1
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
2
|
Wang Y, Su H, Wang X, Tu C, Xiao T, Ren B, Wang S. FOXN3 Regulates Autophagic Activity to Suppress Drug Resistance in Melanoma Cells. Clin Cosmet Investig Dermatol 2024; 17:2505-2518. [PMID: 39530064 PMCID: PMC11552389 DOI: 10.2147/ccid.s462854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Background The forkhead box (FOX) family member FOXN3 has been reported to inhibit transcriptional activity associated with regulating tumor development. However, the role of FOXN3 in the pathogenesis of melanoma is not well understood. Objective To investigate the biological functions of FOXN3 in drug resistance of melanoma. Materials and Methods The expression of FOXN3 in melanoma was investigated using Gene Expression profiling interactive analysis (GEPIA) and Linkedomics databases. Melanoma cell proliferation, invasion, and migration were assessed using the colony formation assay, the scratch wound healing test, the Transwell invasion assay, and the nude mice xenograft to determine the effects of FOXN3 over-expression and depletion. The functional role of the transcriptional regulator in melanoma cells was tested through chromatin immunoprecipitation, immunofluorescence. Results FOXN3 was downregulated in melanoma. Over-expression of FOXN3 inhibited the proliferation and motility of melanoma cells, whereas FOXN3 knockdown significantly enhanced the proliferation and motility of melanoma cells. Overexpression of FOXN3 reduced autophagic activity in melanoma cells. Enhanced autophagic activity in drug-resistant melanoma cell lines is related to drug-sensitive cells, and significant differences in FOXN3 localization were observed when comparing melanoma cells that were sensitive and resistant to Vemurafenib. Additionally, FOXN3 has been identified as binding to the promoter region of the cancer antigen Fibrous Sheath Interacting Protein 1 (FSIP1), thereby regulating the expression of this gene. Conclusion FOXN3 functions as an important regulator of the development and progression of Vemurafenib-resistant melanoma cells, partly owing to its binding to the FISP1. As such, FOXN3 may represent a relevant target for therapeutic interventions in patients suffering from drug-resistant melanoma.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hui Su
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaopeng Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Chen Tu
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Tong Xiao
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Bincheng Ren
- Department of Rheumatology and Immunology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Shuang Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
3
|
Li J, Chen S, Xiao J, Ji J, Huang C, Shu G. FOXC1 transcriptionally suppresses ABHD5 to inhibit the progression of renal cell carcinoma through AMPK/mTOR pathway. Cell Biol Toxicol 2024; 40:62. [PMID: 39093497 PMCID: PMC11297099 DOI: 10.1007/s10565-024-09899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma. METHODS By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway. RESULTS FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression. CONCLUSION In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.
Collapse
Affiliation(s)
- Jianfa Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangchen Chen
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Jing Xiao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayuan Ji
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenchen Huang
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Hu B, Zhang X, Fan H, Jin X, Qi Y, Liu R, Li X, Duan M, Zhang C, Li S, Yao W, Hao C. FOXF1 reverses lung fibroblasts transdifferentiation via inhibiting TGF-β/SMAD2/3 pathway in silica-induced pulmonary fibrosis. Int Immunopharmacol 2024; 133:112067. [PMID: 38608444 DOI: 10.1016/j.intimp.2024.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-β in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-β/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.
Collapse
Affiliation(s)
- Botao Hu
- School of Public Health, Zhengzhou University, Henan, China
| | - Xuesong Zhang
- School of Public Health, Zhengzhou University, Henan, China
| | - Hui Fan
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Xiaofei Jin
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Yuanmeng Qi
- School of Public Health, Zhengzhou University, Henan, China
| | - Ruimin Liu
- School of Public Health, Zhengzhou University, Henan, China
| | - Xiaoying Li
- School of Public Health, Zhengzhou University, Henan, China
| | - Meixiu Duan
- School of Public Health, Zhengzhou University, Henan, China
| | | | - Shiyu Li
- School of Public Health, Zhengzhou University, Henan, China
| | - Wu Yao
- School of Public Health, Zhengzhou University, Henan, China
| | - Changfu Hao
- School of Public Health, Zhengzhou University, Henan, China.
| |
Collapse
|
5
|
Yuan H, Liang Y, Hu S, Chen J, You J, Jiang J, Luo M, Zeng M. The role of transcription factor FOXA1/C2/M1/O3/P1/Q1 in breast cancer. Medicine (Baltimore) 2024; 103:e37709. [PMID: 38608123 PMCID: PMC11018205 DOI: 10.1097/md.0000000000037709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Yang Y, Li W, Yang H, Zhang Y, Zhang S, Xu F, Hao Y, Cao W, Du G, Wang J. Research progress on the regulatory mechanisms of FOXC1 expression in cancers and its role in drug resistance. Gene 2024; 897:148079. [PMID: 38101711 DOI: 10.1016/j.gene.2023.148079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Li M, Bai G, Cen Y, Xie Q, Chen J, Chen J, Chen Q, Zhong W, Zhou X. Silencing HOXC13 exerts anti-prostate cancer effects by inducing DNA damage and activating cGAS/STING/IRF3 pathway. J Transl Med 2023; 21:884. [PMID: 38057852 PMCID: PMC10701956 DOI: 10.1186/s12967-023-04743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Advanced prostate cancer (PCa) will develop into castration-resistant prostate cancer (CRPC) and lead to poor prognosis. As the primary subtype of CRPC, CRPC-AR accounts for the major induction of PCa heterogeneity. CRPC-AR is mainly driven by 25 transcription factors (TFs), which we speculate may be the key factors driving PCa toward CRPC. Therefore, it is necessary to clarify the key regulator and its molecular mechanism mediating PCa progression. METHODS Firstly, we downloaded transcriptomic data and clinical information from TCGA-PRAD. The characteristic gene cluster was identified by PPI clustering, GO enrichment, co-expression correlation and clinical feature analyses for 25 TFs. Then, the effects of 25 TFs expression on prognosis of PCa patients was analyzed using univariate Cox regression, and the target gene was identified. The expression properties of the target gene in PCa tissues were verified using tissue microarray. Meanwhile, the related mechanistic pathway of the target gene was mined based on its function. Next, the target gene was silenced by small interfering RNAs (siRNAs) for cellular function and mechanistic pathway validation. Finally, CIBERSORT algorithm was used to analyze the infiltration levels of 22 immune cells in PCa patients with low and high expression of target gene, and validated by assaying the expression of related immunomodulatory factor. RESULTS We found that HOX family existed independently in 25 TFs, among which HOXC10, HOXC12 and HOXC13 had unique clinical features and the PCa patients with high HOXC13 expression had the worst prognosis. In addition, HOXC13 was highly expressed in tumor tissues and correlated with Gleason score and pathological grade. In vitro experiments demonstrated that silencing HOXC13 inhibited 22RV1 and DU145 cell function by inducing cellular DNA damage and activating cGAS/STING/IRF3 pathway. Immune infiltration analysis revealed that high HOXC13 expression suppressed infiltration of γδ T cells and plasma cells and recruited M2 macrophages. Consistent with these results, silencing HOXC13 up-regulated the transcriptional expression of IFN-β, CCL2, CCL5 and CXCL10. CONCLUSION HOXC13 regulates PCa progression by mediating the DNA damage-induced cGAS/STING/IRF3 pathway and remodels TIME through regulation of the transcription of the immune factors IFN-β, CCL2, CCL5 and CXCL10.
Collapse
Affiliation(s)
- Maozhang Li
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Guangwei Bai
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qitong Xie
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jia Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Qingbiao Chen
- Department of Urology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, 528000, China
| | - Weide Zhong
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaobo Zhou
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| |
Collapse
|
8
|
Fei T, Zhou EC, Wang XJ. FOXD2 regulations IQGAP3 mediated Ca 2+ signaling pathway to facilitate gastric adenocarcinoma cell promotion. Kaohsiung J Med Sci 2023; 39:1087-1095. [PMID: 37724892 DOI: 10.1002/kjm2.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
As a transcriptional factor, the Forkhead box (FOX) gene family is closely connected with apoptosis, proliferation, and other cellular processes. FOXD2, as one descendant of the FOX gene family, has been mentioned in many articles to show a high expression in several cancers. However, whether FOXD2 has a connection with gastric adenocarcinoma remains an unanswered question. Expression of FOXD2 and IQGAP3 in gastric adenocarcinoma was evaluated by bioinformatics analysis, which was further detected by real-time quantitative PCR (qRT-PCR) and western blot. The downstream target genes of FOXD2 were also mined by bioinformatics analysis. Pathway enrichment analysis was then performed on the target genes. Chromatin immunoprecipitation assay (ChIP) and dual-luciferase reporter assay were conducted to validate the regulatory relationship between FOXD2 and its downstream target gene IQGAP3. Methyl thiazolyl tetrazolium assay (MTT), combined with cell colony formation assay, was employed to assess the effect of FOXD2 and IQGAP3 on the proliferation of gastric adenocarcinoma cells. Intracytoplasmic Ca2+ concentration was measured by Fluo-3 fluorescence staining. FOXD2 showed a high expression in gastric adenocarcinoma tissues and cells, and FOXD2 silencing considerably attenuated gastric adenocarcinoma cell proliferation. IQGAP3, a downstream target gene of FOXD2, had a positive connection with the expression of FOXD2. The binding relationship between FOXD2 and the promoter region of IQGAP3 was further verified by ChIP and dual-luciferase reporter assays. The results of cell function experiments indicated that FOXD2 could promote gastric adenocarcinoma cell proliferation by transcriptionally activating IQGAP3 to induce an increase in intracellular Ca2+ level. This study confirmed that FOXD2 increased intracellular Ca2+ level through transcriptional activation of IQGAP3, which in turn propelled the proliferation of gastric adenocarcinoma cells, revealing the considerable significance of FOXD2 in the development of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ting Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - En-Cheng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao-Jun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Liu S, Lei X, Cao H, Xu Z, Wu S, Chen H, Xu L, Zhan Z, Xu Q, Wei J, Qin Q. Antiviral role of grouper FoxO1 against RGNNV and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109168. [PMID: 37844852 DOI: 10.1016/j.fsi.2023.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.
Collapse
Affiliation(s)
- Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
10
|
Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M. MicroRNAs as the Critical Regulators of Forkhead Box Protein Family in Pancreatic, Thyroid, and Liver Cancers. Biochem Genet 2023; 61:1645-1674. [PMID: 36781813 DOI: 10.1007/s10528-023-10346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
The metabolism of human body is mainly regulated by the pancreas, liver, and thyroid using the hormones or exocrine secretions that affect the metabolic processes from food digestion to intracellular metabolism. Therefore, metabolic organ disorders have wide clinical symptoms that severely affect the quality of patient's life. The pancreatic, liver, and thyroid cancers as the main malignancies of the metabolic system have always been considered as one of the serious health challenges worldwide. Despite the novel therapeutic modalities, there are still significant high mortality and recurrence rates, especially in liver and pancreatic cancer patients which are mainly related to the late diagnosis. Therefore, it is required to assess the molecular bases of tumor progressions to introduce novel early detection and therapeutic markers in these malignancies. Forkhead box (FOX) protein family is a group of transcription factors that have pivotal roles in regulation of cell proliferation, migration, and apoptosis. They function as oncogene or tumor suppressor during tumor progression. MicroRNAs (miRNAs) are also involved in regulation of cellular processes. Therefore, in the present review, we discussed the role of miRNAs during pancreatic, thyroid, and liver tumor progressions through FOX regulation. It has been shown that miRNAs were mainly involved in tumor progression via FOXM and FOXO targeting. This review paves the way for the introduction of miR/FOX axis as an efficient early detection marker and therapeutic target in pancreatic, thyroid, and liver tumors.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Zheng J, Bu X, Wei X, Ma X, Zhao P. The role of FoxM1 in immune cells. Clin Exp Med 2023; 23:1973-1979. [PMID: 36913035 DOI: 10.1007/s10238-023-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Forkhead box M1 (FoxM1), a proliferation specific transcriptional modulator, plays a principal role in many physiological and pathological processes. FoxM1-mediated oncogenic processes have been well addressed. However, functions of FoxM1 in immune cells are less summarized. The literatures about the expression of FoxM1 and its regulation on immune cells were searched on PubMed and Google Scholar. In this review, we provide an overview on the roles of FoxM1 in regulating functions of immune cells, including T cells, B cells, monocytes, macrophages, and dendritic cells, and discuss their contributions to diseases.
Collapse
Affiliation(s)
- Jinju Zheng
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Xiaofang Wei
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China.
| | - Peng Zhao
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Song J, Li L, Fang Y, Lin Y, Wu L, Wan W, Wei G, Hua F, Ying J. FOXN Transcription Factors: Regulation and Significant Role in Cancer. Mol Cancer Ther 2023; 22:1028-1039. [PMID: 37566097 DOI: 10.1158/1535-7163.mct-23-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
A growing number of studies have demonstrated that cancer development is closely linked to abnormal gene expression, including alterations in the transcriptional activity of transcription factors. The Forkhead box class N (FOXN) proteins FOXN1-6 form a highly conserved class of transcription factors, which have been shown in recent years to be involved in the regulation of malignant progression in a variety of cancers. FOXNs mediate cell proliferation, cell-cycle progression, cell differentiation, metabolic homeostasis, embryonic development, DNA damage repair, tumor angiogenesis, and other critical biological processes. Therefore, transcriptional dysregulation of FOXNs can directly affect cellular physiology and promote cancer development. Numerous studies have demonstrated that the transcriptional activity of FOXNs is regulated by protein-protein interactions, microRNAs (miRNA), and posttranslational modifications (PTM). However, the mechanisms underlying the molecular regulation of FOXNs in cancer development are unclear. Here, we reviewed the molecular regulatory mechanisms of FOXNs expression and activity, their role in the malignant progression of tumors, and their value for clinical applications in cancer therapy. This review may help design experimental studies involving FOXN transcription factors, and enhance their therapeutic potential as antitumor targets.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Luojia Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
13
|
Wu T, Yang Z, Chen W, Jiang M, Xiao Z, Su X, Jiao Z, Yu Y, Chen S, Song M, Yang A. miR-30e-5p-mediated FOXD1 promotes cell proliferation by blocking cellular senescence and apoptosis through p21/CDK2/Rb signaling in head and neck carcinoma. Cell Death Discov 2023; 9:295. [PMID: 37563111 PMCID: PMC10415393 DOI: 10.1038/s41420-023-01571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Forkhead box D1 (FOXD1) belongs to the FOX protein family, which has been found to function as a oncogene in multiple cancer types, but its role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. Our research aimed to investigate the function of FOXD1 in HNSCC. Bioinformatics analysis indicated that mRNA level of FOXD1 was highly expressed in HNSCC tissues, and over-expressed FOXD1 was related to poor prognosis. Moreover, FOXD1 knockdown increased the ratio of senescent cells but decreased the proliferation ability, while FOXD1 overexpression obtained the opposite results. In vitro experiments revealed that FOXD1 bound to the p21 promoter and inhibited its transcription, which blocked the cyclin dependent kinase 2 (CDK2)/retinoblastoma (Rb) signaling pathway, thus preventing senescence and accelerating proliferation of tumor cells. CDK2 inhibitor could reverse the process to some extent. Further research has shown that miR-3oe-5p serves as a tumor suppressant by repressing the translation of FOXD1 through combining with the 3'-untranslated region (UTR). Thus, FOXD1 resists cellular senescence and facilitates HNSCC cell proliferation by affecting the expression of p21/CDK2/Rb signaling, suggesting that FOXD1 may be a potential curative target for HNSCC.
Collapse
Affiliation(s)
- Tong Wu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhichao Xiao
- Department of Otolaryngology-Head Neck Surgery, Loudi Central Hospital, Loudi, Hunan Province, China
| | - Xuan Su
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zan Jiao
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Yongchao Yu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
14
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
15
|
Xu Z, Pei C, Cheng H, Song K, Yang J, Li Y, He Y, Liang W, Liu B, Tan W, Li X, Pan X, Meng L. Comprehensive analysis of FOXM1 immune infiltrates, m6a, glycolysis and ceRNA network in human hepatocellular carcinoma. Front Immunol 2023; 14:1138524. [PMID: 37234166 PMCID: PMC10208224 DOI: 10.3389/fimmu.2023.1138524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Background Forkhead box M1 (FOXM1) is a member of the Forkhead box (Fox) transcription factor family. It regulates cell mitosis, cell proliferation, and genome stability. However, the relationship between the expression of FOXM1 and the levels of m6a modification, immune infiltration, glycolysis, and ketone body metabolism in HCC has yet to be fully elucidated. Methods Transcriptome and somatic mutation profiles of HCC were downloaded from the TCGA database. Somatic mutations were analyzed by maftools R package and visualized in oncoplots. GO, KEGG and GSEA function enrichment was performed on FOXM1 co-expression using R. We used Cox regression and machine learning algorithms (CIBERSORT, LASSO, random forest, and SVM-RFE) to study the prognostic value of FOXM1 and immune infiltrating characteristic immune cells in HCC. The relationship between FOXM1 and m6A modification, glycolysis, and ketone body metabolism were analyzed by RNA-seq and CHIP-seq. The competing endogenous RNA (ceRNA) network construction relies on the multiMiR R package, ENCORI, and miRNET platforms. Results FOXM1 is highly expressed in HCC and is associated with a poorer prognosis. At the same time, the expression level of FOXM1 is significantly related to the T, N, and stage. Subsequently, based on the machine learning strategies, we found that the infiltration level of T follicular helper cells (Tfh) was a risk factor affecting the prognosis of HCC patients. The high infiltration of Tfh was significantly related to the poor overall survival rate of HCC. Besides, the CHIP-seq demonstrated that FOXM1 regulates m6a modification by binding to the promoter of IGF2BP3 and affects the glycolytic process by initiating the transcription of HK2 and PKM in HCC. A ceRNA network was successfully obtained, including FOXM1 - has-miR-125-5p - DANCR/MIR4435-2HG ceRNA network related to the prognosis of HCC. Conclusion Our study implicates that the aberrant infiltration of Tfh associated with FOXM1 is a crucial prognostic factor for HCC patients. FOXM1 regulates genes related to m6a modification and glycolysis at the transcriptional level. Furthermore, the specific ceRNA network can be used as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ziwu Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan University, Changsha, China
| | - Chaozhu Pei
- College of Biology, Hunan University, Changsha, China
| | - Haojie Cheng
- College of Biology, Hunan University, Changsha, China
| | - Kaixin Song
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Junting Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuhang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yue He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wenxuan Liang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Biyuan Liu
- School of Medical, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Tan
- Department of Pathology, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, China
| | - Xia Li
- Department of General Surgery, People's Hospital of Hunan Province, Changsha, China
| | - Xue Pan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lei Meng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Chen Z, Sun X, Kang Y, Zhang J, Jia F, Liu X, Zhu H. A novel risk model based on the correlation between the expression of basement membrane genes and immune infiltration to predict the invasiveness of pituitary adenomas. Front Endocrinol (Lausanne) 2023; 13:1079777. [PMID: 36686480 PMCID: PMC9846255 DOI: 10.3389/fendo.2022.1079777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Objective Invasive pituitary adenomas (IPAs) are common tumors of the nervous system tumors for which invasive growth can lead to difficult total resection and a high recurrence rate. The basement membrane (BM) is a special type of extracellular matrix and plays an important role in the invasion of pituitary adenomas (PAs). The aim of this study was to develop a risk model for predicting the invasiveness of PAs by analyzing the correlation between the expression of BM genes and immune infiltration. Methods Four datasets, featuring samples IPAs and non-invasive pituitary adenomas (NIPAs), were obtained from the Gene Expression Omnibus database (GEO). R software was then used to identify differentially expressed genes (DEGs) and analyze their functional enrichment. Protein-protein interaction (PPI) network was used to screen BM genes, which were analyzed for immune infiltration; this led to the generation of a risk model based on the correlation between the expression of BM genes and immunity. A calibration curve and receiver operating characteristic (ROC) curve were used to evaluate and validate the model. Subsequently, the differential expression levels of BM genes between IPA and NIPA samples collected in surgery were verified by Quantitative Polymerase Chain Reaction (qPCR) and the prediction model was further evaluated. Finally, based on our analysis, we recommend potential drug targets for the treatment of IPAs. Results The merged dataset identified 248 DEGs that were mainly enriching in signal transduction, the extracellular matrix and channel activity. The PPI network identified 11 BM genes from the DEGs: SPARCL1, GPC3, LAMA1, SDC4, GPC4, ADAMTS8, LAMA2, LAMC3, SMOC1, LUM and THBS2. Based on the complex correlation between these 11 genes and immune infiltration, a risk model was established to predict PAs invasiveness. Calibration curve and ROC curve analysis (area under the curve [AUC]: 0.7886194) confirmed the good predictive ability of the model. The consistency between the qPCR results and the bioinformatics results confirmed the reliability of data mining. Conclusion Using a variety of bioinformatics methods, we developed a novel risk model to predict the probability of PAs invasion based on the correlation between 11 BM genes and immune infiltration. These findings may facilitate closer surveillance and early diagnosis to prevent or treat IPAs in patients and improve the clinical awareness of patients at high risk of IPAs.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Sun
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yin Kang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Jia
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiyao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hongwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
The role of FOXP3 in non-small cell lung cancer and its therapeutic potentials. Pharmacol Ther 2023; 241:108333. [PMID: 36528259 DOI: 10.1016/j.pharmthera.2022.108333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although in the last few decades we have witnessed the rapid development of treatments for non-small cell lung cancer (NSCLC), it still remains the leading cause of cancer-related death. Increasing efforts have been devoted to exploring potential biomarkers and molecular targets for NSCLC. Foxp3, a transcription factor that was discovered as a master regulator of regulatory T cells (Tregs), has been found to express abnormally in tumoral cells including lung cancer cells. In recent years, increasing evidence have surfaced, revealing the carcinogenic effect of FOXP3 in lung cancer. In this review, we analyzed and summarized the function of FOXP3, its regulation and therapeutic potentials in NSCLC, with a hope to facilitate the development of novel treatments for NSCLC.
Collapse
|
19
|
Yang W, Chen H, Ma L, Dong J, Wei M, Xue X, Li Y, Jin Z, Xu W, Ji Z. A comprehensive analysis of the FOX family for predicting kidney renal clear cell carcinoma prognosis and the oncogenic role of FOXG1. Aging (Albany NY) 2022; 14:10107-10124. [PMID: 36585925 PMCID: PMC9831721 DOI: 10.18632/aging.204448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have confirmed that the forkhead box (FOX) superfamily of transcription factors regulates tumor progression and metastasis in multiple cancer. The purpose of this study was to develop a model based on FOX family genes for predicting kidney renal clear cell carcinom (KIRC) prognosis. We downloaded the transcriptional profiles and clinical data of KIRC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. To build a new prognosis model, we screened prognosis-related FOX family genes using Lasso regression and Multivariate Cox regression analyses. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Additionally, a prognostic nomogram was developed using clinical information and selected genes to improve the accuracy of prognostic prediction. We also investigated whether prognosis-related FOX family genes are related to the immune response in KIRC. Finally, we validated the oncogenic role of FOXG1 in KIRC using an in vitro tumor function assay. Six prognosis-related FOX family genes were screened: FOXO1, FOXM1, FOXK2, FOXG1, FOXA1, and FOXD1. The ROC curves indicated that our model was capable of making accurate predictions for 1-, 3-, and 5-year overall survival (OS). The nomogram further improved the accuracy of prognostic predictions. In addition, compared to those in patients with low-risk scores, high-risk scores predicted a decreased level of immune cell infiltration and a lower immune response rate. Moreover, the results of in vitro studies confirmed that FOXG1 supports the proliferation and invasion of KIRC.
Collapse
Affiliation(s)
- Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Mengchao Wei
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Weifeng Xu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| |
Collapse
|
20
|
Xie J, Zhang J, Tian W, Zou Y, Tang Y, Zheng S, Wong CW, Deng X, Wu S, Chen J, Mo Y, Xie X. The Pan-Cancer Multi-Omics Landscape of FOXO Family Relevant to Clinical Outcome and Drug Resistance. Int J Mol Sci 2022; 23:15647. [PMID: 36555288 PMCID: PMC9778770 DOI: 10.3390/ijms232415647] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The forkhead box O (FOXO) transcription factors (TFs) family are frequently mutated, deleted, or amplified in various human cancers, making them attractive candidates for therapy. However, their roles in pan-cancer remain unclear. Here, we evaluated the expression, prognostic value, mutation, methylation, and clinical features of four FOXO family genes (FOXO1, FOXO3, FOXO4, and FOXO6) in 33 types of cancers based on the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases. We used a single sample gene set enrichment analysis (ssGSEA) algorithm to establish a novel index called "FOXOs score". Moreover, we investigated the association between the FOXOs score and tumor microenvironment (TME), the responses to multiple treatments, along with drug resistance. We found that the FOXO family genes participated in tumor progression and were related to the prognosis in various types of cancer. We calculated the FOXOs score and found that it was significantly correlated with multiple malignant pathways in pan-cancer, including Wnt/beta-catenin signaling, TGF-beta signaling, and hedgehog signaling. In addition, the FOXOs score was also associated with multiple immune-related characteristics. Furthermore, the FOXOs score was sensitive for predicting the efficacy of diverse treatments in multiple cancers, especially immunotherapy. In conclusion, FOXO family genes were vital in pan-cancer and were strongly correlated with the TME. A high FOXOs score indicated an excellent immune-activated TME and sensitivity to multiple treatments. Hence, the FOXOs score might potentially be used as a biomarker in patients with a tumor.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenwen Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Chau-Wei Wong
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510060, China
| | - Yunxian Mo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
21
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Wang WD, Shang Y, Wang C, Ni J, Wang AM, Li GJ, Su L, Chen SZ. c-FLIP promotes drug resistance in non-small-cell lung cancer cells via upregulating FoxM1 expression. Acta Pharmacol Sin 2022; 43:2956-2966. [PMID: 35422085 PMCID: PMC9622852 DOI: 10.1038/s41401-022-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/27/2022] [Indexed: 01/27/2023]
Abstract
The forkhead box M1 (FoxM1) protein, a transcription factor, plays critical roles in regulating tumor growth and drug resistance, while cellular FLICE-inhibitory protein (c-FLIP), an anti-apoptotic regulator, is involved in the ubiquitin-proteasome pathway. In this study, we investigated the effects of c-FLIP on the expression and ubiquitination levels of FoxM1 along with drug susceptibility in non-small-cell lung cancer (NSCLC) cells. We first showed that the expression levels of FoxM1 and c-FLIP were increased and positively correlated (R2 = 0.1106, P < 0.0001) in 90 NSCLC samples. The survival data from prognostic analysis demonstrated that high expression of c-FLIP and/or FoxM1 was related to poor prognosis in NSCLC patients and that the combination of FoxM1 and c-FLIP could be a more precise prognostic biomarker than either alone. Then, we explored the functions of c-FLIP/FoxM1 in drug resistance in NSCLC cell lines and a xenograft mouse model in vivo. We showed that c-FLIP stabilized FoxM1 by inhibiting its ubiquitination, thus upregulated the expression of FoxM1 at post-transcriptional level. In addition, a positive feedback loop composed of FoxM1, β-catenin and p65 also participated in c-FLIP-FoxM1 axis. We revealed that c-FLIP promoted the resistance of NSCLC cells to thiostrepton and osimertinib by upregulating FoxM1. Taken together, these results reveal a new mechanism by which c-FLIP regulates FoxM1 and the function of this interaction in the development of thiostrepton and osimertinib resistance. This study provides experimental evidence for the potential therapeutic benefit of targeting the c-FLIP-FoxM1 axis for lung cancer treatment.
Collapse
Affiliation(s)
- Wen-Die Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun Ni
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ai-Min Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gao-Jie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling Su
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
23
|
Xu L, Yang Z, Zhao Q, Feng H, Kuang J, Liu Z, Chen L, Zhan L, Yan J, Cai W, Qiu W. Effect of FOXP2 transcription factor on immune infiltration of thyroid cancer and its potential clinical value. Front Immunol 2022; 13:982812. [PMID: 36203616 PMCID: PMC9531268 DOI: 10.3389/fimmu.2022.982812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background The clinical outcomes are not always favorable in certain thyroid cancer patients. The effect of Forkhead-box family on immune cells infiltration and tumor microenvironment in thyroid cancer was explored. The role of FOXP2 in tumor invasion and recurrence was investigated consequently. Methods TIMER and GEPIA were firstly employed to compare FOXPs expression in normal and cancer tissues from multiple human cancers. The results from database were confirmed by quantitative Real Time-PCR and Western blot in matched thyroid cancer and adjacent normal tissues, in addition to a panel of thyroid cancer cell lines and normal thyroid cell. GEPIA platform was employed to discover the possibility of FOXPs as prognostic indicator. TISIBD and UACLCAN were then employed to estimate the influence of FOXPs on lymph node metastasis and tumor staging. GEPIA analysis was initially employed to analyze correlation of FOXPs and tumor immune infiltrating cells, and TIMER dataset was then included for standardization according to tumor purity. Result Different member of FOXPs showed divergence in expression in various cancer tissues. Lower FOXP1, FOXP2 and higher FOXP3, FOXP4 levels could be identified in thyroid cancer tissues when compared with matched normal tissue. There was an inverse correlation between FOXP2, FOXP4 and immune invasion, whereas FOXP1 and FOXP3 were positively correlated. FOXPs showed remarkable correlations with multiply immune cells. More importantly, only FOXP2 showed the significant effect on recurrence and tumor staging. Conclusion As immune regulatory factor, the reduction of FOXP2 may affect tumor microenvironments and immune cells infiltration, enhance tumor immune escape, and promote recurrence of thyroid cancer. FOXP2 could be a new potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiqi Yan
- *Correspondence: Jiqi Yan, ; Wei Cai, ; Weihua Qiu,
| | - Wei Cai
- *Correspondence: Jiqi Yan, ; Wei Cai, ; Weihua Qiu,
| | - Weihua Qiu
- *Correspondence: Jiqi Yan, ; Wei Cai, ; Weihua Qiu,
| |
Collapse
|
24
|
Bévant K, Desoteux M, Angenard G, Pineau R, Caruso S, Louis C, Papoutsoglou P, Sulpice L, Gilot D, Zucman-Rossi J, Coulouarn C. TGFβ-induced FOXS1 controls epithelial-mesenchymal transition and predicts a poor prognosis in liver cancer. Hepatol Commun 2022; 6:1157-1171. [PMID: 34825776 PMCID: PMC9035581 DOI: 10.1002/hep4.1866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor beta (TGF-β) plays a key role in tumor progression, notably as a potent inducer of epithelial-mesenchymal transition (EMT). However, all of the molecular effectors driving TGFβ-induced EMT are not fully characterized. Here, we report that forkhead box S1 (FOXS1) is a SMAD (mothers against decapentaplegic)-dependent TGFβ-induced transcription factor, which regulates the expression of genes required for the initial steps of EMT (e.g., snail family transcription repressor 1) and to maintain a mesenchymal phenotype in hepatocellular carcinoma (HCC) cells. In human HCC, we report that FOXS1 is a biomarker of poorly differentiated and aggressive tumor subtypes. Importantly, FOXS1 expression level and activity are associated with a poor prognosis (e.g., reduced patient survival), not only in HCC but also in colon, stomach, and kidney cancers. Conclusion: FOXS1 constitutes a clinically relevant biomarker for tumors in which the pro-metastatic arm of TGF-β is active (i.e., patients who may benefit from targeted therapies using inhibitors of the TGF-β pathway).
Collapse
Affiliation(s)
- Kevin Bévant
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Matthis Desoteux
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Gaëlle Angenard
- InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Raphaël Pineau
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
| | - Stefano Caruso
- Centre de Recherche des CordeliersInsermSorbonne UniversitéUniversité de ParisUniversité Paris 13Functional Genomics of Solid Tumors LaboratoryParisFrance
| | - Corentin Louis
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Panagiotis Papoutsoglou
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - Laurent Sulpice
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| | - David Gilot
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance
| | - Jessica Zucman-Rossi
- Centre de Recherche des CordeliersInsermSorbonne UniversitéUniversité de ParisUniversité Paris 13Functional Genomics of Solid Tumors LaboratoryParisFrance.,European Hospital Georges PompidouAP-HPParisFrance
| | - Cédric Coulouarn
- InsermUniv RennesUMR_S 1242ChemistryOncogenesis, Stress SignalingCentre de Lutte contre le Cancer Eugène MarquisService de Chirurgie Hépatobiliaire et DigestiveCHU RennesRennesFrance.,InsermUniv RennesInraeUMR_S 1241NuMeCan (Nutrition, Metabolisms and Cancer)RennesFrance
| |
Collapse
|
25
|
Liu Y, Tu M, Wang L. Pan-Cancer Analysis Predicts FOXS1 as a Key Target in Prognosis and Tumor Immunotherapy. Int J Gen Med 2022; 15:2171-2185. [PMID: 35241932 PMCID: PMC8887970 DOI: 10.2147/ijgm.s354195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Only a few studies have reported the role of FOXS1, a transcriptional factor, in the tumor development process. In this article, we investigate the function of FOXS1 in distinct neoplastic development and the tumor immune microenvironment (TIME). Patients and Methods The latent roles of FOXS1 in various tumors were prospected based on TCGA, GTEx, CCLE, GEPIA2, cBioPortal, TIMER, ImmuCellAI databases, GSVA datasets, GSEA datasets, and R packages. The expression difference, gene alteration, clinical characteristics, prognostic values, biological mechanism, potential pathways, tumor microenvironment, and immune cell infiltration related to FOXS1 were appraised. Results FOXS1 was strongly expressed in pan-cancer, and this gene was associated with low survival rates. FOXS1 was linked to many pathways that are cancer-promoting and immune-related. The expression of this transcriptional factor in cancers was positively related to immune cell infiltration, especially M2-like macrophages and Treg cells. In addition to that, FOXS1 demonstrated a positive relationship with many immune-suppression genes, such as TGFB1 and ARORA2A. Conclusion Our study identified an oncogenic effect of FOXS1, which may play a vital role as a prognosticative biological marker in pan-cancer. Exorbitant expression of FOXS1 is associated with high TAMs and Treg cells infiltration. These cells have an immunosuppressive function and promote the development of the immunosuppressive tumor microenvironment. The research of FOXS1 provided a potential drug target for tumor immunotherapy.
Collapse
Affiliation(s)
- Yunqiang Liu
- School of Medical College, Guangdong Medical University, Zhanjiang, Guang Dong Province, 524023, People’s Republic of China
| | - Mengjun Tu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, People’s Republic of China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang Province, 325027, People’s Republic of China
| | - Lingling Wang
- Department of Clinical Laboratory Center of the Second Affiliated Hospital & Yu Ying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, People’s Republic of China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People’s Republic of China
- Correspondence: Lingling Wang, Department of Clinical Laboratory Center of The Second Affiliated Hospital & Yu Ying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, People’s Republic of China, Tel +8618867786629, Email
| |
Collapse
|
26
|
Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M. Molecular mechanisms involved in DNA repair in human cancers: An overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 2021; 237:313-328. [PMID: 34515349 DOI: 10.1002/jcp.30573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
The cellular genome is frequently subjected to abundant endogenous and exogenous factors that induce DNA damage. Most of the Phosphatidylinositol 3-kinase-related kinases (PIKKs) family members are activated in response to DNA damage and are the most important DNA damage response (DDR) proteins. The DDR system protects the cells against the wrecking effects of these genotoxicants and repairs the DNA damage caused by them. If the DNA damage is severe, such as when DNA is the goal of chemo-radiotherapy, the DDR drives cells toward cell cycle arrest and apoptosis. Some intracellular pathways, such as PI3K/Akt, which is overactivated in most cancers, could stimulate the DDR process and failure of chemo-radiotherapy with the increasing repair of damaged DNA. This signaling pathway induces DNA repair through the regulation of proteins that are involved in DDR like BRCA1, HMGB1, and P53. In this review, we will focus on the crosstalk of the PI3K/Akt and PIKKs involved in DDR and then discuss current achievements in the sensitization of cancer cells to chemo-radiotherapy by PI3K/Akt inhibitors.
Collapse
Affiliation(s)
- Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Elhaei
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Hamed Ghaffari
- Department of Orthopedics, Shohada Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
27
|
Forkhead domain inhibitory-6 attenuates subconjunctival fibrosis in rabbit model with trabeculectomy. Exp Eye Res 2021; 210:108725. [PMID: 34375589 DOI: 10.1016/j.exer.2021.108725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Antiproliferative therapies are crucially important for improving the success rate of the glaucoma filtration surgeries. In this study, we investigated the potential efficacy of Forkhead Domain Inhibitory-6 (FDI-6) in inhibiting post-trabeculectomy subconjunctival fibrosis. In vitro, the effect of FDI-6 (10 μM) on fibrotic response and its underlying mechanism were investigated in rabbit tenon's fibroblasts (RTFs) treated with or without transforming growth factor-β1 (TGF-β1, 20 ng/mL). In vivo, FDI-6 (40 μM) was injected subconjunctivally to a rabbit trabeculectomy model. Intraocular pressure (IOP) changes were monitored within the 14-day period post-surgery. Bleb morphology and subepithelial fibrosis at the operating area were evaluated with slit lamp and confocal microscopic examinations and with histologic examinations. The results showed that, in cell culture studies, FDI-6 suppressed the proliferation, migration, collagen gel contraction and the expression levels of fibronectin (FN) and α-smooth muscle actin (α-SMA) in RTFs with TGF-β treatment by down-regulating the TGF-β1/Smad2/3 signaling pathway. In animal studies, the IOPs of the FDI-6-treated group were significantly lower than those of the saline-treated group after trabeculectomy. The FDI-6-treated eyes showed a better bleb appearance with fewer blood vessels compared to the saline-treated eyes. The analysis of confocal microscopy in vivo and histopathology revealed that subconjunctival fibrosis after trabeculectomy was significantly attenuated in the FDI-6-treated group compared to the controls. In conclusion, our studies indicate that FDI-6 exerts an inhibitory effect on subconjunctival fibrosis caused by trabeculectomy, holding potentials as a new antiproliferative agent used in anti-glaucoma filtration surgeries in the future.
Collapse
|
28
|
Zheng XJ, Li W, Yi J, Liu JY, Ren LW, Zhu XM, Liu SW, Wang JH, Du GH. EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers. Acta Pharmacol Sin 2021; 42:1171-1179. [PMID: 33057161 DOI: 10.1038/s41401-020-00543-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by low expression of human epidermal growth factor receptor-2 (HER2), estrogen receptor (ER), and progesterone receptor (PR), which is the most aggressive subtype with poor outcome among breast cancers. The underlying mechanisms of TNBC remain unclear and there is a lack of biomarkers. In this study we conducted an in silico assay and found that FOXC1 was highly expressed in ER-/PR-/HER2- breast cancers, which was confirmed by qRT-PCR, immunohistochemistry, and Western blot analysis. FOXC1 was more highly expressed in TNBCs than the other breast cancers. Kaplan-Meier plotter revealed that expression of FOXC1 was associated with overall survival (OS) of patients with breast cancers. Expression of FOXC1 was reversely associated with level of H3K27me3, which was methylated by EZH2. In MCF-7 and T47D cells, inhibition of EZH2 by DZNeP or GSK343 concentration- and time-dependently increased expression of FOXC1. Finally, we demonstrated that the expression of FOXC1 was associated with resistance of doxorubicin treatment of breast cancer cells. In conclusion, these results suggest that FOXC1 may be a potential biomarker or drug target for TNBCs, and that downregulation of FOXC1 could have therapeutic value in treatment of TNBCs.
Collapse
|
29
|
Shang H, Shi L, Jiang X, Zhou P, Wei Y. Correlation Between High Expression of FOXA2 and Improved Overall Survival in Ovarian Cancer Patients. Med Sci Monit 2021; 27:e928763. [PMID: 33483461 PMCID: PMC7839277 DOI: 10.12659/msm.928763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The aim of the present work was to evaluate FOXA2 expression in ovarian cancer and to use integrated bioinformatics analysis to correlate it with patient prognosis. Material/Methods FOXA2 expression was evaluated in multiple cancers in The Cancer Genome Atlas database. A protein–protein interaction (PPI) network relevant to FOXA2 was constructed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRIN). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed of FOXA2 and relevant genes. Correlations between overall survival (OS), disease-free survival, and FOXA2 expression were evaluated. An immunohistochemical assay (IHC) was used to test for FOXA2 protein expression in 79 ovarian cancer specimens. Results FOXA2 mRNA was upregulated in colorectal, stomach, liver, and endometrial cancers. In the PPI network, 21 protein nodes and 533 edges were constructed with a local clustering coefficient of 0.698, which indicated significant PPI enrichment (P<0.01). FOXA2 and relevant genes were mainly enriched in the signaling pathways regulating pluripotency of stem cells, cancer, and AMPK. A survival analysis indicated that OS was significantly longer in patients with higher versus lower FOXA2 protein expression (HR=0.73, P<0.01). The IHC assay showed that the FOXA2 protein was mainly positively expressed in the nucleoplasm of tumor cells with brown-yellow staining. Of the 79 ovarian cancer samples, 31 (39.2%) highly expressed FOXA2. The FOXA2 gene was correlated with International Federation of Gynecology and Obstetrics staging and with lymph node metastasis (both P<0.05). Conclusions Upregulation of the FOXA2 gene was correlated with improved OS in patients with ovarian cancer and it can be used as a prognostic biomarker and potential treatment target.
Collapse
Affiliation(s)
- Hui Shang
- Department of Obstetrics, Jinan Central Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Lingyun Shi
- Department of Obstetrics and Gynecology, The West District of Qingdao Municipal Hospital (Group), Qingdao, Shandong, China (mainland)
| | - Xuena Jiang
- Department of Obstetrics and Gynecology, Qingdao Longtian Jinqiu Women's and Children's Hospital, Qingdao, Shandong, China (mainland)
| | - Peng Zhou
- Department of Radiology, Jinan Central Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China (mainland)
| | - Yongqing Wei
- Department of Obstetrics, Jinan Central Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China (mainland)
| |
Collapse
|
30
|
Yang Y, Jiang H, Li W, Chen L, Zhu W, Xian Y, Han Z, Yin L, Liu Y, Wang Y, Pan K, Zhang K. FOXM1/DVL2/Snail axis drives metastasis and chemoresistance of colorectal cancer. Aging (Albany NY) 2020; 12:24424-24440. [PMID: 33291076 PMCID: PMC7762457 DOI: 10.18632/aging.202300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Metastasis and chemoresistance are regarded as the two leading causes of treatment failure and high mortality in CRC. Forkhead Box M1 (FOXM1) has been involved in malignant behaviors of cancer. However, the role and mechanism of FOXM1 in simultaneously regulating metastasis and chemoresistance of CRC remain poorly understood. Here, we found that FOXM1 was overexpressed in oxaliplatin- and vincristine-resistant CRC cells (HCT-8/L-OHP and HCT-8/VCR) with enhanced metastatic potential, compared with HCT-8 cells. FOXM1 overexpression increased migration, invasion and drug-resistance to oxaliplatin and vincristine in HCT-8 cells, while FOXM1 knockdown using shFOXM1 impaired metastasis and drug-resistance in HCT-8/L-OHP and HCT-8/VCR cells. Moreover, FOXM1 up-regulated Snail to trigger epithelial-mesenchymal transition-like molecular changes and multidrug-resistance protein P-gp expression, while silencing Snail inhibited FOXM1-induced metastasis and drug-resistance. We further identified that disheveled-2 (DVL2) was crucial for FOXM1-induced Snail expression, metastasis and chemoresistance. Furthermore, FOXM1 bound to DVL2, and enhanced nuclear translocation of DVL2 and DVL2-mediated transcriptional activity of Wnt/β-catenin known to induce Snail expression. In conclusion, FOXM1/DVL2/Snail axis triggered aggressiveness of CRC. Blocking FOXM1/DVL2/Snail pathway simultaneously inhibited metastasis and chemoresistance in CRC cells, providing a new strategy for successful CRC treatment.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Hequn Jiang
- First Afflicted Hospital, Chengdu Medical College, Chengdu, China
| | - Wanxin Li
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Linyi Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wanglong Zhu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Xian
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhengyu Han
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Lan Yin
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yao Liu
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, China
| | - Yi Wang
- First Afflicted Hospital, Chengdu Medical College, Chengdu, China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
31
|
Ma H, Lu L, Xia H, Xiang Q, Sun J, Xue J, Xiao T, Cheng C, Liu Q, Shi A. Circ0061052 regulation of FoxC1/Snail pathway via miR-515-5p is involved in the epithelial-mesenchymal transition of epithelial cells during cigarette smoke-induced airway remodeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141181. [PMID: 32768781 DOI: 10.1016/j.scitotenv.2020.141181] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Circular RNA (circRNA) has been shown to be widely involved in a variety of lung diseases. Cigarette smoke (CS) may induce epithelial-mesenchymal transition (EMT) of airway remodeling in chronic obstructive pulmonary disease (COPD), however, in which the roles and mechanisms of circRNA have not been elucidated. In this study, we aimed to determine whether circ0061052 is involved in the EMT of human bronchial epithelial (HBE) cells and its potential mechanism for playing a biological role. Cigarette smoke extract (CSE) caused elevated EMT indicators and the increases of circ0061052 in HBE cells. Circ0061052 has a ring structure and is mainly present in the cytoplasm of HBE cells. We analyzed the regulatory relationship between circ0061052 and miR-515-5p using bioinformatics, a luciferase reporter gene, and qRT-PCR. We found that circ0061052 is mainly distributed in the cytoplasm and competitively binds to miR-515-5p, acting as a sponge for miR-515-5p. The luciferase reporter gene showed that miR-515-5p binds to the 3'UTR region of FoxC1 mRNA to inhibit its transcription. For HBE cells, overexpression of miR-515-5p antagonized the CSE-induced EMT. In addition, circ0061052 acts by binding miR-515-5p competitively to regulate the expression of FoxC1/Snail. When circ0061052 siRNA and miR-515-5p inhibitor were co-transfected into HBE cells, the inhibitor reversed the effect of circ0061052 siRNA on reducing EMT. Chronic exposure of mice to CS induced increases of circ0061052 levels, decreases of miR-515-5p levels, and the EMT in lung tissue, which caused dysfunction and airway obstruction. Overall, the results show that, by regulating miR-515-5p through a FoxC1/Snail regulatory axis, circ0061052 is involved in the CS-induced EMT and airway remodeling in COPD.
Collapse
Affiliation(s)
- Huimin Ma
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Aimin Shi
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Chen J, Rong X, Liu X, Zheng D, Rong X, Chen F, Zhao P, Liu F, Ruan J. FOXC2 is a prognostic biomarker and contributes to the growth and invasion of human hepatocellular carcinoma. Cancer Cell Int 2020; 20:196. [PMID: 32508532 PMCID: PMC7249675 DOI: 10.1186/s12935-020-01265-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Forkhead box C2 (FOXC2) is a crucial factor involving in various cancers. However, its functions in hepatocellular carcinoma (HCC) is unknown. Here, we explored the role of FOXC2 in the progression of HCC and its potential mechanisms. Methods FOXC2 expression in HCC tissue and cells were detected by immunohistochemistry or western blot and real-time PCR. CCK8, wound healing and transwell assay were used to measure cell growth and invasion. Tumor formation experiment was carried out to assess the tumorigenicity of HCC cells. Regulation of FOXC2 on Ang-2 was validated by luciferase assay and complementary experiments. Results Increased FOXC2 expression was found to be associated positively with more aggressive clinicopathologic features. HCC patients with higher FOXC2 expression had significantly shorter overall survival. FOXC2 expression was indentified as an independent risk factor for resectable HCC. Increased FOXC2 expression accelerated the migration and invasion of HCC cells, accompanied by enhanced Ang-2 expression. Likewise, FOXC2 knockdown yielded opposite results. Moreover, FOXC2 stimulated the activation of the Ang-2 promoter. Suppression of Ang-2 expression hindered the FOXC2-mediated EMT processs, cell migration and invasion of HCC. Conclusions FOXC2 is a novel prognostic predictor for HCC and may facilitate the growth and invasion through Ang-2.
Collapse
Affiliation(s)
- Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 People's Republic of China.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 Guangdong People's Republic of China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 Guangdong People's Republic of China
| | - Xinhui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Xiaodong Rong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Sun Yat-Sen University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Fengsheng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang Province, People's Republic of China
| | - Feiye Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China
| | - Jian Ruan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510000 People's Republic of China.,Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 Guangdong People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang Province, People's Republic of China
| |
Collapse
|
33
|
Wang Y, Qiu W, Liu N, Sun L, Liu Z, Wang S, Wang P, Liu S, Lv J. Forkhead box K1 regulates the malignant behavior of gastric cancer by inhibiting autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:107. [PMID: 32175400 DOI: 10.21037/atm.2019.12.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Forkhead box K1 (FOXK1) is a transcription factor that contributes to cancer development, but it is unclear how FOXK1 regulates the proliferation and migration of gastric cancer (GC) cells. The purpose of this study was to investigate the clinical significance, biological function, and molecular mechanisms of FOXK1 in GC. Methods We conducted bioinformatics assays and western blotting to assess FOXK1 expression. Then, we performed immunohistochemistry (IHC) with tissue microarrays (TMAs) to assess FOXK1 expression in order to identify an association between FOXK1 expression levels and clinical parameters. We used 5-ethynyl-2'-deoxyuridine (EdU), wound healing and Transwell assays to determine whether FOXK1 promotes malignant behaviors in GC. Furthermore, immunofluorescence staining, transmission electron microscopy and western blotting were used to verify an association between FOXK1 and autophagy. Results We observed high levels of FOXK1 expression in GC tissues, which were associated with the degree of malignancy in GC. FOXK1 promotes the malignant behavior of GC by regulating autophagy via activation of the class I phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibition of the expression of class III PI3K. Conclusions These findings provide a new target for the comprehensive treatment of GC by highlighting the relationship between FOXK1 and malignant behaviors in GC.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Wensheng Qiu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Ning Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Libin Sun
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Zhao Liu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Shasha Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Peng Wang
- Department of Oncology, Weifang Yidu Central Hospital, Qingzhou 262500, China
| | - Shihai Liu
- Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jing Lv
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266071, China
| |
Collapse
|
34
|
The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060865. [PMID: 31234353 PMCID: PMC6627614 DOI: 10.3390/cancers11060865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Forkhead box (FOX) proteins are a group of transcriptional factors implicated in different cellular functions such as differentiation, proliferation and senescence. A growing number of studies have focused on the relationship between FOX proteins and cancers, particularly hematological neoplasms such as acute myeloid leukemia (AML). FOX proteins are widely involved in AML biology, including leukemogenesis, relapse and drug sensitivity. Here we explore the role of FOX transcription factors in the major AML entities, according to "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia", and in the context of the most recurrent gene mutations identified in this heterogeneous disease. Moreover, we report the new evidences about the role of FOX proteins in drug sensitivity, mechanisms of chemoresistance, and possible targeting for personalized therapies.
Collapse
|
35
|
Kong X, Zhai J, Yan C, Song Y, Wang J, Bai X, Brown JAL, Fang Y. Recent Advances in Understanding FOXN3 in Breast Cancer, and Other Malignancies. Front Oncol 2019; 9:234. [PMID: 31214487 PMCID: PMC6555274 DOI: 10.3389/fonc.2019.00234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
FOXN3 (forkhead box N3; CHES1: check point suppressor 1) belongs to the forkhead box (FOX) protein family. FOXN3 displays transcriptional inhibitory activity, and is involved in cell cycle regulation and tumorigenesis. FOXN3 is a tumor suppresser and alterations in FOXN3 are found in of a variety of cancers including melanoma, osteosarcoma, and hepatocellular carcinoma. While the roles of FOXN3 role in some cancers have been explored, its role in breast cancer remains unclear. Here we describe current state of knowledge of FOXN3 functions, and focus on its roles (known and potential) in breast cancer.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengrui Yan
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Bai
- Department of Pancreatic-Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - James A L Brown
- Discipline of Surgery, School of Medicine, Lambe Institute for Translational Research, National University of Ireland Galway, Galway, Ireland.,Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Kume T, Shackour T. Meta-analysis of the likelihood of FOXC1 expression in early- and late-stage tumors. Oncotarget 2018; 9:36625-36630. [PMID: 30564302 PMCID: PMC6290959 DOI: 10.18632/oncotarget.26358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background Aberrations in the expression of the transcription factor forkhead box C1 (FOXC1) have been linked to a number of malignancies. Here, we characterized the relationship between FOXC1 and cancer progression by conducting a meta-analysis of studies that reported the frequency of FOXC1 expression in tumors of different stages (T1, T2, T3, T4). Materials and Method Relevant articles were retrieved from the Medline database by searching for the terms “FOXC1” and “cancer”; then, the retrieved articles were reviewed individually, and studies that were of multivariate cohort design, evaluated FOXC1 expression via immunohistochemical staining, and assessed the relationship between FOXC1 expression and cancer T-stage were included in our meta-analysis. Results Our search terms identified 128 studies, 5 of which met all inclusion criteria. A total of 850 tumor samples were evaluated in the 5 studies; 452 samples were from early-stage (T1-T2) tumors, and 398 were from late-stage (T3-T4) tumors. FOXC1 was expressed in 60.7% (516/850) of all samples, in 54.6% (247/452) of early-stage tumor samples, and in 67.5% (269/398) of late-stage tumor samples. When calculated relative to early-stage samples, the pooled risk for FOXC1 expression in late-stage samples was 1.238 (95% CI = 1.061–1.444, p = 0.007). Conclusions The results from our meta-analysis of 5 studies indicate that FOXC1 is 23.8% more likely to be expressed in late-stage tumors than in early-stage tumors.
Collapse
Affiliation(s)
- Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago 60611, IL, USA
| | - Tarek Shackour
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago 60611, IL, USA
| |
Collapse
|
37
|
Xia S, Qu J, Jia H, He W, Li J, Zhao L, Mao M, Zhao Y. Overexpression of Forkhead box C1 attenuates oxidative stress, inflammation and apoptosis in chronic obstructive pulmonary disease. Life Sci 2018; 216:75-84. [PMID: 30428305 DOI: 10.1016/j.lfs.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
AIM Chronic obstructive pulmonary disease (COPD) is a disease caused by cigarette smoke, which has been emerging as a serious health problem worldwide. The aim of this study is to explore the mRNA expression profile of lung tissues from the COPD rats and to characterize the role of Forkhead box C1 (Foxc1) in COPD. MAIN METHODS Wistar rats were exposed to cigarette smoke during 16 weeks for COPD model establishment. The microarray was used to identify the differential gene expression in the lung of rats. Adenovirus carrying Foxc1 was administered to rats by intratracheally instillation once a week for 16 weeks. Human bronchial epithelial cell line (16HBE) cells were transfected with Foxc1 siRNA followed by incubation in the presence of CSE (10%) for 24 h. Subsequently, the pathological changes, fibrosis, apoptosis, inflammatory cytokines and oxidative stress were detected. KEY FINDINGS Microarray results showed an upregulation of Foxc1 in lung tissues in COPD rats. Overexpression of Foxc1 mitigated the lung injury, as evidenced by reducing alveolar fusion, inflammatory cell infiltration and oxidative stress. Additionally, the apoptosis was remarkably increased in the lung in rats exposed to cigarette smoke, which was suppressed by Foxc1 overexpression. Furthermore, downregulation of Foxc1 aggravated the inflammation, oxidative stress and apoptosis in 16HBE cells with CSE treatment. SIGNIFICANCE Overexpression of Foxc1 could prevent oxidative stress, inflammation responses and cell apoptosis and knockdown of Foxc1 has the opposite effect, suggesting that Foxc1 may be available for lung protection during COPD.
Collapse
Affiliation(s)
- Shuyue Xia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China.
| | - Jian Qu
- Shenyang Environmental Monitor Central Station, Shenyang 110016, People's Republic of China
| | - Hui Jia
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China
| | - Wei He
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China
| | - Jing Li
- Shenyang Environmental Monitor Central Station, Shenyang 110016, People's Republic of China
| | - Long Zhao
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China
| | - Mingqing Mao
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China
| | - Yan Zhao
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, People's Republic of China
| |
Collapse
|
38
|
Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, Wang C, Li Y, Wang Q. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol 2018; 234:9052-9064. [PMID: 30378114 PMCID: PMC6686160 DOI: 10.1002/jcp.27583] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
Endothelial‐to‐mesenchymal transition (EndMT) was first reported in heart development. Recent studies have shown that EndMT also occurs in the progression of cardiac fibrosis. Herein, we demonstrated a critical role of the Forkhead Box M1 (Foxm1) transcription factor in transforming growth factor beta (TGF‐β)‐induced EndMT in endothelial cells (ECs) and a possible underlying molecular mechanism. Foxm1 was induced in ECs following TGF‐β stimulation. Using both pharmacological and molecular approaches to inhibit Foxm1 function can attenuate the TGF‐β‐induced EndMT and cell migration. In contrast, lentivirus‐mediated overexpression of Foxm1 allowed EndMT to proceed despite the absence of TGF‐β in ECs. Moreover, we found that the activation of the Smad2/3 signaling pathway and EndMT‐related transcription factors played important roles in the pathogenesis of Foxm1‐mediated EndMT. Further analysis revealed that Foxm1 bound to and increased the promoter activity of the Snail gene encoding a critical transcriptional regulator of EndMT. In conclusion, our results identify FOXM1 as a driver of TGF‐β‐induced EndMT and underscore the therapeutic potential of targeting FOXM1 for cardiac fibrosis.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cao
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Wan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanhui Wang
- Department of Geriatric, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yigang Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Wang P, Ma H, Li Y, Chen D, Li X, Gao X. Retracted Article: FOXC1 silencing promotes A549 cell apoptosis through inhibiting the PI3K/AKT/hedgehog/Gli2 signaling pathway. RSC Adv 2018; 8:33786-33793. [PMID: 35548824 PMCID: PMC9086723 DOI: 10.1039/c8ra06041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/17/2018] [Indexed: 11/30/2022] Open
Abstract
Lung cancer begins in the lung and is a leading cause of premature death. Forkhead box C1 (FOXC1) has been reported to play an important role in different types of cancer, and evidence suggests that FOXC1 is highly expressed in non-small cell lung cancer (NSCLC) patients. However, the function and molecular mechanism of FOXC1 in the NSCLC cell line A549 is still unclear. In the present study, we indicate that FOXC1 is expressed in the NSCLC cell lines A549, H460, and SK-MES-1 at a high level compared with control human bronchial epithelial (HBE) cells. FOXC1 silencing promotes A549 cell apoptosis, whereas it inhibits cell survival. The levels of anti-apoptosis protein Bcl-2 decreased and the expression of pro-apoptosis protein Bax increased in FOXC1 silenced cells. Further studies show that FOXC1 knockdown inhibits the PI3K/AKT/hedgehog/Gli2 pathway. Overexpressed AKT or Gli2 reversed the effects of FOXC1 silencing on A549 cell survival and apoptosis. Taken together, our results conclude that FOXC1 silencing reduced the survival of cancer cells and promoted their apoptosis, and that the PI3K/AKT/hedgehog/Gli2 pathway plays an important role in the functioning of FOXC1 silencing.
Collapse
Affiliation(s)
- Pei Wang
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| | - Hongbing Ma
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| | - Yong Li
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| | - Dong Chen
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| | - Xiaohui Li
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| | - Xiang Gao
- Department of Cardiothoracic Surgery, Huaihe Hospital of Henan University Baobei Road No. 8 Kaifeng 475000 China +86-0371-23906599 +86-0371-23906599
| |
Collapse
|
40
|
Cao S, Wang Z, Gao X, He W, Cai Y, Chen H, Xu R. FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:220. [PMID: 30189871 PMCID: PMC6127900 DOI: 10.1186/s13046-018-0894-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/25/2018] [Indexed: 01/19/2023]
Abstract
Background Accumulating evidence suggests that cancer stem cells (CSCs) play a critical role in tumor initiation, progression and therapy, and recent studies have indicated that Forkhead box C1 (FOXC1) is strongly associated with CSCs. This study investigates the regulatory effects of FOXC1 on CSC-like properties in non-small cell lung cancer (NSCLC). Methods We analyzed FOXC1 expression in NSCLC using the Cancer Genome Atlas (TCGA) database on UALCANC and performed survival analyses of NSCLC patients on Human Protein Atlas. CSC-like properties were analyzed based on CSC marker-positive cell population, self-renewal ability, stemness-related gene expression, tumorigenicity and drug resistance. The percentage of CD133+ cells was analyzed by flow cytometric analysis. Self-renewal ability was detected by sphere-formation analysis. Real-time PCR, western blotting and immunohistochemical staining were employed to detect mRNA and protein levels. Tumorigenicity was determined based on a xenograft formation assay, and effects of FOXC1 on drug resistance were assessed by cell viability and apoptosis assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to investigate the binding of FOXC1 to beta-catenin promoter. Results FOXC1 expression was found to be elevated in NSCLC tissues and negatively correlated with patient survival. FOXC1 knockdown reduced CD133+ cell percentage, suppressed self-renewal ability, decreased expression of stemness-related genes (Oct4, NANOG, SOX2 and ABCG2) and inhibited NSCLC cell tumorigenicity in vivo. Moreover, FOXC1 knockdown increased cisplatin and docetaxel sensitivity and reduced gefitinib resistance, whereas FOXC1 overexpression enhanced CSC-like properties. Luciferase reporter and ChIP assays showed beta-catenin to be a direct transcriptional target of FOXC1. Furthermore, overexpression of beta-catenin reversed the CSC-like property inhibition induced by FOXC1 knockdown, and knockdown of beta-catenin attenuated the CSC-like properties induced by FOXC1 overexpression. Conclusions This study demonstrates that FOXC1 induces CSC-like properties in NSCLC by promoting beta-catenin expression. The findings indicate that FOXC1 is a potential molecular target for anti-CSC-based therapies in NSCLC.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuo Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiujuan Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenjuan He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Cai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hui Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
41
|
Sun Y, Liu J, Chu L, Yang W, Liu H, Li C, Yang J. Long noncoding RNA SNHG12 facilitates the tumorigenesis of glioma through miR-101-3p/FOXP1 axis. Gene 2018; 676:315-321. [PMID: 30098431 DOI: 10.1016/j.gene.2018.08.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023]
Abstract
The increasing vital roles of long coding RNA (lncRNAs) in the glioma tumorigenesis have renewedly and roundly recognized. Nevertheless, the in-depth that lncRNAs modulate the gliomagenesis is still elusive. In this research, we focus on the functional study of lncRNA SNHG12 in the glioma pathogenesis. SNHG12 expression was enhanced and high-expressed in the glioma clinical tissue samples and cell lines, especially in the advanced clinical grade. In functional study, knockdown of SNHG12 impaired the proliferation, induced the apoptosis in vitro and, meanwhile, inhibited the tumor growth in vivo. In mechanistic study, it was found that SNHG12 harbored the complementary binding sites with miR-101-3p at 3'-UTR, acting as a miRNA 'sponge'. Furthermore, miR-101-3p also targeted the 3'-UTR of FOXP1 mRNA. The three elements construct the SNHG12/miR-101-3p/FOXP1 axis. Overall, we confirmed a functional regulatory pathway that SNHG12 and miR-101-3p regulated the expression of FOXP1 in glioma cells, forming the SNHG12/miR-101-3p/FOXP1 pathway. This finding might act as a valuable target for glioma.
Collapse
Affiliation(s)
- Yuchen Sun
- Department of Pathology at Basic Medical College of Guizhou Medical University, Guiyang 550001, China; Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Jian Liu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Guizhou Medical University, Guiyang 550001, China.
| | - Liangzhao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Wenxiu Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
42
|
Gouazé-Andersson V, Ghérardi MJ, Lemarié A, Gilhodes J, Lubrano V, Arnauduc F, Cohen-Jonathan Moyal E, Toulas C. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker. Oncotarget 2018; 9:31637-31649. [PMID: 30167084 PMCID: PMC6114977 DOI: 10.18632/oncotarget.25827] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma are known to be aggressive and therapy-resistant tumors, due to the presence of glioblastoma stem cells inside this heterogeneous tumor. We investigate here the involvement of FGFR1 in glioblastoma stem-like cells (GSLC) radioresistance mechanisms. We first demonstrated that the survival after irradiation was significantly diminished in FGFR1-silenced (FGFR1-) GSLC compared to control GSLC. The transcriptome analysis of GSLCs FGFR1(-) showed that FOX family members are differentially regulated by FGFR1 inhibition, particularly with an upregulation of FOXN3 and a downregulation of FOXM1. GSLC survival after irradiation was significantly increased after FOXN3 silencing and decreased after FOXM1 inhibition, showing opposite effects of FGFR1/FOX family members on cell response to ionizing radiation. Silencing FGFR1 or FOXM1 downregulated genes involved in mesenchymal transition such as GLI2, TWIST1, and ZEB1 in glioblastoma stem-like cells. It also dramatically reduced GSLC migration. Databases analysis confirmed that the combined expression of FGFR1/FOXM1/MELK/GLI2/ZEB1/TWIST1 is significantly associated with patients overall survival after chemo-radiotherapy treatment. All these results, associated with our previous conduced ones with differentiated cells, clearly established that FGFR1-FOXM1 dependent glioblastoma stem-like cells radioresistance pathway is a central actor of GBM treatment resistance and a key target to inhibit in the aim to increase the sensitivity of GBM to the radiotherapy.
Collapse
Affiliation(s)
- Valérie Gouazé-Andersson
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France
| | - Marie-Julie Ghérardi
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France
| | - Anthony Lemarié
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France
| | - Julia Gilhodes
- Institut Claudius Regaud, IUCT-O, Toulouse, F-31059, France
| | - Vincent Lubrano
- CHU PURPAN-Pavillon Baudot, Place du Dr Baylac, Toulouse-Cedex 3, 31024, France
| | - Florent Arnauduc
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France
| | - Elizabeth Cohen-Jonathan Moyal
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France.,Institut Claudius Regaud, IUCT-O, Toulouse, F-31059, France
| | - Christine Toulas
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Toulouse, F-31000, France.,Institut Claudius Regaud, IUCT-O, Toulouse, F-31059, France
| |
Collapse
|
43
|
FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 2018; 7:52. [PMID: 29976975 PMCID: PMC6033944 DOI: 10.1038/s41389-018-0061-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022] Open
Abstract
IGF-1R signaling controls various vital cellular functions and this signaling is deregulated in many cancers, including pancreatic cancer. Several efforts have mainly focused on inhibiting the IGF-1R signaling cascade. The outcomes of these focused preclinical studies have been positive, whereas clinical trials of IGF-1R inhibitors in pancreatic cancer have failed, raising the questions about this therapeutic approach. This necessitates a better understanding of the role of IGF-1R signaling in pancreatic cancer. We investigated the impact of IGF-1R signaling on crucial transcription factors and identified the FOXC1 as one of the crucial regulator of IGF-1R signaling. We employed genetic approaches to overexpress and silence FOXC1 in pancreatic cancer cells. Our results demonstrate that IGF-1R and FOXC1 seem to positively regulate each other. Further, FOXC1 increased the metastatic abilities of pancreatic cancer cells by enhancing cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, and angiogenesis. The data from xenograft experiments further established the importance of FOXC1 in pancreatic tumorigenesis. In conclusion, FOXC1 is a potent oncogenic transcription factor, which promotes pancreatic cancer growth and metastasis. Thus, targeting FOXC1 could be a potential therapeutic strategy against pancreatic cancer.
Collapse
|
44
|
Liang C, Zhao J, Ge H, Li G, Wu J. Clinicopathological and prognostic significance of FoxM1 in hepatocellular carcinoma patients: a meta-analysis. Onco Targets Ther 2018; 11:3561-3571. [PMID: 29950861 PMCID: PMC6016270 DOI: 10.2147/ott.s155541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and aims Recently, the abnormal expression of FoxM1 has been found in many malignant tumors. However, the clinicopathological and prognostic value of FoxM1 expression in hepatocellular carcinoma (HCC) patients remains controversial. We conducted a meta-analysis to establish the relationship between FoxM1 expression and the clinicopathological features and prognostic value in patients with HCC. Methods An electronic search for relevant articles was conducted according to a set of criteria in the PubMed, Cochrane Library, Web of Science, EMBASE, Chinese CNKI and Chinese WanFang databases. The correlation data between FoxM1 expression and clinicopathological features and survival outcomes were analyzed. Pooled odds ratios (ORs) and hazard ratios (HRs) with 95% CIs were calculated using STATA14.2. Results A total of 14 studies comprising of 2,036 patients were enrolled in this meta-analysis. The results showed that FoxM1 expression was related to the incidence, tumor size (>5 cm), vascular invasion, differentiation and TNM stage. Moreover, overexpression of FoxM1 indicated a poor 3- and 5-year overall survival rate (OS) and recurrence-free survival rate (disease-free survival rate). Conclusion Our meta-analysis indicated that FoxM1 expression was associated with incidence, tumor size (>5 cm), vascular invasion, differentiation and TNM stage. Accordingly, FoxM1 may be a reliable prognostic biomarker for patients with HCC. However, additional high-quality studies are still needed to further support these findings.
Collapse
Affiliation(s)
- Chaojie Liang
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jingyang Zhao
- Department of Tumor Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hua Ge
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Guangming Li
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jixiang Wu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
45
|
Wang XH, Cui YX, Wang ZM, Liu J. Down-regulation of FOXR2 inhibits non-small cell lung cancer cell proliferation and invasion through the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 500:229-235. [PMID: 29634928 DOI: 10.1016/j.bbrc.2018.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Forkhead box R2 (FOXR2), a new member of the FOX family, is an important player in a wide range of cellular processes such as proliferation, migration, differentiation and apoptosis. Recently, FOXR2 has been reported to be implicated in cancer development. However, the biological functions of FOXR2 in non-small cell lung cancer (NSCLC) remain unclear. In this study, we investigated the specific role of FOXR2 in NSCLC. The results showed that down-regulation of FOXR2 significantly inhibited NSCLC cell proliferation and invasion in vitro and suppressed NSCLC cell growth and metastasis in vivo. In addition, the decrease in FOXR2 expression markedly reduced the protein levels of β-catenin, cyclinD1 and c-Myc and hence inactivated the Wnt/β-catenin pathway in NSCLC cells. Taken together, we concluded that FOXR2 might be considered as a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xin-Hua Wang
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China
| | - Yan-Xiang Cui
- Department of Clinical Laboratory, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, 266000, China
| | - Zhen-Min Wang
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China
| | - Jian Liu
- Department of Clinical Laboratory, Linyi City Central Hospital, Linyi, 276400, China.
| |
Collapse
|
46
|
Zhang N, Pati D. Separase Inhibitor Sepin-1 Inhibits Foxm1 Expression and Breast Cancer Cell Growth. JOURNAL OF CANCER SCIENCE & THERAPY 2018; 10:517. [PMID: 29780443 PMCID: PMC5959057 DOI: 10.4172/1948-5956.1000517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sepin-1, a potent non-competitive inhibitor of separase, inhibits cancer cell growth, but the mechanisms of Sepin-1-mediated growth inhibition are not fully understood. Here we report that Sepin-1 hinders growth of breast cancer cells, cell migration, and wound healing. Inhibition of cell growth induced by Sepin-1 in vitro doesn't appear to be through apoptosis but rather due to growth inhibition. Following Sepin-1 treatment caspases 3 and 7 are not activated and Poly (ADP-ribose) polymerase (Parp) is not cleaved. The expression of Forkhead box protein M1 (FoxM1), a transcription factor, and its target genes in the cell cycle, including Plk1, Cdk1, Aurora A, and Lamin B1, are reduced in a Sepin-1-dependent manner. Expressions of Raf kinase family members A-Raf, B-Raf, and C-Raf also are inhibited following treatment with Sepin-1. Raf is an intermediator in the Raf-Mek-Erk signaling pathway that phosphorylates FoxM1. Activated FoxM1 can promote its own transcription via a positive feedback loop. Sepin-1-induced downregulation of Raf and FoxM1 may inhibit expression of cell cycle-driving genes, resulting in inhibition of cell growth.
Collapse
Affiliation(s)
- Nenggang Zhang
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Debananda Pati
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
47
|
Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol 2017; 9:797-816. [PMID: 29449899 PMCID: PMC5808840 DOI: 10.1177/1758834017742576] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box C1 (FOXC1) is an essential member of the forkhead box transcription factors and has been highlighted as an important transcriptional regulator of crucial proteins associated with a wide variety of carcinomas. FOXC1 regulates tumor-associated genes and is regulated by multiple pathways that control its mRNA expression and protein activity. Aberrant FOXC1 expression is involved in diverse tumorigenic processes, such as abnormal cell proliferation, cancer stem cell maintenance, cancer migration, and angiogenesis. Herein, we review the correlation between the expression of FOXC1 and tumor behaviors. We also summarize the mechanisms of the regulation of FOXC1 expression and activity in physiological and pathological conditions. In particular, we focus on the pathological processes of cancer targeted by FOXC1 and discuss whether FOXC1 is good or detrimental during tumor progression. Moreover, FOXC1 is highlighted as a clinical biomarker for diagnosis or prognosis in various human cancers. The information reviewed here should assist in experimental designs and emphasize the potential of FOXC1 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yicheng Cheng
- Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|