1
|
Xu X, Zhang Y, Huang G, Perekatt A, Wang Y, Chen L. Advances and applications of gut organoids: modeling intestinal diseases and therapeutic development. LIFE MEDICINE 2025; 4:lnaf012. [PMID: 40276096 PMCID: PMC12018802 DOI: 10.1093/lifemedi/lnaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Gut organoids are 3D cellular structures derived from adult or pluripotent stem cells, capable of closely replicating the physiological properties of the gut. These organoids serve as powerful tools for studying gut development and modeling the pathogenesis of intestinal diseases. This review provides an in-depth exploration of technological advancements and applications of gut organoids, with a focus on their construction methods. Additionally, the potential applications of gut organoids in disease modeling, microenvironmental simulation, and personalized medicine are summarized. This review aims to offer perspectives and directions for understanding the mechanisms of intestinal health and disease as well as for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Yuping Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Key Laboratory of Basic and Translational Research of Malignant Tumor, Shantou Central Hospital, Shantou 515041, China
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210031, China
- Institute of Microphysiological Systems, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Niceforo A, Zholudeva LV, Fernandes S, Shah Y, Lane MA, Qiang L. Challenges and Efficacy of Astrocyte-to-Neuron Reprogramming in Spinal Cord Injury: In Vitro Insights and In Vivo Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.25.586619. [PMID: 38585866 PMCID: PMC10996511 DOI: 10.1101/2024.03.25.586619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Traumatic spinal cord injury (SCI) leads to the disruption of neural pathways, causing loss of neural cells, with subsequent reactive gliosis and tissue scarring that limit endogenous repair. One potential therapeutic strategy to address this is to target reactive scar-forming astrocytes with direct cellular reprogramming to convert them into neurons, by overexpression of neurogenic transcription factors. Here we used lentiviral constructs to overexpress Ascl1 or a combination of microRNAs (miRs) miR124, miR9/9*and NeuroD1 transfected into cultured and in vivo astrocytes. In vitro experiments revealed cortically-derived astrocytes display a higher efficiency (70%) of reprogramming to neurons than spinal cord-derived astrocytes. In a rat cervical SCI model, the same strategy induced only limited reprogramming of astrocytes. Delivery of reprogramming factors did not significantly affect patterns of breathing under baseline and hypoxic conditions, but significant differences in average diaphragm amplitude were seen in the reprogrammed groups during eupneic breathing, hypoxic, and hypercapnic challenges. These results show that while cellular reprogramming can be readily achieved in carefully controlled in vitro conditions, achieving a similar degree of successful reprogramming in vivo is challenging and may require additional steps.
Collapse
Affiliation(s)
- Alessia Niceforo
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
- Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
| | | | - Silvia Fernandes
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
- Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
| | - Yashvi Shah
- College of Medicine, Drexel University, Philadelphia, PA, 19104, USA
| | - Michael A. Lane
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
- Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
- Marion Murray Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, 19129, USA
| |
Collapse
|
3
|
Göksu AY. A review article on the development of dopaminergic neurons and establishment of dopaminergic neuron-based in vitro models by using immortal cell lines or stem cells to study and treat Parkinson's disease. Int J Dev Neurosci 2024; 84:817-842. [PMID: 39379284 DOI: 10.1002/jdn.10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The primary pathological hallmark of Parkinson's disease (PD) is the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta, a critical midbrain region. In vitro models based on DA neurons provide a powerful platform for investigating the cellular and molecular mechanisms of PD and testing novel therapeutic strategies. A deep understanding of DA neuron development, including the signalling pathways and transcription factors involved, is essential for advancing PD research. This article first explores the differentiation and maturation processes of DA neurons in the midbrain, detailing the relevant signalling pathways. It then compares various in vitro models, including primary cells, immortalized cell lines, and stem cell-based models, focusing on the advantages and limitations of each. Special attention is given to the role of immortalized and stem cell models in PD research. This review aims to guide researchers in selecting the most appropriate model for their specific research goals. Ethical considerations and clinical implications of using stem cells in PD research are also discussed.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and Embryology, Department of Gene and Cell Therapy, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
4
|
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther 2024; 15:155. [PMID: 38816841 PMCID: PMC11140936 DOI: 10.1186/s13287-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hui Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: a glance through. Front Mol Neurosci 2023; 16:1173433. [PMID: 37602192 PMCID: PMC10435272 DOI: 10.3389/fnmol.2023.1173433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Neurodegenerative diseases are adult-onset neurological conditions that are notoriously difficult to model for drug discovery and development because most models are unable to accurately recapitulate pathology in disease-relevant cells, making it extremely difficult to explore the potential mechanisms underlying neurodegenerative diseases. Therefore, alternative models of human or animal cells have been developed to bridge the gap and allow the impact of new therapeutic strategies to be anticipated more accurately by trying to mimic neuronal and glial cell interactions and many more mechanisms. In tandem with the emergence of human-induced pluripotent stem cells which were first generated in 2007, the accessibility to human-induced pluripotent stem cells (hiPSC) derived from patients can be differentiated into disease-relevant neurons, providing an unrivaled platform for in vitro modeling, drug testing, and therapeutic strategy development. The recent development of three-dimensional (3D) brain organoids derived from iPSCs as the best alternative models for the study of the pathological features of neurodegenerative diseases. This review highlights the overview of current iPSC-based disease modeling and recent advances in the development of iPSC models that incorporate neurodegenerative diseases. In addition, a summary of the existing brain organoid-based disease modeling of Alzheimer's disease was presented. We have also discussed the current methodologies of regional specific brain organoids modeled, its potential applications, emphasizing brain organoids as a promising platform for the modeling of patient-specific diseases, the development of personalized therapies, and contributing to the design of ongoing or future clinical trials on organoid technologies.
Collapse
Affiliation(s)
- Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ye Z, Chen G, Hou C, Jiang Z, Wang E, Wang J. LMCD1 facilitates the induction of pluripotency via cell proliferation, metabolism, and epithelial-mesenchymal transition. Cell Biol Int 2022; 46:1409-1422. [PMID: 35842772 DOI: 10.1002/cbin.11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022]
Abstract
Somatic cell reprogramming was achieved by lentivirus mediated overexpression of four transcription factors called OSKM: OCT3/4, SOX2, KLF4, and c-MYC but it was not very efficient. Here, we reported that the transcription factor, LMCD1 (LIM and cysteine rich domains 1) together with OSKM can induce reprogramming of human dermal fibroblasts into induced pluripotent stem cells (iPSCs) more efficiently than OSKM alone. At the same time, the number of iPSCs clones were reduced when we knocked down LMCD1. Further study showed that LMCD1 can enhance the cell proliferation, the glycolytic capability, the epithelial-mesenchymal transition (EMT), and reduce the epigenetic barrier by upregulating epigenetic factors (EZH2, WDR5, BMI1, and KDM2B) in the early stage of reprogramming, making the cells more accessible to gain pluripotency. Additional research suggested that LMCD1 can not only inhibit the developmental gene GATA6, but also promote multiple signaling pathways, such as AKT and glycolysis, which are closely related to reprogramming efficiency. Therefore, we identified the novel function of the transcription factor LMCD1, which reduces the barriers of the reprogramming from somatic to pluripotent cells in several ways in the early stage of reprogramming.
Collapse
Affiliation(s)
- Zhikai Ye
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ge Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cuicui Hou
- College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhenlong Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jin Wang
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
7
|
Ogundipe V, Plukker J, Links T, Coppes R. Thyroid Gland Organoids: Current models and insights for application in tissue engineering. Tissue Eng Part A 2022; 28:500-510. [PMID: 35262402 DOI: 10.1089/ten.tea.2021.0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The incidence of treatment of thyroid disease and consequential hypothyroidism has been increasing over the past few years. To maintain adequate thyroid hormone levels, these patients require daily supplementation with levothyroxine (L-T4) for the rest of their lives. However, a large part of these patients experiences difficulties due to the medication, which causes a decrease in their quality of life. Regenerative medicine through tissue engineering could provide a potential therapy by establishing tissue engineering models, such as those employing thyroid-derived organoids. The development of such treatment options may replace the need for additional hormonal replacement therapy. This review aims to highlight the current knowledge on thyroid regenerative medicine using organoids for tissue engineering, and to discuss insights into potential methods to optimize thyroid engineering culture systems. Finally, we will describe several challenges faced when utilising these models.
Collapse
Affiliation(s)
- Vivian Ogundipe
- University Medical Centre Groningen, 10173, Biomedical Sciences of Cells and Systems, Groningen, Groningen, Netherlands;
| | - John Plukker
- University Medical Centre Groningen, 10173, Surgical Oncology, Groningen, Netherlands;
| | - Thera Links
- University Medical Centre Groningen, 10173, Endocrinology, Groningen, Groningen, Netherlands;
| | - Rob Coppes
- University Medical Centre Groningen, 10173, Biomedical Sciences of Cells and Sytems, Groningen, Netherlands;
| |
Collapse
|
8
|
Urrutia-Cabrera D, Hsiang-Chi Liou R, Lin J, Shi Y, Liu K, Hung SSC, Hewitt AW, Wang PY, Ching-Bong Wong R. Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8669-8679. [PMID: 35166105 DOI: 10.1021/acsami.1c17975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 μm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 μm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.
Collapse
Affiliation(s)
- Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325016, China
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
- Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen 510810, China
| |
Collapse
|
9
|
Modeling and Targeting Neuroglial Interactions with Human Pluripotent Stem Cell Models. Int J Mol Sci 2022; 23:ijms23031684. [PMID: 35163606 PMCID: PMC8836094 DOI: 10.3390/ijms23031684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.
Collapse
|
10
|
Struzyna LA, Watt ML. The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation. Mol Pharmacol 2021; 99:256-265. [PMID: 33547249 DOI: 10.1124/molpharm.120.000142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
The high failure rate of drugs in the clinical pipeline is likely in part the result of inadequate preclinical models, particularly those for neurologic disorders and neurodegenerative disease. Such preclinical animal models often suffer from fundamental species differences and rarely recapitulate all facets of neurologic conditions, whereas conventional two-dimensional (2D) in vitro models fail to capture the three-dimensional spatial organization and cell-to-cell interactions of brain tissue that are presumed to be critical to the function of the central nervous system. Recent studies have suggested that stem cell-derived neuronal organoids are more physiologically relevant than 2D neuronal cultures because of their cytoarchitecture, electrophysiological properties, human origin, and gene expression. Hence there is interest in incorporating such physiologically relevant models into compound screening and lead optimization efforts within drug discovery. However, despite their perceived relevance, compared with previously used preclinical models, little is known regarding their predictive value. In fact, some have been wary to broadly adopt organoid technology for drug discovery because of the low-throughput and tedious generation protocols, inherent variability, and lack of compatible moderate-to-high-throughput screening assays. Consequently, microfluidic platforms, specialized bioreactors, and automated assays have been and are being developed to address these deficits. This mini review provides an overview of the gaps to broader implementation of neuronal organoids in a drug discovery setting as well as emerging technologies that may better enable their utilization. SIGNIFICANCE STATEMENT: Neuronal organoid models offer the potential for a more physiological system in which to study neurological diseases, and efforts are being made to employ them not only in mechanistic studies but also in profiling/screening purposes within drug discovery. In addition to exploring the utility of neuronal organoid models within this context, efforts in the field aim to standardize such models for consistency and adaptation to screening platforms for throughput evaluation. This review covers potential impact of and hurdles to implementation.
Collapse
|
11
|
Charvériat M, Lafon V, Mouthon F, Zimmer L. Innovative approaches in CNS drug discovery. Therapie 2021; 76:101-109. [DOI: 10.1016/j.therap.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
|
12
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
14
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
15
|
Jackson D, Malka S, Harding P, Palma J, Dunbar H, Moosajee M. Molecular diagnostic challenges for non-retinal developmental eye disorders in the United Kingdom. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:578-589. [PMID: 32830442 PMCID: PMC8432170 DOI: 10.1002/ajmg.c.31837] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Overall, approximately one‐quarter of patients with genetic eye diseases will receive a molecular diagnosis. Patients with developmental eye disorders face a number of diagnostic challenges including phenotypic heterogeneity with significant asymmetry, coexisting ocular and systemic disease, limited understanding of human eye development and the associated genetic repertoire, and lack of access to next generation sequencing as regarded not to impact on patient outcomes/management with cost implications. Herein, we report our real world experience from a pediatric ocular genetics service over a 12 month period with 72 consecutive patients from 62 families, and that from a cohort of 322 patients undergoing whole genome sequencing (WGS) through the Genomics England 100,000 Genomes Project; encompassing microphthalmia, anophthalmia, ocular coloboma (MAC), anterior segment dysgenesis anomalies (ASDA), primary congenital glaucoma, congenital cataract, infantile nystagmus, and albinism. Overall molecular diagnostic rates reached 24.9% for those recruited to the 100,000 Genomes Project (73/293 families were solved), but up to 33.9% in the clinic setting (20/59 families). WGS was able to improve genetic diagnosis for MAC patients (15.7%), but not for ASDA (15.0%) and congenital cataracts (44.7%). Increased sample sizes and accurate human phenotype ontology (HPO) terms are required to improve diagnostic accuracy. The significant mixed complex ocular phenotypes distort these rates and lead to missed variants if the correct gene panel is not applied. Increased molecular diagnoses will help to explain the genotype–phenotype relationships of these developmental eye disorders. In turn, this will lead to improved integrated care pathways, understanding of disease, and future therapeutic development.
Collapse
Affiliation(s)
- Daniel Jackson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Juliana Palma
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Hannah Dunbar
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - Mariya Moosajee
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.,UCL Institute of Ophthalmology, London, UK.,Great Ormond Street Hospital for Children NHS Trust, London, UK.,The Francis Crick Institute, London, UK
| |
Collapse
|
16
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
17
|
Neuronal Reprogramming for Tissue Repair and Neuroregeneration. Int J Mol Sci 2020; 21:ijms21124273. [PMID: 32560072 PMCID: PMC7352898 DOI: 10.3390/ijms21124273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell and cell reprogramming technology represent a rapidly growing field in regenerative medicine. A number of novel neural reprogramming methods have been established, using pluripotent stem cells (PSCs) or direct reprogramming, to efficiently derive specific neuronal cell types for therapeutic applications. Both in vitro and in vivo cellular reprogramming provide diverse therapeutic pathways for modeling neurological diseases and injury repair. In particular, the retina has emerged as a promising target for clinical application of regenerative medicine. Herein, we review the potential of neuronal reprogramming to develop regenerative strategy, with a particular focus on treating retinal degenerative diseases and discuss future directions and challenges in the field.
Collapse
|
18
|
Lopatkina ME, Lebedev IN. Transcriptome Analysis as a Tool for Investigation of Pathogenesis of Chromosomal Diseases. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165431. [PMID: 30898538 PMCID: PMC6751032 DOI: 10.1016/j.bbadis.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Current application of human induced pluripotent stem cells (hiPSCs) technology in patient-specific models of neurodegenerative disorders recapitulate some of key phenotypes of diseases, representing disease-specific cellular modeling and providing a unique platform for therapeutics development. We review recent efforts toward advancing hiPSCs-derived neuronal cell types and highlight their potential use for the development of more complex in vitro models of neurodegenerative diseases by focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. We present evidence from previous works on the important phenotypic changes of various neuronal types in these neurological diseases. We also summarize efforts on conducting low- and high-throughput screening experiments with hiPSCs toward developing potential therapeutics for treatment of neurodegenerative diseases. Lastly, we discuss the limitations of hiPSCs culture system in studying neurodegenerative diseases and alternative strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Xinwen Zhang
- Center of Implant Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
21
|
Georges P, Boza-Moran MG, Gide J, Pêche GA, Forêt B, Bayot A, Rustin P, Peschanski M, Martinat C, Aubry L. Induced pluripotent stem cells-derived neurons from patients with Friedreich ataxia exhibit differential sensitivity to resveratrol and nicotinamide. Sci Rep 2019; 9:14568. [PMID: 31601825 PMCID: PMC6787055 DOI: 10.1038/s41598-019-49870-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Translation of pharmacological results from in vitro cell testing to clinical trials is challenging. One of the causes that may underlie these discrepant results is the lack of the phenotypic or species-specific relevance of the tested cells; today, this lack of relevance may be reduced by relying on cells differentiated from human pluripotent stem cells. To analyse the benefits provided by this approach, we chose to focus on Friedreich ataxia, a neurodegenerative condition for which the recent clinical testing of two compounds was not successful. These compounds, namely, resveratrol and nicotinamide, were selected because they had been shown to stimulate the expression of frataxin in fibroblasts and lymphoblastoid cells. Our results indicated that these compounds failed to do so in iPSC-derived neurons generated from two patients with Friedreich ataxia. By comparing the effects of both molecules on different cell types that may be considered to be non-relevant for the disease, such as fibroblasts, or more relevant to the disease, such as neurons differentiated from iPSCs, a differential response was observed; this response suggests the importance of developing more predictive in vitro systems for drug discovery. Our results demonstrate the value of utilizing human iPSCs early in drug discovery to improve translational predictability.
Collapse
Affiliation(s)
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Georges Arielle Pêche
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Aurélien Bayot
- CNRS UMR 3691, Institut Pasteur, Mitochondrial Biology Group, Paris, France
| | - Pierre Rustin
- Hôpital Robert Debré, INSERM UMR, 1141, Paris, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
22
|
Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SSC, Zhu L, Zhang T, Grünert U, Nguyen T, Senabouth A, Jabbari JS, Welby E, Sowden JC, Waugh HS, Mackey A, Pollock G, Lamb TD, Wang P, Hewitt AW, Gillies MC, Powell JE, Wong RCB. A single-cell transcriptome atlas of the adult human retina. EMBO J 2019; 38:e100811. [PMID: 31436334 PMCID: PMC6745503 DOI: 10.15252/embj.2018100811] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The retina is a specialized neural tissue that senses light and initiates image processing. Although the functional organization of specific retina cells has been well studied, the molecular profile of many cell types remains unclear in humans. To comprehensively profile the human retina, we performed single-cell RNA sequencing on 20,009 cells from three donors and compiled a reference transcriptome atlas. Using unsupervised clustering analysis, we identified 18 transcriptionally distinct cell populations representing all known neural retinal cells: rod photoreceptors, cone photoreceptors, Müller glia, bipolar cells, amacrine cells, retinal ganglion cells, horizontal cells, astrocytes, and microglia. Our data captured molecular profiles for healthy and putative early degenerating rod photoreceptors, and revealed the loss of MALAT1 expression with longer post-mortem time, which potentially suggested a novel role of MALAT1 in rod photoreceptor degeneration. We have demonstrated the use of this retina transcriptome atlas to benchmark pluripotent stem cell-derived cone photoreceptors and an adult Müller glia cell line. This work provides an important reference with unprecedented insights into the transcriptional landscape of human retinal cells, which is fundamental to understanding retinal biology and disease.
Collapse
Affiliation(s)
- Samuel W Lukowski
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | | | - Alexei A Sharov
- National Institute for AgingNational Institutes of HealthBaltimoreMDUSA
| | - Quan Nguyen
- Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQldAustralia
| | - Lyujie Fang
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Jinan UniversityGuangzhouChina
| | - Sandy SC Hung
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Ling Zhu
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ting Zhang
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Ulrike Grünert
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Tu Nguyen
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - Anne Senabouth
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
| | | | - Emily Welby
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine SectionNIHR Great Ormond Street Hospital Biomedical Research CentreUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | | | | | - Trevor D Lamb
- John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Peng‐Yuan Wang
- Department of Chemistry and BiotechnologySwinburne University of TechnologyMelbourneVic.Australia
- Center for Human Tissues and Organs DegenerationInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenChina
| | - Alex W Hewitt
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTas.Australia
| | - Mark C Gillies
- The University of SydneyFaculty of MedicineSave Sight InstituteSydneyNSWAustralia
| | - Joseph E Powell
- Garvan‐Weizmann Centre for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSWAustralia
- UNSW Cellular Genomics Futures InstituteUniversity of New South WalesSydneyNSWAustralia
| | - Raymond CB Wong
- Centre for Eye Research AustraliaMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
- Shenzhen Eye HospitalShenzhen University School of MedicineShenzhenChina
| |
Collapse
|
23
|
Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol 2019; 7:jdb7030016. [PMID: 31416264 PMCID: PMC6787759 DOI: 10.3390/jdb7030016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Human eye development is coordinated through an extensive network of genetic signalling pathways. Disruption of key regulatory genes in the early stages of eye development can result in aborted eye formation, resulting in an absent eye (anophthalmia) or a small underdeveloped eye (microphthalmia) phenotype. Anophthalmia and microphthalmia (AM) are part of the same clinical spectrum and have high genetic heterogeneity, with >90 identified associated genes. By understanding the roles of these genes in development, including their temporal expression, the phenotypic variation associated with AM can be better understood, improving diagnosis and management. This review describes the genetic and structural basis of eye development, focusing on the function of key genes known to be associated with AM. In addition, we highlight some promising avenues of research involving multiomic approaches and disease modelling with induced pluripotent stem cell (iPSC) technology, which will aid in developing novel therapies.
Collapse
Affiliation(s)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK.
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| |
Collapse
|
24
|
El Wazan L, Urrutia-Cabrera D, Wong RCB. Using transcription factors for direct reprogramming of neurons in vitro. World J Stem Cells 2019; 11:431-444. [PMID: 31396370 PMCID: PMC6682505 DOI: 10.4252/wjsc.v11.i7.431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/07/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cell therapy offers great promises in replacing the neurons lost due to neurodegenerative diseases or injuries. However, a key challenge is the cellular source for transplantation which is often limited by donor availability. Direct reprogramming provides an exciting avenue to generate specialized neuron subtypes in vitro, which have the potential to be used for autologous transplantation, as well as generation of patient-specific disease models in the lab for drug discovery and testing gene therapy. Here we present a detailed review on transcription factors that promote direct reprogramming of specific neuronal subtypes with particular focus on glutamatergic, GABAergic, dopaminergic, sensory and retinal neurons. We will discuss the developmental role of master transcriptional regulators and specification factors for neuronal subtypes, and summarize their use in promoting direct reprogramming into different neuronal subtypes. Furthermore, we will discuss up-and-coming technologies that advance the cell reprogramming field, including the use of computational prediction of reprogramming factors, opportunity of cellular reprogramming using small chemicals and microRNA, as well as the exciting potential for applying direct reprogramming in vivo as a novel approach to promote neuro-regeneration within the body. Finally, we will highlight the clinical potential of direct reprogramming and discuss the hurdles that need to be overcome for clinical translation.
Collapse
Affiliation(s)
- Layal El Wazan
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | - Daniel Urrutia-Cabrera
- Cellular Reprogramming Unit, Centre for Eye Research Australia, Melbourne 3004, Australia
| | | |
Collapse
|
25
|
Akhtar T, Xie H, Khan MI, Zhao H, Bao J, Zhang M, Xue T. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res 2019; 39:101491. [PMID: 31326746 DOI: 10.1016/j.scr.2019.101491] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Retinal organoids (ROs) derived from human-induced pluripotent stem cells recapitulate the three-dimensional structure of retina, mimic human retinal development, and provide cell sources for pre-clinical retinal transplantation. Retinal pigment epithelium (RPE) is crucial for normal outer retinal physiology, including phagocytosis of shed photoreceptor outer segments and secretion of neurotrophic and vasculotrophic growth factors. However, whether ROs-RPE co-culture can improve the differentiation of photoreceptors in ROs in vitro remains unknown. Herein, primary mouse RPE cells were contact co-cultured with ROs at different time points. Our results revealed that the RPE cells accelerated photoreceptor differentiation in ROs, as the cross talk between the RPE and ROs promoted the stage specific expression of photoreceptor markers at different differentiation stages. Thus, we established an improved co-culture system based on modeling of human retina-RPE dynamics during retinogenesis for the evaluation of ocular therapies.
Collapse
Affiliation(s)
- Tasneem Akhtar
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haohuan Xie
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Muhammad Imran Khan
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Tian Xue
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Greuel S, Hanci G, Böhme M, Miki T, Schubert F, Sittinger M, Mandenius CF, Zeilinger K, Freyer N. Effect of inoculum density on human-induced pluripotent stem cell expansion in 3D bioreactors. Cell Prolif 2019; 52:e12604. [PMID: 31069891 PMCID: PMC6668975 DOI: 10.1111/cpr.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
Objective For optimized expansion of human‐induced pluripotent stem cells (hiPSCs) with regards to clinical applications, we investigated the influence of the inoculum density on the expansion procedure in 3D hollow‐fibre bioreactors. Materials and Methods Analytical‐scale bioreactors with a cell compartment volume of 3 mL or a large‐scale bioreactor with a cell compartment volume of 17 mL were used and inoculated with either 10 × 106 or 50 × 106 hiPSCs. Cells were cultured in bioreactors over 15 days; daily measurements of biochemical parameters were performed. At the end of the experiment, the CellTiter‐Blue® Assay was used for culture activity evaluation and cell quantification. Also, cell compartment sections were removed for gene expression and immunohistochemistry analysis. Results The results revealed significantly higher values for cell metabolism, cell activity and cell yields when using the higher inoculation number, but also a more distinct differentiation. As large inoculation numbers require cost and time‐extensive pre‐expansion, low inoculation numbers may be used preferably for long‐term expansion of hiPSCs. Expansion of hiPSCs in the large‐scale bioreactor led to a successful production of 5.4 × 109 hiPSCs, thereby achieving sufficient cell amounts for clinical applications. Conclusions In conclusion, the results show a significant effect of the inoculum density on cell expansion, differentiation and production of hiPSCs, emphasizing the importance of the inoculum density for downstream applications of hiPSCs. Furthermore, the bioreactor technology was successfully applied for controlled and scalable production of hiPSCs for clinical use.
Collapse
Affiliation(s)
- Selina Greuel
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Güngör Hanci
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mike Böhme
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Michael Sittinger
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carl-Fredrik Mandenius
- Division of Biotechnology, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nora Freyer
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|
28
|
Yu YJ, Kim YH, Na K, Min SY, Hwang OK, Park DK, Kim DY, Choi SH, Kamm RD, Chung S, Kim JA. Hydrogel-incorporating unit in a well: 3D cell culture for high-throughput analysis. LAB ON A CHIP 2018; 18:2604-2613. [PMID: 30043033 DOI: 10.1039/c8lc00525g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microfluidic 3D cell culture system has been an attractive model because it mimics the tissue and disease model, thereby expanding our ability to control the local cellular microenvironment. However, these systems still have limited value as quantitative assay tools due to the difficulties associated with the manipulation and maintenance of microfluidic cells, and their lack of compatibility with the high-throughput screening (HTS) analysis system. In this study, we suggest a microchannel-free, 3D cell culture system that has a hydrogel-incorporating unit integrated with a multi-well plate (24- to 96-well plate), which can provide better reproducibility in biological experiments. This plate was devised considering the design constraints imposed by various cell biology applications as well as by high-throughput analysis where the physical dimensions of the micro-features in the hydrogel-incorporating units were altered. We also demonstrated that the developed plate is potentially applicable to a variety of quantitative biochemical assays for qRT-PCR, Western blotting, and microplate-reader-based assays, such as ELISA, viability assay, and high content-screening (HCS) as well as the co-culture for biological studies. Human neural progenitor cells (hNPCs) that produce pathogenic Aβ species for modeling Alzheimer's disease (AD) were three-dimensionally cultured, and the efficacy of the inhibitors of Aβ production was assessed by ELISA in order to demonstrate the performance of this plate.
Collapse
Affiliation(s)
- Yeong Jun Yu
- Biomedical Omics Group, Korea Basic Science Institute, Chungbuk 28119, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plast 2018; 2018:5056279. [PMID: 29853845 PMCID: PMC5964415 DOI: 10.1155/2018/5056279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients.
Collapse
|
30
|
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ 2017; 25:542-572. [PMID: 29229998 PMCID: PMC5864235 DOI: 10.1038/s41418-017-0020-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium (www.cebiond.org), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Collapse
|
31
|
Park J, Kim J, Sullivan KM, Baik S, Ko E, Kim MJ, Kim YJ, Kong H. Decellularized Matrix Produced by Mesenchymal Stem Cells Modulates Growth and Metabolic Activity of Hepatic Cell Cluster. ACS Biomater Sci Eng 2017; 4:456-462. [DOI: 10.1021/acsbiomaterials.7b00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Seungyun Baik
- Environmental
Safety Group, Korea Institute of Science and Technology (KIST Europe),
Campus E 7.1, Universitaet des Saarlandes, Saarbrucken 66123, Germany
| | | | - Myung-Joo Kim
- Department
of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Young Jun Kim
- Environmental
Safety Group, Korea Institute of Science and Technology (KIST Europe),
Campus E 7.1, Universitaet des Saarlandes, Saarbrucken 66123, Germany
| | | |
Collapse
|
32
|
Low LA, Tagle DA. Tissue chips - innovative tools for drug development and disease modeling. LAB ON A CHIP 2017; 17:3026-3036. [PMID: 28795174 PMCID: PMC5621042 DOI: 10.1039/c7lc00462a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
Collapse
Affiliation(s)
- L A Low
- National Center for Advancing Translational Sciences, National Institutes of Health, 6701 Democracy Boulevard, Bethesda, MD 20892, USA.
| | | |
Collapse
|
33
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
34
|
DiCarlo JE, Sengillo JD, Justus S, Cabral T, Tsang SH, Mahajan VB. CRISPR-Cas Genome Surgery in Ophthalmology. Transl Vis Sci Technol 2017; 6:13. [PMID: 28573077 PMCID: PMC5450921 DOI: 10.1167/tvst.6.3.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/27/2022] Open
Abstract
Genetic disease affecting vision can significantly impact patient quality of life. Gene therapy seeks to slow the progression of these diseases by treating the underlying etiology at the level of the genome. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (Cas) represent powerful tools for studying diseases through the creation of model organisms generated by targeted modification and by the correction of disease mutations for therapeutic purposes. CRISPR-Cas systems have been applied successfully to the visual sciences and study of ophthalmic disease - from the modification of zebrafish and mammalian models of eye development and disease, to the correction of pathogenic mutations in patient-derived stem cells. Recent advances in CRISPR-Cas delivery and optimization boast improved functionality that continues to enhance genome-engineering applications in the eye. This review provides a synopsis of the recent implementations of CRISPR-Cas tools in the field of ophthalmology.
Collapse
Affiliation(s)
- James E. DiCarlo
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
| | - Jesse D. Sengillo
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sally Justus
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
| | - Thiago Cabral
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- Department of Ophthalmology, Federal University of Espírito Santo, Vitoria, Brazil
- Department of Ophthalmology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Stephen H. Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York Presbyterian Hospital, New York, NY, USA
- Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Vinit B. Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|