1
|
Zhao J, Fan Y, Li H, Wang C, Fan S, Sun H, Liu M. Ganoderic Acid A Prevented Osteoporosis by Modulating the PIK3CA/p-Akt/TWIST1 Signaling Pathway. Food Sci Nutr 2025; 13:e70177. [PMID: 40236832 PMCID: PMC11997014 DOI: 10.1002/fsn3.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoporosis is a disorder of decreased bone mass, microarchitectural deterioration, and fragility fractures. Ganoderma lucidum has been reported to have a variety of pharmacological activities, including immune regulation, anti-inflammation, antioxidation, sedative hypnosis, blood sugar and lipid regulation, and so on. However, the effective ingredients and the underlying mechanism of Ganoderma lucidum against osteoporosis are rarely clarified. Ganoderic acid A (GA-A), a triterpenoid, is one of the main components of Ganoderma lucidum. Our previous preliminary bioinformatic study found that it may affect bone metabolism, and it has been reported that GA-A has anti-osteoporosis potential via regulating MC3T3-E1 cells' osteogenic differentiation activity. Therefore, the aim of this study is to investigate the effects of Ganoderic acid A in preventing osteoporosis and uncover the potential mechanisms. In vivo, the 8-week-old C57BL/6J female mice were used to establish the osteoporosis model by ovariectomy (OVX). Two cell lines, MC3T3-E1 cells and primary osteoblasts, were used and induced with hydrogen peroxide (H2O2) to the state of oxidative stress in osteoporosis in vitro. We showed that Ganoderic acid A could inhibit OVX-induced bone loss in a dose-dependent manner and promote H2O2-induced osteogenic differentiation of primary osteoblasts and MC3T3-E1 cells. The mechanism-related signaling pathways were identified by network pharmacology screening and verified by bioinformatics. Results predicted that the target of Ganoderic acid A might be PIK3CA. Mechanistically, we found that PIK3CA activated the Akt receptor, then inhibited the expression of TWIST1 in the osteoblasts to up-regulate the protein expression of the osteogenic-related markers. Our results suggested that Ganoderic acid A could prevent OVX-induced osteoporosis and promote H2O2-induced osteogenic differentiation of primary osteoblasts and MC3T3-E1 cells. Ganoderic acid A might play an important role in the prevention of osteoporosis by modulating the PIK3CA/p-Akt/TWIST1 signaling pathway.
Collapse
Affiliation(s)
- Jianyu Zhao
- Department of Orthopaedics, the First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Ying Fan
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
| | - Hao Li
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
| | - Sihang Fan
- Department of Orthopaedics, the First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Huijun Sun
- Department of Clinical Pharmacology, College of PharmacyDalian Medical UniversityDalianChina
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
2
|
Zhang K, Liu Y, Lu Y, Liu G, Shen X. Involvement of icaritin in the regulation of osteocyte exosomal microRNAs. J Orthop Surg Res 2025; 20:164. [PMID: 39953581 PMCID: PMC11827220 DOI: 10.1186/s13018-025-05583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE To explore the effects of Icaritin (ICA) on the regulation of osteocyte exosomal miRNAs and to promote the understanding of the potential molecular mechanisms involved in bone repair by ICA. METHODS MLO-Y4 cells were treat with PBS or 10 µM ICA for 24 h and the supernatant was collected. Exosomes were isolated and purified according to standard methods, and identified by transmission electron microscopy, nanoparticle tracking analysis and protein blotting. Exosomal miRNAs were analysed by RNA sequencing. RESULTS Osteocyte exosomes were successfully isolated and characterised. MiRNA sequencing showed that two known exosomal miRNAs (miR-128-3p, miR-30a-5p) were significantly up-regulated and two were significantly down-regulated (miR-5112, miR-1285) after ICA intervention. CONCLUSION Based on the findings, ICA regulates several miRNAs of osteocytes, which deepen our understanding of the therapeutic effects and mechanisms of ICA on skeletal diseases. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteocytes are the most abundant cell type in bone tissue, of which the impact on bone homeostasis is still not clear. This study explored the impact of icaritin on osteocytes and their derived exosomes. By doing so, we hope to contribute to the understanding the therapeutic potential of ICA and osteocytes in maintaining bone health and treating conditions such as osteoporosis.
Collapse
Affiliation(s)
- Kaijia Zhang
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Yujiang Liu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Yue Lu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Gongwen Liu
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China
| | - Xiaofeng Shen
- Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou, 215003, P. R. China.
| |
Collapse
|
3
|
Wang X, Wu L, Yu M, Wang H, He L, Hu Y, Li Z, Zheng Y, Peng B. Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations. Mol Divers 2025; 29:591-606. [PMID: 38734868 DOI: 10.1007/s11030-024-10877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1β, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-κB/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and - 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.
Collapse
Affiliation(s)
- Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Lijiao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Maobin Yu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Hao Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Langyu He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yilang Hu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Zhaosen Li
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yuqin Zheng
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Bo Peng
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China.
| |
Collapse
|
4
|
Guo Y, Ge X, Wang W, Wang R, Chen Q, Wang H. Epimedium applied in the clinical treatment of osteoporosis patients with periodontitis. Medicine (Baltimore) 2024; 103:e40837. [PMID: 39686428 PMCID: PMC11651507 DOI: 10.1097/md.0000000000040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Osteoporosis and periodontitis, prevalent in middle-aged and elderly populations, share common features of bone loss and chronic inflammation. This study explores the hypothesis that Epimedium, known for its bone-strengthening properties, may enhance the effectiveness of conventional osteoporosis treatment in patients with coexisting periodontitis. This retrospective study analyzed clinical data from 120 patients with osteoporosis and periodontitis, divided into 2 groups. The control group received calcium carbonate, vitamin D, and zoledronic acid (CC + VD + ZA) therapy, while the observation group received additional Epimedium flavonoid treatment. Outcomes assessed included changes in bone mineral density (BMD), bone metabolism markers (β-CTx, N-MID, CT, ALP), periodontal indices (PD, AL, SBI, PLI), and inflammatory markers in gingival crevicular fluid (GCF) before and 6 months posttreatment. Compared to the control group, the observation group showed significantly greater increases in lumbar spine and proximal femur BMD and reductions in BM markers (P < .05). Periodontal health metrics (PD, AL, SBI, PLI) and GCF inflammatory markers (TNF-α, IL-1β, IL-6, IL-8, hs-CRP, ICAM-1, HMGB1, PGE2) were markedly improved in the observation group, correlating with enhanced total effective rates (TER) for osteoporosis (95.0%) and periodontitis (91.7%) and a reduced adverse event rate (AER). Epimedium shows promise as an adjunctive therapy in patients with osteoporosis and periodontitis, contributing to improved BMD, reduced inflammation, and enhanced periodontal health, suggesting its potential for broader clinical application in managing these coexisting conditions.
Collapse
Affiliation(s)
- Ying Guo
- Department of stomatology, General Hospital of Shenzhen University, Shenzhen, China
| | - Xu Ge
- Department of stomatology, General Hospital of Shenzhen University, Shenzhen, China
| | - Wei Wang
- Dental Department, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Rongrong Wang
- Department of stomatology, General Hospital of Shenzhen University, Shenzhen, China
| | - Qianmin Chen
- Department of stomatology, General Hospital of Shenzhen University, Shenzhen, China
| | - Hong Wang
- Department of stomatology, General Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liu Y, Qu Y, Liu C, Zhang D, Xu B, Wan Y, Jiang P. Neutrophil extracellular traps: Potential targets for the treatment of rheumatoid arthritis with traditional Chinese medicine and natural products. Phytother Res 2024; 38:5067-5087. [PMID: 39105461 DOI: 10.1002/ptr.8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Abnormal formation of neutrophil extracellular traps (NETs) at the synovial membrane leads to the release of many inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Elastase, histone H3, and myeloperoxidase, which are carried by NETs, damage the soft tissues of the joints and aggravate the progression of RA. The balance of NET formation coordinates the pro-inflammatory and anti-inflammatory effects and plays a key role in the development of RA. Therefore, when NETs are used as effector targets, highly targeted drugs with fewer side effects can be developed to treat RA without damaging the host immune system. Currently, an increasing number of studies have shown that traditional Chinese medicines and natural products can regulate the formation of NETs through multiple pathways to counteract RA, which shows great potential for the treatment of RA and has a promising future for clinical application. In this article, we review the latest biological progress in understanding NET formation, the mechanism of NETs in RA, and the potential targets or pathways related to the modulation of NET formation by Chinese medicines and natural products. This review provides a relevant basis for the use of Chinese medicines and natural products as natural adjuvants in the treatment of RA.
Collapse
Affiliation(s)
- Yuan Liu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Yuan Qu
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yakun Wan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- The first Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- Rheumatology and Immunology Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
7
|
Cui J, Lin L, Hao F, Shi Z, Gao Y, Yang T, Yang C, Wu X, Gao R, Ru Y, Li F, Xiao C, Gao Y, Wang Y. Comprehensive review of the traditional uses and the potential benefits of epimedium folium. Front Pharmacol 2024; 15:1415265. [PMID: 39323630 PMCID: PMC11422139 DOI: 10.3389/fphar.2024.1415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Epimedium Folium has been extensively utilized for medicinal purposes in China for a significant period. This review undertakes a comprehensive examination of literature pertaining to Epimedium and its metabolites over the past decade, drawing from databases such as PubMed. Through meticulous organization and synthesis of pertinent research findings, including disease models, pharmacological effects, and related aspects, this narrative review sheds light on the principal pharmacological activities and associated mechanisms of Epimedium in safeguarding the reproductive system, promoting bone health, mitigating inflammation, and combating tumors and viral infections. Consequently, this review contributes to a more profound comprehension of the recent advances in Epimedium research.
Collapse
Affiliation(s)
- Jialu Cui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Lin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiran Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuo Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yehui Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingyu Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunqi Yang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Rong Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fangyang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chengrong Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuguang Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
8
|
Ma F, Zhang W, Zhou G, Qi Y, Mao HR, Chen J, Lu Z, Wu W, Zou X, Deng D, Lv S, Xiang N, Wang X. Epimedii Folium decoction ameliorates osteoporosis in mice through NLRP3/caspase-1/IL-1β signalling pathway and gut-bone axis. Int Immunopharmacol 2024; 137:112472. [PMID: 38897131 DOI: 10.1016/j.intimp.2024.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
AIM OF THE STUDY This study aimed to determine the effect of Epimedium brevicornu Maxim. (EF) on osteoporosis (OP) and its underlying molecular mechanisms, and to explore the existence of the "Gut-Bone Axis". MATERIAL AND METHODS The impact of EF decoction (EFD) on OP was evaluated using istopathological examination and biochemical assays. Targeted metabolomics was employed to identify key molecules and explore their molecular mechanisms. Alterations in the gut microbiota (GM) were evaluated by 16S rRNA gene sequencing. The role of the GM was clarified using an antibiotic cocktail and faecal microbiota transplantation. RESULTS EFD significantly increased the weight (14.06%), femur length (4.34%), abdominal fat weight (61.14%), uterine weight (69.86%), and insulin-like growth factor 1 (IGF-1) levels (59.48%), while reducing serum type I collagen cross-linked carboxy-terminal peptide (CTX-I) levels (15.02%) in osteoporotic mice. The mechanism of action may involve the regulation of the NLRP3/cleaved caspase-1/IL-1β signalling pathway in improving intestinal tight junction proteins and bone metabolism. Additionally, EFD modulated the abundance of related GM communities, such as Lactobacillus, Coriobacteriaceae, bacteria of family S24-7, Clostridiales, and Prevotella, and increased propionate and butyrate levels. Antibiotic-induced dysbiosis of gut bacteria disrupted OP regulation of bone metabolism, which was restored by the recovery of GM. CONCLUSIONS Our study is the first to demonstrate that EFD works in an OP mouse model by utilising GM and butyric acid. Thus, EF shows promise as a potential remedy for OP in the future.
Collapse
Affiliation(s)
- Fuqiang Ma
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, 24 Jinghua Road, Luoyang, Henan 471003, PR China
| | - Weiming Zhang
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Dermatology, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Wuhan, Hubei 430022, PR China
| | - Guangwen Zhou
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Yu Qi
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - He-Rong Mao
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Jie Chen
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Zhilin Lu
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Xinrong Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Danfang Deng
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China
| | - Shenhui Lv
- Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430065, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| | - Nan Xiang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China.
| | - Xiaoqin Wang
- The First Clinical Medical School, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan, Hubei 430061, PR China; Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, 4 Huayuanshan Road, Wuhan, Hubei 430061, PR China.
| |
Collapse
|
9
|
Mei J, Ju C, Wang B, Gao R, Zhang Y, Zhou S, Liu E, Zhang L, Meng H, Liu Y, Zhao R, Zhao J, Zhang Y, Zeng W, Li J, Zhang P, Zhao J, Liu Y, Huan L, Huang Y, Zhu F, Liu H, Luo R, Yang Q, Gao S, Wang X, Fang Q, Lu Y, Dong Y, Yin X, Qiu P, Yang Q, Yang L, Xu F. The efficacy and safety of Bazi Bushen Capsule in treating premature aging: A randomized, double blind, multicenter, placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155742. [PMID: 38838635 DOI: 10.1016/j.phymed.2024.155742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE It is unclear whether traditional Chinese patent medicines can resist premature aging. This prospective study investigated the effects of Bazi Bushen Capsule (BZBS) which is a traditional Chinese patent medicine for tonifying the kidney essence on premature senility symptoms and quality of life, telomerase activity and telomere length. STUDY DESIGN AND METHODS It was a parallel, multicenter, double-blind, randomized, and placebo-controlled trial. Subjects (n = 530) aged 30-78 years were randomized to receive BZBS or placebo capsules 12 weeks. The primary outcome was the clinical feature of change in kidney deficiency for aging evaluation scale (CFCKD-AES) and tilburg frailty indicator (TFI). The secondary outcomes were SF-36, serum sex hormone level, five times sit-to-stand time (FTSST), 6MWT, motor function test-grip strength, balance test, walking speed, muscle mass measurement, telomerase and telomere length. RESULTS After 12 weeks of treatment, the CFCKD-AES and TFI scores in the BZBS group decreased by 13.79 and 1.50 respectively (6.42 and 0.58 in the placebo group, respectively); The SF-36 in the BZBS group increased by 98.38 (23.79 in the placebo group). The FTSST, motor function test grip strength, balance test, walking speed, and muscle mass in the elderly subgroup were all improved in the BZBS group. The telomerase content in the BZBS group increased by 150.04 ng/ml compared to the placebo group. The fever led one patient in the placebo group to discontinue the trial. One patient in the placebo group withdrew from the trial due to pregnancy. None of the serious AEs led to treatment discontinuation, and 3 AEs (1.14%) were assessed as related to BZBS by the primary investigator. CONCLUSIONS BZBS can improve premature aging symptoms, frailty scores, and quality of life, as well as improve FTSST, motor function: grip strength, balance test, walking speed, and muscle mass in elderly subgroups of patients, and enhance telomerase activity, but it is not significantly associated with increasing telomere length which is important for healthy aging. TRIAL REGISTRY https://www.chictr.org.cn/showproj.html?proj=166181.
Collapse
Affiliation(s)
- Jun Mei
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Chunxiao Ju
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Biqing Wang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China; Graduate School, Beijing University of Chinese Medicine, Beijing, PR China
| | - Rui Gao
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanhong Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shunlin Zhou
- Department of Rehabilitation, Hebei Yiling Hospital, Shijiazhuang, 050000, PR China
| | - Erjun Liu
- Department of Traditional Chinese Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lirui Zhang
- Department of Traditional Chinese Medicine, Tangshan Central Hospital, Tangshan, 063000, PR China
| | - Hong Meng
- International school of cosmetics, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yafeng Liu
- Department of Traditional Chinese Medicine, Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Ruihua Zhao
- Department of gynaecology, Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, 100053, PR China
| | - Jiajun Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, 250021, PR China
| | - Ying Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Wenying Zeng
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Jing Li
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ping Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Junnan Zhao
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanfei Liu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Luyao Huan
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yuxiao Huang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Fuli Zhu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Huiyan Liu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ran Luo
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qi Yang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shanfeng Gao
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Xiaoyuan Wang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qingxia Fang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - YuHong Lu
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Yan Dong
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Xueying Yin
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Panbo Qiu
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qiaoning Yang
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Limin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, PR China
| | - Fengqin Xu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China.
| |
Collapse
|
10
|
Miao M, Li M, Sheng Y, Tong P, Zhang Y, Shou D. Epimedium-Curculigo herb pair enhances bone repair with infected bone defects and regulates osteoblasts through LncRNA MALAT1/miR-34a-5p/SMAD2 axis. J Cell Mol Med 2024; 28:e18527. [PMID: 38984969 PMCID: PMC11234645 DOI: 10.1111/jcmm.18527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-β signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-β/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.
Collapse
Affiliation(s)
- Maomao Miao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunjie Sheng
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Peijian Tong
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Yang Zhang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Dan Shou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
11
|
Zhou X, Lian K, Jia J, Zhao X, Duan P, Huang J, Shi Y. Functions of Epimedin C in a zebrafish model of glucocorticoid-induced osteoporosis. J Cell Mol Med 2024; 28:e18569. [PMID: 39072972 DOI: 10.1111/jcmm.18569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Epimedium is thought to enhance the integrity of tendons and bones, ease joint discomfort and rigidity and enhance kidney function. Although glucocorticoids are commonly used in clinical practice, the mechanism by which the active compound Epimedin C (EC) alleviates glucocorticoid-induced osteoporosis (GIOP) is not well understood. The therapeutic potential of EC in treating GIOP was evaluated using alizarin red S staining, calcein immersion and fluorescence imaging, and bone mineralization, bone mass accumulation and bone density in zebrafish larvae were determined. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the key signalling pathways related to bone development were identified. A protein-protein interaction network (PPIN) was constructed to identify osteoclast characteristic genes and the findings were verified using real-time quantitative PCR (RT-qPCR). The bone tissue damage caused by prednisolone was reduced by EC. It also altered physiological processes, improved bone density, boosted mineralization and increased bone mass and activity. Subsequent empirical investigations showed that EC impacted the major signalling pathways involved in bone development, such as osteoclast differentiation, oestrogen, MAPK, insulin resistance, PPAR and AMPK signalling pathways. It also decreased the expression of genes typical of osteoclasts. The results of our study uncover a previously unknown function of EC in controlling bone formation and emphasize the potential of EC as a therapeutic target. The osteoprotective effect of EC indicates its potential as a cost-effective strategy for treating GIOP.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junjie Jia
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xue Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiaolong Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yihua Shi
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
12
|
Zhang D, Wang X, Sun K, Guo J, Zhao J, Dong Y, Bao Y. Onion ( Allium cepa L.) Flavonoid Extract Ameliorates Osteoporosis in Rats Facilitating Osteoblast Proliferation and Differentiation in MG-63 Cells and Inhibiting RANKL-Induced Osteoclastogenesis in RAW 264.7 Cells. Int J Mol Sci 2024; 25:6754. [PMID: 38928460 PMCID: PMC11203775 DOI: 10.3390/ijms25126754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis, a prevalent chronic health issue among the elderly, is a global bone metabolic disease. Flavonoids, natural active compounds widely present in vegetables, fruits, beans, and cereals, have been reported for their anti-osteoporotic properties. Onion is a commonly consumed vegetable rich in flavonoids with diverse pharmacological activities. In this study, the trabecular structure was enhanced and bone mineral density (BMD) exhibited a twofold increase following oral administration of onion flavonoid extract (OFE). The levels of estradiol (E2), calcium (Ca), and phosphorus (P) in serum were significantly increased in ovariectomized (OVX) rats, with effects equal to alendronate sodium (ALN). Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels in rat serum were reduced by 35.7% and 36.9%, respectively, compared to the OVX group. In addition, the effects of OFE on bone health were assessed using human osteoblast-like cells MG-63 and osteoclast precursor RAW 264.7 cells in vitro as well. Proliferation and mineralization of MG-63 cells were promoted by OFE treatment, along with increased ALP activity and mRNA expression of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL). Additionally, RANKL-induced osteoclastogenesis and osteoclast activity were inhibited by OFE treatment through decreased TRAP activity and down-regulation of mRNA expression-related enzymes in RAW 264.7 cells. Overall findings suggest that OFE holds promise as a natural functional component for alleviating osteoporosis.
Collapse
Affiliation(s)
- Danyang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.W.); (K.S.); (J.Z.)
| | - Xiaoyu Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.W.); (K.S.); (J.Z.)
| | - Kezhuo Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.W.); (K.S.); (J.Z.)
| | - Jianli Guo
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Jia Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.W.); (K.S.); (J.Z.)
| | - Yuesheng Dong
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China;
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (D.Z.); (X.W.); (K.S.); (J.Z.)
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
13
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Dong H, Tang F, Zhao Z, Huang W, Wan X, Hong Z, Liu Y, Dong X, Chen S. The Bioactive Compounds of Epimedium and Their Potential Mechanism of Action in Treating Osteoporosis: A Network Pharmacology and Experimental Validation Study. Pharmaceuticals (Basel) 2024; 17:706. [PMID: 38931373 PMCID: PMC11206986 DOI: 10.3390/ph17060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis is a global health challenge characterized by bone loss and microstructure deterioration, which urgently requires the development of safer and more effective treatments due to the significant adverse effects and limitations of existing drugs for long-term treatment. Traditional Chinese medicine, like Epimedium, offers fewer side effects and has been used to treat osteoporosis, yet its active compounds and pharmacological mechanisms remain unclear. In this study, 65 potential active compounds, 258 potential target proteins, and 488 pathways of Epimedium were identified through network pharmacology analysis. Further network analysis and review of the literature identified six potential active compounds and HIF-1α for subsequent experimental validation. In vitro experiments confirmed that 2″-O-RhamnosylIcariside II is the most effective compound among the six potential active compounds. It can promote osteoblast differentiation, bind with HIF-1α, and inhibit both HIF-1α gene and protein expression, as well as enhance COL1A1 protein expression under hypoxic conditions. In vivo experiments demonstrated its ability to improve bone microstructures and reduce bone loss by decreasing bone marrow adipose tissue, enhancing bone formation, and suppressing HIF-1α protein expression. This study is the first to describe the therapeutic effects of 2-O-RhamnosylIcariside II on osteoporosis, which was done, specifically, through a mechanism that targets and inhibits HIF-1α. This study provides a scientific basis for the clinical application of Epimedium and offers a new candidate drug for the treatment of osteoporosis. Additionally, it provides new evidence supporting HIF-1α as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huizhong Dong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fen Tang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zilu Zhao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenxuan Huang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangyang Wan
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Huang X, Lei S, Xiong X, Wang X, Zhao L, Wang N, Wan N, Li B. Unveiling the Therapeutic Potential of Herba Epimedii: Enhancing Bone Healing Through Cytoskeletal Regulation of RhoA/Rock1 Pathway. Chem Biodivers 2024; 21:e202301383. [PMID: 38212902 DOI: 10.1002/cbdv.202301383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Herba Epimedii is widely used to promote bone healing, and their active ingredients are total flavonoids of Epimedium (TFE). Ras homolog gene family member A / Rho-associated protein kinase (RhoA/Rock), an important pathway regulating the cytoskeleton, has been proven to affect bone formation. However, whether TFE promotes bone healing via this pathway remains unclear. In this study, the therapeutic effects of TFE were estimated using micro-computed tomography and hematoxylin and eosin staining of pathological sections. F-actin in osteoblasts was stained to investigate the protective effects of TFE on the cytoskeleton. Its regulatory effects on the RhoA/Rock1 pathway were explored using RT-qPCR and Western blot analysis. Besides, flow cytometry, alkaline phosphatase and nodule calcification staining were performed to evaluate the effects on osteogenesis. The bone healing in rats was improved, the cytoskeletal damage in osteoblasts was reduced, the RhoA/Rock1 pathway was downregulated, and osteogenesis was enhanced after TFE treatment. Thus, TFE can promote bone formation at least partially by regulating the expression of key genes and proteins in the cytoskeleton. The findings of this study provided evidence for clinical applications and would contribute to a better understanding of Epimedium's mechanisms in treating bone defects.
Collapse
Affiliation(s)
- Xiaowen Huang
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Shanshan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Xuefeng Xiong
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, P. R. China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Lisha Zhao
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, P. R., China
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
16
|
Zhang S, Liu Y, Ma Z, Gao S, Chen L, Zhong H, Zhang C, Li T, Chen W, Zhang Y, Lin N. Osteoking promotes bone formation and bone defect repair through ZBP1-STAT1-PKR-MLKL-mediated necroptosis. Chin Med 2024; 19:13. [PMID: 38238785 PMCID: PMC10797925 DOI: 10.1186/s13020-024-00883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Osteoking has been used for fracture therapy with a satisfying clinical efficacy. However, its therapeutic properties and the underlying mechanisms remain elusive. METHOD A bone defect rat model was established to evaluate the pharmacological effects of Osteoking by the dynamic observation of X-ray, micro-CT and histopathologic examination. Transcriptome profiling was performed to identify bone defect-related genes and Osteoking effective targets. Then, a "disease-related gene-drug target" interaction network was constructed and a list of key network targets were screened, which were experimentally verified. RESULTS Osteoking effectively promoted bone defect repair in rats by accelerating the repair of cortical bone and the growth of trabeculae. Histopathologically, the bone defect rats displayed lower histopathologic scores in cortical bone, cancellous bone and bone connection than normal controls. In contrast, Osteoking exerted a favorable effect with a dose-dependent manner. The abnormal serum levels of bone turnover markers, bone growth factors and bone metabolism-related biochemical indexes in bone defect rats were also reversed by Osteoking treatment. Following the transcriptome-based network investigation, we hypothesized that osteoking might attenuate the levels of ZBP1-STAT1-PKR-MLKL-mediated necroptosis involved into bone defect. Experimentally, the expression levels of ZBP1, STAT1, PKR and the hallmark inflammatory cytokines for the end of necroptosis were distinctly elevated in bone defect rats, but were all effectively reversed by Osteoking treatment, which were also suppressed the activities of RIPK1, RIPK3 and MLKL in bone tissue supernatants. CONCLUSIONS Osteoking may promote bone formation and bone defect repair by regulating ZBP1-STAT1-PKR axis, leading to inhibit RIPK1/RIPK3/MLKL activation-mediated necroptosis.
Collapse
Affiliation(s)
- Suya Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Honggang Zhong
- BioMechanics Lab, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiheng Chen
- Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguanjie, Chaoyang District, Beijing, 100029, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Airport Road, Baiyun District, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
17
|
Zhao Z, Du JF, Wang QL, Qiu FN, Li P, Jiang Y, Li HJ. Natural Product Baohuoside I Impairs the Stability and Membrane Location of MRP2 Reciprocally Regulated by SUMOylation and Ubiquitination in Hepatocytes. Chem Res Toxicol 2024; 37:57-71. [PMID: 38177062 DOI: 10.1021/acs.chemrestox.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Epimedii Folium (EF) is a botanical dietary supplement to benefit immunity. Baohuoside I (BI), a prenylated flavonoid derived from EF, has exhibited the cholestatic risk before. Here, the mechanism of BI on the stability and membrane localization of liver MRP2, a bile acid exporter in the canalicular membrane of hepatocytes, was investigated. The fluorescent substrate of MRP2, CMFDA was accumulated in sandwich-cultured primary mouse hepatocytes (SCH) under BI stimulation, followed by reduced membrane MRP2 expression. BI triggered MRP2 endocytosis associated with oxidative stress via inhibition of the NRF2 signaling pathway. Meanwhile, BI promoted the degradation of MRP2 by reducing its SUMOylation and enhancing its ubiquitination level. Co-IP and fluorescence colocalization experiments all proved that MRP2 was a substrate protein for SUMOylation for SUMO proteins. CHX assays showed that SUMO1 prolonged the half-life of MRP2 and further increased its membrane expression, which could be reversed by UBC9 knockdown. Correspondingly, MRP2 accumulated in the cytoplasm by GP78 knockdown or under MG132 treatment. Additionally, the SUMOylation sites of MRP2 were predicted by the algorithm, and a conversion of lysines to arginines at positions 940 and 953 of human MRP2 caused its decreased stability and membrane location. K940 was further identified as the essential ubiquitination site for MRP2 by an in vitro ubiquitination assay. Moreover, the decreased ubiquitination of MRP2 enhanced the SUMOylation MRP2 and vice versa, and the crosstalk of these two modifiers could be disrupted by BI. Collectively, our findings indicated the process of MRP2 turnover from the membrane to cytoplasm at the post-translational level and further elucidated the novel toxicological mechanism of BI.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jin-Fa Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Qiao-Lei Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Fang-Ning Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
18
|
Song L, Zhou Y, Qu L, Wang D, Diao X, Zhang X, Zhai Y, Zhang Y, Yu Y, Zhou K. Exploring Effects and Mechanism of Ingredients of Herba Epimedii on Osteogenesis and Osteoclastogenesis In Vitro. Comb Chem High Throughput Screen 2024; 27:2824-2837. [PMID: 37957850 DOI: 10.2174/0113862073243559231023065934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Herba Epimedii, a commonly used traditional herb, has been proven effective in ameliorating osteoporosis. However, the active ingredients and potential mechanism need further exploration. OBJECTIVE To screen active ingredients of Herba Epimedii with the effect of ameliorating osteoporosis and to explore their potential mechanisms. METHODS TCMSP and Swiss Target Prediction were applied to collect the ingredients of Herba Epimedii and their targets. UniProt, GeneCards, TTD, DisGeNET, and OMIM were adopted to search osteoporosis-related genes. STRING and DAVID were used to perform enrichment analysis. Effects of screened ingredients were evaluated on MC3T3-E1 cells and RAW264.7 cells, respectively. RESULTS Eleven ingredients were screened by Network Pharmacology. They exerted a promoting effect on MC3T3-E1 cells (10-9-10-5 M). The ingredients didn't significantly affect ALP activity and osteoblastogenesis-related genes. Baohuoside 1, Sagittatoside B, Chlorogenic acid, Cryptochlorogenic acid, and Neochlorogenic acid significantly increased calcium depositions. The ingredients didn't exhibit a dose-dependent inhibition or promotion on RAW264.7 cells. Baohuoside 1, Sagittatoside B, Neochlorogenic acid, Cryptochlorogenic acid, Icariin, Epimedin A, Chlorogenic acid, Sagittatoside A, and Epimedin C suppressed the level of TRACP. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, Sagittatoside A, and Icariin decreased the number of multinucleated osteoclastic cells. Baohuoside 1, Sagittatoside B, and Cryptochlorogenic acid could significantly inhibit MMP-9 expression. CONCLUSION Neochlorogenic acid, Sagittatoside B, Chlorogenic acid, and Cryptochlorogenic acid promoted MC3T3-E1 differentiation, among which Neochlorogenic acid showed significant promotion in viability, mineralization, and OPN expression. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, and Icariin inhibited RAW264.7 differentiation, among which Baohuoside 1 showed significant inhibition on TRACP, multinucleated osteoclastic cells number and MPP-9 expression. The mechanism might relate to the FoxO signaling pathway, MAPK signaling pathway, and TNF signaling pathway.
Collapse
Affiliation(s)
- Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Yating Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Qu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongyu Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Diao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxia Zhai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Yingli Yu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
19
|
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. J Tradit Complement Med 2024; 14:1-18. [PMID: 38223808 PMCID: PMC10785263 DOI: 10.1016/j.jtcme.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Background Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.
Collapse
Affiliation(s)
- Seyedeh Mahnaz Karimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Yang J, Fan S, Guo M, Xie Z, Cheng Q, Gao P, Cheng C. DNA barcoding and comparative RNA-Seq analysis provide new insights into leaf formation using a novel resource of high-yielding Epimedium koreanum. FRONTIERS IN PLANT SCIENCE 2023; 14:1290836. [PMID: 38170141 PMCID: PMC10760978 DOI: 10.3389/fpls.2023.1290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Epimedium koreanum Nakai, a well-known traditional Chinese medicinal herb, has been widely used to treat osteoporosis and sexual dysfunction for thousands of years. However, due to the decreasing population of East Asian natural resources, yearly output of Epimedium crude herb has been in low supply year by year. In this study, an unusual variety of E. koreanum was discovered in Dunhua, Jilin Province, the northernmost area where this variety was found containing 6 individuals, with three branches that had 27 leaflets, which is much more than the typical leaflet number of 9. Firstly, the novel E. koreanum varety was identified using DNA barcodes. Then, 1171 differentially expressed genes (DEGs) were discovered through parallel RNA-seq analysis between the newly discovered variety and wild type (WT) E. koreanum plant. Furthermore, the results of bioinformatics investigation revealed that 914 positively and 619 negatively correlated genes associated with the number of leaflets. Additionally, based on RNA-Seq and qRT-PCR analysis, two homologous hub TCP genes, which were commonly implicated in plant leaf development, and shown to be up regulated and down regulated in the discovered newly variety, respectively. Thus, our study discovered a novel wild resource for leaf yield rewarding medicinal Epimedium plant breeding, provided insights into the relationship between plant compound leaf formation and gene expression of TCPs transcription factors and other gene candidates, providing bases for creating high yield cultivated Epimedium variety by using further molecular selection and breeding techniques in the future.
Collapse
Affiliation(s)
- Jiaxin Yang
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Siqing Fan
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Min Guo
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Zhaoqi Xie
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Qiqing Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
| | - Chunsong Cheng
- Lushan Botanical Garden, Chinese Academic of Sciences, Jiujiang, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Wang Y, Wang G, Liu Y, Yang F, Zhang H, Kong Y. Icaritin inhibits endometrial carcinoma cells by suppressing O-GlcNAcylation of FOXC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155062. [PMID: 37683586 DOI: 10.1016/j.phymed.2023.155062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Icaritin has a wide range of pharmacological activities, including significant an-titumor activity. However, the mechanism of action of icaritin in endometrial cancer (UCEC) remains unknown. FOX proteins are a highly conserved transcription factor superfamily that play important roles in epithelial cell differentiation, tumor metastasis, angiogenesis, and cell cycle regulation. FOXC1 is an important member of the FOX protein family. FOXC1 is aberrantly expressed in endometrial cancer and may play a role in the migration and invasion of endometrial cancer; however, its mechanism of action has not yet been reported. O-GlcNAc glycosylation is a common post-translational modification. In endometrial cancer, high levels of O-GlcNAcylation promote cell proliferation, migration, and invasion. Cancer development is often accompanied by O-GlcNAc modification of proteins; however, O-GlcNAc modification of the transcription factor FOXC1 has not been reported to date. PURPOSE To investigate the inhibitory effects of icaritin on RL95-2 and Ishikawa endometrial cancer cells in vitro and in vivo and to elucidate the possible molecular mechanisms. METHODS/STUDY DESIGN CCK8, colony formation, migration, and invasion assays were used to determine the inhibitory effects of icaritin on endometrial cancer cells in vitro. Cell cycle regulation was assayed by flow cytometry. Protein levels were measured based on western blotting. The level of FOXC1 expression in endometrial cancer tissues was determined by immunohistochemistry. To assess whether icaritin also has activity in vivo, its effect on tumor xenografts was evaluated. RESULTS Immunohistochemical analysis of clinical samples revealed that FOXC1 expression was significantly higher in endometrial cancer tissues than in normal tissues. Downregulation of FOXC1 inhibited the proliferative, colony formation, migration, and invasive abilities of RL95-2 and Ishikawa endometrial cancer cells. Icaritin inhibited the proliferation, colony formation, migration, and invasion of endometrial cancer cells and blocked the cell cycle in S phase. Icaritin affected O-GlcNAc modification of FOXC1 and thus the stability of FOXC1, which subsequently triggered the inhibition of endometrial cancer cell proliferation. CONCLUSION The anti-endometrial cancer effect of icaritin is related to the inhibition of abnormal O-GlcNAc modification of FOXC1, which may provide an important theoretical foundation for the use of icaritin against endometrial cancer.
Collapse
Affiliation(s)
- Yufei Wang
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China
| | - Gang Wang
- Dalian Medical University, Lvshun South Road #9, Dalian, Liaoning 116044, China
| | - Yingping Liu
- Dalian Medical University, Lvshun South Road #9, Dalian, Liaoning 116044, China
| | - Fangyu Yang
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China
| | - Hongshuo Zhang
- Dalian Medical University, Lvshun South Road #9, Dalian, Liaoning 116044, China.
| | - Ying Kong
- Dalian Medical University, Lvshun South Road #9, Dalian, Liaoning 116044, China.
| |
Collapse
|
22
|
Kumari S, Singh M, Nupur, Jain S, Verma N, Malik S, Rustagi S, Priya K. A review on therapeutic mechanism of medicinal plants against osteoporosis: effects of phytoconstituents. Mol Biol Rep 2023; 50:9453-9468. [PMID: 37676432 DOI: 10.1007/s11033-023-08751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Mohini Singh
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Nupur
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Smita Jain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Neha Verma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, 834002, Jharkhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge parkIII, Greater Noida, 201310, U.P., India.
| |
Collapse
|
23
|
Chen C, Lei H, Zhao Y, Hou Y, Zheng H, Zhang C, Cao Z, Wu F, Chen G, Song Y, Zhang C, Zhou J, Lu Y, Xie D, Zhang L. A novel small molecule effectively ameliorates estrogen deficiency-induced osteoporosis by targeting the gut-bone signaling axis. Eur J Pharmacol 2023; 954:175868. [PMID: 37369296 DOI: 10.1016/j.ejphar.2023.175868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Postmenopausal osteoporosis stems mainly from estrogen deficiency leading to a gut microbiome-dependent disruption of host systemic immunity. However, the underlying mechanisms of estrogen deficiency-induced bone loss remain elusive and novel pharmaceutical intervention strategies for osteoporosis are needed. Here we reveal that ovariectomy (ovx)-induced estrogen deficiency in C57BL/6 mice causes significant disruption of gut microbiota composition, consequently leading to marked destruction of intestinal barrier function and gut leakage. As a result, signals transportation between intestinal microbiota and T cells from the gut to bone marrow is identified to contribute to osteoclastogenesis in ovx mice. Notably, we show that icariside I (GH01), a novel small molecule naturally occurring in Herbal Epimedium, has potential to alleviate or prevent ovx-induced bone loss in mice through regulation of gut-bone signaling axis. We find that GH01 treatment can effectively restore the gut microbiota composition, intestinal barrier function and host immune status markedly altered in ovx mice, thus significantly ameliorating bone loss and osteoporosis. These findings not only provide systematic understanding of the gut-immunity-bone axis-associated pathophysiology of osteoporosis, but also demonstrate the high potential of GH01 for osteoporosis treatment by targeting the gut-bone signaling axis.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China
| | - Yitao Zhao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Yu Hou
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Hui Zheng
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, CAS, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Jiang J, He J, Xiao S, Shenyuan J, Chen T, Pei D. Screening of superior anti-osteoporotic flavonoids from Epimedii Folium with dual effects of reversing iron overload and promoting osteogenesis. Biomed Chromatogr 2023; 37:e5686. [PMID: 37277120 DOI: 10.1002/bmc.5686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Iron overload is a risk factor for postmenopausal osteoporosis (PMOP) and lowering iron levels to regulate the labile plasma iron is the preferred therapy. Icariin (ICA), baohuoside I (BHS) and icaritin (ICT) are three flavonoids obtained from Epimedii Folium that are efficient in facilitating osteogenesis. In this study, an active flavonoid with dual effects of reversing iron overload and promoting osteogenesis was screened based on pharmacokinetics, iron complexation properties and the potential to downregulate iron overload, reversing PMOP. As a result, the in vivo absorption of three compounds was ICA > ICT > BHS, while the exposure in muscle and bone was BHS > ICT > ICA. In vitro complexation showed that only ICT complexed with Fe (III) at a 1:1 ratio on 3-OH and the ICT-Fe (III) complex (m/z 424.3750) was identified by UPLC-Q-TOF-MS. In vivo dynamic detection also showed that the concentration of ICT-Fe (III) complexes varied with the concentration of ICT in plasma. The behavioral blunting and bone loss in zebrafish induced by Fe (III) were significantly reversed by ICT in a dose-dependent manner. Pharmacokinetic-pharmacodynamic analysis showed that ICT was negatively correlated with serum ferritin and positively correlated with osteogenic markers including alkaline phosphatase, osteocalcin and osteoprotegerin. Bone loss in ovariectomized rats was significantly altered after ICT intervention, with reduced serum ferritin levels and improved osteogenic marker levels. These results demonstrated that ICT had favorable musculoskeletal penetration and iron complexation capability to shrink labile plasma iron, showing superior performance in anti-PMOP through the dual effects of reversing iron overload and promoting osteogenesis.
Collapse
Affiliation(s)
- Jun Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jinjin He
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Shichang Xiao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Jiayi Shenyuan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Tong Chen
- Comprehensive Technical Center, Zhenjiang Customs District P. R. of China, Zhenjiang, Jiangsu Province, China
| | - Dan Pei
- ADR Monitoring Center, Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
25
|
Li M, Tang H, Hu Y, Li S, Kang P, Chen B, Li S, Zhang M, Wang H, Huo S. Integrating network pharmacology and experimental verification strategies to reveal the active ingredients and molecular mechanism of Tenghuang Jiangu Capsule against osteoporosis. Heliyon 2023; 9:e19812. [PMID: 37809453 PMCID: PMC10559171 DOI: 10.1016/j.heliyon.2023.e19812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Tenghuang Jiangu Capsule (THJGC) is a Chinese herbal formula used for the treatment of osteoporosis and osteoarthritis in China, but its mechanism for treating osteoporosis is not clear. The aim of this study was to investigate the therapeutic effect of THJGC on osteoporosis and its intrinsic mechanism through network pharmacology and experimental validation. Drugs and potential targets were obtained from several reliable databases through network pharmacology, and these targets were integrated and analyzed using bioinformatics and molecular docking strategies. Quercetin, lignans and kaempferol were identified as key components, and the key targets included Akt1, MAPKs, and CASP3. Subsequently, UPLC-MS/MS analysis confirmed the presence of components in THJGC for the treatment of osteoporosis. In addition, using ex vivo and in vivo models, it was confirmed that THJGC inhibited H2O2-induced ROS generation and apoptosis, and reduced OVX-induced bone loss in a mouse model of osteoporosis. Our data suggest that THJGC has antioxidant, bone formation-promoting, bone resorption-inhibiting, and MC3T3-E1 apoptosis-reducing effects, and thus has anti-osteoporotic properties. In conclusion, it may be a promising pharmacologic adjuvant treatment for osteoporosis.
Collapse
Affiliation(s)
- Miao Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hongyu Tang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuanhao Hu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Songtao Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pan Kang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Baihao Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaocong Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Joint Orthopaedic, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, No.6001, North Ring Road, Futian District, Shenzhen City, Guangdong Province, 518048, China
| |
Collapse
|
26
|
Feng C, Liu Y, Zhang BY, Zhang H, Shan FY, Li TQ, Zhao ZN, Wang XX, Zhang XY. Rapamycin Inhibits Osteoclastogenesis and Prevents LPS-Induced Alveolar Bone Loss by Oxidative Stress Suppression. ACS OMEGA 2023; 8:20739-20754. [PMID: 37323396 PMCID: PMC10268267 DOI: 10.1021/acsomega.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Periodontitis is a progressive inflammatory skeletal disease characterized by periodontal tissue destruction, alveolar bone resorption, and tooth loss. Chronic inflammatory response and excessive osteoclastogenesis play essential roles in periodontitis progression. Unfortunately, the pathogenesis that contributes to periodontitis remains unclear. As a specific inhibitor of the mTOR (mammalian/mechanistic target of rapamycin) signaling pathway and the most common autophagy activator, rapamycin plays a vital role in regulating various cellular processes. The present study investigated the effects of rapamycin on osteoclast (OC) formation in vitro and its effects on the rat periodontitis model. The results showed that rapamycin inhibited OC formation in a dose-dependent manner by up-regulating the Nrf2/GCLC signaling pathway, thus suppressing the intracellular redox status, as measured by 2',7'-dichlorofluorescein diacetate and MitoSOX. In addition, rather than simply increasing the autophagosome formation, rapamycin increased the autophagy flux during OC formation. Importantly, the anti-oxidative effect of rapamycin was regulated by an increase in autophagy flux, which could be attenuated by blocking autophagy with bafilomycin A1. In line with the in vitro results, rapamycin treatment attenuated alveolar bone resorption in rats with lipopolysaccharide-induced periodontitis in a dose-dependent manner, as assessed by micro-computed tomography, hematoxylin-eosin staining, and tartrate-resistant acid phosphatase staining. Besides, high-dose rapamycin treatment could reduce the serum levels of proinflammatory factors and oxidative stress in periodontitis rats. In conclusion, this study expanded our understanding of rapamycin's role in OC formation and protection from inflammatory bone diseases.
Collapse
Affiliation(s)
- Chong Feng
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Liu
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Lanzhou
University, Lanzhou 730000, China
| | - Bao-Yi Zhang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hao Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fa-Yu Shan
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tian-Qi Li
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhi-Ning Zhao
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| | - Xin-Xing Wang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiang-Yu Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| |
Collapse
|
27
|
Yu D, Huang R, Yu S, Liang Q, Wang Y, Dang H, Zhang Y. Construction of the first high-density genetic linkage map and QTL mapping of flavonoid and leaf-size related traits in Epimedium. BMC PLANT BIOLOGY 2023; 23:278. [PMID: 37231361 PMCID: PMC10210407 DOI: 10.1186/s12870-023-04257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Leaves are the main medicinal organ in Epimedium herbs, and leaf flavonoid content is an important criterion of Epimedium herbs. However, the underlying genes that regulate leaf size and flavonoid content are unclear, which limits the use of breeding for Epimedium development. This study focuses on QTL mapping of flavonoid and leaf-size related traits in Epimedium. RESULTS We constructed the first high-density genetic map (HDGM) using 109 F1 hybrids of Epimedium leptorrhizum and Epimedium sagittatum over three years (2019-2021). Using 5,271 single nucleotide polymorphism (SNP) markers, an HDGM with an overall distance of 2,366.07 cM and a mean gap of 0.612 cM was generated by utilizing genotyping by sequencing (GBS) technology. Every year for three years, 46 stable quantitative trait loci (QTLs) for leaf size and flavonoid contents were discovered, including 31 stable loci for Epimedin C (EC), one stable locus for total flavone content (TFC), 12 stable loci for leaf length (LL), and two stable loci for leaf area (LA). For flavonoid content and leaf size, the phenotypic variance explained for these loci varied between 4.00 and 16.80% and 14.95 and 17.34%, respectively. CONCLUSIONS Forty-six stable QTLs for leaf size and flavonoid content traits were repeatedly detected over three years. The HDGM and stable QTLs are laying the basis for breeding and gene investigation in Epimedium and will contribute to accelerating the identification of desirable genotypes for Epimedium breeding.
Collapse
Affiliation(s)
- Dongyue Yu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ruoqi Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Shuxia Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P.R. China.
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, P. R. China.
| |
Collapse
|
28
|
Wang J, Chen T, Li X, Zhang Y, Fu S, Huo R, Duan Y. A study on the anti-osteoporosis mechanism of isopsoralen based on network pharmacology and molecular experiments. J Orthop Surg Res 2023; 18:304. [PMID: 37069639 PMCID: PMC10108469 DOI: 10.1186/s13018-023-03689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/07/2023] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE Osteoporosis (OP) is a disease caused by multiple factors. Studies have pointed out that isopsoralen (IPRN) is one of the most effective drugs for the treatment of OP. Based on network pharmacological and molecular experimental analysis, the molecular mechanism of IPRN in osteoporosis is clarified. METHODS IPRN target genes and OP-related genes were predicted from the databases. Intersections were obtained and visualized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on target genes, which was confirmed by experiments internal and external experiments. Molecular docking was used to verify the binding between IPRN and target proteins. Molecular dynamics (MD) simulates the binding affinity of protein targets and active compounds. RESULTS 87 IPRN target genes and 242 disease-related targets were predicted. The protein-protein interaction (PPI) network identified 18 IPRN target proteins for the treatment of OP. GO analysis indicated that target genes were involved in biological processes. KEGG analysis showed that pathways such as PI3K/AKT/mTOR were associated with OP. Cell experiments (qPCR and WB) found that the expressions of PI3K, AKT, and mTOR in MC3T3-E1 cells at 10 μM, 20 μM, and 50 μM IPRN concentrations, especially at 20 μM IPRN treatment, were higher than those in the control group at 48 h. Animal experiments also showed that compared with the control group, 40 mg/kg/time IPRN could promote the expression of the PI3K gene in chondrocytes of SD rats. CONCLUSIONS This study predicted the target genes of IPRN in the treatment of OP and preliminarily verified that IPRN plays an anti-OP role through the PI3K/AKT/mTOR pathway, which provides a new drug for the treatment of OP.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Yu Zhang
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Shuang Fu
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Ruikun Huo
- Department of Orthopedics, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Yan Duan
- Department of Surgery, Inner Mongolia People's Hospital, No. 20, Zhaowuda Road, Saihan District, Hohhot, Inner Mongolia Autonomous Region, 010017, China.
| |
Collapse
|
29
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
30
|
Ran D, Zhou D, Liu G, Ma Y, Ali W, Yu R, Wang Q, Zhao H, Zhu J, Zou H, Liu Z. Reactive Oxygen Species Control Osteoblast Apoptosis through SIRT1/PGC-1α/P53 Lys382 Signaling, Mediating the Onset of Cd-Induced Osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023393 DOI: 10.1021/acs.jafc.2c08505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The imbalance between osteogenesis and osteoclastogenesis is a feature of bone metabolic disease. Cadmium (Cd) exposure causes human bone loss and osteoporosis (OP) through bioaccumulation of the food chain. However, the impact of Cd on bone tissues and the underlying molecular mechanisms are not well-characterized. In the current study, we found that the Cd concentration in bone tissues of OP patients was higher than normal subjects; meanwhile, the nuclear silent information regulator of transcription 1 (SIRT1) protein expression level was significantly decreased, which is a new star molecule to treat OP. It is further revealed that SIRT1 activation markedly reprograms bone metabolic and stress-response pathways that incline with osteoblast (OB) apoptosis. Suppressing reactive oxygen species (ROS) release with N-acetyl-l-cysteine (NAC) abolished Cd-induced reduction of SIRT1 protein, deacetylation of P53, OB apoptosis, and attenuated OP. Conversely, overexpression of SIRT1 suppressed Cd-induced ROS release. SIRT1 overexpression in vivo and in vitro dampened PGC-1α protein, acetylation of P53 at lysine 382, and caspase-dependent apoptosis. These results reveal that ROS/SIRT1 controls P53 acetylation and coordinates OB apoptosis involved in the onset of OP.
Collapse
Affiliation(s)
- Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Dehui Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Rui Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Qinghua Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
31
|
Screening and characterization of a β-xylosidase from Bifidobacterium breve K-110 and its application in the biotransformation of the total flavonoids of epimedium to icariin with α-l-rhamnosidase. Bioorg Chem 2023; 132:106364. [PMID: 36706530 DOI: 10.1016/j.bioorg.2023.106364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
Among the flavonoids of epimedium, epimedin B, epimedin C, and icariin are considered to be representative components and their structures are quite similar. Besides sharing the same backbone, the main difference is the sugar groups attached at the positions of C-3 and C-7. Despite their structural similarities, their potencies differ significantly, and only icariin is currently included in the Chinese Pharmacopoeia as a quality marker (Q-marker) for epimedium flavonoids. Furthermore, icariin has the functions of anti-aging, anti-inflammation, antioxidation, anti-osteoporosis, and ameliorating fibrosis. We used bioinformatics to look for the GH43 family β-xylosidase genes BbXyl from Bifidobacterium breve K-110, which has a length of 1347 bp and codes for 448 amino acids. This will allow us to convert epimedin B and epimedin C into icariin in a specific way. The expression level of recombinant BbXyl in TB medium containing 1 % inulin as carbon source, with an inducer concentration of 0.05 mmol/L and a temperature of 28 °C, was 86.4 U/mL. Previous studies found that the α-l-rhamnosidase BtRha could convert epoetin C to produce icariin, so we combined BbXyl and BtRha to catalyze the conversion of epimedium total flavonoids in vitro and in vivo to obtain the product icariin. Under optimal conditions, in vitro hydrolysis of 5 g/L of total flavonoids of epimedium eventually yielded a concentration of icariin of 678.1 μmol/L. To explore the conversion of total flavonoids of epimedium in vivo. Under the optimal conditions, the yield of icariin reached 97.27 μmol/L when the total flavonoid concentration of epimedium was 1 g/L. This study is the first to screen xylosidases for the targeted conversion of epimedin B to produce icariin, and the first to report that epimedin B and epimedin C in the raw epimedium flavonoids can convert efficiently to icariin by a collaborative of β-xylosidase and α-l-rhamnosidase.
Collapse
|
32
|
Chen C, Wu M, Lei H, Cao Z, Wu F, Song Y, Zhang C, Qin M, Zhang C, Du R, Zhou J, Lu Y, Xie D, Zhang L. A Novel Prenylflavonoid Icariside I Ameliorates Estrogen Deficiency-Induced Osteoporosis via Simultaneous Regulation of Osteoblast and Osteoclast Differentiation. ACS Pharmacol Transl Sci 2023; 6:270-280. [PMID: 36798476 PMCID: PMC9926523 DOI: 10.1021/acsptsci.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 01/15/2023]
Abstract
Regulation of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is crucial for bone health. Currently, most clinical drugs for osteoporosis treatment such as bisphosphonates are commonly used to inhibit bone resorption but unable to promote bone formation. In this study, we discovered for the first time that icariside I (GH01), a novel prenylflavonoid isolated from Epimedium, can effectively ameliorate estrogen deficiency-induced osteoporosis with enhancement of trabecular and cortical bone in an ovariectomy (OVX) mouse model. Mechanistically, our in vitro results showed that GH01 repressed osteoclast differentiation and resorption through inhibition of RANKL-induced TRAF6-MAPK-p38-NFATc1 cascade. Simultaneously, we also found that GH01 dose-dependently promoted osteoblast differentiation and formation by inhibiting adipogenesis and accelerating energy metabolism of osteoblasts. In addition, both in vitro and in vivo studies also suggested that GH01 is not only a non-toxic natural small molecule but also beneficial for restoration of liver injury in OVX mice. These results demonstrated that GH01 has great potential for osteoporosis treatment by simultaneous regulation of osteoblast and osteoclast differentiation.
Collapse
Affiliation(s)
- Chuan Chen
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Hehua Lei
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Zheng Cao
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyu Qin
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
| | - Cui Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| | - Yujing Lu
- Golden
Health (Guangdong) Biotechnology Co., Ltd., Foshan 528225, China
- School
of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Denghui Xie
- Department
of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Limin Zhang
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology,
CAS, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Engineering
Research Academy of High Value Utilization of Green Plants, Meizhou 514021, China
| |
Collapse
|
33
|
Xia J, Hu JN, Wang Z, Cai EB, Ren S, Wang YP, Lei XJ, Li W. Based on network pharmacology and molecular docking to explore the protective effect of Epimedii Folium extract on cisplatin-induced intestinal injury in mice. Front Pharmacol 2022; 13:1040504. [PMID: 36313368 PMCID: PMC9596753 DOI: 10.3389/fphar.2022.1040504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Epimedii Folium, as a natural botanical medicine, has been reported to have protective effects on intestinal diseases by modulating multiple signaling pathways. This study aimed to explore the potential targets and molecular mechanisms of Epimedii Folium extract (EFE) against cisplatin-induced intestinal injury through network pharmacology, molecular docking, and animal experiments. Methods: Network pharmacology was used to predict potential candidate targets and related signaling pathways. Molecular docking was used to simulate the interactions between significant potential candidate targets and active components. For experimental validation, mice were intraperitoneally injected with cisplatin 20 mg/kg to establish an intestinal injury model. EFE (100, 200 mg/kg) was administered to mice by gavage for 10 days. The protective effect of EFE on intestinal injury was analyzed through biochemical index detection, histopathological staining, and western blotting. Results: Network pharmacology analysis revealed that PI3K-Akt and apoptosis signaling pathways were thought to play critical roles in EFE treatment of the intestinal injury. Molecular docking results showed that the active constituents of Epimedii Folium, including Icariin, Epimedin A, Epimedin B, and Epimedin C, stably docked with the core AKT1, p53, TNF-α, and NF-κB. In verified experiments, EFE could protect the antioxidant defense system by increasing the levels of glutathione peroxidase (GSH-Px) and catalase (CAT) while reducing the content of malondialdehyde (MDA). EFE could also inhibit the expression of NF-κB and the secretion of inflammatory factors, including TNF-α, IL-1β, and IL-6, thereby relieving the inflammatory damage. Further mechanism studies confirmed that EFE had an excellent protective effect on cisplatin-induced intestinal injury by regulating PI3K-Akt, caspase, and NF-κB signaling pathways. Conclusion: In summary, EFE could mitigate cisplatin-induced intestinal damage by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Juan Xia
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - En-Bo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiu-Juan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| | - Wei Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| |
Collapse
|
34
|
Magnetic solid-phase extraction method with modified magnetic ferroferric oxide nanoparticles in a deep eutectic solvent and high-performance liquid chromatography used for the analysis of pharmacologically active ingredients of Epimedium folium. J Chromatogr A 2022; 1679:463395. [DOI: 10.1016/j.chroma.2022.463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
|
35
|
Zhao JQ, Zhao Z, Zhang C, Sun JX, Liu FJ, Yu T, Jiang Y, Li HJ. Long-term oral administration of Epimedii Folium induced cholestasis in mice by interfering with bile acid transport. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115254. [PMID: 35381309 DOI: 10.1016/j.jep.2022.115254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedii Folium (EF) is a common traditional Chinese medicine that functions as a tonifying kidney yang to strengthen bones and muscles and dispel wind dampness (limb pain, lethargy, nausea, anorexia, and loose stools). Several studies have reported the potential risk of cholestatic liver damage from EF use; however, there have been few investigations of EF-induced cholestasis, particularly the underlying mechanisms. AIMS OF THE STUDY The purpose of this study was to evaluate the risk of EF-induced cholestasis in vivo and to explore the mechanisms of action. MATERIALS AND METHODS ICR mice were orally administered a water extract of EF (WEF) in doses of 6.5 and 19.5 g/kg/day for 14 weeks. Liver-to-body weight ratios, body weight, histopathological examination, and biochemical analyses were performed to assess WEF-induced cholestasis in the mice. Genes associated with bile acid (BA) metabolism and transport, including sodium taurocholate cotransporting polypeptide (NTCP), cytochrome P450 8B1 (CYP8B1), bile-salt export pump (BSEP), multidrug resistance P-glycoproteins 1 (MDR1), and farnesoid X receptor (FXR), were measured at the transcript and protein levels to investigate the potential mechanisms through which cholestasis is aroused by EF. RESULTS After administration of WEF for 14 weeks, mice in the high-dose WEF group showed poor health with an increased liver-to-body weight ratio as well as higher serum aminotransferase, alkaline phosphatase, direct bilirubin, and total BA levels. Compared with the control group, mRNA expression of NTCP and cholesterol 7a-hydroxylase (CYP7A1) increased, and levels of BSEP, MDR1, multidrug resistance-associated protein 2, and multidrug resistance-associated protein 3 decreased in the WEF-treated group. NTCP, BSEP, MDR1, and CYP8B1 showed similar mRNA and protein expression trends. CONCLUSION We demonstrated that the long-term oral administration of WEF causes cholestatic liver injury in mice, which is consistent with reported clinical cases. Furthermore, we found that the destruction of BA metabolism and transport is involved in WEF-induced cholestasis. The fine-scale molecular mechanisms of WEF-induced cholestasis and the active compounds of EF need further study.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
36
|
Yuan D, Guo T, Qian H, Ge H, Zhao Y, Huang A, Wang X, Cao X, Zhu D, He C, Yu H. Icariside II suppresses the tumorigenesis and development of ovarian cancer by regulating miR-144-3p/IGF2R axis. Drug Dev Res 2022; 83:1383-1393. [PMID: 35808943 DOI: 10.1002/ddr.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Ovarian cancer is one of the three major gynecological malignancies. It has been reported that Icariside II was able to block the occurrence and development of ovarian cancer. However, the detailed mechanism by which Icariside II regulates the development of ovarian cancer is widely unknown. EdU staining and transwell assays were applied to detect the proliferation, migration, and invasion of ovarian cancer cells. Next, the relationship between miR-144-3p and IGF2R was verified by the dual-luciferase reporter assay. Moreover, in vivo animal model was constructed to verify the effect of Icariside II on the development of ovarian cancer. Icariside II notably inhibited the proliferation, migration, and invasion and induced the apoptosis of ovarian cancer cells. Additionally, Icariside II markedly increased the level of miR-144-3p in ovarian cancer cells. Moreover, IGF2R was targeted by miR-144-3p directly. Icariside II significantly decreased the expression of IGF2R and the phosphorylation level of AKT and mTOR in ovarian cancer cells, which were partially reversed by miR-144-3p inhibitor. Meanwhile, Icariside II remarkably promoted the autophagy of ovarian cancer cells, as confirmed by the increased expression of Beclin-1 and ATG-5 and decreased expression of p62; however, co-treatment with miR-144-3p inhibitor notably decreased autophagy. Furthermore, the result of animal study suggested Icariside II notably inhibited ovarian tumor growth as well. Collectively, Icariside II could suppress the tumorigenesis and development of ovarian cancer by promoting autophagy via miR-144-3p/IGF2R axis. These results may be beneficial for future studies on the use of Icariside II to treat ovarian cancer.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Center for Molecular Medicine, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hua Qian
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Aihua Huang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiaosu Wang
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Xiuhong Cao
- Department of Operation, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - DanDan Zhu
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - CuiQin He
- Department of Obstetrics and Gynecology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Affiliated Hospital of NanJing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
37
|
Exploration of the Effect of Icariin on Nude Mice with Lung Cancer Bone Metastasis via the OPG/RANKL/RANK System. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2011625. [PMID: 35669373 PMCID: PMC9167109 DOI: 10.1155/2022/2011625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Epimedium is a traditional Chinese medicine that is most commonly prescribed by practitioners of Chinese medicine for the clinical treatment of malignant tumor bone metastasis. The main component of Epimedium is icariin (ICA). Studies have shown that ICA inhibits bone resorption of osteoclasts through the OPG/RANKL/RANK signaling pathway. Osteoclasts are the only cells in the body that have a bone-destroying capability. The OPG/RANKL/RANK system consists of cytokines that play major roles in osteoclast formation. Therefore, our study selected the OPG/RANKL/RANK system as the research target to investigate the effect of ICA on nude mice with lung cancer bone metastasis. We established the model of bone metastasis in nude mice, intervened the model with icariin and zoledronic acid, and detected the levels of OPG and RANKL by ELISA and western blot. The results showed that ICA had a significant inhibitory effect on bone metastases in nude mice. ICA achieved its antibone metastasis effect in nude mice with lung cancer via inhibiting RANKL expression and simultaneously increasing OPG expression. ICA not only alleviated osteolytic bone destruction caused by bone metastases, but it also reduced weight loss in tumor-bearing nude mice at the late stage of the experiment. The role of ICA in preventing bone metastasis of lung cancer merits further investigation.
Collapse
|
38
|
Ding X, Zhao H, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154005. [PMID: 35247669 DOI: 10.1016/j.phymed.2022.154005] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Icariin (ICA) is a flavonoid extract obtained from Herba epimedii that has been proven to exert multiple pharmacological activities, including antifibrotic and anti-inflammatory activities. PURPOSE This study aimed to investigate the ameliorative mechanism of ICA in diabetes mellitus rats and MPC-5 cells. METHODS We administered ICA at 3 different dosages (20 mg/kg, 40 mg/kg, 80 mg/kg) to streptozotocin (STZ)-treated rats and (1 μM, 3 μM, 10 μM) to high glucose (HG)-treated MPC-5 cells. We also chose irbesartan (IRB) (13.5 mg/kg in rats, 1 μM in cells) as a positive control drug to evaluate the ICA pharmacological effect. After administration, the kidneys of rats and MPC-5 cells were harvested for experiments. RESULTS After 8 weeks of oral administration, we found that the physiological index was improved by ICA and IRB. The results of immunohistochemistry, Western blot, and laser confocal imaging showed that mitophagy might play a key role in ICA-induced improvement. In further research, we found that ICA could activate Nrf2, suppress NLRP3 and degrade Keap1 via Sesn2-dependant mitophagy. To verify our hypothesis, we blocked the mitophagy signalling pathway via Sesn2 siRNA. The results showed that ICA-induced NLRP3 suppression and mitophagy vanished. CONCLUSION In summary, we conclude that ICA can increase Sesn2-induced mitophagy to inhibit NLRP3 inflammasome activation by the Keap1-Nrf2/HO-1 axis in diabetic nephropathy rats. This might be the underlying mechanism of ICA's protective effect in diabetic nephropathy.
Collapse
Affiliation(s)
- Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China; Anhui University of Science and Technology, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China
| | - Hanzhen Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Shi S, Wang F, Huang Y, Chen B, Pei C, Huang D, Wang X, Wang Y, Kou S, Li W, Ma T, Wu Y, Wang Z. Epimedium for Osteoporosis Based on Western and Eastern Medicine: An Updated Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:782096. [PMID: 35431937 PMCID: PMC9008843 DOI: 10.3389/fphar.2022.782096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The efficacy of conventional pharmacotherapy on osteoporosis was limited and accompanied with serious side effects. Epimedium might have the potential to be developed as agents to treat osteoporosis. The present systematic review and meta-analysis integrating Western medicine and Eastern medicine (“WE” medicine) was to evaluate the efficacy of Epimedium on osteoporosis. Methods: Eleven electronic databases were searched to identify the randomized controlled trials (RCTs) comparing Epimedium as an adjunctive or alternative versus conventional pharmacotherapy during osteoporosis. Bone mineral density (BMD), effective rate, and Visual Analog Scale (VAS) were measured as primary outcomes. The secondary outcomes were pain relief time, bone metabolic markers, and adverse events. Research quality evaluation was conducted according to the modified Jadad scale. Review Manager 5.4 was utilized to perform analyses, and the data were pooled using a random-effect or fixed-effect model to calculate the weighted mean difference (WMD), standardized mean difference (SMD), risk ratio (RR), and 95% confidence intervals (CI). Results: Twelve RCTs recruiting 1,017 patients were eligible. Overall, it was possible to verify that, in the Epimedium plus conventional pharmacotherapy group, BMD was significantly improved (p = 0.03), effective rate was significantly improved (p = 0.0001), and VAS was significantly decreased (p = 0.01) over those in control group. When compared to conventional pharmacotherapy, Epimedium used alone improved BMD (p = 0.009) and effective rate (p < 0.0001). VAS was lower (p < 0.00001), and the level of alkaline phosphatase (ALP) was significantly decreased (p = 0.01) in patients taking Epimedium alone compared with those given conventional pharmacotherapy. Results of subgroup analyses yielded that the recommended duration of Epimedium as an adjuvant was >3 months (p = 0.03), the recommended duration of Epimedium as an alternative was ≤3 months (p = 0.002), and Epimedium decoction brought more benefits (SMD = 2.33 [1.92, 2.75]) compared with other dosage forms. No significant publication bias was identified based on statistical tests (t = 0.81, p = 0.440). Conclusions: Epimedium may improve BMD and effective rate and relieve pain as an adjuvant or alternative; Epimedium as an alternative might regulate bone metabolism, especially ALP, with satisfying clinical efficacy during osteoporosis. More rigorous RCTs are warranted to confirm these results.
Collapse
Affiliation(s)
- Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong,SAR, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo Kou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihao Li
- Cardiology Division, West China Hospital, Sichuan University, Chengdu, China
| | - Tianhong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongcan Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhenxing Wang,
| |
Collapse
|
41
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
42
|
Chen L, Ma R, Luo P, Shi D, Shi X, Nian H, Chang SX, Yuan W, Li GW. Effects of Total Flavonoids of Epimedium on Bone Marrow Adipose Tissue in Ovariectomized Rats. Front Endocrinol (Lausanne) 2022; 13:900816. [PMID: 35733771 PMCID: PMC9207204 DOI: 10.3389/fendo.2022.900816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
Bone marrow adipose tissue has brown fat characteristics. Several studies have demonstrated that total flavonoids of Epimedium (TFE) could prevent bone loss and reduce the white adiposity in bone marrow induced by ovariectomy (OVX) in rats. However, the effects of TFE on marrow brown fat in OVX rats remain unclear. In this word, we addressed this question expected to provide a new target for preventing and treating osteoporosis. Thirty-six 3-month-old female Sprague-Dawley rats were equally divided into Sham controls, OVX controls, and OVX treated with TFE. Chemical shift coding magnetic resonance was performed to detect marrow fat fraction at the left femur at baseline, 6 and 12 weeks post-OVX. Bone mineral density at the lumbar spine and femur was measured by dual-energy x-ray absorptiometry. Serum bone biomarkers by ELISA, trabecular bone microarchitecture at the proximal tibia by micro-CT, quantitative parameters of marrow adipocyte by hematoxylin, and eosin staining were evaluated. The marrow adipocyte gene and protein expressions profile were determined by real-time quantitative PCR and immunostaining in whole tibiae. We found that TFE treatment could decrease bone turnover rate and improved bone mineral density and trabecular microarchitecture in OVX rats. OVX resulted in marrow adipogenesis as evidenced by increased marrow fat fraction, larger marrow adipocyte size, increased adipocyte number and percentage of adipocyte area, marrow white adipocyte gene, and protein expression, including PPARγ2 and FABP4. These pathological changes induced by estrogen deficiency were restored by TFE treatment. TFE also increased brown adipocyte expressions of the transcription factor Ucp1 and Prdm16 in whole tibiae. There was no detectible protein expression of brown adipocyte markers in the proximal tibia. Taken together, TFE regulation of bone marrow adiposity in OVX rats is mediated, at least in part, via maintaining the reciprocity of white and brown adipose tissue.
Collapse
Affiliation(s)
- Lei Chen
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Ma
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Luo
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi-Xin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Wei Yuan
- Department of Orthopaedics, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| | - Guan-Wu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Shi-Xin Chang, ; Wei Yuan, ; Guan-Wu Li,
| |
Collapse
|
43
|
Zhang Y, Li J, Wang Y, Liang Q. Taxonomy of Epimedium (Berberidaceae) with special reference to Chinese species. CHINESE HERBAL MEDICINES 2022; 14:20-35. [PMID: 36120133 PMCID: PMC9476710 DOI: 10.1016/j.chmed.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/17/2021] [Accepted: 05/09/2021] [Indexed: 11/20/2022] Open
Abstract
Epimedii Herba is a commonly used traditional Chinese herbal medicine. Five Epimedium species are included in Chinese Pharmacopoeia and most species of Epimedium are used as Epimedii Herba in practical application. However, as the largest herbaceous genus of the Berberidaceae, Epimedium has many taxonomic controversies which hinder the effective use of Epimedii Herba. This paper reviewed the taxonomic research related to Epimedium, including taxonomic history, taxonomic values of morphological characters, species and distribution, infra-genera taxonomic system and the taxonomic research of Chinese Epimedium. For instance, we recognized Epimedium wushanense and clarified that the species, as described in Flora Reipublicae Popularis Sinicae and Flora of China, actually includes four Epimedium species similar in leaflet shape. In general, it was recognized here that Epimedium comprises 62 species, of which 52 species are distributed in China. For Chinese Epimedium species with the most taxonomic problems, the taxonomic research on the taxa was reviewed and the newest species key was proposed along with proposals for those taxonomic problems needing further resolution. This review is of great implication for the identification, exploration and utilization of Epimedii Herba.
Collapse
Affiliation(s)
- Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jianqiang Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ying Wang
- Provincial Key Laboratory of Digital Botanical Garden and Public Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
44
|
Li B, Lima MRM, Nie Y, Xu L, Liu X, Yuan H, Chen C, Dias AC, Zhang X. HPLC-DAD Fingerprints Combined With Multivariate Analysis of Epimedii Folium From Major Producing Areas in Eastern Asia: Effect of Geographical Origin and Species. Front Pharmacol 2021; 12:761551. [PMID: 34899314 PMCID: PMC8662750 DOI: 10.3389/fphar.2021.761551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The growth location and plant variety may influence the active components and biological activities of plants used in phytomedicine. In this study, nine sets of different Epimedii Folium, from different representative cultivation locations and Epimedium species, were collected for comparison, using HPLC-DAD combined with multivariate analysis. The objective was to investigate the influence of geographical origin and Epimedium species on the quality of Epimedii Folium, and provide applicable guidance for cultivation and quality control of Epimedii Folium. Several Epimedium spp. sets were used to establish the HPLC-DAD fingerprints and 91 peaks (compounds) were selected for the multivariate analysis. Major compounds were analyzed by HPLC-DAD combined with principal component analysis (PCA). HPLC quantitative analysis of known bioactive compounds was performed. Application of PCA to HPLC data showed that Epimedium samples sharing the same geographical origin or species clustered together, indicating that both species and geographical origin have impacts on the quality of Epimedii Folium. The major bioactive flavonoid compounds, epimedin C, icariin and baohuoside I, were identified and quantified. The concentration of bioactive compounds was significantly influenced both by species and geographical origin. E. sagittatum from Sichuan showed the highest content of bioactive compounds. The results showed that both Epimedium species and geographical origin have strong impact into quality of Epimedii Folium. HPLC data combined with multivariate analysis is a suitable approach to inform the selection of cultivation areas and choose Epimedium spp. most suitable for different geographical areas, resulting in improved quality of Epimedii Folium.
Collapse
Affiliation(s)
- Ben Li
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Marta R M Lima
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Yuhao Nie
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Long Xu
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongchao Yuan
- Jinhuifang Traditional Chinese Medicine Technology Co., Ltd, Hanzhong, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Alberto Cp Dias
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.,Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Gong W, Chen X, Shi T, Shao X, An X, Qin J, Chen X, Jiang Q, Guo B. Network Pharmacology-Based Strategy for the Investigation of the Anti-Osteoporosis Effects and Underlying Mechanism of Zhuangguguanjie Formulation. Front Pharmacol 2021; 12:727808. [PMID: 34658868 PMCID: PMC8517248 DOI: 10.3389/fphar.2021.727808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.
Collapse
Affiliation(s)
- Wang Gong
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xingren Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tianshu Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiaoyan Shao
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xueying An
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jianghui Qin
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
46
|
Yong EL, Cheong WF, Huang Z, Thu WPP, Cazenave-Gassiot A, Seng KY, Logan S. Randomized, double-blind, placebo-controlled trial to examine the safety, pharmacokinetics and effects of Epimedium prenylflavonoids, on bone specific alkaline phosphatase and the osteoclast adaptor protein TRAF6 in post-menopausal women. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153680. [PMID: 34352588 DOI: 10.1016/j.phymed.2021.153680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fragility fractures due to menopausal osteoporosis are a major cause of morbidity and mortality. Osteoporotic medications have substantial side effects that limit long term use. HYPOTHESES Ingestion of a purified extract of Epimedium spp. (EP) is safe, can increase serum levels of prenylflavonoid metabolites, exert positive changes in bone specific alkaline phosphatase (BSAP), suppress of tumor necrosis factor receptor associated factor 6 (TRAF6) protein in osteoclast-precursor monocytes in peripheral blood and therefore have the potential to reduce post-menopausal bone loss. STUDY DESIGN & METHODS Healthy postmenopausal women were randomized in a double-blind fashion to consume either EP prenylflavonoid extract (740 mg daily) or placebo daily for 6 weeks. The main outcome measures were safety and pharmacokinetics of EP flavonoids. Fasting blood was collected at 3- and 6-weeks, and two weeks after stopping medication for safety evaluations and measurement of BSAP. Peripheral blood monocytes were harvested for measurement of TRAF6 levels. Serum levels of the EP metabolites icariin, icariside I & II, icaritin and desmethylicaritin were measured using tandem mass spectrometry, and non-compartmental pharmacokinetic analyses performed using WinNonlin software. RESULTS Between October 2018 and Jun 2020, 58 postmenopausal women, aged 57.9 ± 8.9 years, were randomized and completed the study. Consumption of EP prenylflavonoids was not associated with any significant adverse symptoms, with no changes in hepatic, hematological, and renal parameters observed. The main metabolites detected in sera after ingestion of EP prenylflavonoid capsules were desmethylicaritin, icaritin and icariside II. Icariin and icariside I were below detection levels. Ingestion of EP prenylflavonoids induced a median Cmax and AUC0→∞ for desmethylicaritin of 60.9 nM, and 157.9 nM ×day, respectively; and were associated with higher levels of BSAP (p < 0.05) and a trend (p = 0.068) towards lower levels of TRAF6 in peripheral blood monocytes eight weeks after commencing prenylflavonoid ingestion. Prenylflavonoid metabolites were not detected in the sera of placebo participants. CONCLUSIONS Despite the widespread consumption of EP extracts, the safety, mechanisms of action of their bioactive compounds, and therapeutic indications in humans are unknown. Daily consumption of EP prenylflavonoids for six weeks was safe. The predominant metabolite in sera was desmethylicaritin. Rise in prenylflavonoid metabolites was associated with higher levels of the bone anabolic marker BSAP, suggesting potential therapeutic value for post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Eu-Leong Yong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore.
| | - Wei Fun Cheong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Zhongwei Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore; Institute of Molecular and Cell Biology, Agency of Science, Technology and Research, 138673 Singapore
| | - Win Pa Pa Thu
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456 Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
| | - Kok Yong Seng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Susan Logan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore
| |
Collapse
|
47
|
Wang P, Li C, Li X, Huang W, Wang Y, Wang J, Zhang Y, Yang X, Yan X, Wang Y, Zhou Z. Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Sci Bull (Beijing) 2021; 66:1906-1916. [PMID: 36654400 DOI: 10.1016/j.scib.2021.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Icaritin is a prenylflavonoid present in the Chinese herbal medicinal plant Epimedium spp. and is under investigation in a phase III clinical trial for advanced hepatocellular carcinoma. Here, we report the biosynthesis of icaritin from glucose by engineered microbial strains. We initially designed an artificial icaritin biosynthetic pathway by identifying a novel prenyltransferase from the Berberidaceae-family species Epimedium sagittatum (EsPT2) that catalyzes the C8 prenylation of kaempferol to yield 8-prenlykaempferol and a novel methyltransferase GmOMT2 from soybean to transfer a methyl to C4'-OH of 8-prenlykaempferol to produce icaritin. We next introduced 11 heterologous genes and modified 12 native yeast genes to construct a yeast strain capable of producing 8-prenylkaempferol with high efficiency. GmOMT2 was sensitive to low pH and lost its activity when expressed in the yeast cytoplasm. By relocating GmOMT2 into mitochondria (higher pH than cytoplasm) of the 8-prenylkaempferol-producing yeast strain or co-culturing the 8-prenylkaempferol-producing yeast with an Escherichia coli strain expressing GmOMT2, we obtained icaritin yields of 7.2 and 19.7 mg/L, respectively. Beyond the characterizing two previously unknown plant enzymes and conducting the first biosynthesis of icaritin from glucose, we describe two strategies of overcoming the widespread issue of incompatible pH conditions encountered in basic and applied bioproduction research. Our findings will facilitate industrial-scale production of icaritin and other prenylflavonoids.
Collapse
Affiliation(s)
- Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiali Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoman Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Center of Economic Botany/Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Center of Economic Botany/Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Li X, Chen R, Li Y, Wang P, Cui Y, Yang L, Zhu X, Zhang R. miR-27a-5p-Abundant Small Extracellular Vesicles Derived From Epimedium-Preconditioned Bone Mesenchymal Stem Cells Stimulate Osteogenesis by Targeting Atg4B-Mediated Autophagy. Front Cell Dev Biol 2021; 9:642646. [PMID: 34621733 PMCID: PMC8491742 DOI: 10.3389/fcell.2021.642646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/03/2021] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP) is a disease affecting the elderly and is characterized by incremental fractures and bone fragility. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells have been demonstrated to possess potent regeneration potential. In this study, we evaluated the osteogenesis effects of sEVs derived from Epimedium-preconditioned bone mesenchymal stem cells (EPI-sEV) from osteoblasts and ovariectomized (OVX) rats. The underlying mechanism of EPI-sEV-induced osteogenesis was explored by RNA-sequencing and verified by transfection with the corresponding mimic and inhibitor. EPI-sEV stimulated osteogenic differentiation of osteoblasts and moderated both bone mass and microstructure in OVX rats. Sequencing identified a unique enrichment of a set of microRNAs (miRNAs) in EPI-sEV. Overexpression or inhibition in vitro demonstrated that the osteogenesis-inducing potential was primarily attributed to miR-27a-5p, one of the most abundant miRNAs in the EPI-sEV fraction. Dual-luciferase reporter assays showed that miR-27a-5p promoted osteogenesis through direct suppression of Atg4B by targeting its 3' untranslated region. Additional experiments showed that miR-27a-5p suppressed autophagy that was activated in OVX rats. Moreover, osteogenic differentiation was ablated by the intervention with rapamycin in osteoblasts. These data report the regenerative potential of EPI-sEV to induce osteogenic differentiation of osteoblast cells leading to bone formation. This process is achieved by delivering sEV-miR-27a-5p to target Atg4B for further autophagy stimulation.
Collapse
Affiliation(s)
- Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Rumeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yunchuan Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- Cancer Research Institution, Jinan University, Guangzhou, China
| | - Yan Cui
- College of Traditional Chinese Medicine Jinan University, Guangzhou, China
| | - Li Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine Jinan University, Guangzhou, China
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ronghua Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Cancer Research Institution, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Diao X, Wang L, Zhou Y, Bi Y, Zhou K, Song L. The mechanism of Epimedin B in treating osteoporosis as revealed by RNA sequencing-based analysis. Basic Clin Pharmacol Toxicol 2021; 129:450-461. [PMID: 34491615 DOI: 10.1111/bcpt.13657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
With the ageing of populations, the management of osteoporosis is a priority of society in general. Epimedin B, a major ingredient of Herba Epimedii, which has the advantages of high content and hypotoxicity has been proved to be effective in preventing osteoporosis in vitro. However, the efficacy and mechanism of Epimedin B on osteoporosis in vivo have not been well elucidated yet. This study aimed to investigate the effects and the potential mechanisms of 8-week repeated oral administration of Epimedin B (10 and 20 mg/kg/day) on a mouse osteoporosis model. Effects of Epimedin B were evaluated by examinations of serum bone turnover markers, bone mineral density, bone microstructure parameters and histopathological section. Epimedin B significantly rose N-terminal propeptide of type I procollagen (P1NP) and dropped C-telopeptide of type I collagen (CTX1). Connectivity density (Conn.D) increased significantly while structure model index (DA) decreased significantly after treated by Epimedin B. Meanwhile, Epimedin B administration significantly increased the number of trabecular bones while significantly decreased the gap between them. Overall, Epimedin B showed beneficial effects on osteoporosis. Furthermore, RNA sequencing-based analysis revealed 5 significantly down-regulated transcripts and 107 significantly up-regulated transcripts between the Epimedin B administration group and the model group. These transcripts were mapped to 15 pathways by KEGG enrichment analysis, of which PI3K-Akt signalling pathway, MAPK signalling pathway and PPAR signalling pathway were most connected to osteoporosis. To conclude, Epimedin B is effective in treating osteoporosis in mice via regulating PI3K-Akt, MAPK and PPAR signalling pathway.
Collapse
Affiliation(s)
- Xinyue Diao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liwen Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yating Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
50
|
Jing Z, Wang C, Wen S, Jin Y, Meng Q, Liu Q, Wu J, Sun H, Liu M. Phosphocreatine Promotes Osteoblastic Activities in H 2O 2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway. Curr Pharm Biotechnol 2021; 22:609-621. [PMID: 33198615 DOI: 10.2174/1389201021999201116160247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis, characterized by bone loss, usually occurs with the increased bone resorption and decreased bone formation. H2O2-induced MC3T3-E1 cells are commonly used for the study of osteoblastic activities, which play a crucial role in bone formation. OBJECTIVE This study aimed to investigate the effects of Phosphocreatine (PCr) on the osteoblastic activities in H2O2-induced MC3T3-E1 cells and elaborate on the possible molecular mechanism. METHODS The Osteoprotegerin (OPG)/Receptor Activator of NF-κB Ligand (RANKL) ratio and osteogenic markers were detected to investigate the effects of PCr on osteoblastic activities, and the osteoblastic apoptosis was detected using Hochest staining. Moreover, oxidative stress, Adenosine Triphosphate (ATP) generation and the expression of Sirtuin 1 (SIRT1), Forkhead Box O 1 (FOXO1) and Peroxisome Proliferator-Activated Receptor Γ Coactivator-1α (PGC-1α) were also examined to uncover the possible molecular mechanism in H2O2-induced MC3T3-E1 cells. RESULT The results showed that PCr promoted the osteoblastic differentiation by increasing the expression levels of osteogenic markers of Alkaline Phosphatase (ALP) and Runt-related transcription factor 2 (Runx2), as well as increased the OPG/RANKL ratio and suppressed the osteoblastic apoptosis in H2O2-induced MC3T3-E1 cells. Moreover, treatment with PCr suppressed reactive oxygen species (ROS) over-generation and promoted the ATP production as well as increased the PGC-1α, FOXO1 and SIRT1 protein expression levels in H2O2-induced MC3T3-E1 cells. CONCLUSION PCr treatment could promote osteoblastic activities via suppressing oxidative stress and increasing the ATP generation in H2O2-induced MC3T3-E1 cells. In addition, the positive effects of PCr on osteoblasts might be regulated by SIRT1/FOXO1/ PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shijie Wen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|