1
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
2
|
Cui B, Luo H, He B, Liu X, Lv D, Zhang X, Su K, Zheng S, Lu J, Wang C, Yang Y, Zhao Z, Liu X, Wang X, Zhao Y, Nie X, Jiang Y, Zhang Z, Liu C, Chen X, Cai A, Lv Z, Liu Z, An F, Zhang Y, Yan Q, Kelley KW, Xu G, Xu L, Liu Q, Peng F. Gut dysbiosis conveys psychological stress to activate LRP5/β-catenin pathway promoting cancer stemness. Signal Transduct Target Ther 2025; 10:79. [PMID: 40038255 DOI: 10.1038/s41392-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Psychological stress causes gut microbial dysbiosis and cancer progression, yet how gut microbiota determines psychological stress-induced tumor development remains unclear. Here we showed that psychological stress promotes breast tumor growth and cancer stemness, an outcome that depends on gut microbiota in germ-free and antibiotic-treated mice. Metagenomic and metabolomic analyses revealed that psychological stress markedly alters the composition and abundance of gut microbiota, especially Akkermansia muciniphila (A. muciniphila), and decreases short-chain fatty acid butyrate. Supplement of active A. muciniphila, butyrate or a butyrate-producing high fiber diet dramatically reversed the oncogenic property and anxiety-like behavior of psychological stress in a murine spontaneous tumor model or an orthotopic tumor model. Mechanistically, RNA sequencing analysis screened out that butyrate decreases LRP5 expression to block the activation of Wnt/β-catenin signaling pathway, dampening breast cancer stemness. Moreover, butyrate as a HDAC inhibitor elevated histone H3K9 acetylation level to transcriptionally activate ZFP36, which further accelerates LRP5 mRNA decay by binding adenine uridine-rich (AU-rich) elements of LRP5 transcript. Clinically, fecal A. muciniphila and serum butyrate were inversely correlated with tumoral LRP5/β-catenin expression, poor prognosis and negative mood in breast cancer patients. Altogether, our findings uncover a microbiota-dependent mechanism of psychological stress-triggered cancer stemness, and provide both clinical biomarkers and potential therapeutic avenues for cancer patients undergoing psychological stress.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sijia Zheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xianxian Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingrui Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoshan Nie
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ziyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyi Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anqi Cai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhumeng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhihang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingzhi Xu
- Department of Oncology, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Fang H, Xu J, Ma H, Feng Z, Cheng YY, Nie Y, Guan Y, Liu Y, Song K. A quercetin nanoparticle combined with a 3D-printed decellularized extracellular matrix/ gelatin methacryloyl/sodium alginate biomimetic tumor model for the treatment of melanoma. Int J Biol Macromol 2025; 288:138680. [PMID: 39672413 DOI: 10.1016/j.ijbiomac.2024.138680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The traditional drug efficacy testing often conducted using two-dimensional (2D) cell culture methods, which do not accurately replicate the complexity of the tumor microenvironment. Melanoma in particular, is known for its high incidence, and aggressive nature, highlighting the need for more sophisticated in vitro models that better simulate the tumor's true biological microenvironment drug research and therapy. In this study, we developed quercetin nanoparticles (QueNPs) with enhanced water solubility and promising tumor therapeutic effects. These nanoparticles were formed through the self-assembly of Pluronic F127 (PF127) and quercetin (Que). To better mimic the in vivo tumor environment, we also created a composite scaffold using three-dimensional (3D) printing technology, incorporating a decellularized extracellular matrix (dECM), which closely resembles the native tissue microenvironment. The scaffold also included gelatin methacryloyl (GelMA), which forms a polymeric network via photocrosslinking, and sodium alginate (SA), which enhances structural stability through ion cross-linking with calcium ions. This combination was used to construct a more physiologically relevant 3D melanoma model. The anti-cancer effects of QueNPs were assessed in both 2D and 3D culture systems. The results showed that tumor cells in the 3D model formed cluster and distributed across the scaffold, creating a more realistic tumor microenvironment compared to the 2D system. Cells in the 3D tumor model exhibited significant resistance to QueNPs, with a time dependent response that resulted in a killing rate of over 90 % by day 14. These findings highlight the efficiency of the QueNPs in the 3D melanoma model and emphasize the importance of incorporation 3D printing and nanomedicine for more accurate and effective drug screening.
Collapse
Affiliation(s)
- Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Zijiao Feng
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| | - Yanchun Guan
- Department of Rheumatology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yaqian Liu
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| |
Collapse
|
4
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Shaheen S, Lalarukh I, Ahmad J, Zulqadar SA, Alharbi SA, Hareem M, Alarfaj AA, Ansari MJ. Physio-biochemical mechanism of melatonin seed priming in stimulating growth and drought tolerance in bread wheat. BMC PLANT BIOLOGY 2024; 24:918. [PMID: 39354351 PMCID: PMC11443756 DOI: 10.1186/s12870-024-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Drought stress (DS) adversely affects a plant's development and growth by negatively altering the plant's physio-biochemical functions. Previous investigations have illustrated that seed priming with growth regulators is an accessible, affordable, and effective practice to elevate a plant's tolerance to drought stress. Melatonin (MT) is derived from the precursor tryptophan and can improve germination, biomass, and photosynthesis under stress conditions. The current study examined the effect of melatonin seed priming on two wheat cultivars (Fakhar-e-Bhakkar and Akber-19) cultivated under severe drought conditions (35% FC). There were 6 levels of melatonin (i.e., M0 = control, M1 = 1 mg L- 1, M2 = 2 mg L- 1, M3 = 3 mg L- 1, M4 = 4 mg L- 1 and M5 = mg L- 1) which were used for seed priming. Our results confirmed that seed priming with M2 = 2 mgL- 1 concentration of MT alleviates the negative effects of DS by boosting the germination rate by 54.84% in Akber-19 and 33.33% in Fakhar-e-Bhakkar. Similarly, leaf-relative water contents were enhanced by 22.38% and 13.28% in Akber-19 and Fakhar-e-Bhakkar, respectively. Melatonin pre-treatment with 2 mgL- 1 significantly enhanced fresh and dry biomass of shoot and root, leaf area, photosynthetic pigments, osmoprotectants accumulation [total soluble proteins (TSP), total free amino acids (TFAA), proline, soluble sugars, glycine betaine (GB)] and lowered the amount of malondialdehyde (MDA) and hydrogen peroxide (H2O2) production by elevating antioxidants [Ascorbic acid, catalase (CAT), Phenolics, peroxidase (POD) and superoxide dismutase (SOD)] activity under drought stress (DS). Meanwhile, under control conditions (NoDS), the melatonin treatment M1 = 1 mgL- 1 effectively enhanced all the growth-related physio-biochemical attributes in both wheat cultivars. In the future, more investigations are suggested on different crops under variable agroclimatic conditions to declare 2 mgL- 1 melatonin as an efficacious amendment to alleviate drought stress.
Collapse
Affiliation(s)
- Sehar Shaheen
- Department of Botany, Government College Women University, Faisalabad, Pakistan.
| | - Irfana Lalarukh
- Department of Botany, Government College Women University, Faisalabad, Pakistan.
| | - Javed Ahmad
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Syed Ali Zulqadar
- Office Soil and Water Testing Laboratory for Research, Bahawalpur, Punjab, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly)-Uttar Pradesh, Moradabad, 24400, India
| |
Collapse
|
6
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
7
|
Ren Y, Sun Y, Liao YY, Wang S, Liu Q, Duan CY, Sun L, Li XY, Yuan JL. Mechanisms of action and applications of Polygonatum sibiricum polysaccharide at the intestinal mucosa barrier: a review. Front Pharmacol 2024; 15:1421607. [PMID: 39224782 PMCID: PMC11366640 DOI: 10.3389/fphar.2024.1421607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
As a medicinal and edible homologous Chinese herb, Polygonatum sibiricum has been used as a primary ingredient in various functional and medicinal products. Damage to the intestinal mucosal barrier can lead to or worsen conditions such as type 2 diabetes and Alzheimer's disease. Traditional Chinese medicine and its bioactive components can help prevent and manage these conditions by restoring the integrity of the intestinal mucosal barrier. This review delves into the mode of action of P. sibiricum polysaccharide in disease prevention and management through the restoration of the intestinal barrier. Polysaccharide from P. sibiricum effectively treats conditions by repairing the intestinal mucosal barrier, offering insights for treating complex diseases and supporting the application of P. sibiricum in clinical settings.
Collapse
Affiliation(s)
- Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu-Ying Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Yan Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-Ya Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
8
|
Huang G, Zheng Y, Zhang N, Huang G, Zhang W, Li Q, Ren X. Desulfovibrio vulgaris caused gut inflammation and aggravated DSS-induced colitis in C57BL/6 mice model. Gut Pathog 2024; 16:39. [PMID: 39060944 PMCID: PMC11282857 DOI: 10.1186/s13099-024-00632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) is a potential pathogen usually detected in patients with gastrointestinal diseases. Hydrogen sulfide (H2S), a metabolic byproduct of SRB, was considered the main causative agent that disrupted the morphology and function of gut epithelial cells. Associated study also showed that flagellin from Desulfovibrio vulgaris (DVF), the representative bacterium of the Desulfovibrio genus, could exacerbate colitis due to the interaction of DVF and LRRC19, leading to the secretion of pro-inflammatory cytokines. However, we still have limited understanding about the change of gut microbiota (GM) composition caused by overgrowth of SRB and its exacerbating effects on colitis. RESULTS In this study, we transplanted D. vulgaris into the mice treated with or without DSS, and set a one-week recovery period to investigate the impact of D. vulgaris on the mice model. The outcomes showed that transplanted D. vulgaris into the normal mice could cause the gut inflammation, disrupt gut barrier and reduce the level of short-chain fatty acids (SCFAs). Moreover, D. vulgaris also significantly augmented DSS-induced colitis by exacerbating the damage of gut barrier and the secretion of inflammatory cytokines, for instance, IL-1β, iNOS, and TNF-α. Furthermore, results also showed that D. vulgaris could markedly change GM composition, especially decrease the relative abundance of SCFAs-producing bacteria. Additionally, D. vulgaris significantly stimulated the growth of Akkermansia muciniphila probably via its metabolic byproduct, H2S, in vivo. CONCLUSIONS Collectively, this study indicated that transplantation of D. vulgaris could cause gut inflammation and aggravate the colitis induced by DSS.
Collapse
Affiliation(s)
- Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China.
- Department of Geriatrics, Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ni Zhang
- Metabolic Medicine Center, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Guohai Huang
- Department of Blood Purification Center, Shantou Central Hospital, Shantou, China
| | - Weijin Zhang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Xuecong Ren
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China.
| |
Collapse
|
9
|
Zhang Y, Zhen S, Xu H, Sun S, Wang Z, Li M, Zou L, Zhang Y, Zhao Y, Cui Y, Han J. Vitamin C alleviates rheumatoid arthritis by modulating gut microbiota balance. Biosci Trends 2024; 18:187-194. [PMID: 38599880 DOI: 10.5582/bst.2024.01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetric in-flammation. Our previous research revealed an imbalance in the gut flora of RA patients and showed that certain gut microbiota can accelerate RA progression by enhancing vitamin C degradation. However, it is unclear whether vitamin C supplementation could improve the gut microbiota to prevent the development of arthritis by interfering with the gut-joint axis. In this work, we aimed to evaluate the effects of vitamin C in regulating the gut microbiota and to elucidate its potential role in the onset and progression of RA in a mouse model, thus providing a basis for the development of new intervention strategies and treatments for RA. In this study, collagen-induced arthritis (CIA) mouse models, biochemical, histological and 16S rRNA microbiological methods were used to investigate the role and possible mechanism of vitamin C in rheumatoid arthritis. The results showed that treatment of CIA mice with vitamin C effectively rescued the gut mi-crobiota imbalance and suppressed the inflammatory response associated with RA, and effectively alleviated arthritis symptoms in mice in which levels of the pro-inflammatory cytokines IL-6 and TNF-α were specifi-cally reduced. In conclusion, our results demonstrate the potential of vitamin C as a potential therapeutic choice for RA.
Collapse
Affiliation(s)
- Yanjie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Sibin Zhen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Hao Xu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Songfang Sun
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Ziwei Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Mian Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Liang Zou
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yangyang Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Yan Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Yazhou Cui
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| | - Jinxiang Han
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji' nan, Shandong, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Ji'nan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, Shandong, China
| |
Collapse
|
10
|
Chang HY, Chen SY, Lin JA, Chen YY, Chen YY, Liu YC, Yen GC. Phyllanthus emblica Fruit Improves Obesity by Reducing Appetite and Enhancing Mucosal Homeostasis via the Gut Microbiota-Brain-Liver Axis in HFD-Induced Leptin-Resistant Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10406-10419. [PMID: 38659208 PMCID: PMC11082930 DOI: 10.1021/acs.jafc.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate
Institute of Food Safety, National Chung
Hsing University, 145
Xingda Road, Taichung 40227, Taiwan
| | - Ying-Yin Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yu-Chen Liu
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
11
|
Wei X, Wang F, Tan P, Huang H, Wang Z, Xie J, Wang L, Liu D, Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res 2024; 203:107148. [PMID: 38522760 DOI: 10.1016/j.phrs.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Jin Y, Han C, Yang D, Gao S. Association between gut microbiota and diabetic nephropathy: a mendelian randomization study. Front Microbiol 2024; 15:1309871. [PMID: 38601939 PMCID: PMC11004376 DOI: 10.3389/fmicb.2024.1309871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background The correlation between diabetic nephropathy (DN) and gut microbiota (GM) has been suggested in numerous animal experiments and cross-sectional studies. However, a causal association between GM and DN has not been ascertained. Methods This research adopted MR analysis to evaluate the causal link between GM and DN derived from data acquired through publicly available genome-wide association studies (GWAS). The study utilized the inverse variance weighted (IVW) approach to assess causal association between GM and DN. Four additional methods including MR-Egger, weighted median, weighted mode, and simple mode were employed to ensure comprehensive analysis and robust results. The Cochran's Q test and the MR-Egger method were conducted to identify heterogeneity and horizontal pleiotropy, respectively. The leave-one-out approach was utilized to evaluate the stability of MR results. Finally, a reverse MR was performed to identify the reverse causal association between GM and DN. Results According to IVW analysis, Class Verrucomicrobiae (p = 0.003), Order Verrucomicrobiales (p = 0.003), Family Verrucomicrobiaceae (p = 0.003), Genus Akkermansia (p = 0.003), Genus Catenibacterium (p = 0.031), Genus Coprococcus 1 (p = 0.022), Genus Eubacterium hallii group (p = 0.018), and Genus Marvinbryantia (p = 0.023) were associated with a higher risk of DN. On the contrary, Class Actinobacteria (p = 0.037), Group Eubacterium ventriosum group (p = 0.030), Group Ruminococcus gauvreauii group (p = 0.048), Order Lactobacillales (p = 0.045), Phylum Proteobacteria (p = 0.017) were associated with a lower risk of DN. The sensitivity analysis did not identify any substantial pleiotropy or heterogeneity in the outcomes. We found causal effects of DN on 11 GM species in the reverse MR analysis. Notably, Phylum Proteobacteria and DN are mutually causalities. Conclusion This study identified the causal association between GM and DN with MR analysis, which may enhance the understanding of the intestinal-renal axis and provide novel potential targets for early non-invasive diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Yongxiu Jin
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Chenxi Han
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| | | | - Shanlin Gao
- Department of Nephrology, Tangshan Gongren Hosiptal, Tangshan, China
- Graduate School, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Zou Y, Wang S, Zhang H, Gu Y, Chen H, Huang Z, Yang F, Li W, Chen C, Men L, Tian Q, Xie T. The triangular relationship between traditional Chinese medicines, intestinal flora, and colorectal cancer. Med Res Rev 2024; 44:539-567. [PMID: 37661373 DOI: 10.1002/med.21989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, colorectal cancer has reported a higher incidence in younger adults and a lower mortality rate. Recently, the influence of the intestinal flora in the initiation, progression, and treatment of colorectal cancer has been extensively studied, as well as their positive therapeutic impact on inflammation and the cancer microenvironment. Historically, traditional Chinese medicine (TCM) has been widely used in the treatment of colorectal cancer via promoted cancer cell apoptosis, inhibited cancer metastasis, and reduced drug resistance and side effects. The present research is more on the effect of either herbal medicine or intestinal flora on colorectal cancer. The interactions between TCM and intestinal flora are bidirectional and the combined impacts of TCM and gut microbiota in the treatment of colon cancer should not be neglected. Therefore, this review discusses the role of intestinal bacteria in the progression and treatment of colorectal cancer by inhibiting carcinogenesis, participating in therapy, and assisting in healing. Then the complex anticolon cancer effects of different kinds of TCM monomers, TCM drug pairs, and traditional Chinese prescriptions embodied in apoptosis, metastasis, immune suppression, and drug resistance are summarized separately. In addition, the interaction between TCM and intestinal flora and the combined effect on cancer treatment were analyzed. This review provides a mechanistic reference for the application of TCM and intestinal flora in the clinical treatment of colorectal cancer and paves the way for the combined development and application of microbiome and TCM.
Collapse
Affiliation(s)
- Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxin Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huijuan Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lianhui Men
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Xu H, Xu SC, Li LY, Wu YH, Tan YF, Chen L, Liu P, Liang CF, He XN, Li YH. Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair. Chin J Integr Med 2024; 30:243-250. [PMID: 37987961 DOI: 10.1007/s11655-023-3604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism. METHODS Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis. RESULTS DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01). CONCLUSIONS DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
Collapse
Affiliation(s)
- Han Xu
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China
| | - Si-Cong Xu
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China
| | - Li-Yan Li
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China
| | - Yu-Huang Wu
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China
| | - Yin-Feng Tan
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China
| | - Long Chen
- Department of Stomatology, the Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Pei Liu
- Department of Stomatology, the Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Chang-Fu Liang
- Department of Stomatology, the Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Xiao-Ning He
- Department of Stomatology, the Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China
| | - Yong-Hui Li
- Hainan Provincial Key Lab of Research & Development on Tropic Herbs, Hainan Medical University, Haikou, 571199, China.
- Department of Stomatology, the Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
15
|
Tsugami Y, Suzuki N, Nii T, Isobe N. Effect of sodium butyrate treatment at the basolateral membranes on the tight junction barrier function via a monocarboxylate transporter in goat mammary epithelial cells. Exp Cell Res 2024; 436:113944. [PMID: 38296017 DOI: 10.1016/j.yexcr.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
In lactating mammary glands, tight junctions (TJs) prevent blood from mixing with milk and maintain epithelial cell polarity, which is important for milk production. This study aimed to investigate the effect of sodium acetate and sodium butyrate (SB) stimulation direction on the TJ barrier function, which is measured with regard to transepithelial electrical resistance and fluorescein flux, in goat mammary epithelial cells. The expression and localization of the TJ proteins claudin-3 and claudin-4 were examined using Western blotting and immunofluorescence. SB treatment in the lower chamber of cell culture inserts adversely affected the TJ barrier function, whereas sodium acetate barely had any effect, regardless of stimulation direction. In addition, SB treatment in the lower chamber significantly upregulated claudin-3 and claudin-4, whereas TJ proteins showed intermittent localization. Moreover, SB induced endoplasmic reticulum (ER) stress. ARC155858, a monocarboxylate transporter-1 inhibitor, alleviated the adverse impact of SB on TJs and the associated ER stress. Interestingly, sodium β-hydroxybutyrate, a butyrate metabolite, did not affect the TJ barrier function. Our findings indicate that sodium acetate and SB influence the TJ barrier function differently, and excessive cellular uptake of SB can disrupt TJs and induce ER stress.
Collapse
Affiliation(s)
- Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
16
|
Jiang C, Liu Y, Chen H, Qian Y, Tang L, Wu C, Han T, Jin C, Ju H, Shen X, Yu J, Zhang L, Dai Y, Jiang G. Sodium Butyrate Regulates Gasdermin B Exerted Protection Effect on the MTX‐Induced NCM460 and Hum Cells. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractInflammatory bowel disease (IBD) is a complex disorder with unclear etiology, and the impact of short‐chain fatty acids (SCFAs) on its pathogenesis is not well‐studied. This research explores the potential protective effects of sodium butyrate (NaB) in inflammatory bowel disease (IBD) through the Gasdermin B (GSDMB) non‐pyroptotic pathway. Fecal SCFA levels and GSDMB‐related proteins of IBD patients are analyzed. NCM460 and HUM cells are treated with methotrexate (MTX) for 24 hours. NaB is applied at concentrations of 1, 5, and 10 mm mL−1 to cells. It is found that a decrease in SCFAs content, zonula occludens‐1 (ZO‐1), and Occludin expression, along with an increase in GSDMB, focal adhesion kinase (FAK), and extracellular singal‐regulated kinase (ERK) in IBD patients is observed. NaB, at medium and high concentrations, promotes cell viability and migration and increased GSDMB expression. The low concentration of NaB has a significant protective effect on IBD‐affected cells, activating the GSDMB non‐pyroptotic pathway. This protection diminishes after the GSDMB knockdown. The study reveals that NaB may play a crucial role in protecting intestinal epithelial integrity in IBD through the GSDMB non‐pyroptotic pathway. These findings underline the potential of targeting this pathway for therapeutic strategies, highlighting the importance of SCFAs in understanding and treating IBD.
Collapse
Affiliation(s)
- Chensheng Jiang
- Department of Gastroenterology The Fourth Affiliated Hospital of Zhejiang University School of Medicine Yiwu Zhejiang 322000 China
| | - Yang Liu
- School of Pharmacy Hangzhou Normal University Hangzhou 311200 China
| | - Hangping Chen
- Department of Pharmacy Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| | - Yifan Qian
- Department of Pharmacy Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Leilei Tang
- Department of Pharmacy Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| | - Channi Wu
- Department of Gastroenterology Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| | - Tiemei Han
- Department of Gastroenterology The Fourth Affiliated Hospital of Zhejiang University School of Medicine Yiwu Zhejiang 322000 China
| | - Chengfeng Jin
- Department of Gastroenterology The Fourth Affiliated Hospital of Zhejiang University School of Medicine Yiwu Zhejiang 322000 China
| | - Haihong Ju
- Department of Proctology Second People's Hospital of Haining City Haining Zhejiang 314400 China
| | - Xiaofeng Shen
- Department of Proctology Second People's Hospital of Haining City Haining Zhejiang 314400 China
| | - Jiawen Yu
- Department of Pharmacy Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| | - Lingdi Zhang
- Department of Pharmacy Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| | - Yiyang Dai
- Department of Gastroenterology The Fourth Affiliated Hospital of Zhejiang University School of Medicine Yiwu Zhejiang 322000 China
| | - Guojun Jiang
- Department of Pharmacy Affiliated Xiaoshan Hospital Hangzhou Normal University Hangzhou 311200 China
| |
Collapse
|
17
|
Yang T, Xie S, Cao L, Li M, Ding L, Wang L, Pang S, Wang Z, Geng L. ASTRAGALOSIDE Ⅳ MODULATES GUT MACROPHAGES M1/M2 POLARIZATION BY RESHAPING GUT MICROBIOTA AND SHORT CHAIN FATTY ACIDS IN SEPSIS. Shock 2024; 61:120-131. [PMID: 37962207 PMCID: PMC11841723 DOI: 10.1097/shk.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
ABSTRACT M1 macrophage-mediated inflammation is critical in sepsis. We previously found the protective role of astragaloside intravenous (AS-IV) in sepsis-associated gut impairment, whose specific mechanism remains unknown. Gut microbiota modulates gut homeostatic balance to avoid excessive inflammation. Here, we aimed to investigate effects of AS-IV on gut macrophages polarization and potential roles of gut microbiota and short chain fatty acids (SCFAs) in septic gut damage. Mice were pretreated by AS-IV gavage for 7 days before cecal ligation and puncture. M1 polarization of gut lamina propria macrophages (LpMs) was promoted by cecal ligation and puncture, accompanied by abnormal cytokines release and intestinal barrier dysfunction. NLRP3 inflammasome was activated in M1 LpMs. 16S rRNA sequencing demonstrated gut microbiota imbalance. The levels of acetate, propionate, and butyrate in fecal samples decreased. Notably, AS-IV reversed LpMs M1/M2 polarization, lightened gut inflammation and barrier injury, reduced NLRP3 inflammasome expression in LpMs, restored the diversity of gut microbiome, and increased butyrate levels. Similarly, these benefits were mimicked by fecal microbiota transplantation or exogenous butyrate supplementation. In Caco-2 and THP-1 cocultured model, LPS and interferon γ caused THP-1 M1 polarization, Caco-2 barrier impairment, abnormal cytokines release, and high NLRP3 inflammasome expression in THP-1 cells, all of which were mitigated by butyrate administration. However, these protective effects of butyrate were abrogated by NLRP3 gene overexpression in THP-1. In conclusion, AS-IV can ameliorate sepsis-induced gut inflammation and barrier dysfunction by modulating M1/M2 polarization of gut macrophages, whose underlying mechanism may be restoring gut microbiome and SCFA to restrain NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Shuhua Xie
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Man Li
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Ling Ding
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Wang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shenyue Pang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhifen Wang
- Department of Anesthesiology, Tianjin Children's Hospital, Tianjin, China
| | - Licheng Geng
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
18
|
Luo S, Mao R, Li Y. Mendelian Randomization Highlights Gut Microbiota of Short-chain Fatty Acids' Producer as Protective Factor of Cerebrovascular Disease. Curr Neurovasc Res 2024; 21:32-40. [PMID: 38551043 DOI: 10.2174/0115672026299307240321090030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Recent research advancements have indicated a potential association between gut microbiota and cerebrovascular diseases, although the precise causative pathways and the directionality of this association remain to be fully elucidated. OBJECTIVE This study utilized a bidirectional two-sample Mendelian Randomization (MR) methodology to explore the causal impact of gut microbiota compositions on the risk of cerebrovascular disease. METHODS Genome-wide Association Study (GWAS) data pertaining to gut microbiota were obtained from the MiBioGen consortium. For Ischemic Stroke (IS), Transient Ischemic Attack (TIA), Vascular Dementia (VD), and Subarachnoid Hemorrhage (SAH), GWAS summary data were sourced from the FinnGen consortium, the IEU Open GWAS project, and the GWAS catalog, respectively. RESULTS Our MR analyses identified that specific bacterial strains, notably those involved in the production of Short-chain Fatty Acids (SCFAs), including Barnesiella, Ruminococcus torques group, and Coprobacter, serve as protective factors against IS, TIA, and SAH. Linkage Disequilibrium Score Regression (LDSC) analysis corroborated a significant genetic correlation between these gut microbiota strains and various forms of cerebrovascular disease. In contrast, reverse MR analysis failed to establish a bidirectional causal relationship between genetically inferred gut microbiota profiles and these cerebrovascular conditions. CONCLUSION This investigation has pinpointed particular strains of gut microbiota that play protective or detrimental roles in cerebrovascular disease pathogenesis. These findings offer valuable insights that could be pivotal for the clinical management, prevention, and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Shihang Luo
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan Province, China
| |
Collapse
|
19
|
Wang D, Li R, Jin Y, Shen X, Zhuang A. The causality between gut microbiota and ankylosing spondylitis: Insights from a bidirectional two-sample Mendelian randomization analysis. Int J Rheum Dis 2023; 26:2470-2477. [PMID: 37875269 DOI: 10.1111/1756-185x.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND The association between gut microbiota and ankylosing spondylitis (AS) has been reported in the literature; however, whether the two are correlative is unclear. METHODS Single nucleotide polymorphisms associated with the gut microbiome composition and AS (968 AS cases and 336 191 controls) were obtained from published genome-wide association studies in this two-sample Mendelian randomization (MR) study. The causal relationship between gut microbiota and AS was estimated using the inverse-variance weighted method, and the robustness of our findings was confirmed through a comprehensive series of sensitivity analyses. RESULTS Anaerotruncus (OR = 0.9984, 95% CI, 0.9968-0.9999, p = .0405) and Ruminococcaceae UCG002 (OR = 0.9989, 95% CI, 0.9979-0.9999, p = .0375) were protective against AS. Defluviitaleaceae (OR = 1.0015, 95% CI, 1.0005-1.0025, p = .0048), Butyricicoccus (OR = 1.0016, 95% CI, 1.0001-1.0032, p = .0429), Coprococcus 3 (OR = 1.0016, 95% CI, 1.0000-1.0032, p = .0463), and Defluviitaleaceae UCG011 (OR = 1.0016, 95% CI, 1.0005-1.0027, p = .0041) exhibited significant positive correlations with heightened susceptibility to AS. Reverse MR revealed that AS does not affect the gut microbial composition. CONCLUSION Our study has established a genetically-based causal relationship between gut microbiota and AS. This finding suggests that we may be able to target and regulate specific bacterial groups in the gut to prevent and treat AS.
Collapse
Affiliation(s)
- Danyan Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangfeng Shen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
20
|
Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol 2023; 14:1277102. [PMID: 37876938 PMCID: PMC10591221 DOI: 10.3389/fimmu.2023.1277102] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The gut is colonized by many commensal microorganisms, and the diversity and metabolic patterns of microorganisms profoundly influence the intestinal health. These microbial imbalances can lead to disorders such as inflammatory bowel disease (IBD). Microorganisms produce byproducts that act as signaling molecules, triggering the immune system in the gut mucosa and controlling inflammation. For example, metabolites like short-chain fatty acids (SCFA) and secondary bile acids can release inflammatory-mediated signals by binding to specific receptors. These metabolites indirectly affect host health and intestinal immunity by interacting with the intestinal epithelial and mucosal immune cells. Moreover, Tryptophan-derived metabolites also play a role in governing the immune response by binding to aromatic hydrocarbon receptors (AHR) located on the intestinal mucosa, enhancing the intestinal epithelial barrier. Dietary-derived indoles, which are synthetic precursors of AHR ligands, work together with SCFA and secondary bile acids to reduce stress on the intestinal epithelium and regulate inflammation. This review highlights the interaction between gut microbial metabolites and the intestinal immune system, as well as the crosstalk of dietary fiber intake in improving the host microbial metabolism and its beneficial effects on the organism.
Collapse
Affiliation(s)
- Yifeng Fu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, the First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
21
|
Xu F, Yu Z, Liu Y, Du T, Yu L, Tian F, Chen W, Zhai Q. A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients 2023; 15:3829. [PMID: 37686860 PMCID: PMC10489946 DOI: 10.3390/nu15173829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Patients with post-cholecystectomy (PC) often experience adverse gastrointestinal conditions, such as PC syndrome, colorectal cancer (CRC), and non-alcoholic fatty liver disease (NAFLD), that accumulate over time. An epidemiological survey further revealed that the risk of cholecystectomy is associated with high-fat and high-cholesterol (HFHC) dietary intake. Mounting evidence suggests that cholecystectomy is associated with disrupted gut microbial homeostasis and dysregulated bile acids (BAs) metabolism. However, the effect of an HFHC diet on gastrointestinal complications after cholecystectomy has not been elucidated. Here, we aimed to investigate the effect of an HFHC diet after cholecystectomy on the gut microbiota-BA metabolic axis and elucidate the association between this alteration and the development of intestinal inflammation. In this study, a mice cholecystectomy model was established, and the levels of IL-Iβ, TNF-α, and IL-6 in the colon were increased in mice fed an HFHC diet for 6 weeks. Analysis of fecal BA metabolism showed that an HFHC diet after cholecystectomy altered the rhythm of the BA metabolism by upregulating liver CPY7A1, CYP8B1, and BSEP and ileal ASBT mRNA expression levels, resulting in increased fecal BA levels. In addition, feeding an HFHC diet after cholecystectomy caused a significant dysbiosis of the gut microbiota, which was characterized by the enrichment of the metabolic microbiota involved in BAs; the abundance of pro-inflammatory gut microbiota and related pro-inflammatory metabolite levels was also significantly higher. In contrast, the abundance of major short-chain fatty acid (SCFA)-producing bacteria significantly decreased. Overall, our study suggests that an HFHC diet after cholecystectomy promotes intestinal inflammation by exacerbating the gut microbiome and BA metabolism dysbiosis in cholecystectomy. Our study also provides useful insights into the maintenance of intestinal health after cholecystectomy through dietary or probiotic intervention strategies.
Collapse
Affiliation(s)
- Fusheng Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Yu
- Wuxi People’s Hospital Afliated to Nanjing Medical University, Wuxi 214023, China;
| | - Yaru Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ting Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.L.); (T.D.); (L.Y.); (F.T.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Bai T, Xu Z, Xia P, Feng Y, Liu B, Liu H, Chen Y, Yan G, Lv B, Yan Z, Dai N, Long Y, Wei W, Shi Z, Li X, Fang X, Gao H, Qi L, Hou X. The Short-Term Efficacy of Bifidobacterium Quadruple Viable Tablet in Patients With Diarrhea-Predominant Irritable Bowel Syndrome: Potentially Mediated by Metabolism Rather Than Diversity Regulation. Am J Gastroenterol 2023; 118:1256-1267. [PMID: 36717369 DOI: 10.14309/ajg.0000000000002147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The therapeutic effect of probiotics for irritable bowel syndrome (IBS) was controversial. This study aims to evaluate the short-term efficacy of Bifidobacterium quadruple viable tablet in patients with diarrhea-predominant IBS and explore factors associated with response to probiotics. METHODS A randomized, double-blind, placebo-controlled, multicenter trial was performed in 15 hospitals. A total of 290 patients who fulfilled the eligibility criteria were assigned to the probiotics or placebo group randomly with a ratio of 1:1 for a 4-week treatment and a 2-week follow-up. The primary outcome was the response rate. It was regarded as the proportion of patients with composite responses of improvement in both abdominal pain and diarrhea simultaneously. RESULTS After 4-week continuous administration, the response rates of the probiotics and the placebo were 67.59% and 36.55%, respectively ( P < 0.001). In the probiotics, those with higher abdominal pain scores (2.674 [1.139-6.279]) were more likely to respond, but responders in placebo had lower Hamilton Depression Scale score (0.162 [0.060-0.439]), lower Hamilton Anxiety Scale score (0.335 [0.148-0.755]), and higher degree of bloating (2.718 [1.217-6.074]). Although the diversity of the microbiota was not significantly changed by probiotics, the abundance of bacteria producing short-chain fatty acids (SCFAs), including Butyricimonas ( P = 0.048), Pseudobutyrivibrio ( P = 0.005), Barnesiella ( P = 0.020), and Sutterella ( P = 0.020), and the concentration of SCFAs including butyric acid ( P = 0.010), valeric acid ( P = 0.019), and caproic acid ( P = 0.046) in feces increased. DISCUSSION A Bifidobacterium quadruple viable tablet had a significant short-term efficacy for the treatment of diarrhea-predominant IBS and was more effective in patients with higher abdominal pain scores. This kind of probiotics could improve the abundance of several bacteria producing SCFAs and the concentration of fecal SCFAs compared with placebos.
Collapse
Affiliation(s)
- Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyue Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peijun Xia
- Division of Gastroenterology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Yichao Feng
- Division of Gastroenterology, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Bing Liu
- Division of Gastroenterology, Luohe Hospital of Traditional Chinese Medicine, Luohe, China
| | - Hongling Liu
- Division of Gastroenterology, Luoyang First People's Hospital, Luoyang, China
| | - Yunwang Chen
- Division of Gastroenterology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Guangjun Yan
- Division of Gastroenterology, Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
| | - Bin Lv
- Division of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zaihong Yan
- Division of Gastroenterology, Hebei PetroChina Central Hospital, Langfang, China
| | - Ning Dai
- Division of Gastroenterology, Zhejiang University School of Medicine, Sir Run Shaw Hospital, Hangzhou, China
| | - Yanqin Long
- Division of Gastroenterology, Zhejiang University School of Medicine, Sir Run Shaw Hospital, Hangzhou, China
| | - Wei Wei
- Division of Gastroenterology, Wangjing Hospital, Beijing, China
| | - Zhihong Shi
- Division of Gastroenterology, Xinxiang First People's Hospital, Xinxiang, China
| | - Xiaoqing Li
- Division of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiucai Fang
- Division of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huibin Gao
- Division of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lingzhi Qi
- Division of Gastroenterology, Jilin Province People's Hospital, Changchun, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Qi-Long-Tian capsule alleviates pulmonary fibrosis development by modulating inflammatory response and gut microbiota. Funct Integr Genomics 2023; 23:64. [PMID: 36810971 DOI: 10.1007/s10142-023-00988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, and fibrotic interstitial lung disease with a high mortality rate. Qi-Long-Tian (QLT) capsule is an herbal formula with great potential for antifibrotic effects, consisting of San Qi (Notoginseng Radix et Rhizoma), Di Long [Pheretima aspergillum (E. Perrier)], and Hong Jingtian (Rhodiolae Crenulatae Radix et Rhizoma), and has been used in clinical practice for many years. To explore the relationship between the effects of Qi-Long-Tian capsule and gut microbiota of PF mice, pulmonary fibrosis model were established by tracheal drip injection of bleomycin. Thirty-six mice were randomly divided into 6 groups: control group (control), model group (model), QLT capsule low dose group (QL), QLT capsule medium dose group (QM), QLT capsule high dose group (QH), and pirfenidone group (PFD). After 21 days of treatment, after pulmonary function tests, the lung tissues, serums, and enterobacterial samples were collected for further analysis. HE staining and Masson's staining were used to detect changes as the main indicators of PF in each group, and the expression of hydroxyproline (HYP) related to collagen metabolism was detected by and alkaline hydrolysis method. qRT-PCR and ELISA were used to detect the mRNA and protein expressions of pro-inflammatory factors include interleukin 1β (IL-1β), interleukin 6 (IL-6), transforming growth factor β1 (TGF-β1), tumor necrosis factor α (TNF-α) in lung tissues and serums, and the inflammation-mediating factors include tight junction protein (ZO-1, Claudin, Occludin). ELISA was used to detect the protein expressions of secretory immunoglobulin A (sIgA), short-chain fatty acids (SCFAs), and lipopolysaccharide (LPS) in colonic tissues. 16sRNA gene sequencing was used to detect changes in the abundance and diversity of intestinal flora in the control, model, and QM groups, to search for differential genera, and analyze the correlation with inflammatory factors. QLT capsule effectively improved the status of pulmonary fibrosis and reduced HYP. In addition, QLT capsule significantly reduced the abnormal levels of pro-inflammatory factors, including IL-1β, IL-6, TNF-α, and TGF-β in lung tissue and serum, while improving the levels of pro-inflammatory related factors ZO-1, Claudin, Occludin, sIgA, SCFAs, and reducing LPS in the colon. The comparison between the alpha diversity and beta diversity in enterobacteria suggested that the composition of the gut flora in the control, model, and QLT capsule groups were different. QLT capsule significantly increased the relative abundance of Bacteroidia (which might limit the onset of inflammation) and decreased the relative abundance of Clostridia (which might promote inflammation). In addition, these two enterobacteria were closely associated with pro-inflammatory-related indicators and pro-inflammatory factors in PF. All these results suggest that QLT capsule intervenes in pulmonary fibrosis by regulating the differential genera of intestinal flora, increasing immunoglobulin secretion, repairing the intestinal mucosal barrier, reducing LPS entry into the blood, and decreasing inflammatory factor secretion in the serum, which in turn alleviates pulmonary inflammation. This study clarifies the therapeutic mechanism of QLT capsule in PF and provides a theoretical basis for it. It provides a theoretical basis for its further clinical application.
Collapse
|
24
|
Combination Therapy with Indigo and Indirubin for Ulcerative Colitis via Reinforcing Intestinal Barrier Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2894695. [PMID: 36825081 PMCID: PMC9943625 DOI: 10.1155/2023/2894695] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
Indigo and indirubin, the active molecules of traditional Chinese medicine indigo naturalis, exert therapeutic activity for ulcerative colitis (UC). Indigo and indirubin are isomers and have distinctive profiles in anti-inflammation, immune regulation, intestinal microbiota regulation, oxidative stress regulation, and intestinal mucosal repair for UC treatment. Thus, exploring its combined administration's integrated advantages for UC is critical. This study is aimed at clarifying the effect and mechanisms of the combined administration of indigo and indirubin on colitis mouse models. The results showed that all the treatment groups could improve the disease symptoms, and the combined administration showed the best effect. Additionally, compared with indigo and indirubin alone, the combination group could significantly reinforce intestinal barrier function by increasing the expression of E-cadherin, occludin, ZO-1, and MUC2 and improving intestinal permeability. The treatment groups significantly improved the expression of cytokines, including TNF-α, IFN-γ, IL-12, IL-23, and IL-17A, and indirubin presented the most potent anti-inflammatory effect. Furthermore, all the treatment groups reduced the infiltration of the immune cells in intestinal lamina propria and the production of ROS/RNS. Notably, indigo exhibited a more substantial capacity to regulate natural killer (NK) cells, ILC3, neutrophils, and dendritic cells, followed by the combination group and indirubin alone. Finally, all the treatment groups modulated intestinal microbiota composition, increased the proportion of beneficial microbiota, and decreased the proportion of microbiota. Our results indicated that indigo and indirubin synergistically reinforced the intestinal barrier function, which may be associated with integrating the indirubin anti-inflammatory and intestinal microbiota regulating strength and indigo immune and ROS/RNS regulation advantage.
Collapse
|
25
|
Xu J, Zheng Z, Yang L, Li R, Ma X, Zhang J, Yin F, Liu L, Xu Q, Shen Q, Shen X, Wu C, Liu J, Qin N, Sheng J, Jin P. A novel promising diagnosis model for colorectal advanced adenoma and carcinoma based on the progressive gut microbiota gene biomarkers. Cell Biosci 2022; 12:208. [PMID: 36572910 PMCID: PMC9791776 DOI: 10.1186/s13578-022-00940-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC), a commonly diagnosed cancer often develops slowly from benign polyps called adenoma to carcinoma. Altered gut microbiota is implicated in colorectal carcinogenesis. It is warranted to find non-invasive progressive microbiota biomarkers that can reflect the dynamic changes of the disease. This study aimed to identify and evaluate potential progressive fecal microbiota gene markers for diagnosing advanced adenoma (AA) and CRC. RESULTS Metagenome-wide association was performed on fecal samples from different cohorts of 871 subjects (247 CRC, 234 AA, and 390 controls). We characterized the gut microbiome, identified microbiota markers, and further constructed a colorectal neoplasms classifier in 99 CRC, 94 AA, and 62 controls, and validated the results in 185 CRC, 140 AA, and 291 controls from 3 independent cohorts. 21 species and 277 gene markers were identified whose abundance was significantly increased or decreased from normal to AA and CRC. The progressive gene markers were distributed in metabolic pathways including amino acid and sulfur metabolism. A diagnosis model consisting of four effect indexes was constructed based on the markers, the sensitivities of the Adenoma Effect Index 1 for AA, Adenoma Effect Index 2 for high-grade dysplasia (HGD) adenoma were 71.3% and 76.5%, the specificities were 90.5% and 90.3%, respectively. CRC Effect Index 1 for all stages of CRC and CRC Effect Index 2 for stage III-IV CRC to predict CRC yielded an area under the curve (AUC) of 0.839 (95% CI 0.804-0.873) and 0.857 (95% CI 0.793-0.921), respectively. Combining with fecal immunochemical test (FIT) significantly improved the sensitivity of CRC Effect Index 1 and CRC Effect Index 2 to 96.7% and 100%. CONCLUSIONS This study reports the successful diagnosis model establishment and cross-region validation for colorectal advanced adenoma and carcinoma based on the progressive gut microbiota gene markers. The results suggested that the novel diagnosis model can significantly improve the diagnostic performance for advanced adenoma.
Collapse
Affiliation(s)
- Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhijun Zheng
- Realbio Genomics Institute, Shanghai, 201114, China
| | - Lang Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Ruoran Li
- Graduate School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianzong Ma
- Graduate School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Fumei Yin
- Graduate School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Liu
- Realbio Genomics Institute, Shanghai, 201114, China
- Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qian Xu
- Realbio Genomics Institute, Shanghai, 201114, China
- Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qiujing Shen
- Realbio Genomics Institute, Shanghai, 201114, China
| | - Xiuping Shen
- Realbio Genomics Institute, Shanghai, 201114, China
| | - Chunyan Wu
- Realbio Genomics Institute, Shanghai, 201114, China
| | - Jing Liu
- Realbio Genomics Institute, Shanghai, 201114, China
| | - Nan Qin
- Realbio Genomics Institute, Shanghai, 201114, China.
- Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
26
|
Fu Y, Ji W, Liu Q, Zhang L, Li C, Huan Y, Lei L, Gao X, Chen L, Feng C, Lei L, Zhai J, Li P, Cao H, Liu S, Shen Z. Voglibose Regulates the Secretion of GLP-1 Accompanied by Amelioration of Ileal Inflammatory Damage and Endoplasmic Reticulum Stress in Diabetic KKAy Mice. Int J Mol Sci 2022; 23:15938. [PMID: 36555580 PMCID: PMC9786790 DOI: 10.3390/ijms232415938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Voglibose is an α-glycosidase inhibitor that improves postprandial hyperglycemia and increases glucagon-like peptide-1 (GLP-1) secretion in patients with type 2 diabetes. Recently, there has been increasing interest in the anti-inflammatory effects of voglibose on the intestine, but the underlying mechanism is not clear. This study evaluated the effects and mechanisms of voglibose on glycemic control and intestinal inflammation. Type 2 diabetic KKAy mice were treated with voglibose (1 mg/kg) by oral gavage once daily. After 8 weeks, glucose metabolism, levels of short-chain fatty acids (SCFAs), systematic inflammatory factors, intestinal integrity and inflammation were evaluated using hematoxylin and eosin staining, immunohistochemistry, immunofluorescence and Western blot analysis. Voglibose ameliorated glucose metabolism by enhancing basal- and glucose-dependent GLP-1 secretion. Several beneficial SCFAs, such as acetic acid and propionic acid, were increased by voglibose in the fecal sample. Additionally, voglibose notably decreased the proportion of pro-inflammatory macrophages and the expression of nuclear factor kappa B but increased the expression of tight junction proteins in the ileum, thus markedly improving intestinal inflammatory damage and reducing the systematic inflammatory factors. Ileal genomics and protein validation suggested that voglibose attenuated inositol-requiring protein 1α-X-box binding protein 1-mediated endoplasmic reticulum stress (ERS). Together, these results showed that voglibose enhanced the secretion of GLP-1, which contributed to the glycemic control in KKAy mice at least in part by regulating intestinal inflammation and the expression of ERS factors.
Collapse
Affiliation(s)
- Yaxin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Zhang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Department of Medical Records, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
- Beijing Diabetes Institute, Beijing 100730, China
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefeng Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Leilei Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cunyu Feng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liran Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiayu Zhai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Cao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Fermented Psidium guajava leaves regulate the gut microbiota and improve metabolic alterations in diabetic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Fufang Fanshiliu Decoction Revealed the Antidiabetic Effect through Modulating Inflammatory Response and Gut Microbiota Composition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3255401. [PMID: 36262166 PMCID: PMC9576391 DOI: 10.1155/2022/3255401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Background Diabetes mellitus brings serious threats and financial burdens to human beings worldwide. Fufang Fanshiliu decoction (FFSLD), a traditional Chinese medicine formula showing great antidiabetic effects, has been used in clinics for many years. Objective This study aims to explore the underlying therapeutic mechanisms of FFSLD in Type II diabetes mellitus (T2DM). Methods Sprague–Dawley rats induced by high-fat diet feeding combined with streptozotocin injection were used to establish the T2DM model. All rats were randomly divided into 6 groups: control, model, metformin, high dosage, middle dosage, and low dosage of FFSLD. After 4 weeks of treatment, serum, intestinal mucosa, and fecal samples were collected for further analysis. ELISA was used to detect the diabetic-related serum indicators and proinflammation cytokines. Gene or protein expressions of mitogen-activated protein kinase (MAPK), interleukin 1 beta (IL-1β), transforming growth factor-beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) in intestinal mucosa were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) or western blot. 16s rRNA gene sequencing was used to detect the changes of gut microbiome in these groups. Intestinal gut microbiota (GM) composition was further analyzed according to the sequencing libraries. Results FFSLD effectively recovered the diabetic-related biochemical indexes by reducing fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), insulin, and increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, FFSLD significantly ameliorated the abnormal levels of proinflammation cytokines including IL-1β, IL-6, TNF-α, and TGF-β. In addition, the GM compositions of rats in control, model, and FFSLD treated groups were different. FFSLD significantly increased the relative abundance of Lactobacillus, Akkermansia, and Proteus, and reduced the relative abundance of Alistipes, Desulfovibrio, and Helicobacter. Moreover, these changed bacteria were closely related to the diabetic-related serum indicators and proinflammatory cytokines. Conclusion These results suggest that FFSLD alleviates diabetic symptoms in T2DM rats through regulating GM composition and inhibiting inflammatory response, which clarify the therapeutic mechanism of FFSLD on T2DM and provide a theoretical basis for its further clinical application.
Collapse
|
29
|
Xia W, Liu B, Tang S, Yasir M, Khan I. The science behind TCM and Gut microbiota interaction-their combinatorial approach holds promising therapeutic applications. Front Cell Infect Microbiol 2022; 12:875513. [PMID: 36176581 PMCID: PMC9513201 DOI: 10.3389/fcimb.2022.875513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The trend toward herbal medicine as an alternative treatment for disease medication is increasing worldwide. However, insufficient pharmacologic information is available about the orally taken medicines. Not only herbal medicine, but also Western drugs, when passing through the gastrointestinal tract, interact with trillions of microbes (known as the gut microbiome [GM]) and their enzymes. Gut microbiome enzymes induce massive structural and functional changes to the herbal products and impact the bioavailability and efficacy of the herbal therapeutics. Therefore, traditional Chinese medicine (TCM) researchers extend the horizon of TCM research to the GM to better understand TCM pharmacology and enhance its efficacy and bioavailability. The study investigating the interaction between herbal medicine and gut microbes utilizes the holistic approach, making landmark achievements in the field of disease prognosis and treatment. The effectiveness of TCM is a multipathway modulation, and so is the GM. This review provides an insight into the understanding of a holistic view of TCM and GM interaction. Furthermore, this review briefly describes the mechanism of how the TCM-GM interaction deals with various illnesses.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bei Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- National Drug Clinical Trial Agency, Teaching Hospital of Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
30
|
Huang G, Su L, Zhang N, Han R, Leong WK, Li X, Ren X, Hsiao WLW. The prebiotic and anti-fatigue effects of hyaluronan. Front Nutr 2022; 9:977556. [PMID: 36003835 PMCID: PMC9393540 DOI: 10.3389/fnut.2022.977556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Hyaluronan (HA) is a mucopolysaccharide that naturally exists in all living organisms as the main component of the extracellular matrix. Over the last 30 years, HA has been used as the main ingredient in cosmetic products, eye drops, and medicinal products. It is also taken orally as a health supplement. However, the physiological effect of the ingested HA is not clear. In the current study, the interaction between HA and gut microbiota, and the potential prebiotic effects were investigated. HA was used to treat the C57BL/6 mice for 15 consecutive days, then fecal genomic DNA was extracted from fecal samples for 16S rRNA amplicon sequencing. The results showed that HA could significantly change the composition of gut microbiota (GM), e.g., increased the relative abundance of beneficial bacteria, including short-chain fatty acids (SCFAs)-producing bacteria and xylan/cellulose-degrading bacteria, whereas decreased the relative abundance of potential pathogens including sulfate-reducing bacteria (SRB), inflammation and cancer-related bacteria. The rotarod test was used to evaluate the anti-fatigue effects of HA in C57BL/6 mice. The results showed that HA could lengthen the mice's retention time on the accelerating rotarod. HA increased the concentration of glycogen and superoxide dismutase (SOD) in mice's muscle and liver, whereas decreased the serum concentration of malondialdehyde (MDA). Moreover, the metabolic products of Desulfovibrio vulgaris (MPDV), the model SRB bacteria, showed cytotoxic effects on H9c2 cardiomyocytes in a dosage-dependent manner. MPDV also caused mitochondrial damage by inducing mitochondrial fragmentation, depolarization, and powerless ATP production. Taken together, we show that HA possesses significant prebiotic and anti-fatigue effects in C57BL/6 mice.
Collapse
Affiliation(s)
- Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Clinical Research Center, Shantou Central Hospital, Shantou, China.,Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ni Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical Center, Hangzhou, China
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuecong Ren
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Foshan Women and Children Hospital Affiliated With Southern Medical University, Foshan, China
| |
Collapse
|
31
|
Chen S, Gui R, Zhou XH, Zhang JH, Jiang HY, Liu HT, Fu YF. Combined Microbiome and Metabolome Analysis Reveals a Novel Interplay Between Intestinal Flora and Serum Metabolites in Lung Cancer. Front Cell Infect Microbiol 2022; 12:885093. [PMID: 35586253 PMCID: PMC9108287 DOI: 10.3389/fcimb.2022.885093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
As the leading cause of cancer death, lung cancer seriously endangers human health and quality of life. Although many studies have reported the intestinal microbial composition of lung cancer, little is known about the interplay between intestinal microbiome and metabolites and how they affect the development of lung cancer. Herein, we combined 16S ribosomal RNA (rRNA) gene sequencing and liquid chromatography-mass spectrometry (LC-MS) technology to analyze intestinal microbiota composition and serum metabolism profile in a cohort of 30 lung cancer patients with different stages and 15 healthy individuals. Compared with healthy people, we found that the structure of intestinal microbiota in lung cancer patients had changed significantly (Adonis, p = 0.021). In order to determine how intestinal flora affects the occurrence and development of lung cancer, the Spearman rank correlation test was used to find the connection between differential microorganisms and differential metabolites. It was found that as thez disease progressed, L-valine decreased. Correspondingly, the abundance of Lachnospiraceae_UCG-006, the genus with the strongest association with L-valine, also decreased in lung cancer groups. Correlation analysis showed that the gut microbiome and serum metabolic profile had a strong synergy, and Lachnospiraceae_UCG-006 was closely related to L-valine. In summary, this study described the characteristics of intestinal flora and serum metabolic profiles of lung cancer patients with different stages. It revealed that lung cancer may be the result of the mutual regulation of L-valine and Lachnospiraceae_UCG-006 through the aminoacyl-tRNA biosynthesis pathway, and proposed that L-valine may be a potential marker for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Sai Chen
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiong-hui Zhou
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jun-hua Zhang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hai-ye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hai-ting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yun-feng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Yun-feng Fu,
| |
Collapse
|
32
|
Zhou H, Zhao J, Liu C, Zhang Z, Zhang Y, Meng D. Xanthoceraside exerts anti-Alzheimer's disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153937. [PMID: 35104764 DOI: 10.1016/j.phymed.2022.153937] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Microbial-derived metabolites play important roles in Alzheimer's disease (AD) pathology, yet how intestinal microbes influence AD progression remains uncertain. Xanthoceraside (XAN), a triterpenoid saponin with anti-AD activity, was extracted from the husks of Xanthoceras sorbifolia Bunge. However, it is still unclear that how XAN modulates the gut microbiota community to regulate AD progression through changing the levels of microbial-derived metabolites. PURPOSE In this study, we investigated the mechanism underlying the anti-AD effect of XAN. METHODS The current combination studies of multiple-targeted metabolomics, natural product chemistry and pharmacology revealed that oral XAN mediated intestinal microbiota to ameliorate Aβ1-42-induced learning and memory deficits in rats, which were confirmed through antibiotic treatments and fecal microbiota transplantation. RESULTS As a poor water solubility and low permeability compound that hardly be absorbed into blood-brain barrier, XAN significantly regulated Aβ1-42-induced metabolism disorders directly or indirectly in gut, including neurotransmitters, amino acids, bile acids and SCFAs metabolism that were detected by UHPLC-MS/MS and GC-MS/MS. In particularly, the in vitro evaluation of XAN on SCFAs production not only found a striking increase in the production of SCFAs after fermentation, but revealed the inner relationship among XAN, gut microbiota and SCFAs in vivo. All results demonstrated that XAN could improve AD rats' learning and memory deficits by modulating the community of gut microbiota which was connected through 16S rRNA sequencing and CCA analyses. CONCLUSIONS Our study provided a novel mechanism for developing XAN as a potential anti-AD drug and revealed that the gut microbiota might be a potential target for AD treatment .
Collapse
Affiliation(s)
- Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Caihong Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Zhengfeng Zhang
- Chongqing Institute for Food and Drug Control, Chunlan Road 2, Chongqing 401121, China
| | - Yi Zhang
- Chongqing Institute for Food and Drug Control, Chunlan Road 2, Chongqing 401121, China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
33
|
An Y, Duan Y, Dai H, Wang C, Shi L, He C, Lv Y, Li H, Dai S, Zhao B. Correlation analysis of intestinal flora and pathological process of type 2 diabetes mellitus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Qin Z, Yuan X, Liu J, Shi Z, Cao L, Yang L, Wu K, Lou Y, Tong H, Jiang L, Du J. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice. Front Pharmacol 2022; 13:833077. [PMID: 35264966 PMCID: PMC8899018 DOI: 10.3389/fphar.2022.833077] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation is an important risk factor in the development of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Accumulating evidence indicates that some phytochemicals have anti-cancer properties. Polysaccharides extracted from Albuca bracteata (AB) have been reported to possess anti-neoplastic activities on colorectal cancer (CRC) models. However, it is still unclear whether they exert therapeutic effects on colorectal cancer. In this study, we investigate the properties of polysaccharides of A. bracteate, named ABP. The average molecular weight of ABP was 18.3 kDa and ABP consisted of glucose, mannose, galactose, xylose, galacturonic acid, glucuronic acid at a molar ratio of 37.8:8:2.5:1.7:1:1. An Azoxymethane/Dextran sodium sulfate (AOM/DSS) induced CAC mouse model was established. The CAC mice treated with ABP showed smaller tumor size and lower tumor incidence than untreated ones. ABP increased anti-inflammatory cytokine IL-10, inhibited secretion of pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α), mitigated oxidative stress by increasing GSH and decreasing MDA levels, suppressed the activation of STAT3 and expressions of its related genes c-Myc and cyclin D1. Moreover, ABP treatment increased the relative abundance of beneficial bacteria (f_Ruminococcaceae, g_Roseburia, g_Odoribacter, g_Oscillospira, and g_Akkermansia) and the levels of fecal short-chain fatty acid (SCFA) in CAC model mice. In summary, our data suggest that ABP could be a potential therapeutic agent for treating CAC.
Collapse
Affiliation(s)
- Ziyan Qin
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Xinyu Yuan
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhuqing Shi
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Leipeng Cao
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Lexuan Yang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jimei Du
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| |
Collapse
|
35
|
Appunni S, Rubens M, Ramamoorthy V, Tonse R, Saxena A, McGranaghan P, Kaiser A, Kotecha R. Emerging Evidence on the Effects of Dietary Factors on the Gut Microbiome in Colorectal Cancer. Front Nutr 2021; 8:718389. [PMID: 34708063 PMCID: PMC8542705 DOI: 10.3389/fnut.2021.718389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Dietary factors have important role in modulating the gut microbiome, which in-turn regulates the molecular events in colonic mucosa. The composition and resulting metabolism of the gut microbiome are decisive factors in colorectal cancer (CRC) tumorigenesis. Altered gut microbiome is associated with impaired immune response, and the release of carcinogenic or genotoxic substances which are the major microbiome-induced mechanisms implicated in CRC pathogenesis. Diets low in dietary fibers and phytomolecules as well as high in red meat are important dietary changes which predispose to CRC. Dietary fibers which reach the colon in an undigested form are further metabolized by the gut microbiome into enterocyte friendly metabolites such as short chain fatty acid (SCFA) which provide anti-inflammatory and anti-proliferative effects. Healthy microbiome supported by dietary fibers and phytomolecules could decrease cell proliferation by regulating the epigenetic events which activate proto-oncogenes and oncogenic pathways. Emerging evidence show that predominance of microbes such as Fusobacterium nucleatum can predispose the colonic mucosa to malignant transformation. Dietary and lifestyle modifications have been demonstrated to restrict the growth of potentially harmful opportunistic organisms. Synbiotics can protect the intestinal mucosa by improving immune response and decreasing the production of toxic metabolites, oxidative stress and cell proliferation. In this narrative review, we aim to update the emerging evidence on how diet could modulate the gut microbial composition and revive colonic epithelium. This review highlights the importance of healthy plant-based diet and related supplements in CRC prevention by improving the gut microbiome.
Collapse
Affiliation(s)
- Sandeep Appunni
- Government Medical College, Kozhikode, India
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | | | - Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Anshul Saxena
- Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Peter McGranaghan
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Department of Radiation Oncology, Florida International University, Miami, FL, United States
| |
Collapse
|
36
|
Wang K, Xu X, Maimaiti A, Hao M, Sang X, Shan Q, Wu X, Cao G. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage. Pharmacol Res Perspect 2021; 9:e00765. [PMID: 34523246 PMCID: PMC8440943 DOI: 10.1002/prp2.765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long‐term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF‐α, IL‐6, IL‐1β) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme‐linked immunosorbent assay (ELISA) and high‐performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high‐throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose‐dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.
Collapse
Affiliation(s)
- Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen Xu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aikebaier Maimaiti
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Sendeng-4 Suppressed Melanoma Growth by Induction of Autophagy and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5519973. [PMID: 34475961 PMCID: PMC8407990 DOI: 10.1155/2021/5519973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
Sendeng-4 is a traditional Chinese medicine that has been successfully applied to anti-inflammatory diseases in clinical practice. Monomers within Sendeng-4 showed promising antitumor activity against lung cancer, colon cancer, and cutaneous cancer. However, potency of Sendeng-4 in melanoma has not been explored. This study aims to explore the potential application of Sendeng-4 in melanoma treatment. In the present study, we systemically investigate the possibility of Sendeng-4 for treatment of melanoma cancer in vitro by proliferation assay, colony formation, flow cell cytometry, RNA-seq, western blot, and fluorescence-based assay. Our data demonstrated that Sendeng-4 suppresses the proliferation and colony formation capacity of melanoma cells and induces cell cycle block at G2/M phase and eventually cell death. Mechanistically, transcriptome sequencing demonstrates that the PI3K-AKT pathway was significantly inactivated upon Sendeng-4 exposure, which was confirmed by western blot showing decreased phosphorylation of AKT. In addition, decreased BCL-2 expression and increased BAX expression were observed, suggesting programmed cell death via apoptosis. Moreover, LC3-II production as well as autophagosomes formation was observed as demonstrated by western blot and immunofluorescence, indicating elevated autophagy network by Sendeng-4 stimulation. Collectively, we concluded that Sendeng-4 might be used as an anticancer drug for melanoma.
Collapse
|
38
|
Han H, Jiang Y, Wang M, Melaku M, Liu L, Zhao Y, Everaert N, Yi B, Zhang H. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut-liver axis. Crit Rev Food Sci Nutr 2021; 63:1689-1706. [PMID: 34404276 DOI: 10.1080/10408398.2021.1966738] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yi Jiang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia, Ethiopia
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Zhang X, Yang Y, Zhang F, Yu J, Sun W, Wang R, Wu C. Traditional Chinese medicines differentially modulate the gut microbiota based on their nature (Yao-Xing). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153496. [PMID: 33714730 DOI: 10.1016/j.phymed.2021.153496] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Property theory is a unique principle guiding traditional Chinese medicine (TCM) that classifies various TCMs into four natures (hot, warm, cool, and cold) to reflect their medical actions on the human body. Despite successful application for thousands of years, characterizing the nature of medical TCMs by modern physiological indicators remains a challenge. PURPOSE In this study, we investigated the potential relationship between the nature of TCMs and their modulation of the gut microbiota. STUDY DESIGN We selected twelve TCMs with hot, warm, cool, or cold natures that possess antidiarrheal effects. Their aqueous extracts were orally administered to C57BL/6 mice at a clinical dose for 4 weeks. The gut microbiota was measured by 16S rRNA-based metagenomics, and the correlation between microbial composition/function and TCM nature was analyzed. RESULTS Antidiarrheal TCMs with different natures showed distinct impacts on the gut microbiota. Hot-natured TCMs had no influence on the gut microbiota, warm-natured TCMs had a moderate influence, cool-natured TCMs had a strong influence, and cold-natured TCMs substantially changed the structure of the gut microbial community. The abundance of Anaerotruncus, Tyzzerella and Ruminiclostridium steadily increased, while that of Ruminococcaceae_UCG-010, Parasutterella and Bifidobacterium continuously decreased as the herbal nature turned from cold to hot. Microbiome functional prediction for Cluster of Orthologous Groups (COG) of proteins and Kyoto Encyclopedia of Genes and Genomes (KEGG) categories showed that colder TCMs imposed a stronger influence on microbial functional repertoires. Specifically, the abundance of ABC transporters, key bacterial proteins involved in nutrient absorption and drug resistance, was gradually decreased by colder TCMs. CONCLUSION Our results demonstrated that the nature of TCMs could be reflected by their modulation of gut microbes. Cold TCMs may exert their antidiarrheal effects, at least partially, by modulating the gut microbiota, while hot TCMs may alleviate dysentery in other ways.
Collapse
Affiliation(s)
- Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Yanan Yang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Fang Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wanying Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Ruiqi Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical TCMs, School of Pharmacy, Hainan Medical University, Haikou, 57199, PR China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
40
|
Zhang Q, Yue S, Wang W, Chen Y, Zhao C, Song Y, Yan D, Zhang L, Tang Y. Potential Role of Gut Microbiota in Traditional Chinese Medicine against COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:785-803. [PMID: 33853498 DOI: 10.1142/s0192415x21500373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) spreads and rages around the world and threatens human life. It is disappointing that there are no specific drugs until now. The combination of traditional Chinese medicine (TCM) and western medication seems to be the current more effective treatment strategy for COVID-19 patients in China. In this review, we mainly discussed the relationship between COVID-19 and gut microbiota (GM), as well as the possible impact of TCM combined with western medication on GM in the treatment of COVID-19 patients, aiming to provide references for the possible role of GM in TCM against COVID-19. The available data suggest that GM dysbiosis did occur in COVID-19 patients, and the intervention of GM could ameliorate the clinical condition of COVID-19 patients. In addition, TCMs (e.g., Jinhua Qinggan granule, Lianhua Qingwen capsule, Qingfei Paidu decoction, Shufeng Jiedu capsule, Qingjin Jianghuo decoction, Toujie Quwen granules, and MaxingShigan) have been proven to be safe and effective for the treatment of COVID-19 in Chinese clinic. Among them, Ephedra sinica, Glycyrrhiza uralensis, Bupleurum chinense, Lonicera japonica,Scutellaria baicalensi, and Astragalus membranaceus are common herbs and have a certain regulation on GM, immunity, and angiotensin converting enzyme 2 (ACE2). Notably, Qingfei Paidu decoction and MaxingShigan have been demonstrated to modulate GM. Finally, the hypothesis of GM-mediated TCM treatment of COVID-19 is proposed, and more clinical trials and basic experiments need to be initiated to confirm this hypothesis.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Shijun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Wenxiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Yanyan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Chongbo Zhao
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Yijun Song
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| | - Dan Yan
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu Province, P. R. China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese, Medicine for TCM Compatibility, State Key Laboratory of Research and Development of Characteristic, Qin Medicine Resources (Cultivation), Shaanxi Collaborative Innovation Center of Chinese Medicinal, Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, P. R. China
| |
Collapse
|
41
|
Li X, Khan I, Xia W, Huang G, Liu L, Law BYK, Yin L, Liao W, Leong W, Han R, Wong VKW, Xia C, Guo X, Hsiao WLW. Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacol Res 2021; 168:105587. [PMID: 33798737 DOI: 10.1016/j.phrs.2021.105587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
We previously reported the neuroprotective effects of icariin in rat cortical neurons. Here, we present a study on icariin's anti-aging effect in 24-month aged mice by treating them with a single daily dose of 100 mg/kg of icariin for 15 consecutive days. Icariin treatment improved motor coordination and learning skills while lowered oxidative stress biomarkers in the serum, brain, kidney, and liver of the aged mice. In addition, icariin improved the intestinal integrity of the aged mice by upregulating tight junction adhesion molecules and the Paneth and goblet cells, along with the reduction of iNOS and pro-inflammatory cytokines (IL-1β, TNF-α, IL-2 and IL-6, and IL-12). Icariin treatments also significantly upregulated aging-related signaling molecules, Sirt 1, 3 & 6, Pot1α, BUB1b, FOXO1, Ep300, ANXA3, Calb1, SNAP25, and BDNF in old mice. Through gut microbiota (GM) analysis, we observed icariin-associated improvements in GM composition of aged mice by reinstating bacteria found in the young mice, while suppressing some bacteria found in the untreated old mice. To clarify whether icariin's anti-aging effect is rooted in the GM, we performed fecal microbiota transfer (FMT) from icariin-treated old mice to the old mice. FMT-recipients exhibited similar improvements in the rotarod score and age-related biomarkers as observed in the icariin-treated old mice. Equal or better improvement on the youth-like features was noticed when aged mice were FMT with feces from young mice. Our study shows that both direct treatments with icariin and fecal transplant from the icariin-treated aged mice produce similar anti-aging phenotypes in the aged mice. We prove that GM plays a pivotal role in the healing abilities of icariin. Icariin has the potentials to be developed as a medicine for the wellness of the aged adults.
Collapse
Affiliation(s)
- Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - Xiaoling Guo
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
42
|
Armstrong H, Bording-Jorgensen M, Wine E. The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer. Cancers (Basel) 2021; 13:cancers13040767. [PMID: 33673140 PMCID: PMC7917909 DOI: 10.3390/cancers13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Many studies performed to date have implicated select microbes and dietary factors in a variety of cancers, yet the complexity of both these diseases and the relationship between these factors has limited the ability to translate findings into therapies and preventative guidelines. Here we begin by discussing recently published studies relating to dietary factors, such as vitamins and chemical compounds used as ingredients, and their contribution to cancer development. We further review recent studies, which display evidence of the microbial-diet interaction in the context of cancer. The field continues to advance our understanding of the development of select cancers and how dietary factors are related to the development, prevention, and treatment of these cancers. Finally, we highlight the science available in the discussion of common misconceptions with regards to cancer and diet. We conclude this review with thoughts on where we believe future research should focus in order to provide the greatest impact towards human health and preventative medicine.
Collapse
Affiliation(s)
- Heather Armstrong
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| | - Michael Bording-Jorgensen
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Eytan Wine
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| |
Collapse
|
43
|
Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci 2021; 270:119105. [PMID: 33497736 DOI: 10.1016/j.lfs.2021.119105] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
AIMS Scopoletin is a natural anticarcinogenic and antiviral coumarin component. Many studies have proved its anti-cancer effect, and after the preliminary screening of this study, Scopoletin had the best inhibitory effect on Non-small cell lung cancer (NSCLC). But its mechanism for treating NSCLC is still unclear. Therefore, network pharmacology and molecular docking technology were used to explore the potential anti-NSCLC targets and pathways of Scopoletin. The results were verified in vitro. MAIN METHODS First, Scopoletin was isolated from Fennel and screened to conduct cell proliferation assay on Human lung cancer cell line A549, Human colon cancer cell line HCT-116 and Human hepatoma cell line HepG2 respectively, through the MTT test. Then, the key targets and related pathways were screened through Protein-protein Interaction (PPI) network and "component-target-pathway" (C-TP) network constructed by network pharmacology. And the key targets were selected to dock with Scopoletin via molecular docking. A549 and Human normal lung epithelial cell BEAS-2B were used to verify the results, finally. KEY FINDINGS Through MTT, A549 was chosen as the test cancer cell. From network pharmacology, 16 targets, 27 signaling pathways and 16 GO items were obtained (P < 0.05). The results of PPI network and molecular docking showed that EGFR, BRAF and AKT1 were the key targets of Scopoletin against NSCLC, which were consistent with the western-blot results. SIGNIFICANCE Through network pharmacology, molecular docking and experiments in vitro, Scopoletin was verified to against NSCLC through RAS-RAF-MEK-ERK pathway and PI3K/AKT pathway.
Collapse
|