥3) were AST increased (18%/0%), proteinuria (14%/2%), anemia (14%/2%), and ALT increased (12%/0%). No significant cardiotoxicity or bleeding was observed. GFH018 PK was linear and dose-independent, with a mean half-life of 2.25-8.60 h from 5 - 85 mg. Nine patients (18.0%) achieved stable disease, and one patient with thymic carcinoma achieved tumor shrinkage, with the maximum target lesion decreased by 18.4%. Serum TGF-β1 levels were not associated with clinical responses. The comprehensive recommended dose for Phase II was defined as 85 mg BID 14d-on/14d-off. CONCLUSIONS GFH018 monotherapy presented a favorable safety profile without cardiac toxicity or bleeding. Modest efficacy warrants further studies, including combination strategies. TRIAL REGISTRATION ClinicalTrial. gov ( https://www. CLINICALTRIALS gov/ ), NCT05051241. Registered on 2021-09-02.
Collapse
Affiliation(s)
- Ye Guo
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zishu Wang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huan Zhou
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanhong Deng
- Sixth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
| | - Qun Li
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junli Xue
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Ge
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuang Wang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Jing Wang
- Translational Science, GenFleet Therapeutics Inc, Shanghai, China
| | - Yue Zhang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Congqiao Zhao
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Huaqiang Zhu
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Yu Wang
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Haige Shen
- Clinical Department, GenFleet Therapeutics Inc, Shanghai, China
| | - Dong Liu
- Translational Science, GenFleet Therapeutics Inc, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
32
|
Wang MJ, Xia Y, Gao QL. DNA Damage-driven Inflammatory Cytokines: Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy. Curr Med Sci 2024; 44:261-272. [PMID: 38561595 DOI: 10.1007/s11596-024-2859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
Collapse
Affiliation(s)
- Meng-Jie Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qing-Lei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
33
|
Hussain S, Guo Y, Huo Y, Shi J, Hou Y. Regulation of cancer progression by CK2: an emerging therapeutic target. Med Oncol 2024; 41:94. [PMID: 38526625 DOI: 10.1007/s12032-024-02316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/28/2024] [Indexed: 03/27/2024]
Abstract
Casein kinase II (CK2) is an enzyme with pleiotropic kinase activity that catalyzes the phosphorylation of lots of substrates, including STAT3, p53, JAK2, PTEN, RELA, and AKT, leading to the regulation of diabetes, cardiovascular diseases, angiogenesis, and tumor progression. CK2 is observed to have high expression in multiple types of cancer, which is associated with poor prognosis. CK2 holds significant importance in the intricate network of pathways involved in promoting cell proliferation, invasion, migration, apoptosis, and tumor growth by multiple pathways such as JAK2/STAT3, PI3K/AKT, ATF4/p21, and HSP90/Cdc37. In addition to the regulation of cancer progression, increasing evidence suggests that CK2 could regulate tumor immune responses by affecting immune cell activity in the tumor microenvironment resulting in the promotion of tumor immune escape. Therefore, inhibition of CK2 is initially proposed as a pivotal candidate for cancer treatment. In this review, we discussed the role of CK2 in cancer progression and tumor therapy.
Collapse
Affiliation(s)
- Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yilei Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Huo
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Kim W, Ye Z, Simonenko V, Shahi A, Malikzay A, Long S, Xu JJ, Lu A, Horng JH, Wu CR, Chen PJ, Lu P, Evans DM. Codelivery of TGFβ and Cox2 siRNA inhibits HCC by promoting T-cell penetration into the tumor and improves response to Immune Checkpoint Inhibitors. NAR Cancer 2024; 6:zcad059. [PMID: 38204925 PMCID: PMC10776204 DOI: 10.1093/narcan/zcad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Upregulation of TGFβ and Cox2 in the tumor microenvironment results in blockade of T-cell penetration into the tumor. Without access to tumor antigens, the T-cell response will not benefit from administration of the immune checkpoint antibodies. We created an intravenous polypeptide nanoparticle that can deliver two siRNAs (silencing TGFβ and Cox2). Systemic administration in mice, bearing a syngeneic orthotopic hepatocellular carcinoma (HCC), delivers the siRNAs to various cells in the liver, and significantly reduces the tumor. At 2 mg/kg (BIW) the nanoparticle demonstrated a single agent action and induced tumor growth inhibition to undetectable levels after five doses. Reducing the siRNAs to 1mg/kg BIW demonstrated greater inhibition in the presence of PD-L1 mAbs. After only three doses BIW, we could still recover a smaller tumor and, in tumor sections, showed an increase in penetration of CD4+ and CD8+ T-cells deeper into the remaining tumor that was not evident in animals treated with non-silencing siRNA. The combination of TGFβ and Cox2 siRNA co-administered in a polypeptide nanoparticle can act as a novel therapeutic alone against HCC and may augment the activity of the immune checkpoint antibodies. Silencing TGFβ and Cox2 converts an immune excluded (cold) tumor into a T-cell inflamed (hot) tumor.
Collapse
Affiliation(s)
- Wookhyun Kim
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Zhou Ye
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Vera Simonenko
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Aashirwad Shahi
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Asra Malikzay
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Steven Z Long
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - John J Xu
- Suzhou Sirnaomics Pharmaceuticals, Ltd., Biobay, Suzhou, China
| | - Alan Lu
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Jau-Hau Horng
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Chang-Ru Wu
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Pei-Jer Chen
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Patrick Y Lu
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - David M Evans
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| |
Collapse
|
35
|
Robbrecht D, Grob J, Bechter O, Simonelli M, Doger B, Borbath I, Butler MO, Cheng T, Romano PM, Pons‐Tostivint E, Di Nicola M, Curigliano G, Ryu M, Rodriguez‐Vida A, Schadendorf D, Garralda E, Abbadessa G, Demers B, Amrate A, Wang H, Lee JS, Pomponio R, Wang R. Biomarker and pharmacodynamic activity of the transforming growth factor-beta (TGFβ) inhibitor SAR439459 as monotherapy and in combination with cemiplimab in a phase I clinical study in patients with advanced solid tumors. Clin Transl Sci 2024; 17:e13736. [PMID: 38362837 PMCID: PMC10870242 DOI: 10.1111/cts.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Abstract
SAR439459, a 'second-generation' human anti-transforming growth factor-beta (TGFβ) monoclonal antibody, inhibits all TGFβ isoforms and improves the antitumor activity of anti-programmed cell death protein-1 therapeutics. This study reports the pharmacodynamics (PD) and biomarker results from phase I/Ib first-in-human study of SAR439459 ± cemiplimab in patients with advanced solid tumors (NCT03192345). In dose-escalation phase (Part 1), SAR439459 was administered intravenously at increasing doses either every 2 weeks (Q2W) or every 3 weeks (Q3W) with cemiplimab IV at 3 mg/kg Q2W or 350 mg Q3W, respectively, in patients with advanced solid tumors. In dose-expansion phase (Part 2), patients with melanoma received SAR439459 IV Q3W at preliminary recommended phase II dose (pRP2D) of 22.5/7.5 mg/kg or at 22.5 mg/kg with cemiplimab 350 mg IV Q3W. Tumor biopsy and peripheral blood samples were collected for exploratory biomarker analyses to assess target engagement and PD, and results were correlated with patients' clinical parameters. SAR439459 ± cemiplimab showed decreased plasma and tissue TGFβ, downregulation of TGFβ-pathway activation signature, modulation of peripheral natural killer (NK) and T cell expansion, proliferation, and increased secretion of CXCL10. Conversion of tumor tissue samples from 'immune-excluded' to 'immune-infiltrated' phenotype in a representative patient with melanoma SAR439459 22.5 mg/kg with cemiplimab was observed. In paired tumor and plasma, active and total TGFβ1 was more consistently elevated followed by TGFβ2, whereas TGFβ3 was only measurable (lower limit of quantitation ≥2.68 pg/mg) in tumors. SAR439459 ± cemiplimab showed expected peripheral PD effects and TGFβ alteration. However, further studies are needed to identify biomarkers of response.
Collapse
Affiliation(s)
- Debbie Robbrecht
- Medical OncologyErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jean‐Jacques Grob
- Dermatology and Oncology ServiceAix Marseille University and Timone HospitalMarseilleFrance
| | - Oliver Bechter
- Department of General Medical OncologyLeuven Cancer Institute, University Hospitals Leuven, KU LeuvenLeuvenBelgium
| | - Matteo Simonelli
- Department of Biomedical ScienceHumanitas UniversityMilanItaly
- Department of Medical Oncology and HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Bernard Doger
- START Madrid‐FJD, Early Phase Clinical Trials UnitHospital Universitario Fundación Jiménez DíazMadridSpain
| | - Ivan Borbath
- Department of HepatogastroenterologyCliniques Universitaires Saint‐Luc, Université Catholique de LouvainBrusselsBelgium
| | - Marcus O. Butler
- Department of Medical Oncology and Hematology, Department of ImmunologyPrincess Margaret Cancer Centre, University of TorontoTorontoOntarioCanada
| | - Tina Cheng
- Division of Medical Oncology, Department of OncologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Patricia Martin Romano
- Département d'Innovation Thérapeutique et d'Essais Précoces, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | | | - Massimo Di Nicola
- Unit of Immunotherapy and Anticancer Innovative TherapeuticsFondazione IRCCS Istituto Nazionale TumoriMilanItaly
| | - Giuseppe Curigliano
- Division of Early Drug DevelopmentEuropean Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Hemato‐OncologyUniversity of MilanMilanItaly
| | - Min‐Hee Ryu
- Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Alejo Rodriguez‐Vida
- Medical Oncology Department, Hospital del Mar, CIBERONCIMIM Research InstituteBarcelonaSpain
| | - Dirk Schadendorf
- Department of DermatologyUniversity Hospital EssenEssenGermany
- German Cancer Consortium, partner site EssenEssenGermany
- NCT‐West, Campus EssenEssenGermany
- University Alliance Ruhr, Research Center One Health, University Duisburg‐EssenEssenGermany
| | - Elena Garralda
- Medical Oncology DepartmentVall d'Hebron University Hospital and Institute of OncologyBarcelonaSpain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao B, Yin J, Ding L, Luo J, Luo J, Mu J, Pan S, Du J, Zhong Y, Zhang L, Liu L. SPAG6 regulates cell proliferation and apoptosis via TGF-β/Smad signal pathway in adult B-cell acute lymphoblastic leukemia. Int J Hematol 2024; 119:119-129. [PMID: 38147275 DOI: 10.1007/s12185-023-03684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023]
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) prognosis remains unsatisfactory, and searching for new therapeutic targets is crucial for improving patient prognosis. Sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, plays an important role in tumors, especially hematologic tumors; however, it is unknown whether SPAG6 plays a role in adult B-ALL. In this study, we demonstrated for the first time that SPAG6 expression was up-regulated in the bone marrow of adult B-ALL patients compared to healthy donors, and expression was significantly reduced in patients who achieved complete remission (CR) after treatment. In addition, patients with high SPAG6 expression were older (≥ 35 years; P = 0.015), had elevated white blood cell counts (WBC > 30 × 109/L; P = 0.021), and a low rate of CR (P = 0.036). We explored the SPAG6 effect on cell function by lentiviral transfection of adult B-ALL cell lines BALL-1 and NALM-6, and discovered that knocking down SPAG6 significantly inhibited cell proliferation and promoted apoptosis. We identified that SPAG6 knockdown might regulate cell proliferation and apoptosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiaxiu Yin
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Li Ding
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jie Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jing Luo
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Jiao Mu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Shirui Pan
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juan Du
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yirui Zhong
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Linyi Zhang
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China
| | - Lin Liu
- Department of Hematology, Chongqing Medical University, Medical College Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
37
|
Choi G, Lee EY, Chung D, Cho K, Yu WJ, Nam SJ, Park SK, Choi IW. The Inhibition Effect and Mechanism of Staurosporine Isolated from Streptomyces sp. SNC087 Strain on Nasal Polyp. Mar Drugs 2024; 22:39. [PMID: 38248664 PMCID: PMC10820969 DOI: 10.3390/md22010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This study aims to explore the potential inhibition effects of staurosporine isolated from a Streptomyces sp. SNC087 strain obtained from seawater on nasal polyps. Staurosporine possesses antimicrobial and antihypertensive activities. This research focuses on investigating the effects of staurosporine on suppressing the growth and development of nasal polyps and elucidating the underlying mechanisms involved. The experimental design includes in vitro and ex vivo evaluations to assess the inhibition activity and therapeutic potential of staurosporine against nasal polyps. Nasal polyp-derived fibroblasts (NPDFs) were stimulated with TGF-β1 in the presence of staurosporine. The levels of α-smooth muscle actin (α-SMA), collagen type-I (Col-1), fibronectin, and phosphorylated (p)-Smad 2 were investigated using Western blotting. VEGF expression levels were analyzed in nasal polyp organ cultures treated with staurosporine. TGF-β1 stimulated the production of Col-1, fibronectin, and α-SMA and was attenuated by staurosporine pretreatment. Furthermore, these inhibitory effects were mediated by modulation of the signaling pathway of Smad 2 in TGF-β1-induced NPDFs. Staurosporine also inhibits the production of VEGF in ex vivo NP tissues. The findings from this study will contribute to a better understanding of staurosporine's role in nasal polyp management and provide insights into its mechanisms of action.
Collapse
Affiliation(s)
- Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (D.C.); (K.C.); (W.-J.Y.)
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-Y.L.); (S.-J.N.)
| | - Dawoon Chung
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (D.C.); (K.C.); (W.-J.Y.)
| | - Kichul Cho
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (D.C.); (K.C.); (W.-J.Y.)
| | - Woon-Jong Yu
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (D.C.); (K.C.); (W.-J.Y.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (E.-Y.L.); (S.-J.N.)
| | - Seong-Kook Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Il-Whan Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
38
|
Gamboa AC, Kooby DA, Maithel SK, Gamblin TC. Immune checkpoint inhibitors in hepatocellular carcinoma: A review of current clinical trials. J Surg Oncol 2024; 129:63-70. [PMID: 38059310 DOI: 10.1002/jso.27545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a poor prognosis due to advanced disease presentation or recurrence despite curative-intent resection. Since the approval of sorafenib in 2007, few systemic therapies offered a significant improvement in treatment outcomes. Over the last 3 years, however, rapid advancements in the field of immunotherapy have led to approval of checkpoint inhibitors in 2020 for use in advanced HCC. Since then, a few other clinical trials have shown promising results in the adjuvant and neoadjuvant setting. The objective of this review is to summarize data from existing clinical trials evaluating the use of systemic immune checkpoint inhibitors in HCC and to follow the natural evolution of this development across the metastatic, adjuvant, and neoadjuvant landscapes.
Collapse
Affiliation(s)
- Adriana C Gamboa
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David A Kooby
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Atlanta, Georgia, USA
| | - Shishir K Maithel
- Department of Surgery, Division of Surgical Oncology, Winship Cancer Institute, Atlanta, Georgia, USA
| | - T Clark Gamblin
- Division of Surgical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
39
|
Binabaj MM, Asgharzadeh F, Rahmani F, Al-Asady AM, Hashemzehi M, Soleimani A, Avan A, Mehraban S, Ghorbani E, Ryzhikov M, Khazaei M, Hassanian SM. Vactosertib potently improves anti-tumor properties of 5-FU for colon cancer. Daru 2023; 31:193-203. [PMID: 37740873 PMCID: PMC10624787 DOI: 10.1007/s40199-023-00474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/22/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Several studies have shown that the TGF-β signaling pathway plays a critical role in colorectal cancer (CRC) pathogenesis. The aim of the current study is to investigate the therapeutic potential of Vactosertib (EW-7197), a selective inhibitor of TGF-β receptor type I, either alone or in combination with the standard first-line chemotherapeutic treatment, 5-Fluorouracil (5-FU), in CRC progression in both cellular and animal models. METHODS Real-Time PCR, Zymography, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and Eosin (H&E) tissue staining, and Flow cytometry techniques were applied to determine the anti-tumor properties of this novel TGF-β inhibitor in in vitro (CT-26 cell line) and in vivo (inbred BALB/C mice) samples. RESULTS Our findings showed that Vactosertib decreased cell proliferation and induced spheroid shrinkage. Moreover, this inhibitor suppressed the cell cycle and its administration either alone or in combination with 5-FU induced apoptosis by regulating the expression of p53 and BAX proteins. It also improved 5-FU anti-cancer effects by decreasing the tumor volume and weight, increasing tumor necrosis, and regulating tumor fibrosis and inflammation in an animal model. Vactosertib also enhanced the inhibitory effect of 5-FU on invasive behavior of CRC cells by upregulating the expression of E-cadherin and inhibiting MMP-9 enzymatic activity. CONCLUSION This study demonstrating the potent anti-tumor effects of Vactosertib against CRC progression. Our results clearly suggest that this inhibitor could be a promising agent reducing CRC tumor progression when administered either alone or in combination with standard treatment in CRC patients.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Kashmar School of Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Kerbala, Iraq
| | | | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Soni N, Bacete L. The interplay between cell wall integrity and cell cycle progression in plants. PLANT MOLECULAR BIOLOGY 2023; 113:367-382. [PMID: 38091166 PMCID: PMC10730644 DOI: 10.1007/s11103-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Nancy Soni
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Laura Bacete
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
41
|
Sun RC, Li J, Li YX, Wang HZ, Dal E, Wang ML, Li YX. Tousled-like kinase 1 promotes gastric cancer progression by regulating the tumor growth factor-beta signaling pathway. World J Gastroenterol 2023; 29:5919-5934. [PMID: 38111505 PMCID: PMC10725561 DOI: 10.3748/wjg.v29.i44.5919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The role of Tousled-like kinase 1 (TLK1) in in gastric cancer (GC) remains unclear. AIM To investigate the expression, biological function, and underlying mechanisms of TLK1 in GC. METHODS We measured TLK1 protein expression levels and localized TLK1 in GC cells and tissues by western blot and immunofluorescence, respectively. We transfected various GC cells with lentiviruses to create TLK1 overexpression and knockdown lines and established the functional roles of TLK1 through in vitro colony formation, 5-ethynyl-2`-deoxyuridine, and Transwell assays as well as flow cytometry. We applied bioinformatics to elucidate the signaling pathways associated with TLK1. We performed in vivo validation of TLK1 functions by inducing subcutaneous xenograft tumors in nude mice. RESULTS TLK1 was significantly upregulated in GC cells and tissues compared to their normal counterparts and was localized mainly to the nucleus. TLK1 knockdown significantly decreased colony formation, proliferation, invasion, and migration but increased apoptosis in GC cells. TLK1 overexpression had the opposite effects. Bioinformatics revealed, and subsequent experiments verified, that the tumor growth factor-beta signaling pathway was implicated in TLK1-mediated GC progression. The in vivo assays confirmed that TLK1 promotes tumorigenesis in GC. CONCLUSION The findings of the present study indicated that TLK1 plays a crucial role in GC progression and is, therefore, promising as a therapeutic target against this disease.
Collapse
Affiliation(s)
- Ruo-Chuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ya-Xian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Emre Dal
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Ming-Liang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
42
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Siciliano G, Chiriacò MS, Ferrara F, Turco A, Velardi L, Signore MA, Esposito M, Gigli G, Primiceri E. Development of an MIP based electrochemical sensor for TGF-β1 detection and its application in liquid biopsy. Analyst 2023; 148:4447-4455. [PMID: 37599598 DOI: 10.1039/d3an00958k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Oral cancer is one of the most common types of cancer in Europe and its large diffusion requires, together with prevention, the development of low-cost and reliable portable platforms for its diagnosis, with features of high selectivity and sensitivity. In this study, the development and characterization of a molecularly imprinted polymer (MIP)-based electrochemical sensor for TGF-β1 detection are reported. The optimized biosensor is a potential tool for the early screening of oral cancer. A biomimetic surface has been obtained by electropolymerization of o-phenylenediamine (o-PD) on platinum electrodes, in the presence of TGF-β1 as a template molecule. MIP synthesis, template removal and TGF-β1 rebinding have been monitored by Differential Pulse Voltammetry (DPV). Atomic Force Microscopy (AFM) has been performed to investigate and characterize the surface morphology and the influence of the washing step on MIP and NIP (non-imprinted polymer as the control) while the thickness of the polymer layer has been measured by Scanning Transmission Electron Microscopy (STEM) analysis. The MIP sensor performance has been tested in both buffer solution and saliva samples with TGF-β1, showing a linear response in the considered range (from 20 ng ml-1 down to 0.5 ng ml-1), an outstanding LOD of 0.09 ng mL-1 and affinity and selectivity to TGF-β1 also in the presence of interfering molecules. The sensor was used also for the detection of target molecules in spiked saliva samples with good recovery results suggesting the possibility of the use of the proposed system for large scale fast screening in oral cancer diagnosis.
Collapse
Affiliation(s)
- Giulia Siciliano
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | | | - Francesco Ferrara
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Antonio Turco
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Luciano Velardi
- Institute for Microelectronics and Microsystems, CNR-IMM, via per Monteroni, 73100, Lecce, Italy
| | - Maria Assunta Signore
- Institute for Microelectronics and Microsystems, CNR-IMM, via per Monteroni, 73100, Lecce, Italy
| | - Marco Esposito
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Elisabetta Primiceri
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
44
|
Mouritzen MT, Ladekarl M, Hager H, Mattesen TB, Lippert JB, Frank MS, Nøhr AK, Egendal IB, Carus A. Gene Expressions and High Lymphocyte Count May Predict Durable Clinical Benefits in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2023; 15:4480. [PMID: 37760450 PMCID: PMC10526901 DOI: 10.3390/cancers15184480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Not all patients with advanced non-small cell lung cancer (NSCLC) benefit from immune checkpoint inhibitors (ICIs). Therefore, we aimed to assess the predictive potential of gene expression profiling (GEP), peripheral immune cell counts, and clinical characteristics. METHODS The primary endpoint of this prospective, observational study was a durable clinical benefit (DCB) defined as progression-free survival >6 months. In a subgroup with histological biopsies of sufficient quality (n = 25), GEP was performed using the nCounter® PanCancer IO 360 panel. RESULTS DCB was observed in 49% of 123 included patients. High absolute lymphocyte count (ALC) and absence of liver metastases were associated with DCB (OR = 1.95, p = 0.038 and OR = 0.36, p = 0.046, respectively). GEP showed clustering of differentially expressed genes according to DCB, and a strong association between PD-L1 assessed by GEP (CD274) and immunohistochemistry (IHC) was observed (p = 0.00013). The TGF-β, dendritic cell, and myeloid signature scores were higher for patients without DCB, whereas the JAK/STAT loss signature scores were higher for patients with DCB (unadjusted p-values < 0.05). CONCLUSIONS ALC above 1.01 × 109/L and absence of liver metastases were significantly associated with DCB in ICI-treated patients with NSCLC. GEP was only feasible in 20% of the patients. GEP-derived signatures may be associated with clinical outcomes, and PD-L1 could be assessed by GEP rather than IHC.
Collapse
Affiliation(s)
- Mette T. Mouritzen
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Morten Ladekarl
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense, Denmark
| | - Trine B. Mattesen
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
| | - Julie B. Lippert
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
| | - Malene S. Frank
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne K. Nøhr
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Center for Clinical Data Science (CLINDA), Aalborg University and Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Ida B. Egendal
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Center for Clinical Data Science (CLINDA), Aalborg University and Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Andreas Carus
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| |
Collapse
|
45
|
Choi HY, Chang JE. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int J Mol Sci 2023; 24:13618. [PMID: 37686423 PMCID: PMC10487969 DOI: 10.3390/ijms241713618] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
The development of targeted therapies has revolutionized cancer treatment, offering improved efficacy with reduced side effects compared with traditional chemotherapy. This review highlights the current landscape of targeted therapy in lung cancer, colorectal cancer, and prostate cancer, focusing on key molecular targets. Moreover, it aligns with US Food and Drug Administration (FDA)-approved drugs and drug candidates. In lung cancer, mutations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene rearrangements have emerged as significant targets. FDA-approved drugs like osimertinib and crizotinib specifically inhibit these aberrant pathways, providing remarkable benefits in patients with EGFR-mutated or ALK-positive lung cancer. Colorectal cancer treatment has been shaped by targeting the vascular endothelial growth factor (VEGF) and EGFR. Bevacizumab and cetuximab are prominent FDA-approved agents that hinder VEGF and EGFR signaling, significantly enhancing outcomes in metastatic colorectal cancer patients. In prostate cancer, androgen receptor (AR) targeting is pivotal. Drugs like enzalutamide, apalutamide, and darolutamide effectively inhibit AR signaling, demonstrating efficacy in castration-resistant prostate cancer. This review further highlights promising targets like mesenchymal-epithelial transition (MET), ROS1, BRAF, and poly(ADP-ribose) polymeras (PARP) in specific cancer subsets, along with ongoing clinical trials that continue to shape the future of targeted therapy.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
46
|
Phung CD, Nguyen BL, Jeong J, Chang J, Jin SG, Choi H, Ku SK, Kim JO. Shaping the "hot" immunogenic tumor microenvironment by nanoparticles co-delivering oncolytic peptide and TGF-β1 siRNA for boosting checkpoint blockade therapy. Bioeng Transl Med 2023; 8:e10392. [PMID: 37693065 PMCID: PMC10487304 DOI: 10.1002/btm2.10392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 09/12/2023] Open
Abstract
Induction of potent immune responses toward tumors remains challenging in cancer immunotherapy, in which it only showed benefits in a minority of patients with "hot" tumors, which possess pre-existing effector immune cells within the tumor. In this study, we proposed a nanoparticle-based strategy to fire up the "cold" tumor by upregulating the components associated with T and NK cell recruitment and activation and suppressing TGF-β1 secretion by tumor cells. Specifically, LTX-315, a first-in-class oncolytic cationic peptide, and TGF-β1 siRNA were co-entrapped in a polymer-lipid hybrid nanoparticle comprising PLGA, DSPE-mPEG, and DSPE-PEG-conjugated with cRGD peptide (LTX/siR-NPs). The LTX/siR-NPs showed significant inhibition of TGF-β1 expression, induction of type I interferon release, and triggering immunogenic cell death (ICD) in treated tumor cells, indicated via the increased levels of danger molecules, an in vitro setting. The in vivo data showed that the LTX/siR-NPs could effectively protect the LTX-315 peptide from degradation in serum, which highly accumulated in tumor tissue. Consequently, the LTX/siR-NPs robustly suppressed TGF-β1 production by tumor cells and created an immunologically active tumor with high infiltration of antitumor effector immune cells. As a result, the combination of LTX/siR-NP treatment with NKG2A checkpoint inhibitor therapy remarkably increased numbers of CD8+NKG2D+ and NK1.1+NKG2D+ within tumor masses, and importantly, inhibited the tumor growth and prolonged survival rate of treated mice. Taken together, this study suggests the potential of the LTX/siR-NPs for inflaming the "cold" tumor for potentiating the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Bao Loc Nguyen
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Jee‐Heon Jeong
- Department of Precision Medicine, School of MedicineSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jae‐Hoon Chang
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical EngineeringDankook UniversityCheonanRepublic of Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Sae Kwang Ku
- College of Korean MedicineDaegu Haany UniversityGyeongsanRepublic of Korea
| | - Jong Oh Kim
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| |
Collapse
|
47
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
48
|
Chowdhury S, Kennedy JJ, Ivey RG, Murillo OD, Hosseini N, Song X, Petralia F, Calinawan A, Savage SR, Berry AB, Reva B, Ozbek U, Krek A, Ma W, da Veiga Leprevost F, Ji J, Yoo S, Lin C, Voytovich UJ, Huang Y, Lee SH, Bergan L, Lorentzen TD, Mesri M, Rodriguez H, Hoofnagle AN, Herbert ZT, Nesvizhskii AI, Zhang B, Whiteaker JR, Fenyo D, McKerrow W, Wang J, Schürer SC, Stathias V, Chen XS, Barcellos-Hoff MH, Starr TK, Winterhoff BJ, Nelson AC, Mok SC, Kaufmann SH, Drescher C, Cieslik M, Wang P, Birrer MJ, Paulovich AG. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell 2023; 186:3476-3498.e35. [PMID: 37541199 PMCID: PMC10414761 DOI: 10.1016/j.cell.2023.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Oscar D Murillo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Department of Population Health Science and Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Umut Ozbek
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jiayi Ji
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Chenwei Lin
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Uliana J Voytovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yajue Huang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sun-Hee Lee
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Lindsay Bergan
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Travis D Lorentzen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Joshua Wang
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, and Institute for Data Science & Computing, University of Miami, Miami, FL 33136, USA
| | - X Steven Chen
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mary Helen Barcellos-Hoff
- Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Boris J Winterhoff
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles Drescher
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Marcin Cieslik
- Department of Pathology, Department of Computational Medicine and Bioinformatics, Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
49
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
50
|
Jiang D, Ma X, Zhang X, Cheng B, Wang R, Liu Y, Zhang X. New techniques: a roadmap for the development of HCC immunotherapy. Front Immunol 2023; 14:1121162. [PMID: 37426674 PMCID: PMC10323423 DOI: 10.3389/fimmu.2023.1121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The absence of effective early diagnostic methods and the limitations of conventional therapies have led to a growing interest in immunotherapy as a novel treatment approach for HCC. The liver serves as an immune organ and a recipient of antigens from the digestive tract, creating a distinctive immune microenvironment. Key immune cells, including Kupffer cells and cytotoxic T lymphocytes, play a crucial role in HCC development, thus offering ample research opportunities for HCC immunotherapy. The emergence of advanced technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) and single-cell ribonucleic acid sequencing has introduced new biomarkers and therapeutic targets, facilitating early diagnosis and treatment of HCC. These advancements have not only propelled the progress of HCC immunotherapy based on existing studies but have also generated new ideas for clinical research on HCC therapy. Furthermore, this review analysed and summarised the combination of current therapies for HCC and the improvement of CRISPR technology for chimeric antigen receptor T cell therapy, instilling renewed hope for HCC treatment. This review comprehensively explores the advancements in immunotherapy for HCC, focusing on the use of new techniques.
Collapse
|