1
|
Gerges SH, Helal SA, Silver HL, Dyck JRB, El-Kadi AOS. Sex-dependent alterations in cardiac cytochrome P450-mediated arachidonic acid metabolism in pressure overload-induced cardiac hypertrophy in rats. Drug Metab Dispos 2025; 53:100077. [PMID: 40273825 DOI: 10.1016/j.dmd.2025.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Cardiac hypertrophy is a risk factor for heart failure and is usually less common in young women than in men. Cytochrome P450 (CYP) enzymes in the heart metabolize arachidonic acid into hydroxyeicosatetraenoic acids (HETEs), which generally have hypertrophic effects, and epoxyeicosatrienoic acids, which have cardioprotective effects. In this study, we aimed to investigate sex-specific differences in cardiac hypertrophy and cardiac CYP, HETE, and epoxyeicosatrienoic acid levels in response to pressure overload. Adult male and female Sprague-Dawley rats were subject to sham or abdominal aortic constriction (AAC) surgeries. Five weeks postsurgery, cardiac function was assessed by echocardiography. The mRNA and protein levels of hypertrophic markers and CYP enzymes were measured by real-time polymerase chain reaction and Western blot. Heart tissue HETE levels and microsomal formation of HETEs and epoxyeicosatrienoic acids were measured by liquid chromatography-tandem mass spectrometry. Our results show significant sex-specific differences in AAC-induced cardiac hypertrophy. Echocardiography and ventricular wall measurements showed more hypertrophy in male rats. Some hypertrophic markers were significantly upregulated only in male AAC rats and were significantly higher in the hearts of male rats compared to female AAC rats. Different CYP hydroxylases such as CYP1B1, CYP4A, and CYP4F and epoxygenases such as CYP2C and CYP2J10 were significantly upregulated in the hearts of male AAC rats only. The heart level of 12(R)-HETE and the microsomal formation of several HETEs were also significantly increased only in male rats. In conclusion, male rats developed stronger AAC-induced cardiac hypertrophy compared to female rats, which was accompanied by a significant increase in cardiac CYP enzymes and HETEs. SIGNIFICANCE STATEMENT: Previous studies demonstrated that male rats experience more severe cardiac hypertrophy compared to female rats. To our knowledge, this research is the first to investigate and compare the expression of cytochrome P450 enzymes and arachidonic acid metabolites in male and female rat hearts following pressure overload-induced hypertrophy. This study highlights significant sex-specific differences in cytochrome P450-mediated metabolism during hypertrophy, providing valuable insights into the molecular mechanisms underlying these responses and identifying potential targets for sex-specific therapies in cardiac diseases.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heidi L Silver
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Zhang H, Hirao H. Mechanism of Regio- and Enantioselective Hydroxylation of Arachidonic Acid Catalyzed by Human CYP2E1: A Combined Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:2080-2092. [PMID: 39932478 DOI: 10.1021/acs.jcim.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regio- and enantioselective hydroxylation of free fatty acids by human cytochrome P450 2E1 (CYP2E1) plays an important role in metabolic regulation and has significant pathological implications. Despite extensive research, the detailed hydroxylation mechanism of CYP2E1 remains incompletely understood. To clarify the origins of regioselectivity and enantioselectivity observed for CYP2E1-mediated fatty acid hydroxylation, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were performed. MD simulations provided key insights into the proximity of arachidonic acid's carbon atoms to the reactive iron(IV)-oxo moiety in compound I (Cpd I), with the ω-1 position being closest, indicating higher reactivity at this site. QM/MM calculations identified hydrogen abstraction as the rate-determining step, with the ω-1S transition state exhibiting the lowest energy barrier, consistent with experimentally observed enantioselectivity. Energy decomposition analysis revealed that variations in quantum mechanical energy (ΔEQM) significantly influence reaction barriers, with the most efficient hydrogen abstraction occurring at the ω-1S and ω-2R positions. These findings underscore the importance of substrate positioning within the active site in determining product selectivity. Comparisons with two related P450s, P450BM3 and P450SPα, further highlighted the critical role of active site architecture and substrate positioning in modulating selectivity. While surrounding residues do not directly dictate product selectivity, they shape the active site environment and influence substrate positioning. Furthermore, our analysis revealed a previously unrecognized catalytic role of Ala299. These findings provide a deeper mechanistic understanding of human CYP2E1 and offer valuable insights for its precise engineering in targeted C-H functionalization.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Du Z, Lu Y, Ma Y, Yang Y, Luo W, Liu S, Zhang M, Wang Y, Li L, Li C, Wang W, Gao H. The prognostic and therapeutic significance of polyunsaturated fatty acid-derived oxylipins in ST-segment elevation myocardial infarction. IMETA 2025; 4:e266. [PMID: 40027487 PMCID: PMC11865345 DOI: 10.1002/imt2.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 03/05/2025]
Abstract
Polyunsaturated fatty acid-derived oxylipins regulate systemic inflammation and exert cardiovascular effects, yet their role in ST-segment elevation myocardial infarction (STEMI) remains unclear. Herein, we used targeted metabolomics and machine learning algorithms to develop an oxylipin-based risk model to accurately predict recurrent major adverse cardiovascular events (MACE) after STEMI in two independent prospective cohorts with 2 years of follow-up. The in vivo effects of significant oxylipin predictors were explored via a murine myocardial ischemia‒reperfusion model and functional metabolomics. Among the 130 plasma oxylipins detected in discovery cohort (n = 645), patients with and without recurrent MACE exhibited significant differences in a variety of oxylipin subclasses. We constructed an oxylipin-based prediction model that showed powerful performance in predicting recurrent MACE in the discovery cohort (predictive accuracy: 91.5%). The predictive value of the oxylipin marker panel was confirmed in an independent external validation cohort (predictive accuracy: 89.9%; n = 401). Furthermore, we found that the anti-inflammatory/pro-resolving oxylipin (ARO) predictor panel showed better prognostic performance than the pro-inflammatory oxylipin predictor panel in both cohorts. Compared with the treatment of pro-inflammatory oxylipin predictor panel, combined treatment of six ARO predictors, including 14,15 epoxy-eicosatrienoic acid, 14(15)-epoxy-eicosatetraenoic acid, 12,13-epoxy-octadecenoic acid, lipoxin A4, resolving D1, and 6 keto-prostaglandin F1 showed significant cardiac activities and synergistic metabolic actions in myocardial infarction‒reperfusion model mice. We also mechanistically identified an important role of ARO predictors in restraining ceramide/lysophosphatidylcholine synthesis and inhibiting inflammatory responses. Overall, the present study depicted the landscape of oxylipin profiles in the largest panel of STEMI patients worldwide. Our results also highlight the great potential of bioactive oxylipins in prognostic prediction and therapeutics after STEMI.
Collapse
Affiliation(s)
- Zhiyong Du
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yingyuan Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityPeking UniversityBeijingChina
| | - Ying Ma
- The State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical SciencesBeijingChina
| | - Yunxiao Yang
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Wei Luo
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Sheng Liu
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Ming Zhang
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yong Wang
- Dongzhimen Hospital of Beijing University of Chinese MedicineBeijingChina
| | - Lei Li
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Chun Li
- Institute of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
- Chinese Medicine Guangdong LaboratoryGuangdong HengqinChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhouChina
| | - Wei Wang
- Institute of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
- Chinese Medicine Guangdong LaboratoryGuangdong HengqinChina
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hai Gao
- Key Laboratory of Remodeling‐Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Han J, Li J, Liu L, Li K, Zhang C, Han Y. 20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca 2+ signaling in H9c2 cells. Sci Rep 2025; 15:2342. [PMID: 39825084 PMCID: PMC11742049 DOI: 10.1038/s41598-025-85992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA. The role of 20-HETE in Ang II-induced cardiac hypertrophy was examined using DHE, MitoSOX, and JC-1 staining to evaluate reactive oxygen species (ROS) generation and mitochondrial membrane potential changes. The ERK/Akt and CaN/NFAT3 signaling pathways were analyzed through Western blot. Ang II was found to promote CYP4A expression and 20-HETE production in H9c2 cells via an AT1 receptor-dependent mechanism. Additionally, the upregulation of AT1 receptor expression by 20-HETE further confirms its facilitatory effect on the Ang II signaling pathway. Inhibition of 20-HETE synthesis or blockade of its receptor, G-protein-coupled receptor 75 (GPR75), significantly reversed Ang II-induced cardiac hypertrophy. This reversal was closely associated with 20-HETE-induced ROS production, oxidative stress, and activation of the Ca2+/CaN/NFAT3 signaling pathway. This study demonstrated that 20-HETE mediated Ang II-induced cardiac hypertrophy and, for the first time, highlighted the significant role of the GPR75 receptor in this process. These findings suggested that targeting 20-HETE reduction or blocking its receptor action could offer a novel therapeutic approach for cardiovascular diseases associated with Ang II.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Jiaojiao Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Lianlian Liu
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Kaiyuan Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Chun Zhang
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
| |
Collapse
|
5
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Gao F, Mu G, Tuo Y. Lactiplantibacillus plantarum Y44 Complex Fermented Milk Regulates Lipid Metabolism in Mice Fed with High-Fat Diet by Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25767-25781. [PMID: 39530424 DOI: 10.1021/acs.jafc.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The benefits of fermented milk containing Lactiplantibacillus plantarum (L. plantarum) Y44, known for its weight loss properties, remain unclear. For this, we evaluated the effects of the complex fermented milk (Y44-CFM), obtained through the cofermentation of cow's milk and soybean milk with L. plantarum Y44 and traditional starters, on high-fat diet (HFD)-fed C57BL/6 mice. Our study found that the oral administration of Y44-CFM significantly reduced body weight gain and hepatic lipid accumulation in HFD-fed mice while also mitigating liver injury. Additionally, Y44-CFM regulated the expression of enzymes associated with lipid metabolism in the serum, as well as the corresponding or related genes in the liver, such as fatty acid synthase. Furthermore, HFD-induced systemic inflammation, oxidative stress, and intestinal barrier dysfunction were improved. The primary alterations in hepatic metabolism involved glycerophospholipids and amino acids, including the biosynthesis of valine, leucine, and isoleucine. The diversity and overall structure of the gut microbiota were also regulated, resulting in a significant decrease in the ratio of Firmicutes to Bacteroidetes (F/B) and unclassified_f_Lachnospiraceae, along with a notable increase in Oscillospiraceae. The correlation analysis indicated that Y44-CFM influenced hepatic lipid metabolism by mediating intestinal flora and its production of short-chain fatty acids, ultimately leading to weight reduction.
Collapse
Affiliation(s)
- Fei Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
7
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Helal SA, El-Sherbeni AA, El-Kadi AOS. 11-Hydroxyeicosatetraenoics induces cellular hypertrophy in an enantioselective manner. Front Pharmacol 2024; 15:1438567. [PMID: 39188949 PMCID: PMC11345585 DOI: 10.3389/fphar.2024.1438567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024] Open
Abstract
Background R/S enantiomers of 11-hydroxyeicosatertraenoic acid (11-HETE) are formed from arachidonic acid by enzymatic and non-enzymatic pathways. 11-HETE is predominately formed by the cytochrome P450 1B1 (CYP1B1). The role of CYP1B1 in the development of cardiovascular diseases is well established. Objectives This study aimed to assess the cellular hypertrophic effect of 11-HETE enantiomers in human RL-14 cardiomyocyte cell line and to examine their association with CYP1B1 levels. Methods Human fetal ventricular cardiomyocyte, RL-14 cells, were treated with 20 µM (R) or (S) 11-HETE for 24 h. Thereafter, cellular hypertrophic markers and cell size were then determined using real-time polymerase chain reaction (RT-PCR) and phase-contrast imaging, respectively. The mRNA and protein levels of selected CYPs were determined using RT-PCR and Western blot, respectively. In addition, we examined the effect of (R) and (S) 11-HETE on CYP1B1 catalytic activity using human recombinant CYP1B1 and human liver microsomes. Results Both (R) and (S) 11-HETE induced cellular hypertrophic markers and cell surface area in RL-14 cells. Both enantiomers significantly upregulated CYP1B1, CYP1A1, CYP4F2, and CYP4A11 at the mRNA and protein levels, however, the effect of the S-enantiomer was more pronounced. Furthermore, 11(S)-HETE increased the mRNA and protein levels of CYP2J and CYP4F2, whereas 11(R)-HETE increased only CYP4F2. Only 11(S)-HETE significantly increased the catalytic activity of CYP1B1 in recombinant human CYP1B1, suggesting allosteric activation in an enantioselective manner. Conclusion Our study provides the first evidence that 11-HETE can induce cellular hypertrophy in RL-14 cells via the increase in CYP1B1 mRNA, protein, and activity levels.
Collapse
Affiliation(s)
- Sara A. Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A. El-Sherbeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
Gerges SH, El-Kadi AOS. Changes in cardiovascular arachidonic acid metabolism in experimental models of menopause and implications on postmenopausal cardiac hypertrophy. Prostaglandins Other Lipid Mediat 2024; 173:106851. [PMID: 38740361 DOI: 10.1016/j.prostaglandins.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Menopause is a normal stage in the human female aging process characterized by the cessation of menstruation and the ovarian production of estrogen and progesterone hormones. Menopause is associated with an increased risk of several different diseases. Cardiovascular diseases are generally less common in females than in age-matched males. However, this female advantage is lost after menopause. Cardiac hypertrophy is a disease characterized by increased cardiac size that develops as a response to chronic overload or stress. Similar to other cardiovascular diseases, the risk of cardiac hypertrophy significantly increases after menopause. However, the exact underlying mechanisms are not yet fully elucidated. Several studies have shown that surgical or chemical induction of menopause in experimental animals is associated with cardiac hypertrophy, or aggravates cardiac hypertrophy induced by other stressors. Arachidonic acid (AA) released from the myocardial phospholipids is metabolized by cardiac cytochrome P450 (CYP), cyclooxygenase (COX), and lipoxygenase (LOX) enzymes to produce several eicosanoids. AA-metabolizing enzymes and their respective metabolites play an important role in the pathogenesis of cardiac hypertrophy. Menopause is associated with changes in the cardiovascular levels of CYP, COX, and LOX enzymes and the levels of their metabolites. It is possible that these changes might play a role in the increased risk of cardiac hypertrophy after menopause.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Hoshi RA, Alotaibi M, Liu Y, Watrous JD, Ridker PM, Glynn RJ, Serhan CN, Luttmann-Gibson H, Moorthy MV, Jain M, Demler OV, Mora S. One-Year Effects of High-Intensity Statin on Bioactive Lipids: Findings From the JUPITER Trial. Arterioscler Thromb Vasc Biol 2024; 44:e196-e206. [PMID: 38841856 PMCID: PMC11209760 DOI: 10.1161/atvbaha.124.321058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Statin effects extend beyond low-density lipoprotein cholesterol reduction, potentially modulating the metabolism of bioactive lipids (BALs), crucial for biological signaling and inflammation. These bioactive metabolites may serve as metabolic footprints, helping uncover underlying processes linked to pleiotropic effects of statins and yielding a better understanding of their cardioprotective properties. This study aimed to investigate the impact of high-intensity statin therapy versus placebo on plasma BALs in the JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681), a randomized primary prevention trial involving individuals with low-density lipoprotein cholesterol <130 mg/dL and high-sensitivity C-reactive protein ≥2 mg/L. METHODS Using a nontargeted mass spectrometry approach, over 11 000 lipid features were assayed from baseline and 1-year plasma samples from cardiovascular disease noncases from 2 nonoverlapping nested substudies: JUPITERdiscovery (n=589) and JUPITERvalidation (n=409). The effect of randomized allocation of rosuvastatin 20 mg versus placebo on BALs was examined by fitting a linear regression with delta values (∆=year 1-baseline) adjusted for age and baseline levels of each feature. Significant associations in discovery were analyzed in the validation cohort. Multiple comparisons were adjusted using 2-stage overall false discovery rate. RESULTS We identified 610 lipid features associated with statin randomization with significant replication (overall false discovery rate, <0.05), including 26 with annotations. Statin therapy significantly increased levels of 276 features, including BALs with anti-inflammatory activity and arterial vasodilation properties. Concurrently, 334 features were significantly lowered by statin therapy, including arachidonic acid and proinflammatory and proplatelet aggregation BALs. By contrast, statin therapy reduced an eicosapentaenoic acid-derived hydroxyeicosapentaenoic acid metabolite, which may be related to impaired glucose metabolism. Additionally, we observed sex-related differences in 6 lipid metabolites and 6 unknown features. CONCLUSIONS Statin allocation was significantly associated with upregulation of BALs with anti-inflammatory, antiplatelet aggregation and antioxidant properties and downregulation of BALs with proinflammatory and proplatelet aggregation activity, supporting the pleiotropic effects of statins beyond low-density lipoprotein cholesterol reduction.
Collapse
Affiliation(s)
- Rosangela Akemi Hoshi
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Lipid Metabolomics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mona Alotaibi
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yanyan Liu
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Lipid Metabolomics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Paul M Ridker
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J. Glynn
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Heike Luttmann-Gibson
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Lipid Metabolomics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - M. Vinayaga Moorthy
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Olga V. Demler
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Lipid Metabolomics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Computer Science, ETH Zurich, Zurich 8092, Switzerland
| | - Samia Mora
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Lipid Metabolomics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Kudo K, Yanagiya R, Hasegawa M, Carreras J, Miki Y, Nakayama S, Nagashima E, Miyatake Y, Torii K, Ando K, Nakamura N, Miyajima A, Murakami M, Kotani A. Unique lipid composition maintained by extracellular blockade leads to prooncogenicity. Cell Death Discov 2024; 10:221. [PMID: 38719806 PMCID: PMC11079073 DOI: 10.1038/s41420-024-01971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Lipid-mediated inflammation is involved in the development and malignancy of cancer. We previously demonstrated the existence of a novel oncogenic mechanism utilizing membrane lipids of extracellular vesicles in Epstein-Barr virus (EBV)-positive lymphomas and found that the lipid composition of lymphoma cells is skewed toward ω-3 fatty acids, which are anti-inflammatory lipids, suggesting an alteration in systemic lipid composition. The results showed that arachidonic acid (AA), an inflammatory lipid, was significantly reduced in the infected cells but detected at high levels in the sera of EBV-positive patients lead to the finding of the blockade of extracellular AA influx by downregulating FATP2, a long-chain fatty acid transporter that mainly transports AA in EBV-infected lymphoma cells. Low AA levels in tumor cells induced by downregulation of FATP2 expression confer resistance to ferroptosis and support tumor growth. TCGA data analysis and xenograft models have demonstrated that the axis plays a critical role in several types of cancers, especially poor prognostic cancers, such as glioblastoma and melanoma. Overall, our in vitro, in vivo, in silico, and clinical data suggest that several cancers exert oncogenic activity by maintaining their special lipid composition via extracellular blockade.
Collapse
Affiliation(s)
- Kai Kudo
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Ryo Yanagiya
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Laboratory of Regulation of Infectious Cancer, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masanori Hasegawa
- Department of Urology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunya Nakayama
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Laboratory of Veterinary Physiology, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, Japan
| | - Etsuko Nagashima
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Yuji Miyatake
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Kan Torii
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akira Miyajima
- Department of Urology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ai Kotani
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
- Laboratory of Regulation of Infectious Cancer, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
14
|
Zhang F, Zhang Y, Zhou Q, Shi Y, Gao X, Zhai S, Zhang H. Using machine learning to identify proteomic and metabolomic signatures of stroke in atrial fibrillation. Comput Biol Med 2024; 173:108375. [PMID: 38569232 DOI: 10.1016/j.compbiomed.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia, with stroke being its most detrimental comorbidity. The exact mechanism of AF related stroke (AFS) still needs to be explored. In this study, we integrated proteomics and metabolomics platform to explore disordered plasma proteins and metabolites between AF patients and AFS patients. There were 22 up-regulated and 31 down-regulated differentially expressed proteins (DEPs) in AFS plasma samples. Moreover, 63 up-regulated and 51 down-regulated differentially expressed metabolites (DEMs) were discovered in AFS plasma samples. We integrated proteomics and metabolomics based on the topological interactions of DEPs and DEMs, which yielded revealed several related pathways such as arachidonic acid metabolism, serotonergic synapse, purine metabolism, tyrosine metabolism and steroid hormone biosynthesis. We then performed a machine learning model to identify potential biomarkers of stroke in AF. Finally, we selected 6 proteins and 6 metabolites as candidate biomarkers for predicting stroke in AF by random forest, the area under the curve being 0.976. In conclusion, this study provides new perspectives for understanding the progressive mechanisms of AF related stroke and discovering innovative biomarkers for determining the prognosis of stroke in AF.
Collapse
Affiliation(s)
- Fan Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ying Zhang
- Beidahuang Industry Group General Hospital, Harbin, 150001, China
| | - Qi Zhou
- Research Management Office, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yuanqi Shi
- Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiangyuan Gao
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Siqi Zhai
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haiyu Zhang
- Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
15
|
Matulevičiūtė I, Tatarūnas V, Skipskis V, Čiapienė I, Veikutienė A, Lesauskaitė V, Dobilienė O, Žaliūnienė D. Coronary artery disease, its associations with ocular, genetic and blood lipid parameters. Eye (Lond) 2024; 38:372-379. [PMID: 37587376 PMCID: PMC10810895 DOI: 10.1038/s41433-023-02703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND/OBJECTIVES To investigate the associations between ophthalmic parameters, CYP4F2 (rs2108622) and ABCA1 (rs1883025) polymorphisms and coronary artery disease, considering the accessibility, non-invasive origin of retinal examination and its possible resemblance to coronary arteries. SUBJECTS/METHODS Overall 165 participants divided into groups based on the coronary angiography results and clinical status: control group (N = 73), MI group (N = 63), 3VD (three vessel disease) (N = 24). All the participants underwent total ophthalmic examination - optical coherence tomography (OCT) and OCT angiography of the macula region were performed and evaluated. Total cholesterol, high-density lipoprotein, low-density lipoprotein and triglyceride cholesterol (Tg-C) were tested. A standard manufacturer's protocol for CYP4F2 (rs2108622) and ABCA1 (rs1883025) was used for genotyping with TaqMan probes. RESULTS GCL+ layer was thicker in control group vs. 3VD group (74.00; 62.67-94.67 (median; min.-max.) vs. 71.06; 51.33-78.44, p = 0.037). T allele carriers under ABCA1 rs1883025 dominant model were shown to have ticker retina and smaller foveal avascular zone in superficial capillary plexus and smaller Tg-C concentration. ABCA1 rs1883025 was associated with retinal thickness (OR = 0.575, 95% CI 0.348-0.948, p = 0.030). Univariate logistic regression showed that ABCA1 rs1883025 CT genotype is associated with decreased risk for coronary artery disease development under overdominant genetic model (OR = 0.498, 95% CI 0.254-0.976; p = 0.042) and codominant genetic model (OR = 0.468, 95% CI 0.232-0.945, p = 0.034). CONCLUSIONS Results of this study confirmed that non-invasive methods such as OCT of eye might be used for identification of patients at risk of CAD.
Collapse
Affiliation(s)
- Indrė Matulevičiūtė
- Department of Ophthalmology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilius Skipskis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Audronė Veikutienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olivija Dobilienė
- Department of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Žaliūnienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
16
|
Wiley AM, Yang J, Madhani R, Nath A, Totah RA. Investigating the association between CYP2J2 inhibitors and QT prolongation: a literature review. Drug Metab Rev 2024; 56:145-163. [PMID: 38478383 DOI: 10.1080/03602532.2024.2329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.
Collapse
Affiliation(s)
- Alexandra M Wiley
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Jade Yang
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rivcka Madhani
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| |
Collapse
|
17
|
Sakaguchi CA, Nieman DC, Omar AM, Strauch RC, Williams JC, Lila MA, Zhang Q. Influence of 2 Weeks of Mango Ingestion on Inflammation Resolution after Vigorous Exercise. Nutrients 2023; 16:36. [PMID: 38201866 PMCID: PMC10780698 DOI: 10.3390/nu16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Mangoes have a unique nutrient profile (carotenoids, polyphenols, sugars, and vitamins) that we hypothesized would mitigate post-exercise inflammation. This study examined the effects of mango ingestion on moderating exercise-induced inflammation in a randomized crossover trial with 22 cyclists. In random order with trials separated by a 2-week washout period, the cyclists ingested 330 g mango/day with 0.5 L water or 0.5 L of water alone for 2 weeks, followed by a 2.25 h cycling bout challenge. Blood and urine samples were collected pre- and post-2 weeks of supplementation, with additional blood samples collected immediately post-exercise and 1.5-h, 3-h, and 24 h post-exercise. Urine samples were analyzed for targeted mango-related metabolites. The blood samples were analyzed for 67 oxylipins, which are upstream regulators of inflammation and other physiological processes. After 2 weeks of mango ingestion, three targeted urine mango-related phenolic metabolites were significantly elevated compared to water alone (interaction effects, p ≤ 0.003). Significant post-exercise increases were measured for 49 oxylipins, but various subgroup analyses showed no differences in the pattern of change between trials (all interaction effects, p > 0.150). The 2.25 h cycling bouts induced significant inflammation, but no countermeasure effect was found after 2 weeks of mango ingestion despite the elevation of mango gut-derived phenolic metabolites.
Collapse
Affiliation(s)
- Camila A. Sakaguchi
- Human Performance Laboratory, Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (C.A.S.); (J.C.W.)
| | - David C. Nieman
- Human Performance Laboratory, Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (C.A.S.); (J.C.W.)
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; (A.M.O.); (Q.Z.)
| | - Renee C. Strauch
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (R.C.S.); (M.A.L.)
| | - James C. Williams
- Human Performance Laboratory, Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (C.A.S.); (J.C.W.)
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (R.C.S.); (M.A.L.)
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; (A.M.O.); (Q.Z.)
| |
Collapse
|
18
|
Kawamura M, Kobashi Y, Tanaka H, Bohno-Mikami A, Hamada M, Ito Y, Suzuki K, Funayama K, Hirata T, Ohara H, Koretsune H, Kojima N, Fukunaga T, Hirate M, Inatani S, Hasegawa Y, Takahashi T, Kakinuma H. Introduction of a carboxylic acid group into pyrazolylpyridine derivatives increased selectivity for inhibition of the 20-HETE synthase CYP4A11/4F2. Bioorg Med Chem 2023; 95:117505. [PMID: 39491277 DOI: 10.1016/j.bmc.2023.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a lipid mediator and one of the major arachidonic acid metabolites whose formation is mainly catalyzed by the enzymes cytochrome P450 (CYP) 4F2 and CYP4A11. Several studies have suggested that 20-HETE is involved in the pathogenesis of renal diseases, including diabetic nephropathy and autosomal dominant polycystic kidney disease, and we previously reported compound 1 as a dual inhibitor of CYP4A11/4F2 with therapeutic potential against renal fibrosis. Subsequent studies revealed that compound 1, the dual CYP4A11/4F2 inhibitor, however, exhibited low selectivity over another CYP4F subtype, CYP4F22, which catalyzes ω-hydroxylation of ultra-long-chain fatty acids (ULCFAs); ULCFAs are important for the formation of acylceramides, which play a role in skin barrier formation. Therefore, we sought to develop a CYP4A11/4F2 inhibitor that would show greater CYP4A11/4F2 selectivity against CYP4F22, to avoid potential dermatological side effects. We re-evaluated a series of compounds from our 20-HETE program and identified pyrazolylpyridine derivatives containing a carboxylic acid group showing only weak CYP4F22 inhibition. Subsequent optimization studies from these derivatives led to identification of compound 15, which showed CYP4A11/4F2 inhibition with improved selectivity against CYP4F22. Compound 15 inhibited 20-HETE production in both human and rat renal microsomes and did not inhibit ω-hydroxylation of ULCFAs in human keratinocytes. Compound 15 also significantly inhibited renal 20-HETE production after oral administration.
Collapse
Affiliation(s)
- Madoka Kawamura
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Yohei Kobashi
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroaki Tanaka
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Ayako Bohno-Mikami
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Makoto Hamada
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Yuji Ito
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kazuaki Suzuki
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Kosuke Funayama
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Takashi Hirata
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroki Ohara
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroko Koretsune
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Naoki Kojima
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Takuya Fukunaga
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Maki Hirate
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Shoko Inatani
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Yoshitaka Hasegawa
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Teisuke Takahashi
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan
| | - Hiroyuki Kakinuma
- Taisho Pharmaceutical Co., Ltd, 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama 331-9530, Japan.
| |
Collapse
|
19
|
Gerges SH, Alammari AH, El-Ghiaty MA, Isse FA, El-Kadi AOS. Sex- and enantiospecific differences in the formation rate of hydroxyeicosatetraenoic acids in rat organs. Can J Physiol Pharmacol 2023; 101:425-436. [PMID: 37220651 DOI: 10.1139/cjpp-2023-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hydroxyeicosatetraenoic acids (HETEs) are hydroxylated arachidonic acid (AA) metabolites that are classified into midchain, subterminal, and terminal HETEs. Hydroxylation results in the formation of R and S enantiomers for each HETE, except for 20-HETE. HETEs have multiple physiological and pathological effects. Several studies have demonstrated sex-specific differences in AA metabolism in different organs. In this study, microsomes from the heart, liver, kidney, lung, intestine, and brain of adult male and female Sprague-Dawley rats were isolated and incubated with AA. Thereafter, the enantiomers of all HETEs were analyzed by liquid chromatography-tandem mass spectrometry. We found significant sex- and enantiospecific differences in the formation levels of different HETEs in all organs. The majority of HETEs, especially midchain HETEs and 20-HETE, showed significantly higher formation rates in male organs. In the liver, the R enantiomer of several HETEs showed a higher formation rate than the corresponding S enantiomer (e.g., 8-, 9-, and 16-HETE). On the other hand, the brain and small intestine demonstrated a higher abundance of the S enantiomer. 19(S)-HETE was more abundant than 19(R)-HETE in all organs except the kidney. Elucidating sex-specific differences in HETE levels provides interesting insights into their physiological and pathophysiological roles and their possible implications for different diseases.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Hirata T, Ohara H, Kojima N, Koretsune H, Hasegawa Y, Inatani S, Takahashi T. Renoprotective Effect of TP0472993, a Novel and Selective 20-Hydroxyeicosatetraenoic Acid Synthesis Inhibitor, in Mouse Models of Renal Fibrosis. J Pharmacol Exp Ther 2023; 386:56-69. [PMID: 37142440 DOI: 10.1124/jpet.122.001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Kidney fibrosis is considered the essential pathophysiological process for the progression of chronic kidney disease (CKD) toward renal failure. 20-Hydroxyeicosatetraenoic acid (20-HETE) has crucial roles in modulating the vascular response in the kidney and the progression of albuminuria. However, the roles of 20-HETE in kidney fibrosis are largely unexplored. In the current research, we hypothesized that if 20-HETE has important roles in the progression of kidney fibrosis, 20-HETE synthesis inhibitors might be effective against kidney fibrosis. To verify our hypothesis, this study investigated the effect of a novel and selective 20-HETE synthesis inhibitor, TP0472993, on the development of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice. Chronic treatment with TP0472993 at doses of 0.3 and 3 mg/kg twice a day attenuated the degree of kidney fibrosis in the folic acid nephropathy and the unilateral ureteral obstruction (UUO) mice, as demonstrated by reductions in Masson's trichrome staining and the renal collagen content. In addition, TP0472993 reduced renal inflammation, as demonstrated by markedly reducing interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) levels in the renal tissue. Chronic treatment with TP0472993 also reduced the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) in the kidney of UUO mice. Our observations indicate that inhibition of 20-HETE production with TP0472993 suppresses the kidney fibrosis progression via a reduction in the ERK1/2 and STAT3 signaling pathway, suggesting that 20-HETE synthesis inhibitors might be a novel treatment option against CKD. SIGNIFICANCE STATEMENT: In this study, we demonstrate that the pharmacological blockade of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis using TP0472993 suppresses the progression of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice, indicating that 20-HETE might have key roles in the pathogenesis of kidney fibrosis. TP0472993 has the potential to be a novel therapeutic approach against chronic kidney disease.
Collapse
Affiliation(s)
- Takashi Hirata
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroki Ohara
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Naoki Kojima
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroko Koretsune
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yoshitaka Hasegawa
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Shoko Inatani
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Teisuke Takahashi
- Pharmacology Laboratories (T.H., H.O., N.K., H.K., T.T.) and Drug Safety and Pharmacokinetics Laboratories (Y.H., S.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
21
|
Zhou M, Li J, Xu J, Zheng L, Xu S. Exploring human CYP4 enzymes: Physiological roles, function in diseases and focus on inhibitors. Drug Discov Today 2023; 28:103560. [PMID: 36958639 DOI: 10.1016/j.drudis.2023.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4.
Collapse
Affiliation(s)
- Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215300, China.
| |
Collapse
|
22
|
Jurado-Fasoli L, Osuna-Prieto FJ, Yang W, Kohler I, Di X, Rensen PCN, Castillo MJ, Martinez-Tellez B, Amaro-Gahete FJ. High omega-6/omega-3 fatty acid and oxylipin ratio in plasma is linked to an adverse cardiometabolic profile in middle-aged adults. J Nutr Biochem 2023; 117:109331. [PMID: 36967095 DOI: 10.1016/j.jnutbio.2023.109331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/16/2023]
Abstract
Omega-6 and omega-3 oxylipins may be surrogate markers of systemic inflammation, which is one of the triggers for the development of cardiometabolic disorders. In the current study, we investigated the relationship between plasma levels of omega-6 and omega-3 oxylipins with body composition and cardiometabolic risk factors in middle-aged adults. Seventy-two 72 middle-aged adults (39 women; 53.6±5.1 years old; 26.7±3.8 kg/m2) were included in this cross-sectional study. Plasma levels of omega-6 and omega-3 fatty acids and oxylipins were determined using targeted lipidomic. Body composition, dietary intake, and cardiometabolic risk factors were assessed with standard methods. The plasma levels of the omega-6 fatty acids and derived oxylipins, the hydroxyeicosatetraenoic acids (HETEs; arachidonic acid (AA)-derived oxylipins) and dihydroxy-eicosatrienoic acids (DiHETrEs; AA-derived oxylipins), were positively associated with glucose metabolism parameters (i.e., insulin levels and homeostatic model assessment of insulin resistance index (HOMA); all r≥0.21, P<.05). In contrast, plasma levels of omega-3 fatty acids and derived oxylipins, specifically hydroxyeicosapentaenoic acids (HEPEs; eicosapentaenoic acid-derived oxylipins), as well as series-3 prostaglandins, were negatively associated with plasma glucose metabolism parameters (i.e., insulin levels, HOMA; all r≤0.20, P<.05). The plasma levels of omega-6 fatty acids and derived oxylipins, HETEs and DiHETrEs were also positively correlated with liver function parameters (i.e., glutamic pyruvic transaminase, gamma-glutamyl transferase (GGT), and fatty liver index; all r≥0.22 and P<.05). In addition, individuals with higher omega-6/omega-3 fatty acid and oxylipin ratio showed higher levels of HOMA, total cholesterol, low-density lipoprotein-cholesterol, triglycerides, and GGT (on average +36%), as well as lower levels of high-density lipoprotein cholesterol (-13%) (all P<.05). In conclusion, the omega-6/omega-3 fatty acid and oxylipin ratio, as well as specific omega-6 and omega-3 oxylipins plasma levels, reflect an adverse cardiometabolic profile in terms of higher insulin resistance and impaired liver function in middle-aged adults.
Collapse
Affiliation(s)
- Lucas Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Manuel J Castillo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
23
|
Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, Ali S, Kim N, Baruch DE, Yahaya MAF, Dirice E, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:229-255. [PMID: 37236760 PMCID: PMC10683332 DOI: 10.1016/bs.apha.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Yonaton Kadish
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | | | - Danait Yemane
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Samir Ali
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Namhee Kim
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - David E Baruch
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Muhamad Afiq Faisal Yahaya
- Department of Basic Sciences, MAHSA University, Selangor Darul Ehsan, Malaysia; Department of Human Anatomy, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ercument Dirice
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
24
|
Houeiss P, Njeim R, Tamim H, Hamdy AF, Azar TS, Azar WS, Noureldein M, Zeidan YH, Rashid A, Azar ST, Eid AA. Urinary 20-HETE: A prospective Non-Invasive prognostic and diagnostic marker for diabetic kidney disease. J Adv Res 2023; 44:109-117. [PMID: 36725183 PMCID: PMC9936418 DOI: 10.1016/j.jare.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION The identification and validation of a non-invasive prognostic marker for early detection of diabetic kidney disease (DKD) can lead to substantial improvement in therapeutic decision-making. OBJECTIVES The main objective of this study is to assess the potential role of the arachidonic acid (AA) metabolite 20-hydroxyeicosatetraenoic (20-HETE) in predicting the incidence and progression of DKD. METHODS Healthy patients and patients with diabetes were recruited from the Hamad General Hospital in Qatar, and urinary 20-HETE levels were measured. Data analysis was done using the Statistical Package for Social Sciences (SPSS). RESULTS Our results show that urinary 20-HETE-to-creatinine (20-HETE/Cr) ratios were significantly elevated in patients with DKD when compared to patients with diabetes who did not exhibit clinical signs of kidney injury (p < 0.001). This correlation was preserved in the multivariate linear regression accounting for age, diabetes, family history of kidney disease, hypertension, dyslipidemia, stroke and metabolic syndrome. Urinary 20-HETE/Cr ratios were also positively correlated with the severity of kidney injury as indicated by albuminuria levels (p < 0.001). A urinary 20-HETE/Cr ratio of 4.6 pmol/mg discriminated between the presence and absence of kidney disease with a sensitivity of 82.2 % and a specificity of 67.1%. More importantly, a 10-unit increase in urinary 20-HETE/Cr ratio was tied to a 10-fold increase in the risk of developing DKD, suggesting a 20-HETE prognostic efficiency. CONCLUSION Taken together, our results suggest that urinary 20-HETE levels can potentially be used as non-invasive diagnostic and prognostic markers for DKD.
Collapse
Affiliation(s)
- Pamela Houeiss
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hani Tamim
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ahmed F Hamdy
- Department of Nephrology, Hamad Medical Corporation, Doha, Qatar
| | - Tanya S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon
| | - William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon; Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC, USA
| | - Mohamed Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon
| | - Youssef H Zeidan
- Department of Radiation Oncology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Awad Rashid
- Department of Nephrology, Hamad Medical Corporation, Doha, Qatar
| | - Sami T Azar
- AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon; Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon; AUB Diabetes Program, Faculty of Medicine, American University of Beirut, Lebanon.
| |
Collapse
|
25
|
Dong L, Wang H, Chen K, Li Y. Roles of hydroxyeicosatetraenoic acids in diabetes (HETEs and diabetes). Biomed Pharmacother 2022; 156:113981. [DOI: 10.1016/j.biopha.2022.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
26
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
27
|
Long F, Wang D, Su Q, Zhang Y, Li J, Xia S, Wang H, Wu Y, Qu Q. CYP4 subfamily V member 2 (CYP4V2) polymorphisms were associated with ischemic stroke in Chinese Han population. BMC Med Genomics 2022; 15:246. [DOI: 10.1186/s12920-022-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
CYP4 subfamily V member 2 (CYP4V2) polymorphisms are related to venous thromboembolism. However, the influence of CYP4V2 polymorphisms on the susceptibility to ischemic stroke (IS) remains undetermined.
Methods
We selected and genotyped five polymorphisms of CYP4V2 in 575 cases and 575 controls to test whether CYP4V2 variants were associated with the risk for IS in a Chinese Han population. Genotyping of CYP4V2 polymorphisms was performed using the Agena MassARRAY platform. Logistic regression analysis was used to assess the association between CYP4V2 polymorphisms and IS risk by calculating odds ratios (ORs) and 95% confidence interval (CI). False-positive report probability analysis was applied to assess the noteworthy relationship of the significant findings.
Results
CYP4V2 rs1398007 might be a risk factor for IS (OR = 1.34, 95% CI 1.05–1.71, p = 0.009). Specially, confounding factors (age, gender, smoking and drinking status) might affect the relationship between rs1398007 and IS susceptibility. Moreover, rs1053094 and rs56413992 were associated with IS risk in males. Multifactor dimensionality reduction analysis showed the combination of rs13146272 and rs3736455 had the strongest interaction effect (information gain value of 0.40%). Furthermore, genotypes of rs1398007 (p = 0.006) and rs1053094 (p = 0.044) were associated with the levels of high-density lipoprotein cholesterol (HDL-C) among healthy controls.
Conclusion
Our results first provided evidence that CYP4V2 rs1398007 might be a risk factor for IS, which provides instructive clues for studying the mechanisms of CYP4V2 to the pathogenesis of IS.
Collapse
|
28
|
Contursi A, Tacconelli S, Hofling U, Bruno A, Dovizio M, Ballerini P, Patrignani P. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk. Biochem Pharmacol 2022; 205:115252. [PMID: 36130648 DOI: 10.1016/j.bcp.2022.115252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples. Moreover, advances in the knowledge of the mechanism of action of 12S-HETE have been achieved. The orphan G-protein-coupled receptor 31 (GPR31) has been identified as the high-affinity 12S-HETE receptor. Moreover, upon platelet activation, 12S-HETE is produced, and significant amounts are found esterified to membrane phospholipids (PLs), such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), promoting thrombin generation. Platelets play many roles in cancer metastasis. Among them, the platelets' ability to interact with cancer cells and transfer platelet molecules by the release of extracellular vesicles (EVs) is noteworthy. Recently, it was found that platelets induce epithelial-mesenchymal transition(EMT) in cancer cells, a phenomenon known to confer high-grade malignancy, through the transfer of pl12-LOX contained in platelet-derived EVs. These cancer cells now generate 12-HETE, considered a key modulator of cancer metastasis. Interestingly, 12-HETE was mainly found esterified in plasmalogen phospholipids of cancer cells. This review summarizes the current knowledge on the regulation and functions of pl12-LOX in platelets and cancer cells and their crosstalk.Novel approaches to preventing cancer and metastasis by the pharmacological inhibition of pl12-LOX and the internalization of mEVs are discussed.
Collapse
Affiliation(s)
- Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
29
|
Activation of GPR75 Signaling Pathway Contributes to the Effect of a 20-HETE Mimetic, 5,14-HEDGE, to Prevent Hypotensive and Tachycardic Responses to Lipopolysaccharide in a Rat Model of Septic Shock. J Cardiovasc Pharmacol 2022; 80:276-293. [PMID: 35323151 DOI: 10.1097/fjc.0000000000001265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022]
Abstract
ABSTRACT The orphan receptor, G protein-coupled receptor (GPR) 75, which has been shown to mediate various effects of 20-hydroxyeicosatetraenoic acid (20-HETE), is considered as a therapeutic target in the treatment of cardiovascular diseases in which changes in the production of 20-HETE play a key role in their pathogenesis. Our previous studies showed that 20-HETE mimetic, N -(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), protects against vascular hyporeactivity, hypotension, tachycardia, and arterial inflammation induced by lipopolysaccharide (LPS) in rats. This study tested the hypothesis that the GPR75 signaling pathway mediates these effects of 5,14-HEDGE in response to systemic exposure to LPS. Mean arterial pressure reduced by 33 mm Hg, and heart rate increased by 102 beats/min at 4 hours following LPS injection. Coimmunoprecipitation studies demonstrated that (1) the dissociation of GPR75/Gα q/11 and GPR kinase interactor 1 (GIT1)/protein kinase C (PKC) α, the association of GPR75/GIT1, large conductance voltage and calcium-activated potassium subunit β (MaxiKβ)/PKCα, MaxiKβ/proto-oncogene tyrosine-protein kinase (c-Src), and epidermal growth factor receptor (EGFR)/c-Src, MaxiKβ, and EGFR tyrosine phosphorylation were decreased, and (2) the association of GIT1/c-Src was increased in the arterial tissues of rats treated with LPS. The LPS-induced changes were prevented by 5,14-HEDGE. N -[20-Hydroxyeicosa-6( Z ),15( Z )-dienoyl]glycine, a 20-HETE antagonist, reversed the effects of 5,14-HEDGE in the arterial tissues of LPS-treated rats. Thus, similar to 20-HETE, by binding to GPR75 and activating the Gα q/11 /PKCα/MaxiKβ, GIT1/PKCα/MaxiKβ, GIT1/c-Src/MaxiKβ, and GIT1/c-Src/EGFR signaling pathways, 5,14-HEDGE may exert its protective effects against LPS-induced hypotension and tachycardia associated with vascular hyporeactivity and arterial inflammation.
Collapse
|
30
|
Novel Unspecific Peroxygenase from Truncatella angustata Catalyzes the Synthesis of Bioactive Lipid Mediators. Microorganisms 2022; 10:microorganisms10071267. [PMID: 35888989 PMCID: PMC9322767 DOI: 10.3390/microorganisms10071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Lipid mediators, such as epoxidized or hydroxylated eicosanoids (EETs, HETEs) of arachidonic acid (AA), are important signaling molecules and play diverse roles at different physiological and pathophysiological levels. The EETs and HETEs formed by the cytochrome P450 enzymes are still not fully explored, but show interesting anti-inflammatory properties, which make them attractive as potential therapeutic target or even as therapeutic agents. Conventional methods of chemical synthesis require several steps and complex separation techniques and lead only to low yields. Using the newly discovered unspecific peroxygenase TanUPO from the ascomycetous fungus Truncatella angustata, 90% regioselective conversion of AA to 14,15-EET could be achieved. Selective conversion of AA to 18-HETE, 19-HETE as well as to 11,12-EET and 14,15-EET was also demonstrated with known peroxygenases, i.e., AaeUPO, CraUPO, MroUPO, MweUPO and CglUPO. The metabolites were confirmed by HPLC-ELSD, MS1 and MS2 spectrometry as well as by comparing their analytical data with authentic standards. Protein structure simulations of TanUPO provided insights into its substrate access channel and give an explanation for the selective oxyfunctionalization of AA. The present study expands the scope of UPOs as they can now be used for selective syntheses of AA metabolites that serve as reference material for diagnostics, for structure-function elucidation as well as for therapeutic and pharmacological purposes.
Collapse
|
31
|
Azcona JA, Tang S, Berry E, Zhang FF, Garvey R, Falck JR, Schwartzman ML, Yi T, Jeitner TM, Guo AM. Neutrophil-Derived Myeloperoxidase and Hypochlorous Acid Critically Contribute to 20-Hydroxyeicosatetraenoic Acid Increases that Drive Postischemic Angiogenesis. J Pharmacol Exp Ther 2022; 381:204-216. [PMID: 35306474 PMCID: PMC9190235 DOI: 10.1124/jpet.121.001036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 03/08/2025] Open
Abstract
Compensatory angiogenesis is an important adaptation for recovery from critical ischemia. We recently identified 20-hydroxyeicosatetraenoic acid (20-HETE) as a novel contributor of ischemia-induced angiogenesis. However, the precise mechanisms by which ischemia promotes 20-HETE increases that drive angiogenesis are unknown. This study aims to address the hypothesis that inflammatory neutrophil-derived myeloperoxidase (MPO) and hypochlorous acid (HOCl) critically contribute to 20-HETE increases leading to ischemic angiogenesis. Using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, Laser Doppler Perfusion Imaging, and Microvascular Density analysis, we found that neutrophil depletion and MPO knockout mitigate angiogenesis and 20-HETE production in the gracilis muscles of mice subjected to hindlimb ischemia. Furthermore, we found MPO and HOCl to be elevated in these tissues postischemia as assessed by immunofluorescence microscopy and in vivo live imaging of HOCl. Next, we demonstrated that the additions of either HOCl or an enzymatic system for generating HOCl to endothelial cells increase the expression of CYP4A11 and its product, 20-HETE. Finally, pharmacological interference of hypoxia inducible factor (HIF) signaling results in ablation of HOCl-induced CYP4A11 transcript and significant reductions in CYP4A11 protein. Collectively, we conclude that neutrophil-derived MPO and its product HOCl activate HIF-1α and CYP4A11 leading to increased 20-HETE production that drives postischemic compensatory angiogenesis. SIGNIFICANCE STATEMENT: Traditionally, neutrophil derived MPO and HOCl are exclusively associated in the innate immunity as potent bactericidal/virucidal factors. The present study establishes a novel paradigm by proposing a unique function for MPO/HOCl as signaling agents that drive critical physiological angiogenesis by activating the CYP4A11-20-HETE signaling axis via a HIF-1α-dependent mechanism. The findings from this study potentially identify novel therapeutic targets for the treatment of ischemia and other diseases associated with abnormal angiogenesis.
Collapse
Affiliation(s)
- Juan A Azcona
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Samantha Tang
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Elizabeth Berry
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Frank F Zhang
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Radha Garvey
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - John R Falck
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Michal Laniado Schwartzman
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Tao Yi
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Thomas M Jeitner
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| | - Austin M Guo
- Department of Pharmacology (J.A.A., F.F.Z., M.L.S., A.M.G.), Department of Biochemistry and Molecular Biology (J.A.A., T.M.J., A.M.G.), Department of Pathology (S.T.), and Department of Physiology (E.B.), New York Medical College, Valhalla, New York; Department of Radiology, Weill Cornell Medicine, New York, New York (J.A.A., T.M.J.); Tufts University, Medford, Massachusetts (R.G.); University of Texas Southwestern Medical Center, Dallas, Texas (J.R.F.); and Department of Chemistry, Fudan University, Shanghai, PR China (T.Y.)
| |
Collapse
|
32
|
Food Waste Management Employing UV-Induced Black Soldier Flies: Metabolomic Analysis of Bioactive Components, Antioxidant Properties, and Antibacterial Potential. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116614. [PMID: 35682198 PMCID: PMC9179956 DOI: 10.3390/ijerph19116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
Food waste, as a major part of municipal solid waste, has been increasingly generated worldwide. Efficient and feasible utilization of this waste material for biomanufacturing is crucial to improving economic and environmental sustainability. In the present study, black soldier flies (BSF) larvae were used as carriers to treat and upcycle food waste. Larvae of the BSF were incubated with UV light for 10, 20, and 30 min at a wavelength of 257.3 nm and an intensity of 8 W. The food waste utilization efficiency, antioxidant assays, antibacterial activity, and bioactive metabolites without and with UV treatment were determined and compared. Results showed that the BSF larvae feed utilization rate was around 75.6%, 77.7%, and 71.2% after UV treatment for 10, 20, and 30 min respectively, contrasting with the non-UV induced group (73.7%). In addition, it was perceived that the UV exposure enhanced antioxidant and antimicrobial properties of BSF extracts, and the maximum values were observed after 20 min UV induction time. Moreover, UV-induced BSF extracts showed an improved metabolic profile than the control group, with a change in the amino acids, peptides, organic acids, lipids, organic oxides, and other derivatives. This change in metabolomics profile boosted environmental signaling, degradation of starch, amino acids, sugars, and peptide metabolism. It was concluded that the bioconversion of food wastes using UV-induced BSF larvae can enhance the generation of a variety of functional proteins and bioactive compounds with potent antioxidant and antimicrobial activity. However, more studies are required to exploit the efficiency of UV treatment in improving BSF’s potential for upcycling of food wastes.
Collapse
|
33
|
Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022; 32:629-647. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| |
Collapse
|
34
|
Al-Shabrawey M, Elmarakby A, Samra Y, Moustafa M, Looney SW, Maddipati KR, Tawfik A. Hyperhomocysteinemia dysregulates plasma levels of polyunsaturated fatty acids-derived eicosanoids. LIFE RESEARCH 2022; 5:14. [PMID: 36341141 PMCID: PMC9632953 DOI: 10.53388/2022-0106-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-β-synthase heterozygous mice (cβs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cβs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cβs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cβs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cβs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cβs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cβs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Ahmed Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Departments of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yara Samra
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mohamed Moustafa
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Stephen W. Looney
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Krishna Rao Maddipati
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, Michigan, USA
| | - Amany Tawfik
- Department of Foundational Medical Studies and Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
35
|
Kong L, Sun Y, Sun H, Zhang AH, Zhang B, Ge N, Wang XJ. Chinmedomics Strategy for Elucidating the Pharmacological Effects and Discovering Bioactive Compounds From Keluoxin Against Diabetic Retinopathy. Front Pharmacol 2022; 13:728256. [PMID: 35431942 PMCID: PMC9008273 DOI: 10.3389/fphar.2022.728256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Keluoxin (KLX) is an active agent in the treatment of diabetic retinopathy (DR). However, its mechanism, targets, and effective constituents against DR are still unclear, which seriously restricts its clinical application. Chinmedomics has the promise of explaining the pharmacological effects of herbal medicines and investigating the effective mechanisms. The research results from electroretinography and electron microscope showed that KLX could reduce retinal dysfunction and pathological changes by the DR mouse model. Based on effectiveness, we discovered 64 blood biomarkers of DR by nontargeted metabolomics analysis, 51 of which returned to average levels after KLX treatment including leukotriene D4 and A4, l-tryptophan, 6-hydroxymelatonin, l-phenylalanine, l-tyrosine, and gamma-linolenic acid (GLA). The metabolic pathways involved were phenylalanine metabolism, steroid hormone biosynthesis, sphingolipid metabolism, etc. Adenosine monophosphate-activated protein kinase (AMPK), extracellular signal-regulated protein kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase (PI3K), and protein 70 S6 kinase (p70 S6K) might be potential targets of KLX against DR. This was related to the mammalian target of rapamycin (mTOR) signaling and AMPK signaling pathways. We applied the chinmedomics strategy, integrating serum pharm-chemistry of traditional Chinese medicine (TCM) with metabolomics, to discover astragaloside IV (AS-IV), emodin, rhein, chrysophanol, and other compounds, which were the core effective constituents of KLX when against DR. Our study was the first to apply the chinmedomics strategy to discover the effective constituents of KLX in the treatment of DR, which fills the gap of unclear effective constituents of KLX. In the next step, the research of effective constituents can be used to optimize prescription preparation, improve the quality standard, and develop an innovative drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Functional Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
36
|
Agostinucci K, Hutcheson R, Hossain S, Pascale JV, Villegas E, Zhang F, Adebesin AM, Falck JR, Gupte S, Garcia V, Schwartzman ML. Blockade of 20-hydroxyeicosatetraenoic acid receptor lowers blood pressure and alters vascular function in mice with smooth muscle-specific overexpression of CYP4A12-20-HETE synthase. J Hypertens 2022; 40:498-511. [PMID: 35081581 PMCID: PMC8820380 DOI: 10.1097/hjh.0000000000003038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE 20-Hydroxyeicosatetraenoic acid (20-HETE) is a vasoactive eicosanoid exhibiting effects on vascular smooth muscle cell (VSMC) via G-protein coupled receptor 75 (GPR75) and include stimulation of contractility, migration, and growth. We examined whether VSMC-targeted overexpression of CYP4A12, the primary 20-HETE-producing enzyme in mice, is sufficient to promote hypertension. METHODS Mice with VSM-specific Cyp4a12 overexpression (Myh11-4a12) and their littermate controls (WT) were generated by crossbreeding Cyp4a12-floxed with Myh11-Cre mice. The 20-HETE receptor blocker, N-disodium succinate-20-hydroxyeicosa-6(Z),15(Z)-diencarboxamide (AAA), was administered in the drinking water. Experiments were carried out for 12 days. SBP was measured by tail cuff. Renal interlobar and mesenteric arteries were harvested for assessment of gene expression, 20-HETE levels, vascular contractility, vasodilation, and remodeling. RESULTS Vascular and circulatory levels of 20-HETE were several folds higher in Myh11-4a12 mice compared with WT. The Myh11-4a12 mice compared with WT were hypertensive (145 ± 2 vs. 127 ± 2 mmHg; P < 0.05) and their vasculature displayed a contractile phenotype exemplified by increased contractility, reduced vasodilatory capacity, and increased media to lumen ratio. All these features were reversed by the administration of AAA. The mechanism of increased contractility includes, at least in part, Rho-kinase activation followed by increased myosin light chain phosphorylation and activation of the contractile apparatus. CONCLUSION VSM-specific Cyp4a12 overexpression is sufficient to alter VSM cell phenotype through changes in contractile markers and enhancement in contractility that promote hypertension and vascular dysfunction in a 20-HETE-dependent manner. The 20-HETE receptor GPR75 may represent a novel target for the treatment of hypertension and associated vascular conditions.
Collapse
Affiliation(s)
- Kevin Agostinucci
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Sakib Hossain
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Jonathan V. Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Elizabeth Villegas
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Frank Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | | | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | | |
Collapse
|
37
|
Baranowska I, Gawrys O, Walkowska A, Olszynski KH, Červenka L, Falck JR, Adebesin AM, Imig JD, Kompanowska-Jezierska E. Epoxyeicosatrienoic Acid Analog and 20-HETE Antagonist Combination Prevent Hypertension Development in Spontaneously Hypertensive Rats. Front Pharmacol 2022; 12:798642. [PMID: 35111064 PMCID: PMC8802114 DOI: 10.3389/fphar.2021.798642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies indicate a significant role for cytochrome P-450-dependent arachidonic acid metabolites in blood pressure regulation, vascular tone, and control of renal function. Epoxyeicosatrienoic acids (EETs) exhibit a spectrum of beneficial effects, such as vasodilatory activity and anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. In the present study, the efficiency of EET-A (a stable analog of 14,15-EET) alone and combined with AAA, a novel receptor antagonist of 20-HETE, was tested in spontaneously hypertensive rats (SHR). Adult SHR (16 weeks old) were treated with two doses of EET-A (10 or 40 mg/kg/day). In the following experiments, we also tested selected substances in the prevention of hypertension development in young SHR (6 weeks old). Young rats were treated with EET-A or the combination of EET-A and AAA (both at 10 mg/kg/day). The substances were administered in drinking water for 4 weeks. Blood pressure was measured by telemetry. Once-a-week observation in metabolic cages was performed; urine, blood, and tissue samples were collected for further analysis. The combined treatment with AAA + EET-A exhibited antihypertensive efficiency in young SHR, which remained normotensive until the end of the observation in comparison to a control group (systolic blood pressure, 134 ± 2 versus 156 ± 5 mmHg, respectively; p < 0.05). Moreover the combined treatment also increased the nitric oxide metabolite excretion. Considering the beneficial impact of the combined treatment with EET-A and AAA in young rats and our previous positive results in adult SHR, we suggest that it is a promising therapeutic strategy not only for the treatment but also for the prevention of hypertension.
Collapse
Affiliation(s)
- Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Olga Gawrys
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| | - Krzysztof H Olszynski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elżbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
38
|
Muñoz M, López-Oliva E, Pinilla E, Rodríguez C, Martínez MP, Contreras C, Gómez A, Benedito S, Sáenz-Medina J, Rivera L, Prieto D. Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity. Biochem Pharmacol 2022; 195:114850. [PMID: 34822809 DOI: 10.1016/j.bcp.2021.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Estéfano Pinilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Alfonso Gómez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
39
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
40
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
41
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Barden A, Phillips M, Shinde S, Corcoran T, Mori TA. The effects of perioperative dexamethasone on eicosanoids and mediators of inflammation resolution: A sub-study of the PADDAG trial. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102334. [PMID: 34455200 DOI: 10.1016/j.plefa.2021.102334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Dexamethasone is an antiemetic that is frequently administered before or after the induction of anesthesia for prevention and treatment of perioperative nausea and vomiting. Dexamethasone has anti-inflammatory and immunosuppressive effects primarily via suppression of expression of inflammatory mediators. However, its effect on the eicosanoids and docosanoids that mediate the inflammatory response and inflammation resolution are unclear. We aimed to assess the effect of a single dose of intra-operative dexamethasone on peri‑operative eicosanoids involved in inflammation including leukotriene B4 (LTB4) and 20-hydroxyeicosatetraenoic acid (20-HETE), and inflammation resolution (Specialised Proresolving Mediators (SPM)). PATIENTS AND METHODS A subgroup of 80 patients from the randomised controlled PADDAG trial was enrolled into this substudy. They were allocated to receive 0, 4 or 8 mg dexamethasone administered intravenously at induction of anesthesia. Blood samples were collected before and 24 h after dexamethasone, for measurement of leukocytes, hs-CRP, LTB4, 20-HETE, the SPM pathway intermediates (14-HDHA, 18-HEPE and 17-HDHA) and SPMs (E-series resolvins, and d-series resolvins). RESULTS Compared to the administration of placebo, neutrophil count was elevated (P<0.05) 24 h after administration of 4 and 8 mg dexamethasone. Dexamethasone (8 mg) resulted in increased levels of LTB4 (P = 0.012) and 20-HETE (P = 0.009) and reduced hs-CRP levels (P<0.001). Dexamethasone did not significantly affect plasma SPM pathway intermediates or RvE3. CONCLUSION Antiemetic doses of dexamethasone given during surgery increased plasma LTB4 and 20-HETE at a time when hs-CRP was significantly reduced. Plasma SPM pathway intermediates and RvE3 were unaffected.
Collapse
Affiliation(s)
- Anne Barden
- Medical School, Royal Perth Hospital Unit University of Western Australia, Australia.
| | - Michael Phillips
- Harry Perkins Institute of Medical Research, University of Western Australia, Australia
| | - Sujata Shinde
- Medical School, Royal Perth Hospital Unit University of Western Australia, Australia
| | - Tomas Corcoran
- Department of Anaesthesia & Pain Medicine, Royal Perth Hospital, Perth, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit University of Western Australia, Australia
| |
Collapse
|
43
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
44
|
Alaeddine LM, Harb F, Hamza M, Dia B, Mogharbil N, Azar NS, Noureldein MH, El Khoury M, Sabra R, Eid AA. Pharmacological regulation of cytochrome P450 metabolites of arachidonic acid attenuates cardiac injury in diabetic rats. Transl Res 2021; 235:85-101. [PMID: 33746109 DOI: 10.1016/j.trsl.2021.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a well-established complication of type 1 and type 2 diabetes associated with a high rate of morbidity and mortality. DCM is diagnosed at advanced and irreversible stages. Therefore, it is of utmost need to identify novel mechanistic pathways involved at early stages to prevent or reverse the development of DCM. In vivo experiments were performed on type 1 diabetic rats (T1DM). Functional and structural studies of the heart were executed and correlated with mechanistic assessments exploring the role of cytochromes P450 metabolites, the 20-hydroxyeicosatetraenoic acids (20-HETEs) and epoxyeicosatrienoic acids (EETs), and their crosstalk with other homeostatic signaling molecules. Our data displays that hyperglycemia results in CYP4A upregulation and CYP2C11 downregulation in the left ventricles (LV) of T1DM rats, paralleled by a differential alteration in their metabolites 20-HETEs (increased) and EETs (decreased). These changes are concomitant with reductions in cardiac outputs, LV hypertrophy, fibrosis, and increased activation of cardiac fetal and hypertrophic genes. Besides, pro-fibrotic cytokine TGF-ß overexpression and NADPH (Nox4) dependent-ROS overproduction are also correlated with the observed cardiac functional and structural modifications. Of interest, these observations are attenuated when T1DM rats are treated with 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), which blocks EETs metabolism, or N-hydroxy-N'-(4-butyl-2-methylphenol)Formamidine (HET0016), which inhibits 20-HETEs formation. Taken together, our findings confer pioneering evidence about a potential interplay between CYP450-derived metabolites and Nox4/TGF-β axis leading to DCM. Pharmacologic interventions targeting the inhibition of 20-HETEs synthesis or the activation of EETs synthesis may offer novel therapeutic approaches to treat DCM.
Collapse
Affiliation(s)
- Lynn M Alaeddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Frederic Harb
- Department of Biology, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Maysaa Hamza
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Nahed Mogharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Nadim S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mirella El Khoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon; AUB Diabetes, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
45
|
Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines 2021; 9:biomedicines9081053. [PMID: 34440257 PMCID: PMC8393645 DOI: 10.3390/biomedicines9081053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
This study evaluates the effects of chronic treatment with EET-A, an orally active epoxyeicosatrienoic acid (EETs) analog, on the course of aorto-caval fistula (ACF)-induced heart failure (HF) in Ren-2 transgenic rats (TGR), a model characterized by hypertension and augmented activity of the renin-angiotensin system (RAS). The results were compared with standard pharmacological blockade of the RAS using angiotensin-converting enzyme inhibitor (ACEi). The rationale for employing EET-A as a new treatment approach is based on our findings that apart from increased RAS activity, untreated ACF TGR also shows kidney and left ventricle (LV) tissue deficiency of EETs. Untreated ACF TGR began to die 17 days after creating ACF and were all dead by day 84. The treatment with EET-A alone or ACEi alone improved the survival rate: in 156 days after ACF creation, it was 45.5% and 59.4%, respectively. The combined treatment with EET-A and ACEi appeared to improve the final survival to 71%; however, the difference from either single treatment regimen did not reach significance. Nevertheless, our findings support the notion that targeting the cytochrome P-450-dependent epoxygenase pathway of arachidonic acid metabolism should be considered for the treatment of HF.
Collapse
|
46
|
Gonzalez-Fernandez E, Liu Y, Auchus AP, Fan F, Roman RJ. Vascular contributions to cognitive impairment and dementia: the emerging role of 20-HETE. Clin Sci (Lond) 2021; 135:1929-1944. [PMID: 34374423 PMCID: PMC8783562 DOI: 10.1042/cs20201033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The accumulation of extracellular amyloid-β (Aβ) and intracellular hyperphosphorylated τ proteins in the brain are the hallmarks of Alzheimer's disease (AD). Much of the research into the pathogenesis of AD has focused on the amyloid or τ hypothesis. These hypotheses propose that Aβ or τ aggregation is the inciting event in AD that leads to downstream neurodegeneration, inflammation, brain atrophy and cognitive impairment. Multiple drugs have been developed and are effective in preventing the accumulation and/or clearing of Aβ or τ proteins. However, clinical trials examining these therapeutic agents have failed to show efficacy in preventing or slowing the progression of the disease. Thus, there is a need for fresh perspectives and the evaluation of alternative therapeutic targets in this field. Epidemiology studies have revealed significant overlap between cardiovascular and cerebrovascular risk factors such as hypertension, diabetes, atherosclerosis and stroke to the development of cognitive impairment. This strong correlation has given birth to a renewed focus on vascular contributions to AD and related dementias. However, few genes and mechanisms have been identified. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that plays a complex role in hypertension, autoregulation of cerebral blood flow and blood-brain barrier (BBB) integrity. Multiple human genome-wide association studies have linked mutations in the cytochrome P450 (CYP) 4A (CYP4A) genes that produce 20-HETE to hypertension and stroke. Most recently, genetic variants in the enzymes that produce 20-HETE have also been linked to AD in human population studies. This review examines the emerging role of 20-HETE in AD and related dementias.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Alexander P. Auchus
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216
| |
Collapse
|
47
|
Kij A, Bar A, Przyborowski K, Proniewski B, Mateuszuk L, Jasztal A, Kieronska-Rudek A, Marczyk B, Matyjaszczyk-Gwarda K, Tworzydlo A, Enggaard C, Hansen PBL, Jensen B, Walczak M, Chlopicki S. Thrombin Inhibition Prevents Endothelial Dysfunction and Reverses 20-HETE Overproduction without Affecting Blood Pressure in Angiotensin II-Induced Hypertension in Mice. Int J Mol Sci 2021; 22:ijms22168664. [PMID: 34445374 PMCID: PMC8395447 DOI: 10.3390/ijms22168664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening. Dabigatran’s effects on endothelial function in Ang II-treated mice were evidenced by improved NO-dependent relaxation in the aorta in response to acetylcholine in vivo (MRI measurements) and increased systemic NO bioavailability (NO2− quantification) with a concomitant increased ex vivo production of endothelium-derived NO (EPR analysis). Dabigatran treatment also contributed to the reduction in the endothelial expression of pro-inflammatory vWF and ICAM-1. Interestingly, the fall in systemic NO bioavailability in Ang II-treated mice was associated with increased 20-HETE concentration in plasma (UPLC-MS/MS analysis), which was normalised by dabigatran treatment. Taking together, the inhibition of thrombin activity in Ang II-induced hypertension in mice improves the NO-dependent function of vascular endothelium and normalises the 20-HETE-depedent pathway without affecting the blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Camilla Enggaard
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Pernille B. Lærkegaard Hansen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Boye Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair and Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
- Correspondence:
| |
Collapse
|
48
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
49
|
Liang T, Liang A, Zhang X, Wang Q, Wu H, He J, Jin T. The association study between CYP20A1, CYP4F2, CYP2D6 gene polymorphisms and coronary heart disease risk in the Han population in southern China. Genes Genomics 2021; 44:1125-1135. [PMID: 34302632 DOI: 10.1007/s13258-021-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Coronary heart disease (CHD) is a disease that seriously harms human health. Genetic factors seriously affect the CHD susceptibility. The CYP20A1, CYP4F2 and CYP2D6 are important drug metabolism enzymes in the human body. OBJECTIVE We aimed to explore the association between CYP20A1, CYP4F2, CYP2D6 single nucleotide polymorphisms (SNPs) and CHD risk in the Chinese Southern Han population. METHODS Based on the 'case-control' experimental design (505 cases and 508 controls), we conducted an association study between 5 candidate SNPs selected from CYP20A1 (rs2043449), CYP4F2 (rs2108622, rs3093106, rs309310), CYP2D6 (rs1065852) and CHD risk. Logistic regression was used to analyze the CHD susceptibility under different genetic models. Multi-factor dimensionality reduction (MDR) was used to analyze the interaction of 'SNP-SNP' in CHD risk. RESULTS Our results showed that under multiple genetic models, CYP2D6 rs1065852 significantly increased the CHD risk in these participants who are ≤ 60 years old (OR 1.40, CI 1.07-1.82, p = 0.013), smokers (OR 1.40, CI 1.02-1.93, p = 0.039), or have family history (OR 1.24, CI 1.02-1.51, p = 0.035). CYP4F2 SNPs rs2108622 (OR 0.63, CI 0.43-0.93, p = 0.020), rs3093106 (OR 0.52, CI 0.29-0.92, p = 0.023), and rs309310 (OR 0.55, CI 0.31-0.96, p = 0.033) were potentially associated with the course of CHD patients. CONCLUSION Our study found that CY2D6 rs1065852 has an outstanding and significant association with increased CHD risk. Our study provided data supplements for CHD genetic susceptibility loci, and also provided a new and valuable reference for CHD drug treatment.
Collapse
Affiliation(s)
- Tiebiao Liang
- Department of Cardiovascular, People's Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning, 571500, Hainan, China
| | - Anshan Liang
- Department of Cardiovascular, People's Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning, 571500, Hainan, China
| | - Xianbo Zhang
- Department of Cardiovascular, People's Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning, 571500, Hainan, China
| | - Qi Wang
- Department of General Practice, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China
| | - Haiqing Wu
- Department of Cardiovascular, People's Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning, 571500, Hainan, China
| | - Jun He
- Department of Cardiovascular, People's Hospital of Wanning, The First Affiliated Hospital of Chongqing Medical University, Wanning, 571500, Hainan, China
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
50
|
Pascale JV, Park EJ, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. Uncovering the signalling, structure and function of the 20-HETE-GPR75 pairing: Identifying the chemokine CCL5 as a negative regulator of GPR75. Br J Pharmacol 2021; 178:3813-3828. [PMID: 33974269 PMCID: PMC10119890 DOI: 10.1111/bph.15525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The G-protein-coupled receptor GPR75 (Gq) and its ligand, the cytochrome P450-derived vasoactive eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), are involved in the activation of pro-inflammatory and hypertensive signalling cascades contributing to diabetes, obesity, vascular dysfunction/remodelling, hypertension and cardiovascular disease. Little is known as to how, where and with what affinity 20-HETE interacts with GPR75. EXPERIMENTAL APPROACH To better understand the pairing of 20-HETE and its receptor (GPR75), we used surface plasmon resonance (SPR) to determine binding affinity/kinetics. The PRESTO-Tango receptor-ome methodology for GPR75 overexpression was coupled with FLIPR Calcium 6 assays, homogeneous time-resolved fluorescence (HTRF) IP-1 and β-arrestin recruitment assays to determine receptor activation and downstream signalling events. KEY RESULTS SPR confirmed 20-HETE binding to GPR75 with an estimated KD of 1.56 × 10-10 M. In GPR75-transfected HTLA cells, 20-HETE stimulated intracellular Ca2+ levels, IP-1 accumulation and β-arrestin recruitment, all of which were negated by known 20-HETE functional antagonists. Computational modelling of the putative ligand-binding pocket and mutation of Thr212 within the putative 20-HETE binding site abolished 20-HETE's ability to stimulate GPR75 activation. Knockdown of GPR75 in human endothelial cells nullified 20-HETE-stimulated intracellular Ca2+ . The chemokine CCL5, a suggested GPR75 ligand, binds to GPR75 (KD of 5.85 × 10-10 M) yet fails to activate GPR75; however, it inhibited 20-HETE's ability to activate GPR75 signalling. CONCLUSIONS AND IMPLICATIONS We have identified 20-HETE as a high-affinity ligand for GPR75 and CCL5 as a low-affinity negative regulator of GPR75, providing additional evidence for the deorphanization of GPR75 as a 20-HETE receptor.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| |
Collapse
|