1
|
Chen C, Liu W, Yuan F, Wang X, Xu X, Ling CC, Ge X, Shen X, Li B, Shen Y, Liu D. G protein-coupled receptor GPR182 negatively regulates sprouting angiogenesis via modulating CXCL12-CXCR4 axis signaling. Angiogenesis 2025; 28:25. [PMID: 40314798 PMCID: PMC12048421 DOI: 10.1007/s10456-025-09977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 05/03/2025]
Abstract
Angiogenesis is a critical process for tumor progression, regulated by various signaling pathways. Although antiangiogenic therapies targeting the VEGF pathway have shown potential, their effectiveness is inconsistent across different tumor types. GPR182, an endothelial cell-specific G protein-coupled receptor, is frequently downregulated in hypervascular tumors, but its specific role in angiogenesis has not been well defined. Our study reveals that GPR182 expression is markedly reduced in hepatocellular carcinoma (HCC) and inversely correlates with CD31, a pan-endothelial marker. In zebrafish embryos, Gpr182 deficiency resulted in enhanced angiogenic sprouting and hypervascularization, and GPR182-deficient human umbilical vein endothelial cells (HUVECs) showed increased migration and proliferation. At the molecular level, GPR182 acts as a decoy receptor, binding CXCL12 and regulating its gradient, which in turn suppresses CXCR4-mediated angiogenesis. The pharmacological blockade of CXCR4 with AMD3100 corrected the abnormal angiogenic phenotype in Gpr182-deficient zebrafish embryos and in the livers of a zebrafish HCC model. This work uncovers GPR182 as a negative regulator of angiogenesis, a key process in tumor growth and metastasis, and proposes that targeting GPR182 may offer a novel therapeutic approach for antiangiogenic strategies in cancer treatment.
Collapse
MESH Headings
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Animals
- Zebrafish/embryology
- Humans
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Signal Transduction
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Human Umbilical Vein Endothelial Cells/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Neovascularization, Physiologic
- Cell Movement
- Cell Proliferation
- Angiogenesis
Collapse
Affiliation(s)
- Changsheng Chen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
| | - Wei Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, Hubei Province, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei Province, China
| | - Fang Yuan
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, Jiangsu Province, China
| | - Xiaoning Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Xu
- Medical College of Nantong University, Nantong, Jiangsu Province, China
| | - Chang Chun Ling
- Department of Intervention and Vascular Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaojuan Ge
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Xiaozhong Shen
- Medical College of Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Li
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
| | - Yuqian Shen
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China
- Department of Translational Medicine, IGBMC, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Seyuan Road 9, Nantong, Jiangsu Province, 226019, China.
- Medical College of Nantong University, Nantong, Jiangsu Province, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Huang H, Shi W, Yan H, Fan L, Lu J, Long Z, Li X, Li J, Wang J, Liu L, Qian J. Dual roles of CXCR4 (C-X-C motif chemokine receptor 4) in promoting entry of ebolavirus and targeting excessive glycoprotein for reticulophagic degradation to facilitate viral fitness. Autophagy 2025:1-20. [PMID: 40223186 DOI: 10.1080/15548627.2025.2492877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
Ebola virus disease (EVD) caused by Zaire Ebolavirus (EBOV) infection is a major threat to public health in Africa and even worldwide, due to its extremely high mortality rate. However, there are still no effective antiviral therapies that can completely cure EVD. A comprehensive understanding of virus-host interactions would be beneficial for developing new antiviral agents. Here, we showed that CXCR4-induced macroautophagy/autophagy and was internalized to endosomes by interacting with glycoprotein (GP) on viral particles during EBOV infection; this promoted the EBOV attachment and entry, which was reduced by CXCR4 antagonist and neutralizing antibody. We also found that CXCR4 increased EBOV replication by downregulating cytotoxic GP to promote viral fitness instead of influencing the assembly of viral factory. Mechanistically, excessive EBOV GP could hijack CXCR4 sorting and transporting pathways by their interactions with HGS, one of the key components of the ESCRT machinery; subsequently GP could be carried back to the endoplasmic reticulum by CXCR4, where the E3 ubiquitin ligase RNF185 was recruited to polyubiquitinate GP in a K27- and K63-linked manner. Finally, polyubiquitinated GP was degraded in lysosomes via reticulophagy by interacting with RETREG1 (reticulophagy regulator 1), in an ATG3- and ATG5-dependent manner. Our findings revealed dual roles of CXCR4 in regulation of EBOV life cycle, either acting as an entry factor by interacting with GP on viral particles to facilitate viral entry or targeting excessive GP for reticulophagic degradation, providing new evidence that EBOV hijacked the host vesicular transportation system through efficient virus-host interactions to facilitate viral fitness.Abbreviations: Baf A1: bafilomycin A1; BDBV: Bundibugyo Ebolavirus; CHX: cycloheximide; CXCR4: C-X-C motif chemokine receptor 4; CLEC4M/DC-SIGNR: C type lectin domain family 4 member M; EBOV: Zaire Ebolavirus; EEA1: early endosome antigen 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ESCRT: endosomal sorting complex required for transport; EVD: Ebolavirus disease; HAVCR1/TIM-1: hepatitis A virus cellular receptor 1; GP: glycoprotein; HGS: hepatocyte growth factor-regulated tyrosine kinase substrate; HIV: human immunodeficiency virus; IFL: internal fusion loop; ITCH/AIP4: itchy E3 ubiquitin protein ligase; LAMP: lysosomal associated membrane protein; LC-MS/MS: liquid chromatography mass spectrometry; PDIs: protein disulfide isomerases; RBD: receptor binding domain; RESTV: Reston Ebolavirus; RETREG1: reticulophagy regulator 1; RNF185: ring finger protein 185; SQSTM1/p62: sequestosome 1; SUDV: Sudan Ebolavirus; TAFV: Taï Forest Ebolavirus; TRIM21: tripartite motif containing 21; trVLPs: transcription- and replication-competent virus-like particles; Ub: ubiquitin.
Collapse
Affiliation(s)
- Hongxin Huang
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wendi Shi
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijun Yan
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjin Fan
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiajun Lu
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowei Li
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiao Li
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Qian
- Department of Pathogen Biology and Biosecurity, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen, Guangdong, China
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wang C, Hu H, Xu Y, Wang S. Transcriptomic sequencing of multiple salivary glands combined with bioinformatics analysis reveals key genes in primary Sjögren's syndrome. Clin Rheumatol 2025:10.1007/s10067-025-07428-6. [PMID: 40227387 DOI: 10.1007/s10067-025-07428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE Reveal key genes involved in the pathogenesis of Primary Sjögren's Syndrome (pSS) and identify new potential biomarkers and therapeutic targets. METHODS mRNA transcriptome data from pSS patients'and healthy controls'parotid and minor salivary glands were collected from the Gene Expression Omnibus (GEO) database. mRNA sequencing was performed on pSS mouse model submandibular glands. Differentially expressed genes (DEGs) were identified and core genes were screened using protein-protein interaction (PPI)networks. Validation was done through Gene Ontology (GO),Kyoto Encyclopedia of Genes and Genomes (KEGG), immune cell infiltration, heatmap, and Receiver Operating Characteristic (ROC) curve analyses, followed by external validation. Finally, review the clinical studies of drugs targeting these genes. RESULTS A total of 113 DEGs were identified, yielding 15core DEGs CD8 A, LCK, SYK, CD2, CD247, CD3D, LCP2, CD3G, CCR7, ITK, CXCR4, B2M, CXCL10, CXCL13, and CXCL9.These core genes were enriched in antigen receptor-mediated and T cell receptor signaling pathways, as well as in the chemokine signaling pathway. Immunocell infiltration analysis revealed that, except for B2M, the expression of other core genes is correlated with the proportion of immune cells. Genes like, CXCL13, CXCL9, CXCR4,CD2,CCR7,and ITK exhibited high diagnostic accuracy for distinguish in pSS patients. Core DEGs such as LCK, SYK, LCP2, and ITK was validated in salivary gland data from pSS patients and mouse models. Drugs targeting LCK, SYK, ITK, and other core genes, with their clinical status, were identified. CONCLUSION This study identified key genes in pSS, providing novelinsights into pathogenesis, promising biomarkers, and potential therapeutictargets. Key Points • mRNA transcriptomic sequencing was conducted on submandibular gland specimens from NOD mice simulating pSS and normal mice. • Commonly dysregulated core genes were identified across the minor and parotid salivary glands of pSS patients and healthy controls, as well as in the submandibular glands of NOD and normal mice. • ROC analysis was employed to evaluate their predictive value in the diagnosis of pSS.Genes such as CXCL13, CXCL9, CXCR4, CD2, CCR7, and ITK exhibited high diagnostic accuracy for distinguishing pSS patients. • Genes such as LCK, SYK, and ITK have been validated through external verification and qPCR, and have been identified as targets for clinical drugs.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021, China
| | - Hongmin Hu
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021, China
| | - Yinyue Xu
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021, China
| | - Shasha Wang
- Department of Rheumatology, Chongqing Traditional Chinese Medicine Hospital, No. 6, Pan Xi Qi Zhi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
4
|
Cheng SL, Wu CH, Tsai YJ, Song JS, Chen HM, Yeh TK, Shen CT, Chiang JC, Lee HM, Huang KW, Chen Y, Qiu JT, Yen YT, Shia KS, Chen Y. CXCR4 antagonist-loaded nanoparticles reprogram the tumor microenvironment and enhance immunotherapy in hepatocellular carcinoma. J Control Release 2025; 379:967-981. [PMID: 39863023 DOI: 10.1016/j.jconrel.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC. 807-NPs enhance the pharmacokinetics and improve the tumor availability of BPRCX807 without causing systemic toxicity. Our findings show that 807-NPs block the CXCR4/CXCL12 pathway, inhibiting Akt and mTOR activation in HCC cells and M2 macrophages and promoting their repolarization toward the antitumor M1 phenotype. In orthotopic murine HCC models, systemic administration of 807-NPs significantly remodeled the immunosuppressive TME by reprogramming tumor-associated macrophages (TAMs) toward an immunostimulatory phenotype and promoting cytotoxic T-cell infiltration into tumors. This led to suppressed primary tumor growth and metastasis, while enhancing the efficacy of cancer immunotherapies, including PD-1 blockade and whole-cancer cell vaccines, by promoting T-cell activation. Our work demonstrates the potential of using nanotechnology to deliver CXCR4 antagonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Sheng-Liang Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Yun-Jen Tsai
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Hsin-Min Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chia-Tung Shen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jou-Chien Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Mei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuling Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Timothy Qiu
- International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Ting Yen
- Institute of Translational Medicine and New Drug Development, School of Medicine, China Medical University, Taichung, Taiwan.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
5
|
Zhao T, Su Y. Mechanisms and Therapeutic Potential of Myofibroblast Transformation in Pulmonary Fibrosis. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2025; 2:10001. [PMID: 40190620 PMCID: PMC11970920 DOI: 10.70322/jrbtm.2025.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and fatal disease with an increasing incidence and limited therapeutic options. It is characterized by the formation and deposition of excess extracellular matrix proteins resulting in the gradual replacement of normal lung architecture by fibrous tissue. The cellular and molecular mechanism of IPF has not been fully understood. A hallmark in IPF is pulmonary fibroblast to myofibroblast transformation (FMT). During excessive lung repair upon exposure to harmful stimuli, lung fibroblasts transform into myofibroblasts under stimulation of cytokines, chemokines, and vesicles from various cells. These mediators interact with lung fibroblasts, initiating multiple signaling cascades, such as TGFβ1, MAPK, Wnt/β-catenin, NF-κB, AMPK, endoplasmic reticulum stress, and autophagy, contributing to lung FMT. Furthermore, single-cell transcriptomic analysis has revealed significant heterogeneity among lung myofibroblasts, which arise from various cell types and are adapted to the altered microenvironment during pathological lung repair. This review provides an overview of recent research on the origins of lung myofibroblasts and the molecular pathways driving their formation, with a focus on the interactions between lung fibroblasts and epithelial cells, endothelial cells, and macrophages in the context of lung fibrosis. Based on these molecular insights, targeting the lung FMT could offer promising avenues for the treatment of IPF.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Lin J, Zhang W, Wang S, Wang C, Zhang R, Yang Y, Zhou C, Zhang L, Tang P, Liu J, Jin X, Ma Y. Astragalin inhibits neuronal excitability and activates neuronal autophagy in the ACC and LH of CFA mice to alleviate inflammatory pain and pain-related emotions. Int Immunopharmacol 2025; 148:114115. [PMID: 39842140 DOI: 10.1016/j.intimp.2025.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Astragalin (AST), a natural flavonoid, exhibits anti-inflammatory, anti-cancer, and antioxidant properties. However, its effects and molecular mechanisms in inflammatory pain remain unclear. Therefore, this study aims to investigate the impact of AST on a Complete Freund's Adjuvant (CFA)-induced inflammatory pain mouse model and to elucidate its potential mechanisms. We employed behavioral tests, including the paw withdrawal test (PWT) and open field test (OFT), to assess pain thresholds and emotional changes in mice, while ELISA was utilized to measure the expression of inflammatory factors. Western blot analysis was performed to evaluate the expression of autophagy-related proteins, c-Fos, and pathway-related proteins. Additionally, immunofluorescence staining was conducted to assess the co-localization of neurons with autophagy-related factors and c-Fos. Our findings indicate that AST significantly reduces pain sensitivity and anxiety-like behaviors in CFA mice, similar to the analgesic Naproxen (NAP). AST treatment inhibited the expression of c-Fos, a neuronal excitability marker, in the ACC and LH of CFA mice, while upregulating the expression of autophagy-related proteins. Furthermore,AST modulates the expression of proteins associated with the CXCR4-Beclin1/VPS34 signaling pathway. In conclusion, these results suggest that AST inhibits neuronal excitability and enhances autophagy by modulating the CXCR4-Beclin1/VPS34 signaling pathway in the ACC and LH of CFA mice, leading to a reduction in pain sensitivity and anxiety-like behaviors, thereby producing analgesic effects. This study reveals a novel mechanism for the potential use of AST in the treatment of inflammatory pain and pain-related emotions, offering a promising strategy for clinical applications.
Collapse
Affiliation(s)
- Jiahong Lin
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weishan Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuhan Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Can Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Runheng Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yaqi Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang Zhou
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pei Tang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxin Ma
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
7
|
Zhu C, Cheng Y, Yang L, Lyu Y, Li J, Zhao P, Zhu Y, Xin X, Yin L. Notch1 siRNA and AMD3100 Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:486. [PMID: 40002899 PMCID: PMC11853639 DOI: 10.3390/biomedicines13020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: As a key mechanism of metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis, inflammation triggered by chronic liver injury and immune cells with macrophages enables MASLD to progress to an advanced stage with irreversible processes such as fibrosis, cell necrosis, and cancer in the liver. The complexity of MASLD, including crosstalk between multiple organs and the liver, makes developing a new drug for MASLD challenging, especially in single-drug therapy. It was reported that upregulation of Notch1 is closely associated with the function of pro-inflammatory macrophages. To leverage this signaling pathway in treating MASLD, we developed a combination therapy. Materials and Methods: We chose Notch1 siRNA (siNotch1) to block the Notch pathway so that phenotypic regulation and functional recovery can be achieved in macrophages, combining with small molecule drug AMD3100. AMD3100 can cut off the migration of inflammatory cells to the liver to impede the development of inflammation and inhibit the CXCL12/CXCR4 biological axis in liver fibrosis to protect against the activation of HSCs. Then, we investigated the efficacy of the combination therapy on resolving inflammation and MASLD. Results: We demonstrated that in liver cells, siNotch1 combined with AMD3100 not only directly modulated macrophages by downregulating multiple pathways downstream of Notch, exerting anti-inflammatory, anti-migration, and switch of macrophage phenotype, but also modulated macrophage phenotypes through inhibiting NET release. The restored macrophages further regulate HSC and neutrophils. In in vivo pharmacodynamic studies, combination therapy exhibits a superior therapeutical effect over monotherapy in MASLD models. Conclusions: These results constitute an siRNA therapeutical approach combined with a small molecule drug against inflammation and liver injury in MASLD, offering a promising therapeutic intervention for MASLD.
Collapse
Affiliation(s)
- Chunli Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yiheng Cheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Yifu Lyu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Pengbo Zhao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (C.Z.); (Y.C.); (L.Y.); (Y.L.); (J.L.); (P.Z.); (Y.Z.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2025; 32:315-325. [PMID: 39313635 PMCID: PMC11832422 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
9
|
Ren F, Meng L, Zheng S, Cui J, Song S, Li X, Wang D, Li X, Liu Q, Bu W, Sun H. Myeloid cell-derived apCAFs promote HNSCC progression by regulating proportion of CD4 + and CD8 + T cells. J Exp Clin Cancer Res 2025; 44:33. [PMID: 39891284 PMCID: PMC11783918 DOI: 10.1186/s13046-025-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
It is well-known that cancer-associated fibroblasts (CAFs) are involved in the desmoplastic responses in Head and Neck Squamous Cell Carcinoma (HNSCC). CAFs are pivotal in the tumor microenvironment (TME) molding, and exert a profound influence on tumor development. The origin and roles of CAFs, however, are still unclear in the HNSCC, especially antigen-presenting cancer-associated fibroblasts (apCAFs). Our current study tried to explore the origin, mechanism, and function of the apCAFs in the HNSCC. Data from single-cell transcriptomics elucidated the presence of apCAFs in the HNSCC. Leveraging cell trajectory and Cellchat analysis along with robust lineage-tracing assays revealed that apCAFs were primarily derived from myeloid cells. This transdifferentiation was propelled by the macrophage migration inhibitory factor (MIF), which was secreted by tumor cells and activated the JAK/STAT3 signaling pathway. Analysis of the TCGA database has revealed that markers of apCAFs were inversely correlated with survival rates in patients with HNSCC. In vivo experiments have demonstrated that apCAFs could facilitate tumor progression. Furthermore, apCAFs could modulate ratio of CD4+ T cells/CD8+ T cells, such as higher ratio of CD4+ T cells/CD8+ T cells could promote tumor progression. Most importantly, data from in vivo assays revealed that inhibitors of MIF and p-STAT3 could significantly inhibit the OSCC growth. Therefore, our findings show potential innovative therapeutic approaches for the HNSCC.Significance: ApCAFs derived from myeloid cells promote the progression of HNSCC by increasing the ratio of CD4+/CD8+ cells, indicating potential novel targets to be used to treat the human HNSCC.
Collapse
Affiliation(s)
- Feilong Ren
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Lin Meng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shize Zheng
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Jiasen Cui
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shaoyi Song
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Dandan Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Xing Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China
| | - Qilin Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Wenhuan Bu
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2025; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
11
|
Xuan X, Li Y, Cao G, Hu J, Yan S, Jin H, Qiao M, Zhang R, Dong H. Inhibition of Abdominal Aortic Aneurysm Progression Through the CXCL12/CXCR4 Axis via MiR206-3p Sponge. J Cell Mol Med 2025; 29:e70328. [PMID: 39779470 PMCID: PMC11710933 DOI: 10.1111/jcmm.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile. The activity level of the CXCL12/CXCR4 axis was evaluated in both human AAA patients and the mouse model. Smooth muscle cell lineage tracing determined the expression and localisation of CXCR4 in normal aorta and AAA tissue. By transfecting the MiR206-3p sponge to reduce the level of MiR206-3p in AAA, the effects of the CXCL12/CXCR4 pathway on AAA progression as well as the apoptosis and phenotypic transformation of vascular smooth muscle cells (VSMCs) were studied in vivo and in vitro. Single-cell RNA sequencing analysis, serum ELISA, and in vivo experiments indicate a pronounced activation of the CXCL12/CXCR4 axis in both AAA patients and the mouse model. Specific blocking of the CXCL12/CXCR4 axis significantly inhibited further expansion and rupture of the abdominal aorta and reduced the infiltration of inflammatory cells in the aorta and inhibited the phenotypic transformation of contractile VSMCs into a macrophage-like state. Our findings propose that MiR206-3p sponge represents an innovative therapeutic strategy to attenuate AAA progression and rupture risk, primarily through the suppression of the CXCL12/CXCR4 signalling pathway.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Humans
- Mice
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Disease Models, Animal
- Signal Transduction
- Disease Progression
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Xuezhen Xuan
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yaling Li
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Genmao Cao
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jie Hu
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Sheng Yan
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Haijiang Jin
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Maolin Qiao
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Ruijing Zhang
- Department of NephrologyThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Honglin Dong
- Department of Vascular SurgeryThe Second Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
12
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Flauto F, De Martino MC, Vitiello C, Pivonello R, Colao A, Damiano V. A Review on Mitotane: A Target Therapy in Adrenocortical Carcinoma. Cancers (Basel) 2024; 16:4061. [PMID: 39682247 DOI: 10.3390/cancers16234061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative adjuvant therapy. Although it is understood that mitotane targets the adrenal cortex and disrupts steroid production, its precise mechanism of action requires further exploration. Additionally, mitotane affects cytochrome P450 enzymes, causes the depolarization of mitochondrial membranes, and leads to an accumulation of free cholesterol, ultimately resulting in cell death. Many patients treated with mitotane develop disease progression over time, underlying the need to understand the mechanisms of primary and acquired resistance. In this manuscript, we provide an overview on the intracellular mechanisms of action of mitotane, exploring data regarding predictive factors of response and evidence associated with the development of primary and acquired resistance mechanisms. In this discussion, mitotane is considered a real target therapy.
Collapse
Affiliation(s)
- Fabiano Flauto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Chiara Vitiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Pivonello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Vincenzo Damiano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
14
|
Xiao L, Xu H, Li M, Lin L, Zhu Y. CXCR4 up-regulation mediated by USP1 deubiquitination promotes the tumorigenesis and immune escape in esophageal squamous-cell carcinoma. J Biochem Mol Toxicol 2024; 38:e70004. [PMID: 39440461 DOI: 10.1002/jbt.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
CXC chemokine receptor 4 (CXCR4) and ubiquitin specific protease 1 (USP1) have been reported to involve in the tumorigenesis of esophageal squamous-cell carcinoma (ESCC). Here, we investigated whether USP1 induced CXCR4 deubiquitination in regulating ESCC progression. MTT assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, transwell assay and ELISA analysis were used to detect cell oncogenic phenotypes, macrophage phenotypes, inflammatory cytokines production, the cytotoxicity of cytokine-induced killer (CIK) cells and CD8 + T cell apoptosis. Protein interaction was determined by immunoprecipitation assay. Cellular ubiquitination detected the ubiquitination effect on CXCR4. A mouse xenograft model was established for in vivo experiments. CXCR4 was highly expressed in ESCC tissues and cells. Functionally, CXCR4 silencing suppressed ESCC cell proliferation, invasion, and induced cell apoptosis. Moreover, CXCR4 deficiency suppressed cancer cell immune escape by suppressing macrophage M2 polarization, elevating inflammatory cytokines produced by PBMCs, enhancing the cytotoxicity of CIK cells, and suppressing CD8 + T cell apoptosis. A high USP1 expression was observed in ESCC, USP1 interacted with CXCR4 and enhanced its protein stability through deubiquitination. USP1 silencing suppressed ESCC cell proliferation, invasion, and immune escape, which were reversed by CXCR4 overexpression. In vivo assay showed that USP1 deficiency impeded tumor growth by regulating CXCR4. Besides, fused in sarcoma (FUS) was confirmed to bind to USP1 and stabilized its mRNA expression, and could regulate CXCR4 via USP1. In conclusion, USP1 stabilized CXCR4 by removing ubiquitination on CXCR4, thereby promoting ESCC cell proliferation, invasion, and immune escape in vitro, and tumor growth in vivo.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Xu
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Meixiang Li
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lin Lin
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yan Zhu
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
16
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
17
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
18
|
Hunter C, Larimer B. Chemokine receptor PET imaging: Bridging molecular insights with clinical applications. Nucl Med Biol 2024; 134-135:108912. [PMID: 38691942 PMCID: PMC11180593 DOI: 10.1016/j.nucmedbio.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Chemokine receptors are important components of cellular signaling and play a critical role in directing leukocytes during inflammatory reactions. Their importance extends to numerous pathological processes, including tumor differentiation, angiogenesis, metastasis, and associations with multiple inflammatory disorders. The necessity to monitor the in vivo interactions of cellular chemokine receptors has been driven the recent development of novel positron emission tomography (PET) imaging agents. This imaging modality provides non-invasive localization and quantitation of these receptors that cannot be provided through blood or tissue-based assays. Herein, we provide a review of PET imaging of the chemokine receptors that have been imaged to date, namely CXCR3, CXCR4, CCR2, CCR5, and CMKLR1. The quantification of these receptors can aid in understanding various diseases, including cancer, atherosclerosis, idiopathic pulmonary fibrosis, and acute respiratory distress syndrome. The development of specific radiotracers targeting these receptors will be discussed, including promising results for disease diagnosis and management. However, challenges persist in fully translating these imaging advancements into practical therapeutic applications. Given the success of CXCR4 PET imaging to date, future research should focus on clinical translation of these approaches to understand their role in the management of a wide variety of diseases.
Collapse
Affiliation(s)
- Chanelle Hunter
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Benjamin Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Alcantara KP, Malabanan JWT, Vajragupta O, Rojsitthisak P, Rojsitthisak P. A promising strategy of surface-modified nanoparticles targeting CXCR4 for precision cancer therapy. J Drug Target 2024; 32:587-605. [PMID: 38634290 DOI: 10.1080/1061186x.2024.2345235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Hadebe B, Harry L, Gabela L, Masikane S, Patel M, Zwane S, Pillay V, Bipath P, Cebekhulu N, Nyakale N, Ramdass P, Msimang M, Aldous C, Sathekge M, Vorster M. Chemokine Receptor-4 Targeted PET/CT Imaging with 68Ga-Pentixafor in Head and Neck Cancer-A Comparison with 18F-FDG and CXCR4 Immunohistochemistry. Diagnostics (Basel) 2024; 14:1375. [PMID: 39001265 PMCID: PMC11240717 DOI: 10.3390/diagnostics14131375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is common, and its incidence is increasing, particularly in HIV-infected individuals who present with more aggressive disease. Despite aggressive treatment, the prognosis remains poor because of resistance to chemoradiation therapy. So far, studies report very low [68Ga]Ga-Pentixafor avidity in HNSCC. This study investigated the diagnostic performance of CXCR4-directed imaging of carcinoma of the oral cavity, oropharynx, and nasopharynx with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine ligand [68Ga]Ga-Pentixafor and explored its ability to quantify CXCR4 expression in vivo. MATERIALS AND METHODS In this prospective cross-sectional study, twenty-three (23) patients aged 52.9 ± 10.4 (19.6), 17 males and 6 females with primarily diagnosed (n = 17) or pre-treated (n = 6) SCC of the oral cavity (OCSCC, n = 11), oropharynx (OPSCC, n = 9), nasopharynx (NPSCC, n = 2) and unknown primary (n = 1) underwent imaging with [68Ga]Ga-Pentixafor-PET/CT. In 16/23 patients 2-[18F]fluoro-2-deoxy-D-glucose ([18F]F-FDG) served as a standard reference. All lesions were visually rated using a 5-point Likert scale. For both tracers, maximum standardized uptake values (SUVmax) and the total lesion uptake (TLU) were recorded and compared using the Wilcox-signed rank test. In addition, the tumor-to-background ratios were derived using the liver (TLR), spleen (TSR), and posterior cervical muscles (TMR) as background. The relationships between the SUVs of the two tracers were assessed using the Spearman correlation. CXCR4 immunohistochemistry (IHC) staining was correlated with 68Ga-Pentixafor-PET/CT in 21/23 patients. RESULTS Ninety-one percent (21/23) of tumors were visually detected on [68Ga]Ga-Pentixafor; however, [68Ga]Ga-Pentixafor was less intense compared with [18F]F-FDG-PET. Quantitative analysis showed higher [18F]F-FDG SUVmax in comparison with [68Ga]Ga-Pentixafor (16 ± 6.7 vs. 5.8 ± 2.6 g/mL, p = 0.011) and SUVmean (9.3 ± 4.1 vs. 3± 1.6 g/mL, p < 0.001) and TBR 4.9 ± 2.3 vs. 2.36 ± 1.4 p = 0.014. Nasopharyngeal cancer demonstrated more intense tracer accumulation than oropharyngeal and oral cavity malignancies. CXCR4 IHC staining was positive in 15/21 patients, and there was a statistically significant correlation between IHC staining and [68Ga]Ga-Pentixafor SUVmean r = 0.5 p = 0.027, and performance status r = 0.83 p = 0.0104. CONCLUSIONS In conclusion, although [68Ga]Ga-Pentixafor cannot replace [18F]F-FDG as a diagnostic tool because of its lower avidity, the correlation between CXCR4 targeted 68Ga-Pentixafor PET imaging and CXCR4 IHC staining indicates the potential of 68Ga-Pentixafor as an effective tool for selecting patients who may benefit from therapies targeting CXCR4. In addition, [68Ga]Ga-Pentixafor has no physiological brown fat uptake, which often obscures cervical lesions on [18F]F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Bawinile Hadebe
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Lerwine Harry
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Lerato Gabela
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Siphelele Masikane
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Maryam Patel
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Sizwe Zwane
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Venesen Pillay
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Presha Bipath
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Radiation Oncology, College of Health Sciences, University of KwaZulu Natal, Private Bag X03, Durban 4001, South Africa
| | - Nonhlanhla Cebekhulu
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Radiation Oncology, College of Health Sciences, University of KwaZulu Natal, Private Bag X03, Durban 4001, South Africa
| | - Nozipho Nyakale
- Department of Nuclear Medicine, Sefako Makgatho Health Science University, Pretoria 0208, South Africa
| | - Prathima Ramdass
- Department of Nuclear Medicine, Jawaharlal Nehru Hospital, Rose Belle 51829, Mauritius
| | - Mpumelelo Msimang
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
- Department of Anatomical Pathology, National Health Laboratory Service, Durban 4000, South Africa
| | - Colleen Aldous
- Department of Genetics, College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu Natal, Private Bag X54001, Durban 4001, South Africa
- Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| |
Collapse
|
21
|
Liu CC, Yang WB, Chien CH, Wu CL, Chuang JY, Chen PY, Chu JM, Cheng SM, Qiu LY, Chang YC, Hwang DY, Huang CY, Lee JS, Chang KY. CXCR7 activation evokes the anti-PD-L1 antibody against glioblastoma by remodeling CXCL12-mediated immunity. Cell Death Dis 2024; 15:434. [PMID: 38898023 PMCID: PMC11187218 DOI: 10.1038/s41419-024-06784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
The interaction between glioblastoma cells and glioblastoma-associated macrophages (GAMs) influences the immunosuppressive tumor microenvironment, leading to ineffective immunotherapies. We hypothesized that disrupting the communication between tumors and macrophages would enhance the efficacy of immunotherapies. Transcriptomic analysis of recurrent glioblastoma specimens indicated an enhanced neuroinflammatory pathway, with CXCL12 emerging as the top-ranked gene in secretory molecules. Single-cell transcriptome profiling of naïve glioblastoma specimens revealed CXCL12 expression in tumor and myeloid clusters. An analysis of public glioblastoma datasets has confirmed the association of CXCL12 with disease and PD-L1 expression. In vitro studies have demonstrated that exogenous CXCL12 induces pro-tumorigenic characteristics in macrophage-like cells and upregulated PD-L1 expression through NF-κB signaling. We identified CXCR7, an atypical receptor for CXCL12 predominantly present in tumor cells, as a negative regulator of CXCL12 expression by interfering with extracellular signal-regulated kinase activation. CXCR7 knockdown in a glioblastoma mouse model resulted in worse survival outcomes, increased PD-L1 expression in GAMs, and reduced CD8+ T-cell infiltration compared with the control group. Ex vivo T-cell experiments demonstrated enhanced cytotoxicity against tumor cells with a selective CXCR7 agonist, VUF11207, reversing GAM-induced immunosuppression in a glioblastoma cell-macrophage-T-cell co-culture system. Notably, VUF11207 prolonged survival and potentiated the anti-tumor effect of the anti-PD-L1 antibody in glioblastoma-bearing mice. This effect was mitigated by an anti-CD8β antibody, indicating the synergistic effect of VUF11207. In conclusion, CXCL12 conferred immunosuppression mediated by pro-tumorigenic and PD-L1-expressing GAMs in glioblastoma. Targeted activation of glioblastoma-derived CXCR7 inhibits CXCL12, thereby eliciting anti-tumor immunity and enhancing the efficacy of anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Bin Yang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hung Chien
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Lin Wu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Jian-Ying Chuang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jui-Mei Chu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Li-Ying Qiu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yung-Chieh Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- TMU Research Center of Cancer Translational Medicine; Taipei Cancer Center; Taipei Medical University Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chih-Yuan Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Deng ZW, Yang JK, Qiu KJ, Zhang TJ, He Z, Wang N, Chen XG, Liu Y. Long-term combined blockade of CXCR4 and PD-L1 with in vivo reassembly for intensive tumor interference. J Control Release 2024; 370:453-467. [PMID: 38697315 DOI: 10.1016/j.jconrel.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Negative immunoregulatory signal (PD-L1, CXCR4, et al.) and weak immunogenicity elicited immune system failing to detect and destroy cancerous cells. CXCR4 blockade promoted T cell tumor infiltration and increased tumor sensitivity to anti-PD-L1 therapy. Here, pH-responsive reassembled nanomaterials were constructed with anti-PD-L1 peptide and CXCR4 antagonists grafting (APAB), synergized with photothermal therapy for melanoma and breast tumor interference. The self-assembled APAB nanoparticles accumulated in the tumor and rapidly transformed into nanofibers in response to the acidic tumor microenvironment, leading to the exposure of grafted therapeutic agents. APAB enabling to reassemble around tumor cells and remained stable for over 96 h due to the aggregation induced retention (AIR) effect, led to long-term efficiently combined PD-L1 and CXCR4 blockade. Photothermal efficiency (ICG) induced immunogenic cell death (ICD) of tumor cells so as to effectively improve the immunogenicity. The combined therapy (ICG@APAB) could effectively inhibit the growth of primary tumor (∼83.52%) and distant tumor (∼76.24%) in melanoma-bearing mice, and significantly (p < 0.05) prolong the survival time over 42 days. The inhibition assay on tumor metastasis in 4 T1 model mice exhibited ICG@APAB almostly suppressed the occurrence of lung metastases and the expression levels of CD31, MMP-9 and VEGF in tumor decreased by 82.26%, 90.45% and 41.54%, respectively. The in vivo reassembly strategy will offer novel perspectives benefical future immunotherapies and push development of combined therapeutics into clinical settings.
Collapse
Affiliation(s)
- Zhen-Wei Deng
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Jian-Ke Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Kai-Jin Qiu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Ting-Jie Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zheng He
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
23
|
Norman KM, Lang GA, Shadid TM, Honold ST, Reel JM, Cox MA, Ballard JD, Lang ML. Clostridioides difficile toxin B subverts germinal center and antibody recall responses by stimulating a drug-treatable CXCR4-dependent mechanism. Cell Rep 2024; 43:114245. [PMID: 38761377 PMCID: PMC11210377 DOI: 10.1016/j.celrep.2024.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.
Collapse
Affiliation(s)
- Kaylee M Norman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Tyler M Shadid
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Sydney T Honold
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
25
|
Yi H, Qin L, Ye X, Song J, Ji J, Ye T, Li J, Li L. Progression of radio-labeled molecular imaging probes targeting chemokine receptors. Crit Rev Oncol Hematol 2024; 195:104266. [PMID: 38232861 DOI: 10.1016/j.critrevonc.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/31/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Chemokine receptors are significantly expressed in the surface of most inflammatory cells and tumor cells. Guided by chemokines, inflammatory cells which express the relevant chemokine receptors migrate to inflammatory lesions and participate in the evolution of inflammation diseases. Similarly, driven by chemokines, immune cells infiltrate into tumor lesions not only induces alterations in the tumor microenvironment, disrupting the efficacy of tumor therapies, but also has the potential to selectively target tumoral cells and diminish tumor progression. Chemokine receptors, which are significantly expressed on the surface of tumor cell membranes, are regulated by chemokines and initiate tumor-associated signaling pathways within tumor cells, playing a complex role in tumor progression. Based on the antagonists targeting chemokine receptors, radionuclide-labeled molecular imaging probes have been developed for the emerging application of molecular imaging in diseases such as tumors and inflammation. The value and limitations of molecular probes in disease imaging are worth reviewing.
Collapse
Affiliation(s)
- Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Lilin Qin
- Second Clinical Medical College of Zhejiang Chinese Medical University, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Xuemei Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jinling Song
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Jianfeng Ji
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Ting Ye
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Dongfang Street 150, Hangzhou, Zhejiang 310022, China.
| | - Linfa Li
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Banshan Street 1, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
26
|
Puengel T, Tacke F. Role of Kupffer cells and other immune cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:483-511. [DOI: 10.1016/b978-0-323-95262-0.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Li W, Liang J, Li S, Jiang S, Song M, Xu S, Wang L, Meng H, Zhai D, Tang L, Yang Y, Zhang B. The CXCL12-CXCR4-NLRP3 axis promotes Schwann cell pyroptosis and sciatic nerve demyelination in rats. Clin Exp Immunol 2023; 214:219-234. [PMID: 37497691 PMCID: PMC10714193 DOI: 10.1093/cei/uxad081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023] Open
Abstract
Studies have shown that the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is detrimental to the functional recovery of the sciatic nerve, but the regulatory mechanisms of the NLRP3 inflammasome in peripheral nerves are unclear. C-X-C motif chemokine 12 (CXCL12) can bind to C-X-C chemokine receptor type 4 (CXCR4) and participate in a wide range of nerve inflammation by regulating the NLRP3 inflammasome. Based on these, we explore whether CXCL12-CXCR4 axis regulates the NLRP3 inflammasome in the peripheral nerve. We found that CXCR4/CXCL12, NLRP3 inflammasome-related components, pyroptosis-related proteins and inflammatory factors in the sciatic nerve injured rats were markedly increased compared with the sham-operated group. AMD3100, a CXCR4 antagonist, reverses the activation of NLRP3 inflammasome, Schwann cell pyroptosis and sciatic nerve demyelination. We further treated rat Schwann cells with LPS (lipopolysaccharide) and adenosine triphosphate (ATP) to mimic the cellular inflammation model of sciatic nerve injury, and the results were consistent with those in vivo. In addition, both in vivo and in vitro experiments demonstrated that AMD3100 treatment reduced the phosphorylation of nuclear factor κB (NF-κB) and the expression of thioredoxin interacting protein (TXNIP), which contributes to activating NLRP3 inflammasome. Therefore, our findings suggest that, after sciatic nerve injury, CXCL12-CXCR4 axis may promote Schwann cell pyroptosis and sciatic nerve demyelination through activating NLRP3 inflammasome and slow the recovery process of the sciatic nerve.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shaohua Li
- Department of Laboratory Medicine, The Third People’s Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
28
|
van Stevendaal MME, Hazegh Nikroo A, Mason AF, Jansen J, Yewdall NA, van Hest JCM. Regulating Chemokine-Receptor Interactions through the Site-Specific Bioorthogonal Conjugation of Photoresponsive DNA Strands. Bioconjug Chem 2023; 34:2089-2095. [PMID: 37856672 PMCID: PMC10655040 DOI: 10.1021/acs.bioconjchem.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Oligonucleotide conjugation has emerged as a versatile molecular tool for regulating protein activity. A state-of-the-art labeling strategy includes the site-specific conjugation of DNA, by employing bioorthogonal groups genetically incorporated in proteins through unnatural amino acids (UAAs). The incorporation of UAAs in chemokines has to date, however, remained underexplored, probably due to their sometimes poor stability following recombinant expression. In this work, we designed a fluorescent stromal-derived factor-1β (SDF-1β) chemokine fusion protein with a bioorthogonal functionality amenable for click reactions. Using amber stop codon suppression, p-azido-L-phenylalanine was site-specifically incorporated in the fluorescent N-terminal fusion partner, superfolder green fluorescent protein (sfGFP). Conjugation to single-stranded DNAs (ssDNA), modified with a photocleavable spacer and a reactive bicyclononyne moiety, was performed to create a DNA-caged species that blocked the receptor binding ability. This inhibition was completely reversible by means of photocleavage of the ssDNA strands. The results described herein provide a versatile new direction for spatiotemporally regulating chemokine-receptor interactions, which is promising for tissue engineering purposes.
Collapse
Affiliation(s)
- Marleen
H. M. E. van Stevendaal
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Arjan Hazegh Nikroo
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander F. Mason
- School
of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jitske Jansen
- Department
of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - N. Amy Yewdall
- School
of Biological Sciences, University of Canterbury, 8041 Christchurch, New Zealand
| | - Jan C. M. van Hest
- Laboratory
of Bio-Organic Chemistry, Department of Biomedical Engineering, Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Xu J, Yan W, Fan H, Liu J, Li L, Du C, Deng S, Sui W, Xu Y, Qiu L, An G. Impact of residual tumor cells in the stem cell collection on multiple myeloma patients receiving autologous stem cell transplantation. Ann Hematol 2023; 102:3195-3204. [PMID: 37679605 PMCID: PMC10567849 DOI: 10.1007/s00277-023-05427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Autologous stem cell transplantation (ASCT) is the standard therapy for patients with transplant-eligible multiple myeloma (TEMM). However, the ideal depth of response required before ASCT and the impact of residual tumor cells in the stem cell collection (SCC) on survival remains unclear. Here we collected data of 89 patients with TEMM undergoing ASCT and analyzed the minimal residual disease of SCC (cMRD) and bone marrow (BM) (mMRD) before transplantation. Before ASCT, 31.5% and 76.4% of patients achieved MRD negativity in BM and SCC, respectively. Tumor cells were less in SCC samples than that in BM samples. Neoplastic cells in SCC could be observed in patients with different responses after induction therapy, and there were no significant differences in the percentage and level of cMRD among these subgroups (P > 0.05). No correlation was found between the cMRD status and the response patients achieved after ASCT (P > 0.05). The median follow-up was 26.8 months. mMRD negativity before ASCT was associated with longer PFS (55.9 vs. 27.1 months; P = 0.009) but not OS (not reached vs. 58.9 months; P = 0.115). Patients with different cMRD statuses before ASCT experienced similar PFS (40.5 vs. 76.4 months for negativity vs. positivity; P = 0.685) and OS (not reached vs. 58.8 months for negativity vs. positivity; P = 0.889). These results suggested that detectable cMRD does not significantly predict the inferior post-ASCT response or shorter survival, and patients are eligible to undergo ASCT upon achieving partial response.
Collapse
Affiliation(s)
- Jingyu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqiang Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huishou Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jiahui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lingna Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Chenxing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
30
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
31
|
Zhao HQ, Jiang J. Chemokines and receptors in the development and progression of malignant tumors. Cytokine 2023; 170:156335. [PMID: 37591136 DOI: 10.1016/j.cyto.2023.156335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Cancer cells, endothelial cells, inflammatory cells and various cytokines form a part of the tumor microenvironment (TME). Chemokines constitute the largest family of cytokines, and are mainly secreted by tumor cells and inflammatory cells in the TME. They play an important role in tumor development and progression by promoting tumor growth and metastasis, angiogenesis, and targeting the chemoattraction of inflammatory cells. Currently, some chemokine receptor antagonists are being used in clinical trials as targeted anti-tumor drugs. In this article, we review the roles of chemokines in the development and progression of malignant tumors based on recently published papers, taking into consideration of the new anti-tumor therapeutic strategies targeting chemokines and receptors.
Collapse
Affiliation(s)
- Han-Qing Zhao
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, PR China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, PR China.
| |
Collapse
|
32
|
Liu S, Wu W, Du Y, Yin H, Chen Q, Yu W, Wang W, Yu J, Liu L, Lou W, Pu N. The evolution and heterogeneity of neutrophils in cancers: origins, subsets, functions, orchestrations and clinical applications. Mol Cancer 2023; 22:148. [PMID: 37679744 PMCID: PMC10483725 DOI: 10.1186/s12943-023-01843-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Neutrophils, the most prevalent innate immune cells in humans, have garnered significant attention in recent years due to their involvement in cancer progression. This comprehensive review aimed to elucidate the important roles and underlying mechanisms of neutrophils in cancer from the perspective of their whole life cycle, tracking them from development in the bone marrow to circulation and finally to the tumor microenvironment (TME). Based on an understanding of their heterogeneity, we described the relationship between abnormal neutrophils and clinical manifestations in cancer. Specifically, we explored the function, origin, and polarization of neutrophils within the TME. Furthermore, we also undertook an extensive analysis of the intricate relationship between neutrophils and clinical management, including neutrophil-based clinical treatment strategies. In conclusion, we firmly assert that directing future research endeavors towards comprehending the remarkable heterogeneity exhibited by neutrophils is of paramount importance.
Collapse
Affiliation(s)
- Siyao Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yueshan Du
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weisheng Yu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yu
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Zheng X, Zhao X, Wang Y, Chen J, Wang X, Peng X, Ma L, Du J. Inhibition of Cxcr4 Disrupts Mouse Embryonic Palatal Mesenchymal Cell Migration and Induces Cleft Palate Occurrence. Int J Mol Sci 2023; 24:12740. [PMID: 37628919 PMCID: PMC10454820 DOI: 10.3390/ijms241612740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial-mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif chemokine receptor 4 (CXCR4), which is involved in embryonic development, participates in these processes. In our study, the knockdown of Cxcr4 inhibited the migration of mouse embryonic palatal mesenchymal (MEPM) cells similarly to the use of its inhibitor plerixafor, and the inhibition of cell migration in the Cxcr4 knockdown group was partially reversed by supplementation with C-X-C motif chemokine ligand 12 (CXCL12). In combination with low-dose retinoic acid (RA), plerixafor increased the incidence of cleft palates in mice by decreasing the expression of Cxcr4 and its downstream migration-regulating gene Rac family small GTPase 1 (RAC1) mediating actin cytoskeleton to affect lamellipodia formation and focal complex assembly and ras homolog family member A (RHOA) regulating the actin cytoskeleton to affect stress fiber formation and focal complex maturation into focal adhesions. Our results indicate that the disruption of cell migration and impaired normal palatal development by inhibition of Cxcr4 expression might be mediated through Rac1 with RhoA. The combination of retinoic acid and plerixafor might increase the incidence of cleft palate, which also provided a rationale to guide the use of the drug during conception.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tiantan Xili No. 4, Beijing 100050, China; (X.Z.); (X.Z.); (Y.W.); (J.C.); (X.W.); (X.P.); (L.M.)
| |
Collapse
|
34
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
KUDO A, SAWAHATA H, YOSHIMOTO S, YAMAUCHI A, OSHITA R, KANAI E, TAKAGI S. Evaluation of the influence of the C-X-C motif chemokine ligand 12 / C-X-C chemokine receptor 4 axis on canine mammary gland tumor cell migration. J Vet Med Sci 2023; 85:837-843. [PMID: 37302847 PMCID: PMC10466059 DOI: 10.1292/jvms.23-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
C-X-C motif chemokine ligand 12 (CXCL12) is one of the chemokines that binds to C-X-C chemokine receptor 4 (CXCR4) on tumor cell membranes and induces chemotaxis and/or migration. Mammary gland tumors (MGT) are the most common neoplasms in intact female dogs, with local invasion and distant metastasis regarded as problems. However, the influence of the CXCL12/CXCR4 axis on canine MGT cell migration has not been elucidated. This study aimed to evaluate the expression of CXCL12 and CXCR4 in canine MGT cells and tissues and investigate the influence of CXCL12 protein on the migratory ability of MGT cells. CXCL12 expression was evaluated in 10 canine malignant MGT tissues. CXCL12 expression in tumor cells was identified in all examined tissues; however, the staining pattern and intensity differed between the tumors. Immunocytochemistry revealed three canine MGT cell lines as CXCR4-positive. Migratory ability was evaluated using a wound healing assay, and the migration of CXCR4-positive MGT cells was significantly activated by the addition of CXCL12 protein. This influence was canceled by pre-treatment with a CXCR4 antagonist. The results of our study suggest that the CXCL12/CXCR4 axis may be associated with the migration of canine MGT.
Collapse
Affiliation(s)
- Ayano KUDO
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Hiroki SAWAHATA
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Sho YOSHIMOTO
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
- Department of Clinical Sciences and Advanced Medicine,
School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Akinori YAMAUCHI
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Ryo OSHITA
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
| | - Eiichi KANAI
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
- Azabu University Veterinary Teaching Hospital, School of
Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Satoshi TAKAGI
- Laboratory of Small Animal Surgery, School of Veterinary
Medicine, Azabu University, Kanagawa, Japan
- Azabu University Veterinary Teaching Hospital, School of
Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
36
|
Han L, Zhang L. CCL21/CCR7 axis as a therapeutic target for autoimmune diseases. Int Immunopharmacol 2023; 121:110431. [PMID: 37331295 DOI: 10.1016/j.intimp.2023.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Chemokine receptor 7 (CCR7) is a G protein-coupled receptor containing 7 transmembrane domains that is expressed on various cells, such as naive T/B cells, central memory T cells, regulatory T cells, immature/mature dendritic cells (DCs), natural killer cells, and a minority of tumor cells. Chemokine ligand 21 (CCL21) is the known high-affinity ligand that binds to CCR7 and drives cell migration in tissues. CCL21 is mainly produced by stromal cells and lymphatic endothelial cells, and its expression is significantly increased under inflammatory conditions. Genome-wide association studies (GWAS) have shown a strong association between CCL21/CCR7 axis and disease severity in patients with rheumatoid arthritis, sjogren's syndrome, systemic lupus erythematosus, polymyositis, ankylosing spondylitis, and asthma. Disrupting CCL21/CCR7 interaction with antibodies or inhibitors prevents the migration of CCR7-expressing immune and non-immune cells at the site of inflammation and reduces disease severity. This review emphasizes the importance of the CCL21 /CCR7 axis in autoimmune diseases and evaluates its potential as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Le Han
- Department of Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Cagle E, Lake B, Banerjee A, Cuffee J, Banerjee N, Gilmartin D, Liverman M, Brown S, Armstrong E, Bhattacharya S, Ghosh S, Mandal T, Banerjee H. Analysis of Differential Gene Expression and Core Canonical Pathways Involved in the Epithelial to Mesenchymal Transition of Triple Negative Breast Cancer Cells by Ingenuity Pathway Analysis. COMPUTATIONAL MOLECULAR BIOSCIENCE 2023; 13:21-34. [PMID: 37538932 PMCID: PMC10398793 DOI: 10.4236/cmb.2023.132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Triple Negative Breast Cancer (TNBC) is a malignant form of cancer with very high mortality and morbidity. Epithelial to Mesenchymal Transition (EMT) is the most common pathophysiological change observed in cancer cells of epithelial origin that promotes metastasis, drug resistance and cancer stem cell formation. Since the information regarding differential gene expression in TNBC cells and cell signaling events leading to EMT is limited, this investigation was done by comparing transcriptomic data generated by RNA isolation and sequencing of a EMT model TNBC cell line in comparison to regular TNBC cells. RNA sequencing and Ingenuity Pathway Software Analysis (IPA) of the transcriptomic data revealed several upregulated and downregulated gene expressions along with novel core canonical pathways including Sirtuin signaling, Oxidative Phosphorylation and Mitochondrial dysfunction events involved in EMT changes of the TNBC cells.
Collapse
Affiliation(s)
- Elizabeth Cagle
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Brent Lake
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Anasua Banerjee
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Jazmine Cuffee
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Narendra Banerjee
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Darla Gilmartin
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Makaiyah Liverman
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Shennel Brown
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Erik Armstrong
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, FL, USA
- Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, FL, USA
| | - Somiranjan Ghosh
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Tanmoy Mandal
- Departments of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, USA
| | - Hirendra Banerjee
- Department of Natural, Health and Human Sciences, Elizabeth City State University Campus of The University of North Carolina, Elizabeth, NC, USA
| |
Collapse
|
39
|
Bocchi M, de Sousa Pereira N, de Oliveira KB, Amarante MK. Involvement of CXCL12/CXCR4 axis in colorectal cancer: a mini-review. Mol Biol Rep 2023:10.1007/s11033-023-08479-1. [PMID: 37219666 DOI: 10.1007/s11033-023-08479-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Migration of metastatic tumor cells is similar to the traffic of leukocytes and has been reported that can be guided by chemokines and their receptors, through the circulation to distant organs. The chemokine CXCL12 and its receptor CXCR4 play an essential role in hematopoietic stem cell homing and the activation of this axis supports malignant events. Binding of CXCL12 to CXCR4 activates signal transduction pathways, with broad effects on chemotaxis, cell proliferation, migration and gene expression. Thus, this axis serves as a bridge for tumor-stromal cell communication, creating a permissive microenvironment for tumor development, survival, angiogenesis and metastasis. Evidence suggests that this axis may be involved in the colorectal cancer (CRC) carcinogenesis. Therefore, we review emerging data and correlations between CXCL12/CXCR4 axis in CRC, the implications for cancer progression and possible therapeutic strategies that exploit this system.
Collapse
Affiliation(s)
- Mayara Bocchi
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Nathália de Sousa Pereira
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Karen Brajão de Oliveira
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, Londrina State University, Londrina, PR, Brazil
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina, PR, Brazil
| | - Marla Karine Amarante
- Oncology Laboratory, Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, Londrina State University, Londrina, PR, Brazil.
| |
Collapse
|
40
|
Zhao JH, Xu QL, Ma S, Li CY, Zhang HC, Zhao LJ, Zhang ZY. Recent advance of small-molecule drugs for clinical treatment of multiple myeloma. Eur J Med Chem 2023; 257:115492. [PMID: 37210838 DOI: 10.1016/j.ejmech.2023.115492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Multiple myeloma (MM) is a hematologic neoplasm of plasma cells that is currently deemed incurable. Despite the introduction of novel immunomodulators and proteasome inhibitors, MM remains a challenging disease with high rates of relapse and refractoriness. The management of refractory and relapsed MM patients remains a formidable task, primarily due to the emergence of multiple drug resistance. Consequently, there is an urgent need for novel therapeutic agents to address this clinical challenge. In recent years, a significant amount of research has been dedicated to the discovery of novel therapeutic agents for the treatment of MM. The clinical utilization of proteasome inhibitor carfilzomib and immunomodulator pomalidomide has been successively introduced. As basic research continues to advance, novel therapeutic agents, including panobinostat, a histone deacetylase inhibitor, and selinexor, a nuclear export inhibitor, have progressed to the clinical trial and application phase. This review aims to furnish a comprehensive survey of the clinical applications and synthetic pathways of select drugs, with the intention of imparting valuable insights for future drug research and development geared towards MM.
Collapse
Affiliation(s)
- Jian-Hui Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Qin-Li Xu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Shuai Ma
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chao-Yuan Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Hong-Chao Zhang
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Zi-Yan Zhang
- Department of Orthopedics, The Second Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
41
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
42
|
Todorova VB, Baxan N, Delahaye M, Harding SE, Rankin SM. Drug-based mobilisation of mesenchymal stem/stromal cells improves cardiac function post myocardial infarction. Dis Model Mech 2023; 16:dmm049630. [PMID: 36263604 PMCID: PMC10655717 DOI: 10.1242/dmm.049630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
There is an unmet need for treatments that prevent the progressive cardiac dysfunction following myocardial infarction. Mesenchymal stem/stromal cells (MSCs) are under investigation for cardiac repair; however, culture expansion prior to transplantation is hindering their homing and reparative abilities. Pharmacological mobilisation could be an alternative to MSC transplantation. Here, we report that endogenous MSCs mobilise into the circulation at day 5 post myocardial infarction in male Lewis rats. This mobilisation can be significantly increased by using a combination of the FDA-approved drugs mirabegron (β3-adrenoceptor agonist) and AMD3100 (CXCR4 antagonist). Blinded cardiac magnetic resonance imaging analysis showed the treated group to have increased left ventricular ejection fraction and decreased end systolic volume at 5 weeks post myocardial infarction. The mobilised group had a significant decrease in plasma IL-6 and TNF-α levels, a decrease in interstitial fibrosis, and an increase in the border zone blood vessel density. Conditioned medium from blood-derived MSCs supported angiogenesis in vitro, as shown by tube formation and wound healing assays. Our data suggest a novel pharmacological strategy that enhances myocardial infarction-induced MSC mobilisation and improves cardiac function after myocardial infarction.
Collapse
Affiliation(s)
- Veneta B. Todorova
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Nicoleta Baxan
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Matthew Delahaye
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Sian E. Harding
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| | - Sara M. Rankin
- Imperial College London, Faculty of Medicine, National Heart and Lung Institute, Myocardial Function, 72 Du Cane Road, London W12 0NN, UK
| |
Collapse
|
43
|
Singh R, Srivastava P, Manna PP. Chemokine-targeted nanoparticles: stimulation of the immune system in cancer immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:123-147. [DOI: 10.37349/ei.2023.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 01/06/2025]
Abstract
Surgery, chemotherapy, radiation therapy, and immunotherapy are potential therapeutic choices for many malignant and metastatic cancers. Despite adverse side effects and pain, surgery and chemotherapy continue to be the most common cancer treatments. However, patients treated with immunotherapy had better cancer control than those who got other treatments. There are two methods to activate immunological pathways: systemically and locally. To modify the tumor microenvironment (TME), the former uses systemic cytokine/chemokine (CK) delivery, whilst the latter uses immunological checkpoints or small molecule inhibitors. Organic and inorganic nanomaterials (NMs) enhanced the efficacy of cancer immunotherapy. NMs can transmit drugs, peptides, antigens, antibodies, whole cell membranes, etc. Surface-modified NMs precisely target and enter the tissues. The inner core of surface-modified NMs is composed of chemicals with limited bioavailability and biocompatibility, resulting in prolonged blood retention and decreased renal clearance. These platforms hinder or prevent many immune cell activities and modify the TME, enhancing the efficiency of cancer immunotherapy. By inhibiting CK/CK receptor signaling, cell migration and other immune responses could be controlled. Developing CK-targeted nanoparticles (NPs) that inhibit CK signaling or take advantage of the ligand-receptor connection is possible. Surface chemical modification of NMs with CKs or specific peptides has several medicinal applications, including tissue-specific drug delivery and limited cell migration in cancer-afflicted conditions. This review covers current developments in the role of different groups of CK-loaded NP in tumor therapy targeting immune cells and cancer. It also covers the role of NP targeting CK signaling which aids in immunogenic cell death (ICD) and induction of antitumor immunity. In addition, CK gene silencing and its capacity to prevent cancer metastasis as well as inhibition of immune cell migration to modulate the TME are discussed.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India;Current address: Postdoctoral Fellow, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
44
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
45
|
Benefits of plerixafor for mobilization of peripheral blood stem cells prior to autologous transplantation: a dual-center retrospective cohort study. Cytotherapy 2023:S1465-3249(23)00057-9. [PMID: 36914555 DOI: 10.1016/j.jcyt.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND AIMS Before autologous stem cell transplantation (ASCT), hematopoietic stem cells must be stimulated to move from the bone marrow to the peripheral blood for harvesting. Plerixafor, a C-X-C chemokine receptor type 4 antagonist, is used to increase stem cell harvests. However, the effects of plerixafor on post-ASCT outcomes remain unclear. METHODS In a dual-center retrospective cohort study of 43 Japanese patients who received ASCT, the authors compared transplantation outcomes in patients who underwent stem cell mobilization with granulocyte colony-stimulating factor with (n = 25) or without (n = 18) plerixafor. RESULTS The number of days to neutrophil and platelet engraftment was significantly shorter with plerixafor than without plerixafor, as assessed by univariate (neutrophil, P = 0.004, platelet, P = 0.002), subgroup, propensity score matching and inverse probability weighting analyses. Although the cumulative incidence of fever was comparable with or without plerixafor (P = 0.31), that of sepsis was significantly lower with plerixafor than without (P < 0.01). Thus, the present data indicate that plerixafor leads to earlier neutrophil and platelet engraftment and a reduction of infectious risk. CONCLUSIONS The authors conclude that plerixafor may be safe to use and that it reduces the risk of infection in patients with a low CD34+ cell count the day before apheresis.
Collapse
|
46
|
Zhou H, Tan L, Liu B, Guan XY. Cancer stem cells: Recent insights and therapies. Biochem Pharmacol 2023; 209:115441. [PMID: 36720355 DOI: 10.1016/j.bcp.2023.115441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Tumors are intricate ecosystems containing malignant components that generate adaptive and evolutionarily driven abnormal tissues. Through self-renewal and differentiation, cancers are reconstructed by a dynamic subset of stem-like cells that enforce tumor heterogeneity and remodel the tumor microenvironment (TME). Through recent technology advances, we are now better equipped to investigate the fundamental role of cancer stem cells (CSCs) in cancer biology. In this review, we discuss the latest insights into characteristics, markers and mechanism of CSCs and describe the crosstalk between CSCs and other cells in TME. Additionally, we explore the performance of single-cell sequencing and spatial transcriptome analysis in CSCs studies and summarize the therapeutic strategies to eliminate CSCs, which could broaden the understanding of CSCs and exploit for therapeutic benefit.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
47
|
He D, Zhu C, Guo X, Huang X, Han X, Zheng G, Zhao Y, Yang Y, Wu W, Ge J, Zhang E, He J, Cai Z. The efficacy of residual plerixafor for second-day stem cell mobilization in multiple myeloma patients. Transfus Apher Sci 2022:103618. [DOI: 10.1016/j.transci.2022.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
|
48
|
Sun Q, Tao X, Li B, Cao H, Chen H, Zou Y, Tao H, Mu M, Wang W, Xu K. C-X-C-Chemokine-Receptor-Type-4 Inhibitor AMD3100 Attenuates Pulmonary Inflammation and Fibrosis in Silicotic Mice. J Inflamm Res 2022; 15:5827-5843. [PMID: 36238768 PMCID: PMC9553317 DOI: 10.2147/jir.s372751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Silicosis is a severe pulmonary disease caused by inhaling dust containing crystalline silica. The progression of silicosis to pulmonary fibrosis is usually unavoidable. Recent studies have revealed positivity for the overexpression of C-X-C chemokine receptor type 4 (CXCR4) in pulmonary fibrosis and shown that the CXCR4 inhibitor AMD3100 attenuated pulmonary fibrosis after bleomycin challenge and paraquat exposure. However, it is unclear whether AMD3100 reduces crystalline silica-induced pulmonary fibrosis. Methods C57BL/6 male mice were instilled intranasally with a single dose of crystalline silica (12 mg/60 μL) to establish an acute silicosis mouse model. Twelve hours later, the mice were injected intraperitoneally with 5 mg/kg AMD3100 or control solution. Then, the mice were weighed daily and sacrificed on day 7, 14, or 28 to collect lung tissue and peripheral blood. Western blotting was also applied to determine the level of CXCR4, while different histological techniques were used to assess pulmonary inflammation and fibrosis. In addition, the level of B cells in peripheral blood was measured by flow cytometry. Results CXCR4 and its ligand CXCL12 were upregulated in the lung tissues of crystalline silica-exposed mice. Blocking CXCR4 with AMD3100 suppressed the upregulation of CXCR4/CXCL12, reduced the severity of lung injury, and prevented weight loss. It also inhibited neutrophil infiltration at inflammatory sites and neutrophil extracellular trap formation, as well as reduced B-lymphocyte aggregates in the lung. Additionally, it decreased the recruitment of circulating fibrocytes (CD45+collagen I+CXCR4+) to the lung and the deposition of collagen I and α-smooth muscle actin in lung tissue. AMD3100 also increased the level of B cells in peripheral blood, preventing circulating B cells from migrating to the injured lungs. Conclusion Blocking CXCR4 with AMD3100 delays pulmonary inflammation and fibrosis in a silicosis mouse model, suggesting the potential of AMD3100 as a drug for treating silicosis.
Collapse
Affiliation(s)
- Qixian Sun
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Xinrong Tao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China,Correspondence: Xinrong Tao, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China, Email
| | - Bing Li
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Hangbing Cao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Haoming Chen
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Yuanjie Zou
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Huihui Tao
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Min Mu
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Wenyang Wang
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China
| | - Keyi Xu
- Center for Medical Research, Medical School, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Control and Occupational Health, Ministry of Education, Anhui University of Science and Technology, Huainan, People’s Republic of China,Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety, Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, People’s Republic of China,Engineering Laboratory of Occupational Safety and Health, Anhui Province, Anhui University of Science and Technology, Huainan, People’s Republic of China
| |
Collapse
|
49
|
Zhang S, Shang J, Ye W, Zhao T, Xu H, Zeng H, Wang L. Recent developments on the application of molecular probes in multiple myeloma: Beyond [18F]FDG. Front Bioeng Biotechnol 2022; 10:920882. [PMID: 36091426 PMCID: PMC9459033 DOI: 10.3389/fbioe.2022.920882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic plasma cell proliferative disorder characterized by various osteolytic bone destruction as a radiological morphological marker. Functional imaging, particularly nuclear medicine imaging, is a promising method to visualize disease processes before the appearance of structural changes by targeting specific biomarkers related to metabolism ability, tumor microenvironment as well as neoplastic receptors. In addition, by targeting particular antigens with therapeutic antibodies, immuno-PET imaging can support the development of personalized theranostics. At present, various imaging agents have been prepared and evaluated in MM at preclinical and clinical levels. A summary overview of molecular functional imaging in MM is provided, and commonly used radiotracers are characterized.
Collapse
Affiliation(s)
- Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| |
Collapse
|
50
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|