1
|
Oraby AK, Stojic A, Elawar F, Bilawchuk LM, McClelland RD, Erwin K, Granoski MJ, Griffiths CD, Frederick JD, Arutyunova E, Joanne Lemieux M, West FG, Ramilo O, Mejias A, McLellan JS, Marchant DJ. A single amino acid mutation alters multiple neutralization epitopes in the respiratory syncytial virus fusion glycoprotein. NPJ VIRUSES 2025; 3:33. [PMID: 40295799 PMCID: PMC12015481 DOI: 10.1038/s44298-025-00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of infant hospitalization. All current RSV therapeutics, including antibody prophylaxis and adult vaccination, target the RSV fusion glycoprotein (RSV-F). The seven neutralization sites on RSV-F are highly conserved and infrequently mutate. Here, we show that a single amino acid mutation at position 305 in RSV-F significantly alters antigenic recognition of RSV-F binding sites and reduces the susceptibility of RSV to neutralizing antibodies. In an in vitro evolution assay, we show that RSV-F L305I occurs in a majority of RSV quasi-species. Computational modeling predicted that the L305I mutation altered the epitope landscape of RSV-F, resulting in changes to neutralizing antibody sensitivity and affinity towards the RSV-F glycoprotein. Screening of published RSV-F sequences revealed that position 305 in RSV-F was conserved with a leucine and isoleucine in RSV-A and RSV-B subtypes respectively. Our study suggests that select amino acids in RSV-F may act as 'conformational switches' for RSV to evade host serum antibodies. This work has important implications in understanding RSV evolution and resistance as it suggests that mutational resistance to neutralizing antibodies can occur at sites distal to antigenic epitopes, significantly altering antibody sensitivity to viral infection. These unique antigenic landscape changes should be considered in the context of vaccine and therapeutic development in order to better understand viral mechanisms of evasion and resistance.
Collapse
Affiliation(s)
- Ahmed K Oraby
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Department of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science & Technology, Al-Motamayez District, 6th of October City, Egypt
| | - Aleksandra Stojic
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
| | - Farah Elawar
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada
| | | | | | - Kaci Erwin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Cameron D Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - David J Marchant
- Department of Medical Microbiology and Immunology, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Zhao C, Bai Y, Wang W, Amonkar GM, Mou H, Olejnik J, Hume AJ, Mühlberger E, Lukacs NW, Fearns R, Lerou PH, Ai X. Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus. J Clin Invest 2024; 134:e183978. [PMID: 39484716 PMCID: PMC11527452 DOI: 10.1172/jci183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 11/03/2024] Open
Abstract
Respiratory syncytial virus (RSV) selectively targets ciliated cells in human bronchial epithelium and can cause bronchiolitis and pneumonia, mostly in infants. To identify molecular targets of intervention during RSV infection in infants, we investigated how age regulates RSV interaction with the bronchial epithelium barrier. Employing precision-cut lung slices and air-liquid interface cultures generated from infant and adult human donors, we found robust RSV virus spread and extensive apoptotic cell death only in infant bronchial epithelium. In contrast, adult bronchial epithelium showed no barrier damage and limited RSV infection. Single nuclear RNA-Seq revealed age-related insufficiency of an antiapoptotic STAT3 activation response to RSV infection in infant ciliated cells, which was exploited to facilitate virus spread via the extruded apoptotic ciliated cells carrying RSV. Activation of STAT3 and blockade of apoptosis rendered protection against severe RSV infection in infant bronchial epithelium. Lastly, apoptotic inhibitor treatment of a neonatal mouse model of RSV infection mitigated infection and inflammation in the lung. Taken together, our findings identify a STAT3-mediated antiapoptosis pathway as a target to battle severe RSV disease in infants.
Collapse
Affiliation(s)
- Caiqi Zhao
- Division of Newborn Medicine, Department of Pediatrics and
| | - Yan Bai
- Division of Newborn Medicine, Department of Pediatrics and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics and
| | | | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J. Hume
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul H. Lerou
- Division of Newborn Medicine, Department of Pediatrics and
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics and
| |
Collapse
|
3
|
Sondlane H, Ogunbayo A, Donato C, Mogotsi M, Esona M, Hallbauer U, Bester P, Goedhals D, Nyaga M. Whole genome molecular analysis of respiratory syncytial virus pre and during the COVID-19 pandemic in Free State province, South Africa. Virus Res 2024; 347:199421. [PMID: 38942296 PMCID: PMC11283024 DOI: 10.1016/j.virusres.2024.199421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Respiratory syncytial virus (RSV) is the most predominant viral pathogen worldwide in children with lower respiratory tract infections. The Coronavirus disease 2019 (COVID-19) pandemic and resulting nonpharmaceutical interventions perturbed the transmission pattern of respiratory pathogens in South Africa. A seasonality shift and RSV resurgence was observed in 2020 and 2021, with several infected children observed. Conventional RSV-positive nasopharyngeal swabs were collected from various hospitals in the Free State province, Bloemfontein, South Africa, from children suffering from respiratory distress and severe acute respiratory infection between 2020 to 2021. Overlapping genome fragments were amplified and complete genomes were sequenced using the Illumina MiSeq platform. Maximum likelihood phylogenetic and evolutionary analysis were performed on both RSV-A/-B G-genes with published reference sequences from GISAID and GenBank. Our study strains belonged to the RSV-A GA2.3.2 and RSV-B GB5.0.5a clades. The upsurge of RSV was due to pre-existing strains that predominated in South Africa and circulating globally also driving these off-season RSV outbreaks during the COVID-19 pandemic. The variants responsible for the resurgence were phylogenetically related to pre-pandemic strains and could have contributed to the immune debt resulting from pandemic imposed restrictions. The deviation of the RSV season from the usual pattern affected by the COVID-19 pandemic highlights the need for ongoing genomic surveillance and the identification of genetic variants to prevent unforeseen outbreaks in the future.
Collapse
Affiliation(s)
- Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Ayodeji Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Celeste Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; The Centre for Pathogen Genomics, The Doherty Institute, University of Melbourne, Australia
| | - Milton Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Mathew Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Ute Hallbauer
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Phillip Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Dominique Goedhals
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; PathCare, Pretoria, South Africa
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
4
|
Oraby A, Bilawchuk L, West FG, Marchant DJ. Structure-Based Discovery of Allosteric Inhibitors Targeting a New Druggable Site in the Respiratory Syncytial Virus Polymerase. ACS OMEGA 2024; 9:22213-22229. [PMID: 38799318 PMCID: PMC11112712 DOI: 10.1021/acsomega.4c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infections for which effective treatment options remain limited. Herein, we employed a computational structure-based design strategy aimed at identifying potential targets for a new class of allosteric inhibitors. Our investigation led to the discovery of a previously undisclosed allosteric binding site within the RSV polymerase, the large (L) protein. This discovery was achieved through a combination of virtual screening and molecular dynamics simulations. Subsequently, we identified two inhibitors, 6a and 10b, which both exhibited promising antiviral activity in the low micromolar range. Resistance profiling revealed a distinctive pattern in how RSV evaded treatment with this class of inhibitors. This pattern strongly suggested that this class of small molecules was targeting a new binding site in the RSV L protein, aligning with the computational predictions made in our study. This study paves the way for the development of more potent inhibitors for combating RSV infections by targeting a new druggable pocket within the RdRp which does not overlap with previously known resistance sites.
Collapse
Affiliation(s)
- Ahmed
K. Oraby
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department
of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences
and Drug Manufacturing, Misr University
for Science and Technology, 6th
of October City P.O. Box 77,Egypt
| | - Leanne Bilawchuk
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G. West
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J. Marchant
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Sun BW, Zhang PP, Wang ZH, Yao X, He ML, Bai RT, Che H, Lin J, Xie T, Hui Z, Ye XY, Wang LW. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024; 29:598. [PMID: 38338343 PMCID: PMC10856762 DOI: 10.3390/molecules29030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.
Collapse
Affiliation(s)
- Bo-Wen Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng-Peng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lin
- Drug Discovery, Hangzhou Haolu Pharma Co., Hangzhou 311121, China;
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Zhao C, Wang W, Bai Y, Amonkar G, Mou H, Olejnik J, Hume AJ, Mühlberger E, Fang Y, Que J, Fearns R, Ai X, Lerou PH. Age-related STAT3 signaling regulates severity of respiratory syncytial viral infection in human bronchial epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558606. [PMID: 37781574 PMCID: PMC10541147 DOI: 10.1101/2023.09.20.558606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Respiratory syncytial virus (RSV) can cause severe disease especially in infants; however, mechanisms of age-associated disease severity remain elusive. Here, employing human bronchial epithelium models generated from tracheal aspirate-derived basal stem cells of neonates and adults, we investigated whether age regulates RSV-epithelium interaction to determine disease severity. We show that following RSV infection, only neonatal epithelium model exhibited cytopathy and mucus hyperplasia, and neonatal epithelium had more robust viral spread and inflammatory responses than adult epithelium. Mechanistically, RSV-infected neonatal ciliated cells displayed age-related impairment of STAT3 activation, rendering susceptibility to apoptosis, which facilitated viral spread. In contrast, SARS-CoV-2 infection of ciliated cells had no effect on STAT3 activation and was not affected by age. Taken together, our findings identify an age-related and RSV-specific interaction with neonatal bronchial epithelium that critically contributes to severity of infection, and STAT3 activation offers a potential strategy to battle severe RSV disease in infants.
Collapse
|
7
|
Trauth J. [Respiratory viral infections : Under special consideration of severe acute respiratory syndrome coronavirus 2 and influenza viruses]. Med Klin Intensivmed Notfmed 2023; 118:445-453. [PMID: 37642653 DOI: 10.1007/s00063-023-01050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 08/31/2023]
Abstract
Respiratory viruses cause the highest number of morbidities and deaths annually among all infectious pathogens. This article discusses the current epidemiology, pathogenesis, risk factors, and drug treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, respiratory syncytial virus (RSV), and other respiratory viruses. The SARS-CoV‑2 and influenza are preventable with vaccines and a first vaccine against RSV is available since 08/2023. For infections with SARS-CoV‑2 and influenza, a stage-specific (antiviral) drug treatment is also recommended. Due to the high and commonly underestimated disease burden caused by RSV, it must be hoped that antiviral substances will be found in the future. In patients at risk, particular attention should be paid to an adequate vaccination status against respiratory pathogens and if there is clinical suspicion of a viral airway infection, the pathogen should be promptly identified and, if necessary, specific treatment should be carried out. Now that effective vaccinations and antiviral drugs are available, the challenge is to use them for all patients at risk and thus really prevent avoidable infections, severe courses and long-term sequelae.
Collapse
Affiliation(s)
- Janina Trauth
- Universitätsklinikum Gießen und Marburg GmbH, Medizinische Klinik V für Innere Medizin m.S. Infektiologie und Krankenhaushygiene, Justus-Liebig-Universität Gießen, Klinikstr 33, 35392, Gießen, Deutschland.
| |
Collapse
|
8
|
Investigation of the Fuzzy Complex between RSV Nucleoprotein and Phosphoprotein to Optimize an Inhibition Assay by Fluorescence Polarization. Int J Mol Sci 2022; 24:ijms24010569. [PMID: 36614009 PMCID: PMC9820559 DOI: 10.3390/ijms24010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.
Collapse
|
9
|
Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm Pharmacol Ther 2022; 77:102170. [PMID: 36240985 PMCID: PMC9554202 DOI: 10.1016/j.pupt.2022.102170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Respiratory viral infections are the leading cause of death worldwide. The current pandemic of coronavirus infection (COVID-19) challenged human beings for the treatment and prevention of this respiratory viral infection since its outbreak in 2019. Despite advancements in the medical field, scientists were helpless to give timely treatment and protection against this viral infection. Several drugs, whether antiviral or not, were given to the patients to reduce mortality and morbidity rate. Vaccines from various pharmaceutical manufacturers are now available to give immunization against covid-19. Still, coronavirus is continuously affecting people in the form of variants after mutation. Each new variant increases the infection risk and forces scientists to develop some innovative and effective treatments for this infection. The virus uses the host's cell machinery to grow and multiply in numbers. Therefore, scientists are facing challenges to develop antivirals that stop the virus without damaging the host cells too. The production of suitable antivirals or vaccines for the new virus would take several months, allowing the strain to cause severe damage to life. Inhalable formulation facilitates the delivery of medicinal products directly to the respiratory system without causing unwanted side effects associated with systemic absorption. Scientists are focusing on developing an inhaled version of the existing antivirals for the treatment of respiratory infections. This review focused on the inhalable formulations of antiviral agents in various respiratory viral infections including the ongoing covid-19 pandemic and important findings of the clinical studies. We also reviewed repurposed drugs that have been given through inhalation in covid-19 infection.
Collapse
|
10
|
Parents Reaching Out to Parents: An Appreciative, Qualitative Evaluation of Stakeholder Experiences of the Parent Champions in the Community Project. CHILDREN 2022; 9:children9101479. [PMID: 36291414 PMCID: PMC9600284 DOI: 10.3390/children9101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Background: Bronchiolitis is a seasonal, global acute lower respiratory tract infection caused by respiratory syncytial virus (RSV) and is a leading cause of hospital admission in young children. A peer-led (parents to parents) intervention was implemented to empower parents of children at risk of bronchiolitis and reduce hospital admissions. This paper reported the evaluation that aimed to gain the perspectives and experiences of five key stakeholder groups. Methods: A qualitative remote interview-based design, informed by Appreciative Inquiry was used. Thematic analysis was used. Results: Sixty-five stakeholders participated: parents (n = 43; mothers, n = 42), Parent Champions (n = 9), Children’s Centre Managers (n = 8), Children’s Centre Group Leaders (n = 11), and Core Team (n = 4). An overarching theme ‘Parents reaching out to parents’ was supported by five sub-themes (Raising awareness and sharing knowledge; Creating connection, trust, and confidence; Flourishing in their role as a Parent Champion; Rising to the challenges; and Knowledge is power, prevention is key: the government needs to know this.) Conclusions: Parent-to-parent peer support via the Parent Champions was perceived positively by parents who wanted to learn and improve the lives and health of their children. Parent Champions were successful in delivering information. Considering the socioeconomic burden of bronchiolitis to services and families, the potential for an upstream, relatively low cost, high-reach innovative intervention, as evidenced in this project, seems a valuable opportunity for improving children’s respiratory health.
Collapse
|
11
|
Ling X, Zhou J, Jin T, Xu W, Sun X, Li W, Ding Y, Liang M, Zhu C, Zhao P, Hu C, Yuan B, Xie T, Tao J. Acteoside attenuates RSV-induced lung injury by suppressing necroptosis and regulating metabolism. Front Pharmacol 2022; 13:870928. [PMID: 36059973 PMCID: PMC9437591 DOI: 10.3389/fphar.2022.870928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Necroptosis and inflammation are closely related to the pathogenesis of respiratory syncytial virus (RSV). Acteoside (AC), a natural phenylpropanoid glycoside from Kuding Tea, has significant anti-RSV effect. However, the roles of AC on RSV-induced lung necroptosis and inflammation are yet to be elucidated.Methods: The effects of AC were investigated in BALB/c mice and A549 cells. Lung histopathology was observed through H&E staining. The viral titer was assessed via plaque assay. The RSV-F expression was determined by RT-qPCR and immunohistochemistry assay. The levels of cytokines were detected by ELISA and RT-qPCR. The necroptosis rate and mitochondrial membrane potential were evaluated via flow cytometry. The expressions of HMGB1/NF-κB and RIP1/RIP3/MLKL/PGAM5/DRP1 were detected by western blot. Additionally, untargeted metabolomics was conducted to investigate the metabolic profiles and related metabolic pathways via Gas Chromatography-Mass Spectrometry.Results: The results showed that compared with the RSV-infected group, AC treatment significantly attenuated lung pathological damage, virus replication, and cytokines levels. AC also alleviated RSV-induced necroptosis and mitochondrial dysfunction in vitro and in vivo. Moreover, AC treatment down-regulated the expression of HMGB1, p-Iκbα/Iκbα, p-p65/p65, RIP1, RIP3, MLKL, PGAM5, and DRP1. Furthermore, metabolomic analyses suggested that the perturbations in major metabolites of AC therapy were related to variations in amino acid and energy metabolism.Conclusion: Our findings validated the beneficial effects of AC in suppressing necroptosis and regulating metabolism, suggesting AC may be a new drug candidate for RSV infection.
Collapse
Affiliation(s)
- Xiaoying Ling
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zhou
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianzi Jin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun Sun
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yali Ding
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miaomiao Liang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenbi Zhu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peipei Zhao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chanchan Hu
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| | - Jialei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Bin Yuan, ; Tong Xie, ; Jialei Tao,
| |
Collapse
|
12
|
Shang Z, Tan S, Ma D. Respiratory syncytial virus: from pathogenesis to potential therapeutic strategies. Int J Biol Sci 2021; 17:4073-4091. [PMID: 34671221 PMCID: PMC8495404 DOI: 10.7150/ijbs.64762] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/18/2021] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.
Collapse
Affiliation(s)
- Zifang Shang
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101Beijing, China
| | - Dongli Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, 518026 Shenzhen, Guangdong Province, China
| |
Collapse
|
13
|
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21:382-393. [PMID: 33875867 PMCID: PMC8054133 DOI: 10.1038/s41577-021-00542-x] [Citation(s) in RCA: 511] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Several neutralizing monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed and are now under evaluation in clinical trials. With the US Food and Drug Administration recently granting emergency use authorizations for neutralizing mAbs in non-hospitalized patients with mild-to-moderate COVID-19, there is an urgent need to discuss the broader potential of these novel therapies and to develop strategies to deploy them effectively in clinical practice, given limited initial availability. Here, we review the precedent for passive immunization and lessons learned from using antibody therapies for viral infections such as respiratory syncytial virus, Ebola virus and SARS-CoV infections. We then focus on the deployment of convalescent plasma and neutralizing mAbs for treatment of SARS-CoV-2. We review specific clinical questions, including the rationale for stratification of patients, potential biomarkers, known risk factors and temporal considerations for optimal clinical use. To answer these questions, there is a need to understand factors such as the kinetics of viral load and its correlation with clinical outcomes, endogenous antibody responses, pharmacokinetic properties of neutralizing mAbs and the potential benefit of combining antibodies to defend against emerging viral variants.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/therapeutic use
- Antibody-Dependent Enhancement
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- Drug Development
- Drug Resistance, Viral/genetics
- Drug Resistance, Viral/immunology
- Humans
- Immunization, Passive/adverse effects
- Immunization, Passive/methods
- Models, Immunological
- Pandemics
- SARS-CoV-2/drug effects
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Peter C Taylor
- Botnar Research Centre, University of Oxford, Oxford, UK.
| | | | | | | | | | - Robert L Gottlieb
- Baylor University Medical Center, Dallas, TX, USA
- Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
14
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|