1
|
Ma J, Wu C, Xu J. The Development of Lung Tissue Engineering: From Biomaterials to Multicellular Systems. Adv Healthc Mater 2024; 13:e2401025. [PMID: 39206615 DOI: 10.1002/adhm.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The challenge of the treatment of end-stage lung disease poses an urgent clinical demand for lung tissue engineering. Over the past few years, various lung tissue-engineered constructs are developed for lung tissue regeneration and respiratory pathology study. In this review, an overview of recent achievements in the field of lung tissue engineering is proposed. The introduction of lung structure and lung injury are stated briefly at first. After that, the lung tissue-engineered constructs are categorized into three types: acellular, monocellular, and multicellular systems. The different bioengineered constructs included in each system that can be applied to the reconstruction of the trachea, airway epithelium, alveoli, and even whole lung are described in detail, followed by the highlight of relevant representative research. Finally, the challenges and future directions of biomaterials, manufacturing technologies, and cells involved in lung tissue engineering are discussed. Overall, this review can provide referable ideas for the realization of functional lung regeneration and permanent lung substitution.
Collapse
Affiliation(s)
- Jingge Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Cai MY, Mao X, Zhang B, Yip CY, Pan KW, Niu Y, Kwok-Wing Tsui S, Si-Long Vong J, Choi-Wo Mak J, Luo W, Ko WH. Single-cell RNA sequencing reveals heterogeneity of ALI model and epithelial cell alterations after exposure to electronic cigarette aerosol. Heliyon 2024; 10:e38552. [PMID: 39397927 PMCID: PMC11470615 DOI: 10.1016/j.heliyon.2024.e38552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Electronic cigarettes (e-cigarettes) have been advertised as a healthier alternative to traditional cigarettes; however, their exact effects on the bronchial epithelium are poorly understood. Air-liquid interface culture human bronchial epithelium (ALI-HBE) contains various cell types, including basal cell, ciliated cell and secretory cell, providing an in vitro model that simulates the biological characteristics of normal bronchial epithelium. Multiplex single-cell RNA sequencing of ALI-HBE was used to reveal previously unrecognized transcriptional heterogeneity within the human bronchial epithelium and cell type-specific responses to acute exposure to e-cigarette aerosol (e-aerosol) containing distinct components (nicotine and/or flavoring). The findings of our study show that nicotine-containing e-aerosol affected gene expression related to transformed basal cells into secretory cells after acute exposure; inhibition of secretory cell function by down-regulating genes related to epithelial cell differentiation, calcium ion binding, extracellular exosomes, and secreted proteins; and enhanced interaction between secretory cells and other cells. On the other hand, flavoring may alter the growth pattern of epithelial cells and make basal cells more susceptible to SARS-CoV infection. Besides, the data also indicate factors that may promote SARS-CoV-2 infection and suggest therapeutic targets for restoring normal bronchial epithelium function after e-cigarette use. In summary, the current study offered fresh perspectives on alterations in the cellular landscape and cell type-specific responses in human bronchial epithelium that are brought about by e-cigarette use.
Collapse
Affiliation(s)
- Meng-yun Cai
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Xiaofan Mao
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ke-wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Joaquim Si-Long Vong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Judith Choi-Wo Mak
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Guangdong, PR China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| |
Collapse
|
3
|
Hata K, Tsubouchi K, Suzuki K, Eto D, Ando H, Yanagihara T, Kan-O K, Okamoto I. Surfactant protein D prevents mucin overproduction in airway goblet cells via SIRPα. Sci Rep 2024; 14:1799. [PMID: 38245585 PMCID: PMC10799941 DOI: 10.1038/s41598-024-52328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.
Collapse
Affiliation(s)
- Kentaro Hata
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuya Tsubouchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Kunihiro Suzuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Eto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroyuki Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toyoshi Yanagihara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Osan J, Talukdar SN, Feldmann F, DeMontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease. Microbiol Spectr 2022; 10:e0045922. [PMID: 35862971 PMCID: PMC9430117 DOI: 10.1128/spectrum.00459-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2's cellular tropism plays a critical role in severe pathophysiology in the lung, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults (those with COPD). We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium, as mostly goblet cells harbor the entry receptor angiotensin-converting enzyme 2 (ACE2) and its cofactor transmembrane serine protease 2 (TMPRSS2). We also found that SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Likewise, SARS-CoV and Middle East respiratory syndrome (MERS-CoV) infection increased disease pathophysiology (e.g., syncytium formation) in the COPD bronchial airway epithelium. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. IMPORTANCE SARS-CoV-2 or COVID-19's first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19. COPD, which is the third leading cause of death worldwide, is one of the conditions listed by the CDC which can increase the chance of severe COVID-19. The present study uses a healthy and COPD-derived bronchial airway epithelial model to study the COVID-19 and host factors which could explain the reason for COPD patients developing severe infection due to COVID-19.
Collapse
Affiliation(s)
- Jaspreet Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Friederike Feldmann
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Beth Ann DeMontigny
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Kristina L. Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Heinz Feldmann
- Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
5
|
Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung Fibrosis and Fibrosis in the Lungs: Is It All about Myofibroblasts? Biomedicines 2022; 10:biomedicines10061423. [PMID: 35740444 PMCID: PMC9220162 DOI: 10.3390/biomedicines10061423] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
In the lungs, fibrosis is a growing clinical problem that results in shortness of breath and can end up in respiratory failure. Even though the main fibrotic disease affecting the lung is idiopathic pulmonary fibrosis (IPF), which affects the interstitial space, there are many fibrotic events that have high and dangerous consequences for the lungs. Asthma, chronic obstructive pulmonary disease (COPD), excessive allergies, clearance of infection or COVID-19, all are frequent diseases that show lung fibrosis. In this review, we describe the different kinds of fibrosis and analyse the main types of cells involved-myofibroblasts and other cells, like macrophages-and review the main fibrotic mechanisms. Finally, we analyse present treatments for fibrosis in the lungs and highlight potential targets for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Faculty of Medicine-IIS INCLIVA, University of Valencia, 46010 Valencia, Spain
- Correspondence:
| | | | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (P.M.); (I.R.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
7
|
Kuchibhotla VNS, Starkey MR, Reid AT, Heijink IH, Nawijn MC, Hansbro PM, Knight DA. Inhibition of β-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice. Front Physiol 2021; 12:690531. [PMID: 34385933 PMCID: PMC8353457 DOI: 10.3389/fphys.2021.690531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
Excessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively. We specifically investigated the role of the β-catenin/CBP signaling pathway in goblet cell metaplasia in a HDM-induced allergic airway disease model in mice using ICG-001, a small molecule inhibitor that blocks the binding of CBP to β-catenin. Female 6- 8-week-old BALB/c mice were sensitized to HDM/saline on days 0, 1, and 2, followed by intranasal challenge with HDM/saline with or without subcutaneous ICG-001/vehicle treatment from days 14 to 17, and samples harvested 24 h after the last challenge/treatment. Differential inflammatory cells in bronchoalveolar lavage (BAL) fluid were enumerated. Alcian blue (AB)/Periodic acid–Schiff (PAS) staining was used to identify goblet cells/mucus production, and airway hyperresponsiveness (AHR) was assessed using invasive plethysmography. Exposure to HDM induced airway inflammation, goblet cell metaplasia and increased AHR, with increased airway resistance in response to the non-specific spasmogen methacholine. Inhibition of the β-catenin/CBP pathway using treatment with ICG-001 significantly attenuated the HDM-induced goblet cell metaplasia and infiltration of macrophages, but had no effect on eosinophils, neutrophils, lymphocytes or AHR. Increased β-catenin/CBP signaling may promote HDM-induced goblet cell metaplasia in mice.
Collapse
Affiliation(s)
- Virinchi N S Kuchibhotla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre GrowUpWell and Hunter Medical Research Institute, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Andrew T Reid
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Irene H Heijink
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research, University of Groningen, Groningen, Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Providence Health Care Research Institute, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Bodas M, Moore AR, Subramaniyan B, Georgescu C, Wren JD, Freeman WM, Brown BR, Metcalf JP, Walters MS. Cigarette Smoke Activates NOTCH3 to Promote Goblet Cell Differentiation in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2021; 64:426-440. [PMID: 33444514 PMCID: PMC8008804 DOI: 10.1165/rcmb.2020-0302oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Andrew R. Moore
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Bharathiraja Subramaniyan
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Jonathan D. Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Willard M. Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Brent R. Brown
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Jordan P. Metcalf
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| | - Matthew S. Walters
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|
9
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020; 10:biom10121644. [PMID: 33302350 PMCID: PMC7762561 DOI: 10.3390/biom10121644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by incompletely reversible airflow limitation and seriously threatens the health of humans due to its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential pharmacological activities against multiple pathological stages of COPD, but available studies are scattered and unsystematic. Thus, we combined literature review with network pharmacology analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
Collapse
|
11
|
Osan JK, Talukdar SN, Feldmann F, DeMontigny BA, Jerome K, Bailey KL, Feldmann H, Mehedi M. Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in COPD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.11.379099. [PMID: 33200131 PMCID: PMC7668735 DOI: 10.1101/2020.11.11.379099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 has become a major problem across the globe, with approximately 50 million cases and more than 1 million deaths and currently no approved treatment or vaccine. Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illness associated with COVID-19. We established an airway epithelium model to study SARS-CoV-2 infection in healthy and COPD lung cells. We found that both the entry receptor ACE2 and the co-factor transmembrane protease TMPRSS2 are expressed at higher levels on nonciliated goblet cell, a novel target for SARS-CoV-2 infection. We observed that SARS-CoV-2 infected goblet cells and induced syncytium formation and cell sloughing. We also found that SARS-CoV-2 replication was increased in the COPD airway epithelium likely due to COPD associated goblet cell hyperplasia. Our results reveal goblet cells play a critical role in SARS-CoV-2 infection in the lung.
Collapse
Affiliation(s)
- Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Contributed equally to this study
| | - Friederike Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Beth Ann DeMontigny
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kailey Jerome
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
| | - Kristina L. Bailey
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heinz Feldmann
- Divison of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202, USA
- Lead contact
| |
Collapse
|
12
|
Reid AT, Nichol KS, Chander Veerati P, Moheimani F, Kicic A, Stick SM, Bartlett NW, Grainge CL, Wark PAB, Hansbro PM, Knight DA. Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from Individuals with Asthma. Am J Respir Cell Mol Biol 2020; 62:513-523. [PMID: 31922915 DOI: 10.1165/rcmb.2019-0069oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Punnam Chander Veerati
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Anthony Kicic
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health.,Telethon Kids Institute, and.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia; and
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Defnet AE, Hasday JD, Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:11-18. [PMID: 32361678 DOI: 10.1016/j.coph.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Chronic pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and asthma, are major causes of death and reduced quality of life. Characteristic of chronic pulmonary disease is excessive lung inflammation that occurs in response to exposure to inhaled irritants, chemicals, and allergens. Chronic inflammation leads to remodeling of the airways that includes excess mucus secretion, proliferation of smooth muscle cells, increased deposition of extracellular matrix proteins and fibrosis. Protein kinases have been implicated in mediating inflammatory signals and airway remodeling associated with reduced lung function in chronic pulmonary disease. This review will highlight the role of protein kinases in the lung during chronic inflammation and examine opportunities to use protein kinase inhibitors for the treatment of chronic pulmonary diseases.
Collapse
Affiliation(s)
- Amy E Defnet
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States
| | - Jeffery D Hasday
- Department of Medicine, Division of Pulmonary Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, United States.
| |
Collapse
|
14
|
Lo Bello F, Ieni A, Hansbro PM, Ruggeri P, Di Stefano A, Nucera F, Coppolino I, Monaco F, Tuccari G, Adcock IM, Caramori G. Role of the mucins in pathogenesis of COPD: implications for therapy. Expert Rev Respir Med 2020; 14:465-483. [PMID: 32133884 DOI: 10.1080/17476348.2020.1739525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Evidence accumulated in the last decade has started to reveal the enormous complexity in the expression, interactions and functions of the large number of different mucins present in the different compartments of the human lower airways. This occurs both in normal subjects and in COPD patients in different clinical phases and stages of severity.Areas covered: We review the known physiological mechanisms that regulate mucin production in human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion.Expert opinion: It is evident that the old simplistic concept that mucus hypersecretion in COPD patients is associated with negative clinical outcomes is not valid and that the therapeutic potential of 'mucolytic drugs' is under-appreciated due to the complexity of the associated molecular network(s). Likewise, our current knowledge of the effects of the drugs already available on the market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and often indirect and more well-controlled clinical trials are needed in this area.
Collapse
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, University of Technology Sydney, Ultimo, Australia
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Monaco
- Unità Operativa Semplice Dipartimentale di Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), AOU Policlinico "G.martino", Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
15
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
16
|
Britto CJ, Cohn L. Escalating Mucus Inhibition to the Top of Our Priorities. Am J Respir Cell Mol Biol 2019; 61:275-276. [PMID: 31063695 PMCID: PMC6839933 DOI: 10.1165/rcmb.2019-0143ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Clemente J Britto
- Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew Haven, Connecticut
| | - Lauren Cohn
- Section of Pulmonary, Critical Care, and Sleep MedicineYale School of MedicineNew Haven, Connecticut
| |
Collapse
|
17
|
Méndez A, Rojas DA, Ponce CA, Bustamante R, Beltrán CJ, Toledo J, García-Angulo VA, Henriquez M, Vargas SL. Primary infection by Pneumocystis induces Notch-independent Clara cell mucin production in rat distal airways. PLoS One 2019; 14:e0217684. [PMID: 31170201 PMCID: PMC6553854 DOI: 10.1371/journal.pone.0217684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 11/27/2022] Open
Abstract
Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.
Collapse
Affiliation(s)
- Andrea Méndez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Carolina A. Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Rebeca Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Servicio de Gastroenterología, Hospital Clínico Universidad de Chile y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Laboratorio de Análisis Imágenes Científicas, SCIAN-lab, Instituto de Neurociencias Biomédicas (BNI), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Victor A. García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Mauricio Henriquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Sergio L. Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Heparin-binding epidermal growth factor (HB-EGF) drives EMT in patients with COPD: implications for disease pathogenesis and novel therapies. J Transl Med 2019; 99:150-157. [PMID: 30451982 DOI: 10.1038/s41374-018-0146-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/07/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and devastating chronic lung condition that has a significant global burden, both medically and financially. Currently there are no medications that can alter the course of disease. At best, the drugs in clinical practice provide symptomatic relief to suffering patients by alleviating acute exacerbations. Most of current clinical research activities are in late severe disease with lesser attention given to early disease manifestations. There is as yet, a lack of understanding of the underlying mechanisms of disease progression and the molecular switches that are involved in their manifestation. Small airway fibrosis and obliteration are known to cause fixed airflow obstruction in COPD, and the consequential damage to the lung has an early onset. So far, there is little evidence of the mechanisms that underlie this aspect of pathology. However, emerging research confirms that airway epithelial reprogramming or epithelial to mesenchymal transition (EMT) is a key mechanism that drives fibrotic remodelling changes in smokers and patients with COPD. A recent study by Lai et al. further highlights the importance of EMT in smoking-related COPD pathology. The authors identify HB-EGF, an EGFR ligand, as a key driver of EMT and a potential new therapeutic target for the amelioration of EMT and airway remodelling. There are also wider implications in lung cancer prophylaxis, which is another major comorbidity associated with COPD. We consider that improved molecular understanding of the intricate pathways associated with epithelial cell plasticity in smokers and patients with COPD will have major therapeutic implications.
Collapse
|
20
|
Mostafa MM, Rider CF, Shah S, Traves SL, Gordon PMK, Miller-Larsson A, Leigh R, Newton R. Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells. BMC Med Genomics 2019; 12:29. [PMID: 30704470 PMCID: PMC6357449 DOI: 10.1186/s12920-018-0467-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Background Glucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma. However, reduced efficacy in severe disease or exacerbations indicates a need to improve ICS actions. Methods Glucocorticoid-driven transcriptomes were compared using PrimeView microarrays between primary human bronchial epithelial (HBE) cells and the model cell lines, pulmonary type II A549 and bronchial epithelial BEAS-2B cells. Results In BEAS-2B cells, budesonide induced (≥2-fold, P ≤ 0.05) or, in a more delayed fashion, repressed (≤0.5-fold, P ≤ 0.05) the expression of 63, 133, 240, and 257 or 15, 56, 236, and 344 mRNAs at 1, 2, 6, and 18 h, respectively. Within the early-induced mRNAs were multiple transcriptional activators and repressors, thereby providing mechanisms for the subsequent modulation of gene expression. Using the above criteria, 17 (BCL6, BIRC3, CEBPD, ERRFI1, FBXL16, FKBP5, GADD45B, IRS2, KLF9, PDK4, PER1, RGCC, RGS2, SEC14L2, SLC16A12, TFCP2L1, TSC22D3) induced and 8 (ARL4C, FLRT2, IER3, IL11, PLAUR, SEMA3A, SLC4A7, SOX9) repressed mRNAs were common between A549, BEAS-2B and HBE cells at 6 h. As absolute gene expression change showed greater commonality, lowering the cut-off (≥1.25 or ≤ 0.8-fold) within these groups produced 93 induced and 82 repressed genes in common. Since large changes in few mRNAs and/or small changes in many mRNAs may drive function, gene ontology (GO)/pathway analyses were performed using both stringency criteria. Budesonide-induced genes showed GO term enrichment for positive and negative regulation of transcription, signaling, proliferation, apoptosis, and movement, as well as FOXO and PI3K-Akt signaling pathways. Repressed genes were enriched for inflammatory signaling pathways (TNF, NF-κB) and GO terms for cytokine activity, chemotaxis and cell signaling. Reduced growth factor expression and effects on proliferation and apoptosis were highlighted. Conclusions While glucocorticoids repress mRNAs associated with inflammation, prior induction of transcriptional activators and repressors may explain longer-term responses to these agents. Furthermore, positive and negative effects on signaling, proliferation, migration and apoptosis were revealed. Since many such gene expression changes occurred in human airways post-ICS inhalation, the effects observed in cell lines and primary HBE cells in vitro may be relevant to ICS in vivo. Electronic supplementary material The online version of this article (10.1186/s12920-018-0467-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud M Mostafa
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Cardiovascular and Respiratory Sciences graduate program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher F Rider
- Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Suharsh Shah
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Suzanne L Traves
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul M K Gordon
- Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | | | - Richard Leigh
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Abstract
Epithelial stem cells reside within multiple regions of the lung where they renew various region-specific cells. In addition, there are multiple routes of regeneration after injury through built-in heterogeneity within stem cell populations and through a capacity for cellular plasticity among differentiated cells. These processes are important facets of respiratory tissue resiliency and organism survival. However, this regenerative capacity is not limitless, and repetitive or chronic injuries, environmental stresses, or underlying factors of disease may ultimately lead to or contribute to tissue remodeling and end-stage lung disease. This chapter will review stem cell heterogeneity among pulmonary epithelia in the lower respiratory system, discuss recent findings that may challenge long-held scientific paradigms, and identify several clinically relevant research opportunities for regenerative medicine.
Collapse
|
22
|
Tomiyasu J, Kondoh D, Sakamoto H, Matsumoto N, Haneda S, Matsui M. Lectin histochemical studies on the olfactory gland and two types of gland in vomeronasal organ of the brown bear. Acta Histochem 2018; 120:566-571. [PMID: 30001800 DOI: 10.1016/j.acthis.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023]
Abstract
Olfaction is mediated by the vomeronasal and main olfactory systems, and the peripheral vomeronasal organ (VNO) processes species-specific chemicals that are associated with various behaviors in mammals. Sensory epithelial surfaces of the olfactory mucosa and VNO are covered by mucosal fluid that contains secretory products derived from associated glands, and glycoconjugates in the mucosal fluid are involved in odorant reception. The VNO of brown bears contains two types of glands; submucosal vomeronasal glands (VNG) and multicellular intraepithelial glands (MIG). The present study determined the labelling profiles of 21 lectins in the olfactory glands (OG), VNG and MIG of young male brown bears. The OG reacted with 12 lectins, and the VNG and MIG were positive for seven and eight lectins, respectively. Six lectins bound only to the OG, while four reacted with both or either of the VNG and MIG, but not the OG. The differences of lectin labelling pattern between the OG and glands in the VNO suggest that glycans in covering mucosal fluids differ between the olfactory mucosa and VNO. In addition, Bandeiraea simplicifolia lectin-I, Sophora japonica agglutinin and Jacalin reacted with the MIG but not the VNG, whereas Datura stramonium lectin and concanavalin A bound to the VNG, but not the MIG. These findings indicate that the properties of secretory substances differ between the two types of glands in the bear VNO, and that the various secretions from these two types of glands may function in the lumen of VNO together.
Collapse
|