1
|
Wang X, Lv W, Zhai C, Gao Y, Chu C, Chen J, Yue Y, Li B. Preparation and characterization of multilayered microcapsules of Lactobacillus rhamnosus encapsulated with sodium alginate, hyaluronic acid and carrageenan and their protective effects on the retina. Int J Biol Macromol 2025; 305:141104. [PMID: 39956226 DOI: 10.1016/j.ijbiomac.2025.141104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
To improve the activity of probiotics during oral delivery and to investigate the protective effects on the retina. In this study, multilayer microcapsules encapsulating Lactobacillus rhamnosus YBT20 (YBT20) were prepared using sodium alginate, carrageenan and hyaluronic acid. Then it was characterized by determining the encapsulation rate, particle size distribution and zeta potential, and the results showed that the encapsulation rate of YBT20 by microcapsules was 68.51 % ~ 93.73 %, and the particle size distribution was between 100 and 1000 nm. Meanwhile, the storage stability and antioxidant properties of YBT20 were increased by 38.09 % and 37.01 %, respectively. Furthermore, the in vitro digestion simulation showed that the microcapsules could effectively improve the cell viability of YBT20 in saliva, gastric juice and intestinal juice, and the maximum release rate of YBT20 was 82.0 %. Lastly, the protective effect of microcapsule preparation on retinal damage induced by high-fat diet and blue light was evaluated in SD female rats. The results showed that microcapsule preparation can improve the oxidative damage of retinal pigment epithelium (RPE) in rats, and inhibit IL-6, IL-8, IL-1β and TNF-α. This study provides valuable theoretical information for effective delivery of probiotics and retinal protection.
Collapse
Affiliation(s)
- Xiaodong Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Wenqing Lv
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Chunyi Zhai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yiting Gao
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Changzhen Chu
- Heilongjiang Ubayt dairy group co., LTD, Harbin 150030, China
| | - Jing Chen
- Heilongjiang Ubayt dairy group co., LTD, Harbin 150030, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Cappellani F, Foti R, Malaguarnera G, D’Esposito F, Musumeci C, Rapisarda L, Tognetto D, Gagliano C, Zeppieri M. Nutrients and Natural Substances for Hypoglycemic Effects and Management in Diabetic Retinopathy. Nutrients 2025; 17:1207. [PMID: 40218965 PMCID: PMC11990073 DOI: 10.3390/nu17071207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
UNLABELLED Diabetic retinopathy (DR) is a significant microvascular consequence of diabetes mellitus (DM), resulting in visual impairment and blindness. Controlling hyperglycemia is essential for avoiding and alleviating diabetic retinopathy. Nutrients and natural compounds possessing hypoglycemic characteristics present promising supplementary approaches to conventional therapies. This review assesses the influence of nutrients and natural substances on glycemic regulation and their possible effects on diabetic retinopathy. GOAL To investigate and consolidate knowledge about nutrients and natural compounds exhibiting hypoglycemic properties and their processes in the prevention and management of diabetic retinopathy. APPROACHES Extensive reviews were conducted on pertinent studies from databases including PubMed, Scopus, and Web of Science. Selection criteria encompassed papers that examined natural substances, nutrients, or dietary supplements exhibiting effects on blood glucose levels and pathways associated to diabetic retinopathy. Principal findings were encapsulated according to their mechanisms, efficacy, and safety. OUTCOMES Numerous foods, including omega-3 fatty acids, vitamin D, and polyphenols (e.g., curcumin, resveratrol), have hypoglycemic properties by improving insulin sensitivity and diminishing oxidative stress. Natural substances like berberine, quercetin, and flavonoids demonstrate analogous effects, influencing pathways associated with inflammation, advanced glycation end products (AGEs), and angiogenesis, which are critical factors in the evolution of diabetic retinopathy (DR). The synergistic benefits of integrating natural medicines with conventional antidiabetic medications may enhance glycemic control and reduce retinal damage. The safety profiles of these therapies are predominantly positive; nonetheless, clinical trials are still constrained in both breadth and scale. CONCLUSIONS Nutrients and natural compounds are promising supplementary approaches for glycemic regulation and the therapy of diabetic retinopathy. Additional research, encompassing extensive clinical studies, is required to substantiate their efficacy, determine optimal dose, and verify long-term safety. The use of these natural substances into clinical practice may improve comprehensive management of diabetes and associated consequences.
Collapse
Affiliation(s)
- Francesco Cappellani
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy; (F.C.)
| | - Roberta Foti
- Division of Rheumatology, A.O.U. “Policlinico San Marco”, 95123 Catania, Italy
| | - Giulia Malaguarnera
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd., London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Carlo Musumeci
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy; (F.C.)
| | - Lorenzo Rapisarda
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| | - Marco Zeppieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Renta PP, Huang TY, Yu PH, Jang ACC, Chen YM. Sulfo-phospho-vanillin method for screening Aurantiochytrium strains with high docosahexaenoic acid levels. AMB Express 2025; 15:52. [PMID: 40111650 PMCID: PMC11925841 DOI: 10.1186/s13568-025-01859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Aurantiochytrium are protists found in marine and estuarine environments, known for producing high quantities of omega-3 fatty acids, particularly docosahexaenoic acid (DHA). The commercial viability of this species is currently hindered by the lack of reliable screening methods for the rapid identification of strains with high DHA content. This study developed a high-throughput screening platform based on the sulfo-phospho-vanillin (SPV) reaction, which produces a pink chromophore upon reacting with C-C double bonds in lipids. Analysis of 200 strains derived through the UV mutagenesis of the Aurantiochytrium limacinum strain BL10 revealed 7 strains that exhibited significantly elevated SPV reactivity, compared to the naïve strain (P < 0.01). Gas chromatography-mass spectrometry analysis revealed that in 4 of the 7 strains, DHA levels were significantly higher than those of the naïve strain. Among those 4 strains, the SPV reactivity values of two strains were precisely correlated with their DHA/DPA content. The SPV reaction protocol proposed in this paper has considerable potential for the high-throughput screening of Aurantiochytrium strains particularly those derived through UV mutagenesis.
Collapse
Affiliation(s)
- Person Pesona Renta
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Yu Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hao Yu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Anna C-C Jang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Maines E, Gugelmo G, Vitturi N, Dianin A, Rubert L, Piccoli G, Soffiati M, Cauvin V, Franceschi R. A Focus on the Role of Dietary Treatment in the Prevention of Retinal Dysfunction in Patients with Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:374. [PMID: 40150656 PMCID: PMC11941211 DOI: 10.3390/children12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is an inborn error affecting fatty acid β-oxidation (FAO). Differently than other FAO deficiencies, LCHADD patients may develop progressive retinopathy and peripheral neuropathy. The pathogenesis of retinopathy is not completely understood, and the role of dietary interventions in preventing the development of retinopathy remains uncertain. We examined the literature to assess the impact of the dietary management of LCHADD patients on retinopathy prevention. Methods: Our systematic search included studies published in the last 20 years according to PRISMA guidelines. The aims of the review were to analyze the correlation between retinopathy and the following: (1) age at first metabolic decompensation and/or at the start of the dietary treatment, (2) chronic dietary treatment, (3) emergency regimens, (4) other nutritional supplements. The protocol was registered in PROSPERO, and evidence was assessed using the GRADE system. Results: Seven full papers were identified according to search criteria, with only four including meaningful data. Early presentation of the disease, acute neonatal symptoms, and a suboptimal chronic treatment control were associated with more aggressive retinopathy and a poorer sight outcome. The number of metabolic decompensations and/or hospitalizations were also positively correlated with vision loss. Chronic fat modulation in the diet had less impact than emergency treatments. The role of other nutritional supplements was not well defined. Conclusions: Newborn screening may improve retinal outcomes. Nevertheless, early treatment adopting the current LCHADD therapeutic regimen can often only delay the onset of retinopathy. Clearly, our current treatment strategies are not adequate and retina-specific treatments are needed. The optimal composition of the diet, the role of fasting limitation, and the benefits of some nutritional supplements deserve further investigations.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (M.S.); (V.C.); (R.F.)
| | - Giorgia Gugelmo
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.G.); (N.V.)
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.G.); (N.V.)
| | - Alice Dianin
- Inherited Metabolic Diseases Unit and Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, University Hospital of Verona, 37126 Verona, Italy; (A.D.); (L.R.)
| | - Laura Rubert
- Inherited Metabolic Diseases Unit and Regional Centre for Newborn Screening, Diagnosis and Treatment of Inherited Metabolic Diseases and Congenital Endocrine Diseases, University Hospital of Verona, 37126 Verona, Italy; (A.D.); (L.R.)
| | - Giovanni Piccoli
- CIBIO—Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Massimo Soffiati
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (M.S.); (V.C.); (R.F.)
| | - Vittoria Cauvin
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (M.S.); (V.C.); (R.F.)
| | - Roberto Franceschi
- Division of Pediatrics, Santa Chiara General Hospital, APSS Trento, 38122 Trento, Italy; (M.S.); (V.C.); (R.F.)
| |
Collapse
|
5
|
Xu Y, Zhang Z, Bian Y, Wang Y, Deng Z, Luo R, Li W, Yan J, Zhao B, Sun D. Regulatory Mechanisms of EPA and DHA Proportions in a PUFA-Producing Microalga, Schizochytrium sp. ATCC 20888: From the Biosynthesis and Storage Distribution Aspects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4137-4151. [PMID: 39907569 DOI: 10.1021/acs.jafc.4c12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Schizochytrium sp. ATCC 20888 is an important species for industrial polyunsaturated fatty acids (PUFA) production. This study investigated the regulatory mechanisms affecting the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of biosynthesis and storage distribution. EPA and DHA possessed different accumulation patterns: EPA proportion increased over time, while DHA peaked at 48 h. EPA was predominantly integrated into triacylglycerol during the logarithmic phase and phosphatidylcholine during the stationary phase. Transcriptome analysis revealed that EPA synthesis involved the fatty acid synthase-elongase/desaturase system, while DHA depended mainly on PUFA synthase. Key enzymes, including elongase ELOVL7, diacylglycerol acyltransferase (g10562), and lysophosphatidylcholine acyltransferases (g8836 and g7540), show a positive correlation with EPA yield, highlighting their roles in its biosynthesis and storage. Additionally, phosphopantetheine adenylyl transferase (PPAT/COASY) and ADP-ribosylation factor 1_2 (ARF1_2) were identified as potential regulators of PUFA proportions. This study provided insights for genetic optimization of PUFA production inSchizochytrium.
Collapse
Affiliation(s)
- Yaqi Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanqing Bian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuanhao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziliang Deng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Rui Luo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weijia Li
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Jingyi Yan
- Hebei Ruilong Biotechnology Co., Ltd., Shijiazhuang 050024, China
| | - Baohua Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Biology Postdoctoral Research Station of Hebei Normal University, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
6
|
Colombo L, Baldesi J, Martella S, Quisisana C, Antico A, Mapelli L, Montagner S, Primon A, Rossetti L. Managing Retinitis Pigmentosa: A Literature Review of Current Non-Surgical Approaches. J Clin Med 2025; 14:330. [PMID: 39860336 PMCID: PMC11765533 DOI: 10.3390/jcm14020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal diseases characterized by the progressive loss of photoreceptor function, visual impairment, and, ultimately, blindness. While gene therapy has emerged as a promising therapy, it is currently available only for the RPE65 gene mutation, leaving many patients without targeted genetic treatments. Non-surgical interventions may help in managing the progression of RP and improving patients' quality of life. Visual training and rehabilitation, maximizing residual vision, have shown potential in improving mobility and patients' ability to perform daily activities. Visual aids enhance visual function. Moreover, photo-protection demonstrated effectiveness in mitigating light-induced damage and improving visual comfort. Alternative therapies (i.e., electrostimulation, acupuncture, and ozone therapy) are being explored to preserve retinal function and reduce disease progression. Pharmacological interventions supported by nutritional and psychological counseling play a role in slowing retinal degeneration while managing the emotional burden of progressive vision loss. Although for these interventions, further validation is required, their potential benefits make them valuable additions to care for RP patients. The integration of these interventions into a multidisciplinary care approach-including ophthalmologists, orthoptist, dietitians, and psychologists-is essential for providing comprehensive, personalized care to RP patients while awaiting more widespread gene therapy solutions.
Collapse
Affiliation(s)
- Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Jacopo Baldesi
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Salvatore Martella
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Chiara Quisisana
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Aleksei Antico
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Luca Mapelli
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| | - Stefania Montagner
- Eye & Vision—Visual Rehabilitation Center, 20128 Milan, Italy; (S.M.); (A.P.)
| | - Alberto Primon
- Eye & Vision—Visual Rehabilitation Center, 20128 Milan, Italy; (S.M.); (A.P.)
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, 20142 Milan, Italy; (J.B.); (S.M.); (C.Q.); (A.A.); (L.M.); (L.R.)
| |
Collapse
|
7
|
Li R, Sun Y. A Comparative Transcriptome and Proteome Analysis of the Molecular Mechanism Underlying Anterior to Dorsal Eye Rotation in the Celestial-Eye Goldfish ( Carassius auratus). Int J Mol Sci 2025; 26:466. [PMID: 39859182 PMCID: PMC11765313 DOI: 10.3390/ijms26020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Goldfish (Carassius auratus), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations. Verification of these findings was conducted using quantitative PCR (qPCR) for transcriptomic data and parallel reaction monitoring (PRM) for proteomic analysis. Our research identified 73,685 genes and 7717 proteins, pinpointing 8 common differentially expressed genes (DEGs) and proteins (DEPs) implicated in cytoskeleton remodeling, cell adhesion, apoptosis, and optic nerve regeneration. Enrichment analyses further delineated pathways associated with apoptosis, necroptosis, and cell adhesion molecules. The results indicated a significant role for genes involved in cytoskeletal dynamics, nervous system function, and apoptotic processes in the dorsal eye rotation of CE goldfish. Analyses of abnormalities in ocular membrane structures, along with disturbances in lipid and protein synthesis metabolism and energy metabolism during developmental stages, provided compelling evidence for the potential use of CE goldfish as a model organism in studying human eye-related disorders. This investigation provided the first comprehensive transcriptomic and proteomic overview of eye rotation in CE goldfish, offering insights crucial for the genetic breeding of new ornamental fish varieties.
Collapse
Affiliation(s)
- Rongni Li
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China;
| | | |
Collapse
|
8
|
Dutczak R, Pietrucha-Dutczak M. Effects of Selected Antioxidants on Electroretinography in Rodent Diabetic Retinopathy. Antioxidants (Basel) 2024; 14:21. [PMID: 39857355 PMCID: PMC11762402 DOI: 10.3390/antiox14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal. The first part of this paper presents basic information on the types of ERG tests used on rodents, and the second part describes the recorded functional changes in rodents' retinas when various antioxidant treatments for diabetic retinopathy were used. Our study showed that among the tests for diabetic retinopathy diagnosis in rodents, full-field ERG is accurate and the most commonly used, and pattern ERG and the photopic negative response of the flash ERG tests are rarely chosen. Furthermore, antioxidants generally protect retinas from functional losses. Their beneficial influence is expressed in the preserved amplitudes of the a- and b-waves and the oscillatory potentials. However, prolonging the drug exposure showed that the antioxidants could delay the onset of adverse changes but did not stop them. Future studies should concentrate on how long-term antioxidant supplementation affects the retinal function.
Collapse
Affiliation(s)
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| |
Collapse
|
9
|
Bakker LM, Boulton ME, Różanowska MB. (Photo)toxicity of Partially Oxidized Docosahexaenoate and Its Effect on the Formation of Lipofuscin in Cultured Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1428. [PMID: 39594569 PMCID: PMC11591205 DOI: 10.3390/antiox13111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Docosahexaenoate is a cytoprotective ω-3 polyunsaturated lipid that is abundant in the retina and is essential for its function. Due to its six unsaturated double bonds, docosahexaenoate is highly susceptible to oxidation and the formation of products with photosensitizing properties. This study aimed to test on cultured human retinal pigment epithelial cells ARPE-19 the (photo)cytotoxic potential of partly oxidized docosahexaenoate and its effect on the formation of lipofuscin from phagocytosed photoreceptor outer segments (POSs). The results demonstrate that the cytoprotective effects of docosahexaenoate do not counteract the deleterious effects of its oxidation products, leading to the concentration-dependent loss of cell metabolic activity, which is exacerbated by concomitant exposure to visible light. Partly oxidized docosahexaenoate does not cause permeability of the cell plasma membrane but does cause apoptosis. While vitamin E can provide partial protection from the (photo)toxicity of partly oxidized docosahexaenoate, zeaxanthin undergoes rapid photodegradation and can exacerbate the (photo)toxicity. Feeding cells with POSs enriched in partly oxidized docosahexaenoate results in a greater accumulation of intracellular fluorescent lipofuscin than in cells fed POSs without the addition. In conclusion, partly oxidized docosahexaenoate increases the accumulation of lipofuscin-like intracellular deposits, is cytotoxic, and its toxicity increases during exposure to light. These effects may contribute to the increased progression of geographic atrophy observed after long-term supplementation with docosahexaenoate in age-related macular degeneration patients.
Collapse
Affiliation(s)
- Linda M. Bakker
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
10
|
Wang L, Ma M, Li Y, Pei C, Wang J, Li J, Yang L, Liu Q, Tang L, Hao Y, Jiang H, Fu J, Xiao Y, Wang Y, Cui M, Su T, Bai J, Tang H, Wang Y, Shan H, Jiang H, Deng C, Kong L, Hui Z, Ma L. Effect of supplementation with lutein, zeaxanthin, and omega-3 fatty acids on macular pigment and visual function in young adults with long-term use of digital devices: study protocol for a randomized double-blind placebo-controlled study. Front Nutr 2024; 11:1422468. [PMID: 39494312 PMCID: PMC11528376 DOI: 10.3389/fnut.2024.1422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Growing evidence emphasizes the importance of xanthophyll carotenoids and omega-3 fatty acids in eye health. However, the beneficial effects of such supplementation have not been thoroughly discussed among adults with high screen exposure. Current trial evidence on lutein bioavailability is contradictory, and the interactions of dietary intervention with host-related factors remain elusive. This study aims to investigate the comparative effectiveness of supplementation with macular xanthophylls and omega-3 fatty acids on macular pigment optical density (MPOD) and visual function, access the bioavailability of free lutein and lutein ester, and explore the complex interplay between genetic variations, intestinal microbiota, and the dietary intervention in Chinese adults with long-term exposure to digital devices. Methods The Lutein, Zeaxanthin, and Omega-3 (LZO) clinical trial is a 24-week multicenter, randomized, double-blind, placebo-controlled trial of 600 participants recruited from research centers, universities, and communities. Individuals are eligible to participate if they are aged over 18 years and use digital devices for over 8 h daily in the last 2 years, and will be randomized to six arms. A total of three visits will be scheduled at baseline, 12 and 24 weeks. The primary outcome is the change in MPOD over the 24-week intervention. The secondary outcomes are changes in visual function (visual acuity, best-corrected visual acuity, contrast and glare sensitivity, critical flicker fusion, reaction time, visuognosis persistence, symptoms and signs of dry eye, retinal thickness, and optical quality), and changes in serum lutein and zeaxanthin concentrations, and erythrocyte membrane omega-3 fatty acids. Genetic variations will be determined using genome-wide genotyping at baseline. 16S rRNA gene sequencing will be utilized to assess microbiome compositional changes before and after intervention. Discussion The trial is anticipated to establish early interventions to prevent photochemical ocular damage and delay the onset of vision impairment in young adults with long-term repeated exposure to screen-based electronic devices, and provide valuable insights for the development of precision nutrition strategies for maintaining eye health. Clinical trial registration www.clinicaltrials.in.th, Identifier, TCTR20220904002.
Collapse
Affiliation(s)
- Lina Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mei Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Cheng Pei
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jianming Wang
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Juan Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Linjuan Yang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qianying Liu
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Tang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yang Hao
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Huili Jiang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaxuan Fu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuyao Xiao
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yahui Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Cui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tong Su
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaqi Bai
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hao Tang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yue Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hongying Shan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hong Jiang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chaoming Deng
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Liyun Kong
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China
| |
Collapse
|
11
|
Wang Y, Becker S, Finkelstein S, Dyka FM, Liu H, Eminhizer M, Hao Y, Brush RS, Spencer WJ, Arshavsky VY, Ash JD, Du J, Agbaga MP, Vinberg F, Ellis JM, Lobanova ES. Acyl-CoA synthetase 6 controls rod photoreceptor function and survival by shaping the phospholipid composition of retinal membranes. Commun Biol 2024; 7:1027. [PMID: 39169121 PMCID: PMC11339274 DOI: 10.1038/s42003-024-06691-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
The retina is light-sensitive neuronal tissue in the back of the eye. The phospholipid composition of the retina is unique and highly enriched in polyunsaturated fatty acids, including docosahexaenoic fatty acid (DHA). While it is generally accepted that a high DHA content is important for vision, surprisingly little is known about the mechanisms of DHA enrichment in the retina. Furthermore, the biological processes controlled by DHA in the eye remain poorly defined as well. Here, we combined genetic manipulations with lipidomic analysis in mice to demonstrate that acyl-CoA synthetase 6 (Acsl6) serves as a regulator of the unique composition of retinal membranes. Inactivation of Acsl6 reduced the levels of DHA-containing phospholipids, led to progressive loss of light-sensitive rod photoreceptor neurons, attenuated the light responses of these cells, and evoked distinct transcriptional response in the retina involving the Srebf1/2 (sterol regulatory element binding transcription factors 1/2) pathway. This study identifies one of the major enzymes responsible for DHA enrichment in the retinal membranes and introduces a model allowing an evaluation of rod functioning and pathology caused by impaired DHA incorporation/retention in the retina.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Silke Becker
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | - Frank M Dyka
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Eminhizer
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ying Hao
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - William J Spencer
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - John D Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center and Dean McGee Eye Institute, Oklahoma City, OK, USA
| | - Frans Vinberg
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
12
|
Shen C, Yang Q, Chen K, Ma H, Wang X, Tong J, Shen Y, Cui H. Uncovering the role of ferroptosis in Bietti crystalline dystrophy and potential therapeutic strategies. Cell Commun Signal 2024; 22:359. [PMID: 38992691 PMCID: PMC11241923 DOI: 10.1186/s12964-024-01710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/09/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE Bietti crystalline dystrophy (BCD) is an inherited retinal degeneration disease caused by mutations in the CYP4V2 gene. Currently, there is no clinical therapy approach available for BCD patients. Previous research has suggested that polyunsaturated fatty acids (PUFAs) may play a significant role in the development of BCD, implicating the involvement of ferroptosis in disease pathogenesis. In this work, we aimed to investigate the interplay between ferroptosis and BCD and to detect potential therapeutic strategies for the disease. METHODS Genetic-edited RPE cell line was first established in this study by CRISPR-Cas9 technology. Cyp4v3 (the homologous gene of human CYP4V2) knock out (KO) mice have also been used. Lipid profiling and transcriptome analysis of retinal pigment epithelium (RPE) cells from Cyp4v3 KO mice have been conducted. Ferroptosis phenotypes have been first investigated in BCD models in vitro and in vivo, including lipid peroxidation, mitochondrial changes, elevated levels of reactive oxygen species (ROS), and altered gene expression. Additionally, an iron chelator, deferiprone (DFP), has been tested in vitro and in vivo to determine its efficacy in suppressing ferroptosis and restoring the BCD phenotype. RESULTS Cyp4v3 KO mice exhibited progressive retinal degeneration and lipid accumulation, similar to the BCD phenotype, which was exacerbated by a high-fat diet (HFD). Increased levels of PUFAs, such as EPA (C22:5) and AA (C20:4), were observed in the RPE of Cyp4v3 KO mice. Transcriptome analysis of RPE in Cyp4v3 KO mice revealed changes in genes involved in iron homeostasis, particularly an upregulation of NCOA4, which was confirmed by immunofluorescence. Ferroptosis-related characteristics, including mitochondrial defects, lipid peroxidation, ROS accumulation, and upregulation of related genes, were detected in the RPE both in vitro and in vivo. Abnormal accumulation of ferrous iron was also detected. DFP, an iron chelator administration suppressed ferroptosis phenotype in CYP4V2 mutated RPE. Oral administration of DFP also restored the retinal function and morphology in Cyp4v3 KO mice. CONCLUSION This study represented the first evidence of the substantial role of ferroptosis in the development of BCD. PUFAs resulting from CYP4V2 mutation may serve as substrates for ferroptosis, potentially working in conjunction with NCOA4-regulated iron accumulation, ultimately leading to RPE degeneration. DFP administration, which chelates iron, has demonstrated its ability to reverse BCD phenotype both in vitro and in vivo, suggesting a promising therapeutic approach in the future.
Collapse
Affiliation(s)
- Chang Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiling Ma
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongguang Cui
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Han G, Wei P, He M, Jia L, Su Q, Yang X, Hao R. Role of plasma fatty acid in age-related macular degeneration: insights from a mendelian randomization analysis. Lipids Health Dis 2024; 23:206. [PMID: 38951820 PMCID: PMC11218068 DOI: 10.1186/s12944-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND An imbalance in lipid metabolism has been linked to the development of AMD, but the causal relationship between AMD and plasma fatty acids (FAs) remains controversial. Using a two-sample Mendelian randomization (MR) approach, we sought to evaluate the impact of specific FA plasma levels on the risk of different AMD subtypes. METHODS We analysed genome-wide association data of circulating FAs from 115,006 European-descended individuals in the UK Biobank. These data were used in a two-sample MR framework to assess the potential role of circulating FAs in developing wet and dry AMD. Sensitivity analyses were conducted to ensure the robustness of our findings. Additional multivariable and locus-specific MR analyses were conducted to evaluate direct effects of FA on AMD subtypes, minimizing biases from lipoprotein-related traits and triglycerides. RESULTS Mendelian randomization revealed associations of omega-3 was associated with decreased wet (OR 0.78, 95%CI 0.66-0.92) and dry AMD (0.85, 0.74-0.97) risk, showed a protective effect on AMD. Notably, the omega-6 to omega-3 ratio showed potential causal effects on both wet (1.27, 1.03-1.56) and dry AMD (1.18, 1.02-1.37). Multivariable MR suggested that the causal relationship of omega-3, omega-6 to omega-3 ratio on wet AMD persists after conditioning on HDL, LDL and triglycerides, albeit with slightly diminished evidence strength. Locus-specific MR linked to omega-3(FADS1, 0.89, 0.82-0.98; FADS2, 0.88, 0.81-0.96) and omega-6 to omega-3 ratio (FADS1, 1.10, 1.02-1.20; FADS2, 1.11, 1.03-1.20) suggests causal effects of these factors on wet AMD. CONCLUSIONS The associations between plasma FA concentrations and AMD, suggest potential causal role of omega-3, and the omega-6 to omega-3 ratio in wet AMD. These results underscore the impact of an imbalanced circulating omega-3 and omega-6 FA ratio on AMD pathophysiology from MR perspective.
Collapse
Affiliation(s)
- Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China.
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China.
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China.
| | - Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Meiqin He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, PR China
| | - Lanbo Jia
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Qi Su
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Xiru Yang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Nankai University, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Zhao S, Meng Y, Cai W, Luo Q, Gao H, Shen Q, Shi D. Docosahexaenoic Acid Coordinating with Sodium Selenite Promotes Paraptosis in Colorectal Cancer Cells by Disrupting the Redox Homeostasis and Activating the MAPK Pathway. Nutrients 2024; 16:1737. [PMID: 38892670 PMCID: PMC11174406 DOI: 10.3390/nu16111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumor cells are characterized by a delicate balance between elevated oxidative stress and enhanced antioxidant capacity. This intricate equilibrium, maintained within a threshold known as redox homeostasis, offers a unique perspective for cancer treatment by modulating reactive oxygen species (ROS) levels beyond cellular tolerability, thereby disrupting this balance. However, currently used chemotherapy drugs require larger doses to increase ROS levels beyond the redox homeostasis threshold, which may cause serious side effects. How to disrupt redox homeostasis in cancer cells more effectively remains a challenge. In this study, we found that sodium selenite and docosahexaenoic acid (DHA), a polyunsaturated fatty acid extracted from marine fish, synergistically induced cytotoxic effects in colorectal cancer (CRC) cells. Physiological doses of DHA simultaneously upregulated oxidation and antioxidant levels within the threshold range without affecting cell viability. However, it rendered the cells more susceptible to reaching the upper limit of the threshold of redox homeostasis, facilitating the elevation of ROS levels beyond the threshold by combining with low doses of sodium selenite, thereby disrupting redox homeostasis and inducing MAPK-mediated paraptosis. This study highlights the synergistic anticancer effects of sodium selenite and DHA, which induce paraptosis by disrupting redox homeostasis in tumor cells. These findings offer a novel strategy for more targeted and less toxic cancer therapies for colorectal cancer treatment.
Collapse
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuzhou Meng
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenxun Cai
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiwen Luo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongyang Gao
- Institute of Electronmicroscopy, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Shen
- Institute of Electronmicroscopy, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongyun Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Free Radical Regulation and Application Research Center of Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
16
|
Wang R, Rao S, Zhong Z, Xiao K, Chen X, Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J Drug Target 2024; 32:393-403. [PMID: 38385350 DOI: 10.1080/1061186x.2024.2316775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS We systematically reviewed literature available up to 2023. RESULTS This review included 12 studies investigating the involvement of ferroptosis in DR.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Suyun Rao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zheng Zhong
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Xiao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuhui Chen
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
17
|
Moshtaghion SM, Caballano-Infantes E, Plaza Reyes Á, Valdés-Sánchez L, Fernández PG, de la Cerda B, Riga MS, Álvarez-Dolado M, Peñalver P, Morales JC, Díaz-Corrales FJ. Piceid Octanoate Protects Retinal Cells against Oxidative Damage by Regulating the Sirtuin 1/Poly-ADP-Ribose Polymerase 1 Axis In Vitro and in rd10 Mice. Antioxidants (Basel) 2024; 13:201. [PMID: 38397799 PMCID: PMC10886367 DOI: 10.3390/antiox13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.
Collapse
Affiliation(s)
- Seyed Mohamadmehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Álvaro Plaza Reyes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Lourdes Valdés-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Patricia Gallego Fernández
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Berta de la Cerda
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Maurizio S. Riga
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Manuel Álvarez-Dolado
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan C. Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| |
Collapse
|
18
|
Morito K, Ali H, Kishino S, Tanaka T. Fatty Acid Metabolism in Peroxisomes and Related Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:31-55. [PMID: 38811487 DOI: 10.1007/5584_2024_802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One of the functions of peroxisomes is the oxidation of fatty acids (FAs). The importance of this function in our lives is evidenced by the presence of peroxisomal disorders caused by the genetic deletion of proteins involved in these processes. Unlike mitochondrial oxidation, peroxisomal oxidation is not directly linked to ATP production. What is the role of FA oxidation in peroxisomes? Recent studies have revealed that peroxisomes supply the building blocks for lipid synthesis in the endoplasmic reticulum and facilitate intracellular carbon recycling for membrane quality control. Accumulation of very long-chain fatty acids (VLCFAs), which are peroxisomal substrates, is a diagnostic marker in many types of peroxisomal disorders. However, the relationship between VLCFA accumulation and various symptoms of these disorders remains unclear. Recently, we developed a method for solubilizing VLCFAs in aqueous media and found that VLCFA toxicity could be mitigated by oleic acid replenishment. In this chapter, we present the physiological role of peroxisomal FA oxidation and the knowledge obtained from VLCFA-accumulating peroxisome-deficient cells.
Collapse
Affiliation(s)
- Katsuya Morito
- Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
19
|
Ma J, Kitaura H, Ohori F, Noguchi T, Marahleh A, Kinjo R, Kanou K, Ren J, Miura M, Narita K, Mizoguchi I. Generating Bone Marrow Chimeric Mouse Using GPR120 Deficient Mouse for the Study of DHA Inhibitory Effect on Osteoclast Formation and Bone Resorption. Int J Mol Sci 2023; 24:17000. [PMID: 38069322 PMCID: PMC10707107 DOI: 10.3390/ijms242317000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid that exerts physiological effects via G protein-coupled receptor 120 (GPR120). In our previous studies, we figured out the inhibitory effects of DHA on TNF-α (Tumor necrosis factor-α)-induced osteoclastogenesis via GPR120 in vivo. Moreover, DHA directly suppressed RANKL expression in osteoblasts via GPR120 in vitro. In this study, we generated bone marrow chimeric mice using GPR120 deficient mice (GPR120-KO) to study the inhibitory effects of DHA on bone resorption and osteoclast formation. Bone marrow cells of wild-type (WT) or GPR120-KO mice were transplanted into irradiated recipient mice, which were WT or GPR120 deficient mice. The resulting chimeric mice contained stromal cells from the recipient and bone marrow cells, including osteoclast precursors, from the donor. These chimeric mice were used to perform a series of histological and microfocus computed tomography (micro-CT) analyses after TNF-α injection for induction of osteoclast formation with or without DHA. Osteoclast number and bone resorption were found to be significantly increased in chimeric mice, which did not express GPR120 in stromal cells, compared to chimeric mice, which expressed GPR120 in stromal cells. DHA was also found to suppress specific signaling pathways. We summarized that DHA suppressed TNF-α-induced stromal-dependent osteoclast formation and bone resorption via GPR120.
Collapse
Affiliation(s)
- Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8575, Japan;
| | - Ria Kinjo
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Jiayi Ren
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Mariko Miura
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Kohei Narita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (J.M.); (F.O.); (T.N.); (R.K.); (K.K.); (J.R.); (M.M.); (K.N.); (I.M.)
| |
Collapse
|
20
|
Swinkels D, Kocherlakota S, Das Y, Dane AD, Wever EJM, Vaz FM, Bazan NG, Van Veldhoven PP, Baes M. DHA Shortage Causes the Early Degeneration of Photoreceptors and RPE in Mice With Peroxisomal β-Oxidation Deficiency. Invest Ophthalmol Vis Sci 2023; 64:10. [PMID: 37934161 PMCID: PMC10631513 DOI: 10.1167/iovs.64.14.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/06/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose Patients deficient in peroxisomal β-oxidation, which is essential for the synthesis of docosahexaenoic acid (DHA, C22:6n-3) and breakdown of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), both important components of photoreceptor outer segments, develop retinopathy present with retinopathy. The representative mouse model lacking the central enzyme of this pathway, multifunctional protein 2 (Mfp2-/-), also show early-onset retinal decay and cell-autonomous retinal pigment epithelium (RPE) degeneration, accompanied by reduced plasma and retinal DHA levels. In this study, we investigated whether DHA supplementation can rescue the retinal degeneration of Mfp2-/- mice. Methods Mfp2+/- breeding pairs and their offspring were fed a 0.12% DHA or control diet during gestation and lactation and until sacrifice. Offspring were analyzed for retinal function via electroretinograms and for lipid composition of neural retina and plasma with lipidome analysis and gas chromatography, respectively, and histologically using retinal sections and RPE flatmounts at the ages of 4, 8, and 16 weeks. Results DHA supplementation to Mfp2-/- mice restored retinal DHA levels and prevented photoreceptor shortening, death, and impaired functioning until 8 weeks. In addition, rescue of retinal DHA levels temporarily improved the ability of the RPE to phagocytose outer segments and delayed the RPE dedifferentiation. However, despite the initial rescue of retinal integrity, DHA supplementation could not prevent retinal degeneration at 16 weeks. Conclusions We reveal that the shortage of a systemic supply of DHA is pivotal for the early retinal degeneration in Mfp2-/- mice. Furthermore, we report that adequate retinal DHA levels are essential not only for photoreceptors but also for RPE homeostasis.
Collapse
Affiliation(s)
- Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Yannick Das
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Adriaan D. Dane
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric J. M. Wever
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, Louisiana State University, New Orleans, Louisiana, United States
| | - Paul P. Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Ren S, Xue C, Xu M, Li X. Mendelian Randomization Analysis Reveals Causal Effects of Polyunsaturated Fatty Acids on Subtypes of Diabetic Retinopathy Risk. Nutrients 2023; 15:4208. [PMID: 37836492 PMCID: PMC10574403 DOI: 10.3390/nu15194208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) affect several physiological processes, including visual acuity, but their relationship with diabetic retinopathy (DR) remains elusive. The aim of this study was to determine whether PUFAs have a causal effect on DR. PUFAs- (total and omega-3 [FAw3] and omega-6 [FAw6] fatty acids and their ratio) and DR-associated single nucleotide polymorphisms derived from genome-wide association studies; sample sizes were 114,999 for fatty acids and 216,666 for any DR (ADR), background DR (BDR), severe non-proliferative DR (SNPDR), and proliferative DR (PDR). We hypothesized that the intra-body levels of PUFAs have an impact on DR and conducted a two-sample Mendelian randomization (MR) study to assess the causality. Pleiotropy, heterogeneity, and sensitivity analyses were performed to verify result reliability. High levels of PUFAs were found to be associated with reduced risk of both ADR and PDR. Moreover, FAw3 was associated with a decreased risk of PDR, whereas FAw6 demonstrated an association with lowered risks of both BDR and PDR. Our findings provide genetic evidence, for the first time, for a causal relationship between PUFAs and reduced DR risk. Consequently, our comprehensive MR analysis strongly urges further investigation into the precise functions and long-term effects of PUFAs, FAw3, and FAw6 on DR.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China; (S.R.); (C.X.); (M.X.)
| |
Collapse
|