1
|
Henderson JD, Quigley SNZ, Chachra SS, Conlon N, Ford D. The use of a systems approach to increase NAD + in human participants. NPJ AGING 2024; 10:7. [PMID: 38302501 PMCID: PMC10834541 DOI: 10.1038/s41514-023-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
Reversal or mitigation against an age-related decline in NAD+ has likely benefits, and this premise has driven academic and commercial endeavour to develop dietary supplements that achieve this outcome. We used a systems-based approach to improve on current supplements by targeting multiple points in the NAD+ salvage pathway. In a double-blind, randomised, crossover trial, the supplement - Nuchido TIME+® (NT) - increased NAD+ concentration in whole blood. This was associated with an increase in SIRT1 and an increase in nicotinamide phosphoribosyltransferase (NAMPT) in peripheral blood mononucleocytes, lower concentrations of pro-inflammatory cytokines in plasma, including a reduction in interleukin 2 (IL2), a reduction in glycated serum protein and a shift in the glycosylation profile of immunoglobulin G (IgG) toward a younger biological age, all of which are likely to promote a healthier ageing trajectory.
Collapse
Affiliation(s)
- John D Henderson
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Mærsk Tårnet, 7, Sal, 2200, København N, Denmark
| | - Sophia N Z Quigley
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK
| | - Shruti S Chachra
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK
| | - Nichola Conlon
- Nuchido Ltd. Dissington Hall, Dalton, Northumberland, NE18 0AD, UK.
| | - Dianne Ford
- Department of Applied Sciences, Northumbria University, Northumberland Road, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
2
|
Lombard AP, Armstrong CM, D'Abronzo LS, Ning S, Leslie AR, Sharifi M, Lou W, Evans CP, Dall'Era M, Chen HW, Chen X, Gao AC. Olaparib-Induced Senescence Is Bypassed through G2-M Checkpoint Override in Olaparib-Resistant Prostate Cancer. Mol Cancer Ther 2022; 21:677-685. [PMID: 35086956 PMCID: PMC8983570 DOI: 10.1158/1535-7163.mct-21-0604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Amy R Leslie
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Marc Dall'Era
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Hong-Wu Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| | - Xinbin Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
3
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
4
|
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP. Poly(ADP-Ribosyl) Code Functions. Acta Naturae 2021; 13:58-69. [PMID: 34377556 PMCID: PMC8327145 DOI: 10.32607/actanaturae.11089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribosyl)ation plays a key role in cellular metabolism. Covalent poly(ADP-ribosyl)ation affects the activity of the proteins engaged in DNA repair, chromatin structure regulation, gene expression, RNA processing, ribosome biogenesis, and protein translation. Non-covalent PAR-dependent interactions are involved in the various types of cellular response to stress and viral infection, such as inflammation, hormonal signaling, and the immune response. The review discusses how structurally different poly(ADP-ribose) (PAR) molecules composed of identical monomers can differentially participate in various cellular processes acting as the so-called "PAR code." The article describes the ability of PAR polymers to form functional biomolecular clusters through a phase-separation in response to various signals. This phase-separation contributes to rapid spatial segregation of biochemical processes and effective recruitment of the necessary components. The cellular PAR level is tightly controlled by a network of regulatory proteins: PAR code writers, readers, and erasers. Impaired PAR metabolism is associated with the development of pathological processes causing oncological, cardiovascular, and neurodegenerative diseases. Pharmacological correction of the PAR level may represent a new approach to the treatment of various diseases.
Collapse
Affiliation(s)
- N. V. Maluchenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - D. O. Koshkina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - A. V. Feofanov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - V. M. Studitsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497 USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
5
|
Eleazer R, Fondufe‐Mittendorf YN. The multifaceted role of PARP1 in RNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1617. [PMID: 32656996 PMCID: PMC7856298 DOI: 10.1002/wrna.1617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are abundant nuclear proteins that synthesize ADP ribose polymers (pADPr) and catalyze the addition of (p)ADPr to target biomolecules. PARP1, the most abundant and well-studied PARP, is a multifunctional enzyme that participates in numerous critical cellular processes. A considerable amount of PARP research has focused on PARP1's role in DNA damage. However, an increasing body of evidence outlines more routine roles for PARP and PARylation in nearly every step of RNA biogenesis and metabolism. PARP1's involvement in these RNA processes is pleiotropic and has been ascribed to PARP1's unique flexible domain structures. PARP1 domains are modular self-arranged enabling it to recognize structurally diverse substrates and to act simultaneously through multiple discrete mechanisms. These mechanisms include direct PARP1-protein binding, PARP1-nucleic acid binding, covalent PARylation of target molecules, covalent autoPARylation, and induction of noncovalent interactions with PAR molecules. A combination of these mechanisms has been implicated in PARP1's context-specific regulation of RNA biogenesis and metabolism. We examine the mechanisms of PARP1 regulation in transcription initiation, elongation and termination, co-transcriptional splicing, RNA export, and post-transcriptional RNA processing. Finally, we consider promising new investigative avenues for PARP1 involvement in these processes with an emphasis on PARP1 regulation of subcellular condensates. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Rebekah Eleazer
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Yvonne N. Fondufe‐Mittendorf
- Department of Molecular and Cellular Biochemistry and Markey Cancer CenterUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
6
|
Pathikonda S, Cheng SH, Yu KN. Role of PARP1 regulation in radiation-induced rescue effect. JOURNAL OF RADIATION RESEARCH 2020; 61:352-367. [PMID: 32329510 PMCID: PMC7299272 DOI: 10.1093/jrr/rraa023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 05/04/2023]
Abstract
Radiation-induced rescue effect (RIRE) in cells refers to the phenomenon where irradiated cells (IRCs) receive help from feedback signals produced by partnered bystander unirradiated cells (UIRCs) or from the conditioned medium (CM) that has previously conditioned the UIRCs. In the present work, we explored the role of poly (ADP-ribose) polymerase 1 (PARP1) regulation in RIRE and the positive feedback loop between PARP1 and nuclear factor-kappa-light-chain-enhancer of activated B cell (NF-κB) in RIRE using various cell lines, including HeLa, MCF7, CNE-2 and HCT116 cells. We first found that when the IRCs (irradiated with 2 Gy X-ray) were treated with CM, the relative mRNA expression levels of both tumor suppressor p53-binding protein 1 (53BP1) and PARP1, the co-localization factor between 53BP1 and γH2AX as well as the fluorescent intensity of PARP1 were reduced. We also found that IRCs treated with the PARP1 inhibitor, Olaparib (AZD2281) had a higher 53BP1 expression. These results illustrated that PARP1 was involved in RIRE transcriptionally and translationally. We further revealed that treatment of IRCs with CM together with Olaparib led to significantly lower mRNA expression levels and fluorescent intensities of NF-κB, while treatment of IRCs with CM together the NF-κB inhibitor BAY-11-7082 led to significantly lower mRNA expression levels as well as fluorescent intensities of PARP1. These results illustrated that PARP1 and NF-κB were involved in the positive feedback loop transcriptionally and translationally. Thus, the results supported the occurrence of a PARP1-NF-κB positive feedback loop in RIRE. The present work provided insights into potential exploitation of inhibition of PARP1 and/or the PARP1-NF-κB positive feedback loop in designing adjuncts to cancer radiotherapeutics.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- Corresponding author. Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong. Tel: (852)-344-27812; Fax: (852)-344-20538;
| |
Collapse
|
7
|
Sahin K, Durdagi S. Identifying new piperazine-based PARP1 inhibitors using text mining and integrated molecular modeling approaches. J Biomol Struct Dyn 2020; 39:681-690. [PMID: 32048546 DOI: 10.1080/07391102.2020.1715262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the important molecular targets for antitumor drug discovery is the polyadenosine diphosphate-ribose polymerase-1 (PARP1) enzyme. It is linked with various biological functions including DNA repair and apoptosis. It is primarily a nuclear enzyme linked to chromatin, which is activated by DNA damage. Improved expression of PARP1 in melanomas, breast cancer, lung cancer and other neoplastic diseases is often observed. A tremendous PARP research concerning cancer and ischemia is progressing very rapidly. There are currently four PARP1 inhibitors approved by the FDA on the market, namely Olaparib, Rucaparib, Niraparib and Talazoparib. All of these molecules are non-selective inhibitors of PARP1. Currently there is an urgent need for novel and selective PARP1 inhibitors. In this work, asmall molecule database (Specs SC) were used to identify the new selective lead inhibitors of PARP1. Piperazine scaffold is an important fragment that is used in many currently used FDA approved drugs in different diseases including PARP1 inhibitor Olaparib. Thus, based on text mining studies, 4674 compounds thatinclude piperazine fragments were identified and virtually screened at the binding pocket of target protein PARP1. Compounds that have high docking scores were used in molecular dynamics (MD) simulations. Free energy calculations were also performed to compare the predicted binding energies with known PARP1 inhibitors. The critical amino acid interactions of these newly identified hits in the binding pocket were also investigated in detail for better understanding of the structural features required for next generation PARP1 inhibitors. Thus, here together with combination of text-mining and integrated molecular modeling approaches, we identified novel piperazine-based hits against PARP1 enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
8
|
Arena C, Vitale L, Bianchi AR, Mistretta C, Vitale E, Parisi C, Guerriero G, Magliulo V, De Maio A. The Ageing Process Affects the Antioxidant Defences and the Poly (ADPribosyl)ation Activity in Cistus Incanus L. Leaves. Antioxidants (Basel) 2019; 8:E528. [PMID: 31698730 PMCID: PMC6912739 DOI: 10.3390/antiox8110528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
The ageing process in living organisms is characterised by the accumulation of several deleterious changes occurring in cells and tissues. The increase of reactive oxygen species with the advancement of age is responsible for the oxidative damage to proteins, lipids and DNA, enhancing the risk of diseases. The antioxidant response and the activation of the poly(ADP-ribosyl)ation process represent the first defences activated by organisms at all life stages to counteract damage to cell structures and genomic material. The regulation of poly(ADP ribosyl)ation with age is little known in plants, especially in combination with antioxidant defences modulation. In this study, the relationships between poly (ADP-ribose) polymerase (PARP) activity and enzymatic and non-enzymatic antioxidant pool have been studied together with the photosynthetic apparatus efficiency in the Mediterranean species Cistus incanus L., examining leaves at different developmental stages: young, mature and senescent. The photosynthetic performance was evaluated by chlorophyll a fluorescence measurement, the total soluble and fat-soluble antioxidant capacity, as well as the activities of enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST), were determined by spectrophotometer, PARP activity was assessed by radioactive labelling. The highest photochemical activity was observed in young leaves, together with the highest GST activity. With the progress of the ageing process, the non-enzymatic antioxidant pool (namely ascorbic acid, α-tocopherol) declined, reaching the lowest value in senescent leaves, whereas PARP activity rose significantly. The overall results indicate that the decline of photosynthetic apparatus efficiency during senescence is due to the reduction of specific defences against oxidative damages, which increase the damages to DNA, as demonstrated by PARP activity rise.
Collapse
Affiliation(s)
- Carmen Arena
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Luca Vitale
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Anna Rita Bianchi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Carmela Mistretta
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Ermenegilda Vitale
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Costantino Parisi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Giulia Guerriero
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Vincenzo Magliulo
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Anna De Maio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| |
Collapse
|
9
|
Sidhu A, Diwan V, Kaur H, Bhateja D, Singh CK, Sharma S, Padi SSV. Nicotinamide reverses behavioral impairments and provides neuroprotection in 3-nitropropionic acid induced animal model ofHuntington's disease: implication of oxidative stress- poly(ADP- ribose) polymerase pathway. Metab Brain Dis 2018; 33:1911-1921. [PMID: 30054774 DOI: 10.1007/s11011-018-0297-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is characterized by cognitive and psychiatric impairment caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress is the main pathogenic factor in HD. The current study aims to determine the possible neuroprotective effects of nicotinamide on 3-nitropropionic acid (3-NP) induced HD. Male Wistar albino rats were divided into six groups. Group I was the vehicle-treated control, group II received 3-NP (20 mg/kg, intraperitoneally (i.p.) for 4 days, group III received nicotinamide (500 mg/kg, i.p.). The remaining groups received a combination of 3-NP plus nicotinamide 100, 300 or 500 mg/kg, i.p. respectively for 8 days. Afterward, the motor function and hind paw activity in the limb withdrawal were tested; rats were then euthanized for biochemical and histopathological analyses. Treatment of rats with 3-NP altered the motor function, elevated oxidative stress and caused significant histopathological changes in the brain. The treatment of rats with nicotinamide (100, 300 and 500 mg/kg) improved the motor function tested by locomotor activity test, movement analysis, and limb withdrawal test, which was associated with decreased oxidative stress markers (malondialdehyde, nitrites) and increased antioxidant enzyme (glutathione) levels. In addition, nicotinamide treatment decreased lactate dehydrogenase and prevented neuronal death in the striatal region. Our study, therefore, concludes that antioxidant drugs like nicotinamide might slow progression of clinical HD and may improve the motor functions in HD patients. To the best of our knowledge, this study is the first to explore the neuroprotective effects of nicotinamide on 3-NP-induced HD.
Collapse
Affiliation(s)
- Akram Sidhu
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India.
| | - Vishal Diwan
- UQ Diamantina Institute, Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Harsimran Kaur
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Deepak Bhateja
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Charan K Singh
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141012, India
| | - Saurabh Sharma
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| | - Satyanarayana S V Padi
- Neuropharmacology Division, Department of Pharmacology, I.S.F College of Pharmacy, Ferozepur Road, Ghal Kalan, Moga, Punjab, 142001, India
| |
Collapse
|
10
|
Werner syndrome (WRN) DNA helicase and base excision repair (BER) factors maintain endothelial homeostasis. DNA Repair (Amst) 2018; 73:17-27. [PMID: 30413344 DOI: 10.1016/j.dnarep.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 11/21/2022]
Abstract
The accelerated ageing disease Werner Syndrome (WRN) is characterized by pronounced atherosclerosis. Here, we investigated the influence of WRN downregulation on the functionality of non-replicating human endothelial cells. RNAi-mediated downregulation of WRN reduces cell motility and enhances the expression of factors regulating adhesion, inflammation, hemostasis and vasomotor tone. Moreover, WRN influences endothelial barrier function and Ca2+-release, while cell adhesion, Dil-acLDL-uptake and the mRNA expression of NO-synthases (eNOS, iNOS) remained unaffected. Regarding motility, we propose that WRN affects Rac1/FAK/ß1-integrin-related mechanisms regulating cell polarity and directed motility. Since oxidative DNA base damage contributes to aging and atherosclerosis and WRN affects DNA repair, we investigated whether downregulation of base excision repair (BER) factors mimics the effects of WRN knock-down. Indeed, downregulation of particular WRN-interacting base excision repair (BER) proteins (APE1, NEIL1, PARP1) imitates the inhibitory effect of WRN on motility. Knock-down of OGG1, which does not interact with WRN, does not influence motility but increases the mRNA expression of E-selectin, ICAM, VCAM, CCL2 and VEGFR and stimulates adhesion. Thus, individual BER factors themselves differently impact endothelial cell functionality and homeostasis. Impairment of endothelial activities caused by genotoxic stressor (tBHQ) remained largely unaffected by WRN. Summarizing, both WRN, WRN-associated BER proteins and OGG1 promote the maintenance of endothelial cell homeostasis, thereby counteracting the development of ageing-related endothelial malfunction in non-proliferating endothelial cells.
Collapse
|
11
|
Bilan DS, Shokhina AG, Lukyanov SA, Belousov VV. [Main Cellular Redox Couples]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:385-402. [PMID: 26615634 DOI: 10.1134/s1068162015040044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the living cells maintain the continuous flow of electrons, which provides them by energy. Many of the compounds are presented in a cell at the same time in the oxidized and reduced states, forming the active redox couples. Some of the redox couples, such as NAD+/NADH, NADP+/NADPH, oxidized/reduced glutathione (GSSG/GSH), are universal, as they participate in adjusting of many cellular reactions. Ratios of the oxidized and reduced forms of these compounds are important cellular redox parameters. Modern research approaches allow setting the new functions of the main redox couples in the complex organization of cellular processes. The following information is about the main cellular redox couples and their participation in various biological processes.
Collapse
|
12
|
Celik-Ozenci C, Tasatargil A. Role of poly(ADP-ribose) polymerases in male reproduction. SPERMATOGENESIS 2014; 3:e24194. [PMID: 23885303 PMCID: PMC3710221 DOI: 10.4161/spmg.24194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/05/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes involved in a wide variety of biological processes, including DNA repair and maintenance of genomic stability following genotoxic stress, and regulates the expression of various proteins at the transcriptional level as well as replication and differentiation. However, excessive activation of PARP has been shown to contribute to the pathogenesis of several diseases associated with oxidative stress (OS), which has been known to play a fundamental role in the etiology of male infertility. Based on the degree and type of the stress stimulus, PARP directs cells to specific fates (such as, DNA repair vs. cell death). A large volume of accumulated evidence indicates the presence of PARP and its homologs in testicular germ line cells and its activity may offer a key mechanism for keeping DNA integrity in spermatogenesis. On the other hand, a possible role of PARP overactivation in OS-induced male reproductive disorders and in human sperm is gaining significance in recent years. In this review, we focus on the findings about the importance of PARP-1 and PARP-2 in male reproduction and possible involvement of PARP overactivation in various clinical conditions associated with male infertility.
Collapse
Affiliation(s)
- Ciler Celik-Ozenci
- Akdeniz University Medical Faculty Department of Histology and Embryology; Antalya, Turkey
| | | |
Collapse
|
13
|
Wang F, Zhou X, Liu W, Sun X, Chen C, Hudson LG, Jian Liu K. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1. Free Radic Biol Med 2013; 61:249-56. [PMID: 23602911 PMCID: PMC3766412 DOI: 10.1016/j.freeradbiomed.2013.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022]
Abstract
Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA; Department of Nutrition and Food Hygiene, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xi Sun
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chen Chen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
14
|
Abeti R, Duchen MR. Activation of PARP by oxidative stress induced by β-amyloid: implications for Alzheimer's disease. Neurochem Res 2012; 37:2589-96. [PMID: 23076628 DOI: 10.1007/s11064-012-0895-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease of old age, characterised by progressive cognitive impairment, dementia and atrophy of the central nervous system. The pathological hallmarks include the accumulation of the peptide β-amyloid (Aβ) which itself is toxic to neurons in culture. Recently, it has been discovered that Aβ activates the protein poly(ADP-ribosyl) polymerase-1 (PARP-1) specifically in astrocytes, leading indirectly to neuronal cell death. PARP-1 is a DNA repair enzyme, normally activated by single strand breaks associated with oxidative stress, which catalyses the formation of poly ADP-ribose polymers from nicotinamide adenine dinucleotide (NAD(+)). The pathological over activation of PARP-1 causes depletion of NAD(+) and leads to cell death. Here we review the relationship between AD and PARP-1, and explore the role played by astrocytes in neuronal death. AD has so far proven refractory to any effective treatment. Identification of these pathways represents a step towards a greater understanding of the pathophysiology of this devastating disease with the potential to explore novel therapeutic targets.
Collapse
Affiliation(s)
- Rosella Abeti
- Department of Molecular Neuroscience, Institute of Neurology, UCL, Queen Square, London, WC1N 3BG, UK.
| | | |
Collapse
|
15
|
Schrattenholz A, Šoškić V, Schöpf R, Poznanović S, Klemm-Manns M, Groebe K. Protein biomarkers for in vitro testing of toxicology. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:113-23. [DOI: 10.1016/j.mrgentox.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 12/14/2022]
|
16
|
Pan Z, Chang C. Gender and the regulation of longevity: implications for autoimmunity. Autoimmun Rev 2011; 11:A393-403. [PMID: 22182796 DOI: 10.1016/j.autrev.2011.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For humans and other animals, gender has an influence not only on their physical attributes, but also on life span. In humans, females have a longer life span than males. The reasons for this are not entirely clear. The role of gender in the regulation of longevity may be linked to gender specific genetic differences, including the expression of sex hormone patterns and the changes in these patterns during an individual's lifetime. In addition, the effect of sex hormones on other physiologic responses to environmental influences on cellular stress and oxidative damage may play a role in longevity. Gender can impact many disease states, including autoimmune diseases, and the factors that affect the development of autoimmune diseases and the regulation of longevity may share common mechanistic pathways. Other factors that may play a role include telomere and telomerase related differences, caloric restriction and changes in mitochondrial DNA. Inflammatory and regulatory pathways such as insulin/IGF signaling and Target of Rapamycin (TOR) signaling may also play a role in longevity and aging-related diseases such as Alzheimer's. The role of gender differences in the regulation of these pathways or factors is not entirely clear. The role of X-chromosome inactivation in longevity has also yet to be fully elucidated.
Collapse
Affiliation(s)
- Zhen Pan
- Nemours/A.I duPont Hospital for children, Division of Allergy, Asthma and Immunology, USA
| | | |
Collapse
|
17
|
Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int 2011. [PMID: 22091411 DOI: 10.4061/2011/718974]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
18
|
Interdependent genotoxic mechanisms of monomethylarsonous acid: role of ROS-induced DNA damage and poly(ADP-ribose) polymerase-1 inhibition in the malignant transformation of urothelial cells. Toxicol Appl Pharmacol 2011; 257:1-13. [PMID: 21925530 DOI: 10.1016/j.taap.2011.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/17/2011] [Accepted: 08/30/2011] [Indexed: 01/27/2023]
Abstract
Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA(III)), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA(III) exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA(III), PARP-1 activity does not increase despite the increase in MMA(III)-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA(III) exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA(III) indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA(III). The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA(III) to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA(III) to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA(III) exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA(III). Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA(III)-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA(III) may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMA(III)-induced DNA damage through the production of reactive oxygen species, and the direct MMA(III)-induced inhibition of PARP-1.
Collapse
|
19
|
Genetic dissection of PARylation in the filamentous fungus Neurospora crassa. Methods Mol Biol 2011. [PMID: 21870276 DOI: 10.1007/978-1-61779-270-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PARylation is a posttranslational protein modification carried out by PAR polymerases (PARPs). These enzymes function as ADP-ribose transferases that add polymers of ADP-ribose (PAR) to target proteins. PARP proteins have critical functions impacting the aspects of normal human health, such as aging, as well as disease development, particularly cancer. Recently, the powerful antitumor PARP inhibitor Olaparib was shown to be effective in blocking the progression of BRCA1/2-associated tumors, prompting Bruce Alberts to call for an expansion of cancer research beyond utilization of cancer cell lines to include model organisms, such as bacteria, yeast, worms, flies, and mice. Although Dr. Alberts did not specifically mention the filamentous fungus Neurospora crassa, it is now known that Neurospora is the only genetically tractable model eukaryote with completely dispensable PARylation. PARylation in Neurospora can be entirely eliminated by disruption of a single predicted ORF, encoding a nuclear localized PARP protein termed Neurospora PARP ortholog (NPO). We, thus, present this initial genetic characterization of PARylation in N. crassa as evidence of the supreme advantage of using Neurospora as a tool for the genetic dissection of PARP and PARylation and emphasize the power of this system to advance unparalleled contributions to knowledge in this field.
Collapse
|
20
|
Martinez VD, Vucic EA, Adonis M, Gil L, Lam WL. Arsenic biotransformation as a cancer promoting factor by inducing DNA damage and disruption of repair mechanisms. Mol Biol Int 2011; 2011:718974. [PMID: 22091411 PMCID: PMC3200225 DOI: 10.4061/2011/718974] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/06/2011] [Indexed: 11/20/2022] Open
Abstract
Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.
Collapse
Affiliation(s)
- Victor D Martinez
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | |
Collapse
|
21
|
Modulation of PARP-1 and PARP-2 expression by L-carnosine and trehalose after LPS and INFγ-induced oxidative stress. Neurochem Res 2010; 35:2144-53. [PMID: 21053069 DOI: 10.1007/s11064-010-0297-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L: -carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INFγ), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials.
Collapse
|
22
|
Groebe K, Klemm-Manns M, Schwall GP, Hübenthal H, Unterluggauer H, Jansen-Dürr P, Tanguay RM, Morrow G, Schrattenholz A. Age-dependent posttranslational modifications of voltage-dependent anion channel 1. Exp Gerontol 2010; 45:632-7. [PMID: 20189493 DOI: 10.1016/j.exger.2010.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/01/2010] [Accepted: 02/12/2010] [Indexed: 01/17/2023]
Abstract
The accumulation of oxidative damage in mitochondrial proteins, membranes and DNA during ageing is supposed to lead to mitochondrial inactivation, downstream molecular impairments and subsequent decline of biological systems. In a quantitative study investigating the age-related changes of mitochondrial proteins on the level of oxidative posttranslational modifications, we previously found a set of conserved biomarkers across ageing models in five species with consistent oxidative break-up of tryptophan residues and formation of N-formyl kynurenine. In an additional proteomic profiling of a long-living Drosophila mutant overexpressing mitochondrial Hsp22 and controls, we found age-related redundant isoforms of voltage-dependent anion channel 1 (VDAC-1). A re-examination of data from human umbilical vein endothelial cells (with normal and chemically accelerated in vitro ageing), revealed similar age-dependent alterations of voltage-dependent anion channel isoforms. Building on these results, we examined the expression of VDAC-1 in an in vitro model of excitotoxicity. We show that glutamate-induced calcium toxicity in neurons induces changes of voltage-dependent anion channel 1 related to downstream events of mitochondrial apoptosis like poly-ADP-ribosylation.
Collapse
|
23
|
PARP is involved in replicative aging in Neurospora crassa. Fungal Genet Biol 2010; 47:297-309. [PMID: 20045739 DOI: 10.1016/j.fgb.2009.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/10/2009] [Accepted: 12/29/2009] [Indexed: 11/22/2022]
Abstract
Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.
Collapse
|
24
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
25
|
Beneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Bürkle A. Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res 2008; 36:6309-17. [PMID: 18835851 PMCID: PMC2577345 DOI: 10.1093/nar/gkn615] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the proteasome. We show that pharmacological inhibition of poly(ADP-ribose) polymerase activity in cells from two different species leads to rapid decrease in median telomere length and stabilization at a lower setting. Specific knockdown of poly(ADP-ribose) polymerase-1 by RNA interference had the same effect. The length of the single-stranded telomeric overhang as well as telomerase activity were not affected. Release of inhibition led to a fast re-gain in telomere length to control levels in cells expressing active telomerase. We conclude that poly(ADP-ribose) polymerase-1 activity and probably its interplay with telomeric-repeat binding factor-2 is an important determinant in telomere regulation. Our findings reinforce the link between poly(ADP-ribosyl)ation and aging/longevity and also impact on the use of poly(ADP-ribose) polymerase inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Qin XJ, Hudson LG, Liu W, Timmins GS, Liu KJ. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 2008; 232:41-50. [PMID: 18619636 PMCID: PMC2584354 DOI: 10.1016/j.taap.2008.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/23/2022]
Abstract
Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (
Collapse
Affiliation(s)
- Xu-Jun Qin
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | |
Collapse
|
27
|
Qin XJ, Hudson LG, Liu W, Ding W, Cooper KL, Liu KJ. Dual actions involved in arsenite-induced oxidative DNA damage. Chem Res Toxicol 2008; 21:1806-13. [PMID: 18707137 PMCID: PMC3606021 DOI: 10.1021/tx8001548] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Arsenic is a recognized human carcinogen, but the mechanism of carcinogenesis is not well understood. Oxidative stress and inhibition of DNA damage repair have been postulated as potential carcinogenic actions of arsenic. The present study tests the hypothesis that arsenite not only induces oxidative stress but also inhibits the activity of the DNA base excision repair protein, poly(ADP-ribose) polymerase-1 (PARP-1), leading to exacerbation of the oxidative DNA damage induced by arsenic. HaCat cells were treated with arsenite for 24 h before measuring 8-hydroxyl-2'-deoxyguanosine (8-OHdG), PARP-1 activity, and reactive oxygen species (ROS). Zinc supplementation and PARP-1 siRNA were used to increase or decrease, respectively, the PARP-1 protein's physiological function. At high concentrations (10 microM or higher), arsenite greatly induced oxidative DNA damage, as indicated by 8-OHdG formation. At lower concentrations (1 microM), arsenite did not produce detectable 8-OHdG, but was still able to effectively inhibit PARP-1 activity. Zinc supplementation reduced the formation of 8-OHdG, restored the PARP-1 activity inhibited by arsenite, but did not decrease ROS production. SiRNA knockdown of PARP-1 did not affect the 8-OHdG level induced by arsenic, while it greatly increased the 8-OHdG level produced by hydrogen peroxide indicating that PARP-1 is a molecular target of arsenite. Our findings demonstrate that in addition to inducing oxidative stress at higher concentrations, arsenite can also inhibit the function of a key DNA repair protein, PARP-1, even at very low concentrations, thus exacerbating the overall oxidative DNA damage produced by arsenite, and potentially, by other oxidants as well.
Collapse
Affiliation(s)
- Xu-Jun Qin
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
- Department of Toxicology, The Fourth Military Medical University, Xi’an, Shaanxi, 710032, China
| | - Laurie G. Hudson
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wenlan Liu
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Ding
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Karen L. Cooper
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Ke Jian Liu
- Program of Toxicology, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
28
|
Mocchegiani E. Zinc, metallothioneins, longevity: effect of zinc supplementation on antioxidant response: a Zincage study. Rejuvenation Res 2008; 11:419-23. [PMID: 18442325 DOI: 10.1089/rej.2008.0686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aging is characterized by spontaneous biochemical changes that may predispose to increased susceptibility to diseases. Zinc may remodel these changes leading to healthy aging because zinc improves antioxidant defense via CLU protein and genomic stability via PARP-1 nuclear enzyme and repairs oxidized proteins via Msr A protein. The intracellular zinc homeostasis is regulated by metallothioneins (MT), which are unable in zinc release in aging, causing impaired antioxidant response restored by zinc supplementation. Here, the choice of old subjects for zinc supplementation is discussed in relation to their genetic background of MT and IL-6, because both affect intracellular zinc homeostasis.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunolgy Center, Section of Nutrigenomics and Immunosenenscence, Res. Dept. INRCA, Ancona, Italy.
| | | |
Collapse
|
29
|
Park SY, Leung CH, Cheng YC. ATP modulates poly(ADP-ribose) polymerase-1-facilitated topoisomerase I-linked DNA religation in the presence of camptothecin. Mol Pharmacol 2008; 73:1829-37. [PMID: 18349103 DOI: 10.1124/mol.107.044438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP)-1 was reported to promote the religation activity of topoisomerase I in the presence of camptothecin by itself through the direct interaction with topoisomerase I or by the formation of poly(ADP-ribosyl)ated topoisomerase I. We have demonstrated previously that ATP inhibited PARP-1/NAD-facilitated religation of topoisomerase I-linked DNA (TLD) in the presence of camptothecin. The mechanism of action was further studied in the present work. ATP as well as other nucleotides, including CTP, UTP, and GTP, had no effect on topoisomerase I cleavage and religation activities in the absence of camptothecin. In the presence of camptothecin or its derivative topotecan, ATP (at up to 2 mM) inhibited PARP-1/NAD-facilitated TLD religation in a dose-dependent manner. This could be due to the suppression of topoisomerase I poly(ADP-ribosyl)ation through the competition with NAD for the binding site(s) on PARP-1. The interaction between ATP and PARP-1 was independent of ATP hydrolysis. Study of different nucleotide analogs revealed that the structure could determine the dose response of nucleotides. In addition, it was noted that higher concentrations of ATP and CTP (at 2.5 mM or higher) promoted DNA religation by a PARP-1-independent mechanism. Our study implies the possible role of ATP and other nucleotides in the regulation of topoisomerase I activity in the presence of camptothecin analogs.
Collapse
Affiliation(s)
- Shin-Young Park
- Department of Pharmacology, Yale University School of Medicine, P.O. Box 208066, New Haven, CT 06520-8066, USA
| | | | | |
Collapse
|
30
|
El-Domyati MM, Al-Din ABM, Barakat MT, El-Fakahany HM, Xu J, Sakkas D. Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate-ribosyl)ation pathway. Fertil Steril 2008; 91:2221-9. [PMID: 18440520 DOI: 10.1016/j.fertnstert.2008.03.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/09/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To explore the relationship between men's age and DNA damage repair proteins related to apoptosis in human testicular germ cells. DESIGN Retrospective case-control study. SETTING Academic institutions. PATIENT(S) Testicular specimens were obtained from 22 fertile volunteers aged 20-82 years. INTERVENTION(S) Deoxyribonucleic acid repair markers were assessed using immunohistochemical staining for the cell proliferation marker [proliferating cell nuclear antigen (PCNA)]; DNA repair markers [poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1), poly(adenosine diphosphate-ribose) (PAR), X-ray repair cross-complementing1(XRCC1), and apurinic/apyrimidinic endonuclease 1 (APE1)]; and apoptosis-associated markers (caspase 9, active caspase 3, and cleaved PARP-1). MAIN OUTCOME MEASURE(S) The prevalence and cellular localization of the above markers in testicular tissues of young, middle aged, and old men. RESULT(S) Statistically significant differences in DNA damage repair-associated proteins (PARP-1, PAR, XRCC1, and APE1), and apoptosis markers (caspase 9, active caspase 3, and cleaved PARP-1) were observed in testicular samples from older men. These differences were most marked in spermatocytes. CONCLUSION(S) The study demonstrates that there is an age-related increase in human testicular germ cell DNA break repair and apoptosis with age.
Collapse
Affiliation(s)
- Moetaz M El-Domyati
- Department of Dermatology, Sexually Transmitted Diseases and Andrology, Al-Minya Faculty of Medicine, Al-Minya, Egypt
| | | | | | | | | | | |
Collapse
|
31
|
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206. [PMID: 18020963 DOI: 10.1089/ars.2007.1672] [Citation(s) in RCA: 1101] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could belong to the fundamental common mediators of various biological processes, including energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress, gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates energy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis; fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability transition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel paradigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases and slowing the aging process.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
32
|
Chevanne M, Calia C, Zampieri M, Cecchinelli B, Caldini R, Monti D, Bucci L, Franceschi C, Caiafa P. Oxidative DNA damage repair and parp 1 and parp 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res 2007; 10:191-204. [PMID: 17518695 DOI: 10.1089/rej.2006.0514] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative DNA damage has been implicated in the aging process and in some of its features such as telomere shortening and replicative senescence. Poly(ADP-ribosyl)ation is involved in many molecular and cellular processes, including DNA damage detection and repair, chromatin modification, transcription, and cell death pathways. We decided to examine the behavior of poly(ADP-ribosyl)ation in centenarians, i.e., those subjects who represent the best example of longevity having reached a very advanced age avoiding the main age-associated diseases. In this study we investigated the relationship between DNA repair capacity and poly(ADP-ribose) polymerase activity in Epstein-Barr virus-immortalized B lymphocyte cell lines from subjects of three different groups of age, including centenarians. Our data show that cells from centenarians have characteristics typical of cells from young people both in their capability of priming the mechanism of repair after H(2)O(2) sublethal oxidative damage and in poly(ADP-ribosyl)ation capacity, while in cells from old subjects these phenomena are delayed or decreased. Moreover, cells from old subjects show a constitutive expression level of both parp 1 and parp 2 genes reduced by a half, together with a reduced presence of modified PARP 1 and other poly(ADP-ribosyl)ated chromatin proteins in comparison to cells from young subjects and centenarians. Our data support the hypothesis that this epigenetic modification is an important regulator of the aging process in humans and it appears to be rather preserved in healthy centenarians, the best example of successful aging.
Collapse
Affiliation(s)
- Marta Chevanne
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Salvioli S, Olivieri F, Marchegiani F, Cardelli M, Santoro A, Bellavista E, Mishto M, Invidia L, Capri M, Valensin S, Sevini F, Cevenini E, Celani L, Lescai F, Gonos E, Caruso C, Paolisso G, De Benedictis G, Monti D, Franceschi C. Genes, ageing and longevity in humans: problems, advantages and perspectives. Free Radic Res 2007; 40:1303-23. [PMID: 17090420 DOI: 10.1080/10715760600917136] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many epidemiological data indicate the presence of a strong familial component of longevity that is largely determined by genetics, and a number of possible associations between longevity and allelic variants of genes have been described. A breakthrough strategy to get insight into the genetics of longevity is the study of centenarians, the best example of successful ageing. We review the main results regarding nuclear genes as well as the mitochondrial genome, focusing on the investigations performed on Italian centenarians, compared to those from other countries. These studies produced interesting results on many putative "longevity genes". Nevertheless, many discrepancies are reported, likely due to the population-specific interactions between gene pools and environment. New approaches, including large-scale studies using high-throughput techniques, are urgently needed to overcome the limits of traditional association studies performed on a limited number of polymorphisms in order to make substantial progress to disentangle the genetics of a trait as complex as human longevity.
Collapse
Affiliation(s)
- S Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perry JJP, Fan L, Tainer JA. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 2006; 145:1280-99. [PMID: 17174478 PMCID: PMC1904427 DOI: 10.1016/j.neuroscience.2006.10.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 12/11/2022]
Abstract
This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to various extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression.
Collapse
Affiliation(s)
- J J P Perry
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
35
|
|
36
|
Scheckhuber C, Osiewacz HD. The role of mitochondria in conserved mechanisms of aging. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2006; 2006:pe15. [PMID: 16807479 DOI: 10.1126/sageke.2006.10.pe15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The European research project MiMage, supported by the European Community's Sixth Framework for Research and Technological Development, focuses on elucidating the role of mitochondria in conserved mechanisms of aging. This Perspective summarizes a selection of talks presented in April 2006 at the second MiMage symposium by members from participating laboratories and invited speakers.
Collapse
Affiliation(s)
- Christian Scheckhuber
- Department of Molecular Developmental Biology, Institute of Molecular Biosciences, J. W. Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| | | |
Collapse
|
37
|
Mocchegiani E, Malavolta M, Marcellini F, Pawelec G. Zinc, oxidative stress, genetic background and immunosenescence: implications for healthy ageing. IMMUNITY & AGEING 2006; 3:6. [PMID: 16800874 PMCID: PMC1557865 DOI: 10.1186/1742-4933-3-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Accepted: 06/26/2006] [Indexed: 11/10/2022]
Abstract
The relevance of zinc for proper functioning of the entire immune system is already well documented. However, the identification of individuals who really need zinc supplementation is still debated in view of the fact that excessive zinc may also be toxic. The risk of developing zinc deficiency in people from industrialized countries is relatively low, except for elderly subjects where zinc intake may be suboptimal and inflammation is chronic. Thus, the role of zinc on the immune system and on the health of European elderly people is becoming of paramount importance, considering also that the elderly population is rapidly increasing. In particular, the factors contributing to and the biochemical markers of zinc deficiency in the elderly are still remain to be established. Epidemiological, functional, and genetic studies aimed at formulating a rationale for the promotion of healthy ageing through zinc supplementation was the subject of an International Conference held in Madrid from 11-13 February 2006 (3rd ZincAge Meeting) at the CNIO Institute (local organizer: Maria Blasco, partner of ZincAge).
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Ctr. (Section: Nutrition and Immunosenescence) Res. Dept. INRCA, Ancona, Italy
| | - Marco Malavolta
- Immunology Ctr. (Section: Nutrition and Immunosenescence) Res. Dept. INRCA, Ancona, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tuebingen, D-72072 Tuebingen, Germany
| |
Collapse
|
38
|
Garske AL, Denu JM. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Biochemistry 2006; 45:94-101. [PMID: 16388584 PMCID: PMC2519118 DOI: 10.1021/bi052015l] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel, high-throughput method for determining deacetylase substrate specificity was developed using a one-bead, one-compound (OBOC) acetyl-peptide library with a quantum dot tagging strategy and automated bead-sorting. A 5-mer OBOC peptide library of 104,907 unique sequences was constructed around a central epsilon-amino acetylated lysine. The library was screened using the human NAD+-dependent deacetylase SIRT1 for the most efficiently deacetylated peptide sequences. Beads preferentially deacetylated by SIRT1 were biotinylated and labeled with streptavidin-coated quantum dots. After fluorescent bead-sorting, the top 39 brightest beads were sequenced by mass spectrometry. In-solution deacetylase assays on randomly chosen hit and nonhit sequences revealed that hits correlated with increased catalytic activity by as much as 20-fold. We found that SIRT1 can discriminate peptide substrates in a context-dependent fashion.
Collapse
Affiliation(s)
- Adam L. Garske
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence should be addressed: University of Wisconsin, Dept. of Biomolecular Chemistry, 1300 University Ave. Madison, WI 53706−1532. Tel: (608) 265−1859 Fax: (608) 262−5253;
| |
Collapse
|
39
|
Vasto S, Malavolta M, Pawelec G. Age and immunity. IMMUNITY & AGEING 2006; 3:2. [PMID: 16504129 PMCID: PMC1402324 DOI: 10.1186/1742-4933-3-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 02/24/2006] [Indexed: 11/14/2022]
Abstract
Longitudinal studies are defining progressive alterations to the immune system associated with increased mortality in the very elderly. Many of these changes are exacerbated by or even caused by chronic T cell stimulation by persistent antigen, particularly from Cytomegalovirus. The composition of T cell subsets, their functional integrity and representation in the repertoire are all markedly influenced by age and by CMV. How these findings relate to epidemiological, functional, genetic, genomic and proteomic studies of human T cell immunosenescence was the subject of intense debate at an international conference held just before Christmas 2005 in the Black Forest.
Collapse
Affiliation(s)
- Sonya Vasto
- Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Italia
| | - Marco Malavolta
- Immunology Ctr.(Sect.: Nutrition, Immunity and Ageing)Res. Dept. INRCA, Ancona Italia
| | - Graham Pawelec
- Center for Medical Research, University of Tübingen, D-72072 Tübingen, Germany
| |
Collapse
|
40
|
Graziani G, Battaini F, Zhang J. PARP-1 inhibition to treat cancer, ischemia, inflammation. Pharmacol Res 2005; 52:1-4. [PMID: 15911328 DOI: 10.1016/j.phrs.2005.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 01/01/2023]
Affiliation(s)
- Grazia Graziani
- Department of Neuroscience, Pharmacology Section, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
41
|
Hass R. Retrodifferentiation and reversibility of aging: forever young? SIGNAL TRANSDUCTION 2005; 5:93-102. [DOI: 10.1002/sita.200400054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
AbstractMaturation of stem cells or precursor cells is associated with the acquisition of certain properties finally resulting in specifically functional cell types within the diverse tissues. This maturation process requires distinct steps of differentiation and is accompanied by a constantly increasing process of aging paralleled by a progressively reduced proliferative capacity. The eventually growth arrested and terminally differentiated cells perform their appropriate specific functions associated with developing senescence by STASIS (stress or aberrant signaling‐inducing senescence) and/or by replicative senescence. Finally, elimination via apoptosis concludes their life span. However, nature also provides a surprise within this concept of life: Sometimes, differentiation and aging steps are reversible. A biological phenomenon of completely reversible differentiation events has been characterized as retrodifferentiation rather than dedifferentiation. Thus, all morphological and functional properties of retrodifferentiated and previously more undifferentiated cells are indistinguishable. Consequently, reversible differentiation may simultaneously be associated with a reversibility of the aging process and therefore, contributes to longevity and rejuvenation. Tissue renewals or regenerative potential for tissue‐specific requirements, if not sufficiently compensated by the appropriate stem cells, may necessitate the generation of undifferentiated precursors by retrodifferentiation followed by a subsequent transdifferentiation process with the consequence of cell type conversion which also includes the risk for tumor development. This interference with the normal biological clock mediated by threshold effects in certain individual cells, raises important questions: What signals trigger retrodifferentiation and what would be the finite life span of cells with a retrodifferentiation capacity?
Collapse
|