1
|
Ding R, Liao L, Chen J, Zhang J, Cai S, Miao X, Li T, Zhao J, Chen Q, Cheng X, Deng J. Downregulation of ferroptosis-related Genes can regulate the invasion and migration of osteosarcoma cells. Sci Rep 2025; 15:17582. [PMID: 40399425 PMCID: PMC12095786 DOI: 10.1038/s41598-025-02319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Osteosarcoma (OS) is a prevalent form of bone cancer among younger people, particularly children and adolescents. Ferroptosis is a non-apoptotic cell death identified by increased levels of iron-dependent lipid peroxidation. This study was designed to develop a prognostic model based on differentially expressed genes (DEGs) associated with ferroptosis and examined the functions of ferroptosis-related genes (FRGs) in OS cells. Gene expression profiles in OS were retrieved from TARGET and GEO databases, while GTEx provided data for healthy tissues. Prognostic genes were identified through bioinformatics analysis and data integration. In vitro experiments, cell cultures, qRT-PCR, immunohistochemistry (IHC), cell transfection, Edu assays, DHE assays, migration, and invasion assays validated the prognostic model and explored the functional role of FRGs in OS cells. Univariate Cox regression analysis demonstrated that 12 DEGs were differentially expressed. Based on four FRGs in OS constructed a risk-scoring model. The high-risk (HR) group showed a considerably lower OS rate than the low-risk (LR) group (p < 0.001 in the TARGET and p < 0.05 in the GSE21257 cohorts). A risk score was validated as an independent predictive factor for OS via multivariate Cox regression. Functional analysis shows that these FRGs affect the occurrence of ferroptosis by influencing the intracellular ROS levels and play a regulatory role in the proliferation, migration, and infiltration of OS cells. The findings suggested that four FRGs demonstrate significant prognostic value in OS, offering potential insights into novel therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Le Liao
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahui Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Shenghao Cai
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xinxin Miao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Jiangminghao Zhao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Qi Chen
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| | - Jianjian Deng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
- Institute of Orthopedics of Jiangxi Province, Nanchang, 330006, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi, 330006, China.
- Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi, 330006, China.
| |
Collapse
|
2
|
Lin S, Zhou D, Zhu H, Huang G, Yu M, Chen S, Wang J, Xia W. Genetic association between coffee consumption and multiple myeloma mediated by plasma metabolites: a Mendelian randomization study. Food Funct 2025. [PMID: 40375831 DOI: 10.1039/d4fo05696e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Background: Multiple myeloma (MM) is a hematologic malignancy closely associated with diets and metabolic disorders, showing an increasing incidence trend. Genome-wide association studies (GWAS) contribute to exploring the causal relationships between diets, metabolites, and MM, thereby revealing biological mechanisms underlying cancer progression. Methods: This study included large-scale GWAS data for two diets, four metabolomics, and MM. The two-sample Mendelian randomization (MR) analysis was conducted to assess causalities between these dietary patterns, metabolites, and MM. The MR analysis primarily employed the inverse variance weighted (IVW) method, supported by multiple sensitivity analysis and reverse MR analysis to validate significant associations. Mediation analysis identified specific metabolites mediating the causal relationships between diets and MM. Results: Univariate MR analysis suggested that coffee consumption (ORIVW = 2.72; 95% CI: 1.21-6.10; PIVW = 0.015, P_fdr = 0.022), decaffeinated coffee consumption (ORIVW = 7.10; 95% CI: 1.33-37.87; PIVW = 0.022, P_fdr = 0.022), ground coffee consumption (ORIVW = 4.04; 95% CI: 1.25-13.02; PIVW = 0.019, P_fdr = 0.022), instant coffee consumption (ORIVW = 6.13; 95% CI: 1.95-19.34; PIVW = 0.002, P_fdr = 0.008), and coffee max liking (ORIVW = 2.94; 95% CI: 1.23-7.03; PIVW = 0.015, P_fdr = 0.035) were associated with increased MM risk. Metabolomic MR analysis identified 19 plasma metabolites, 1 blood and urine biomarker, and 4 plasma lipids with significant association with MM. Mediation analysis indicated that hippurate and cinnamoylglycine mediated 35.55% (P < 0.001) and 21.85% (P = 0.002) of the genetically predicted effect of coffee consumption on MM risk, respectively. Cinnamoylglycine contributed 12.63% (P = 0.042) to the total causal effect of ground coffee consumption on MM. Hippurate (21.43%, P < 0.001), 3-hydroxyhippurate (4.39%, P = 0.031), and cinnamoylglycine (8.79%, P = 0.010) mediated the genetically predicted impact of instant coffee consumption on MM risk. Metabolic pathway analysis suggested that glutathione metabolism significantly contributes to MM pathogenesis (P = 0.002, FDR < 0.05). Conclusions: Our findings support the adverse causal effects of various coffee consumption on MM risk, identifying hippurate, 3-hydroxyhippurate, and cinnamoylglycine as key mediators, driving the relationship potentially through the glutathione metabolism pathway.
Collapse
Affiliation(s)
- Shichong Lin
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Dan Zhou
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Hua Zhu
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Gaoxiang Huang
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Menglu Yu
- Department of Pediatric Surgery, Jinhua Central Hospital, Jinhua, China
| | - Shaomin Chen
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Junjie Wang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, China
| | - Weiqiang Xia
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
3
|
Teke H, Balci S, Neselioglu S, Teke S, Erel O, Tamer L, Toros F. Oxidative Stress and Dynamic Thiol/Disulfide Homeostasis in Autism: A Focus on Early Childhood. J Mol Neurosci 2025; 75:62. [PMID: 40314839 PMCID: PMC12048410 DOI: 10.1007/s12031-025-02358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with multifactorial etiopathogenesis, where oxidative stress (OS) has been implicated as a key contributing factor. This study aimed to evaluate the plasma dynamic thiol/disulfide homeostasis (DTDH) parameters-a relatively novel OS biomarker-alongside classical OS biomarkers, including total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), glutathione, and glutathione peroxidase (GPx), in preschool children diagnosed with ASD. A total of 49 children with ASD and 31 age- and sex-matched typically developing children between the ages of 2 and 6 years were included. In addition to sociodemographic data collection, the Childhood Autism Rating Scale (CARS) and Clinical Global Impression-Severity Scale (CGI-S) were administered to assess autism severity. Blood samples were analyzed using automated spectrophotometric techniques to determine OS biomarkers. The results demonstrated that DTDH parameters and classical OS markers exhibited parallel changes; however, no statistically significant differences were detected between the ASD and control groups across all OS markers. Furthermore, no significant association was found between OS biomarkers and autism severity. Moreover, we intentionally restricted our sample to a younger age group to enable a focused examination of OS dynamics during early developmental stages. This study underscores the potential impact of age as a critical determinant in OS-related alterations in autism and highlights the need for further age-stratified investigations to elucidate the role of OS in ASD pathophysiology and its potential diagnostic relevance.
Collapse
Affiliation(s)
- Halenur Teke
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Ankara, Turkey.
| | - Senay Balci
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Salim Neselioglu
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Selçuk Teke
- Department of Pediatrics, Medical Faculty, Mersin University, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Ankara Bilkent City Hospital, Yıldırım Beyazit University, Ankara, Turkey
| | - Lulufer Tamer
- Department of Medical Biochemistry, Medical Faculty, Mersin University, Mersin, Turkey
| | - Fevziye Toros
- Department of Child and Adolescent Psychiatry, Medical Faculty, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Meguid N, Ismail SR, Anwar M, Hashish A, Semenova Y, Abdalla E, Taha MS, Elsaeid A, Bjørklund G. Gamma-aminobutyric acid and glutamate system dysregulation in a small population of Egyptian children with autism spectrum disorder. Metab Brain Dis 2025; 40:146. [PMID: 40080228 DOI: 10.1007/s11011-025-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/09/2025] [Indexed: 03/15/2025]
Abstract
Autism spectrum disorder (ASD) is associated with various symptoms, including repetitive behaviors, restricted interests, and deficits in proper communication. Earlier studies have linked these symptoms to abnormalities in the balance between excitatory (glutamatergic signaling) and inhibitory (GABAergic signaling) neurotransmission. The present study aimed to analyze the levels of different biomarkers in children with ASD compared to neurotypical (NT) controls. The study included 80 children, of whom 40 were cases (children with ASD) and 40 were age- and sex-matched NT controls. Serum levels of GABAA, and GABAB receptors, glutamate, zinc, potassium, and calcium were measured in both groups. ASD diagnosis was verified using the Childhood Autism Rating Scale (CARS) and Autism Diagnostic Interview-Revised (ADI-R). There was a significant decrease (P < 0.001) in the median serum levels of GABAA (0.6) and GABAB receptors (2.03) in children with ASD compared to controls. Additionally, a significant increase in median serum glutamate levels was observed in ASD children (102, P < 0.001) compared to controls. Children with ASD also showed a significant reduction (P < 0.001) in median levels of all studied blood minerals compared to controls, including potassium (3.8 vs. 4.6), calcium (9.0 vs. 9.7), and zinc (57.0 vs. 92.0). The roles of GABAB and zinc as potential pathological biomarkers were investigated due to their highly significant inverse correlations with stereotypic and repetitive behaviors (ADI-R domain), with rho = -0.393 (P = 0.012) and rho = -0.488 (P = 0.001), respectively. Further analysis of pathways regulating these biomarkers may provide deeper insights into the etiology and pathophysiology of ASD, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Nagwa Meguid
- Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | | | - Mona Anwar
- Children with Special Needs Department, National Research Centre, Giza, Egypt.
- Department of Basic Sciences and Biomechanics, Faculty of Physical Therapy, Heliopolis University, Cairo, Egypt.
| | - Adel Hashish
- Children with Special Needs Department, National Research Centre, Giza, Egypt
| | - Yuliya Semenova
- Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Ebtesam Abdalla
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed S Taha
- Children with Special Needs Department, National Research Centre, Giza, Egypt
| | - Amal Elsaeid
- Children with Special Needs Department, National Research Centre, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway.
| |
Collapse
|
5
|
Chełchowska M, Gajewska J, Szczepanik E, Mazur J, Cychol A, Kuźniar-Pałka A, Ambroszkiewicz J. Oxidative Stress Indicated by Nuclear Transcription Factor Nrf2 and Glutathione Status in the Blood of Young Children with Autism Spectrum Disorder: Pilot Study. Antioxidants (Basel) 2025; 14:320. [PMID: 40227289 PMCID: PMC11939242 DOI: 10.3390/antiox14030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
This pilot study investigated the relationship between nuclear transcription factor Nrf2 and glutathione homeostasis in children with autism spectrum disorder (ASD), addressing the role of oxidative stress in ASD pathophysiology. Oxidative stress, characterized by an imbalance between reactive oxygen species and antioxidant defenses, has been implicated in ASD and may contribute to neuroinflammation and mitochondrial dysfunction. Nrf2, a key regulator of the antioxidant response, influences glutathione synthesis and recycling, making it critical for cellular redox balance. This study included 23 children with ASD and 21 neurotypical healthy controls, and measured levels of Nrf2, Keap1 (Kelch-like ECH-associated protein 1), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), and peroxidase (GPx3) in blood samples. Our study reveals altered antioxidant defense in children with autism spectrum disorder, as evidenced by reduced levels of Nrf2, Keap1, GSH, and GR, along with elevated GSSG and a lower GSH/GSSG ratio. These findings indicate an increased oxidative stress burden in this population. Additionally, the observed positive correlation between Nrf2, GSH, and GR levels suggests an important role for Nrf2 in maintaining glutathione homeostasis. Our results underscore the potential involvement of oxidative stress in ASD and emphasize the need for further research into targeted therapeutic approaches to address this imbalance.
Collapse
Affiliation(s)
- Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Elżbieta Szczepanik
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (E.S.); (A.K.-P.)
| | - Joanna Mazur
- Department of Humanization in Medicine and Sexology, Collegium Medicum, University of Zielona Góra, 65-729 Zielona Góra, Poland;
| | - Agnieszka Cychol
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| | - Aleksandra Kuźniar-Pałka
- Clinic of Paediatric Neurology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (E.S.); (A.K.-P.)
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (A.C.); (J.A.)
| |
Collapse
|
6
|
Kuźniar-Pałka A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025; 13:388. [PMID: 40002801 PMCID: PMC11852718 DOI: 10.3390/biomedicines13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a significant health problem with no known single cause. There is a vast number of evidence to suggest that oxidative stress plays an important role in this disorder. The author of this article reviewed the current literature in order to summarise the knowledge on the subject. In this paper, the role of oxidative stress is investigated in the context of its influence on pathogenesis, the use of oxidative stress biomarkers as diagnostic tools and the use of antioxidants in ASD treatment. Given the heterogeneity of ASD aetiology and inadequate treatment approaches, the search for common metabolic traits is essential to find more efficient diagnostic tools and treatment methods. There are increasing data to suggest that oxidative stress is involved in the pathogenesis of ASD, both directly and through its interplay with inflammation and mitochondrial dysfunction. Oxidative stress biomarkers appear to have good potential to be used as diagnostic tools to aid early diagnosis of ASD. The results are most promising for glutathione and its derivatives and also for isoprostanses. Probably, complex dedicated multi-parametric metabolic panels may be used in the future. Antioxidants show good potential in ASD-supportive treatment. In all described fields, the data support the importance of oxidative stress but also a need for further research, especially in the context of sample size and, preferably, with a multicentre approach.
Collapse
Affiliation(s)
- Aleksandra Kuźniar-Pałka
- Clinic of Pediatric and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
7
|
Zhang Y, Li T, Miao J, Zhang Z, Yang M, Wang Z, Yang B, Zhang J, Li H, Su Q, Guo J. Gamma-glutamyl transferase 5 overexpression in cerebrovascular endothelial cells improves brain pathology, cognition, and behavior in APP/PS1 mice. Neural Regen Res 2025; 20:533-547. [PMID: 38819065 PMCID: PMC11317949 DOI: 10.4103/nrr.nrr-d-23-01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aβ1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-β in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of β-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi Province, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhina Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mingxuan Yang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhuoran Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiawei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Haiting Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Fenyang, Shanxi Province, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
8
|
Shilnikova K, Kang KA, Piao MJ, Herath HMUL, Fernando PDSM, Boo HJ, Yoon SP, Hyun JW. Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter. Cell Biol Int 2024; 48:1836-1848. [PMID: 39169545 DOI: 10.1002/cbin.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
Collapse
Affiliation(s)
- Kristina Shilnikova
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
9
|
Bove M, Sikora V, Santoro M, Agosti LP, Palmieri MA, Dimonte S, Tucci P, Schiavone S, Morgese MG, Trabace L. Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations. Neuropharmacology 2024; 260:110134. [PMID: 39208979 DOI: 10.1016/j.neuropharm.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females' low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, i.e. stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation. Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females. Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy; Department of Pathology, Sumy State University, 40007, Sumy, Ukraine
| | - Martina Santoro
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Lisa Pia Agosti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Adelaide Palmieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| |
Collapse
|
10
|
Qin J, Wang C, Zhou X. Glutathione regulates CIA-activated splenic-lymphocytes via NF-κB/MMP-9 and MAPK/PCNA pathways manipulating immune response. Cell Immunol 2024; 405-406:104866. [PMID: 39250860 DOI: 10.1016/j.cellimm.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
Collapse
Affiliation(s)
- Jingying Qin
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Xiaoying Zhou
- School of Pharmacy, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
11
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
12
|
Feng S, Gong Y, Xia L, Lang Y, Shen Y, Li H, Feng W, Chen F, Chen Y. Calcium Hexacyanoferrate (III) Nanocatalyst Enables Redox Homeostasis for Autism Spectrum Disorder Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405655. [PMID: 39096109 DOI: 10.1002/adma.202405655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a multifaced neurodevelopmental disorder with considerable heterogeneity, in which over-generated reactive oxygen species (ROS) induce a cascade of pathological changes, including cellular apoptosis and inflammatory responses. Given the complex etiology of ASD, no effective treatment is available for ASD. In this work, a specific catalytic nanoenzyme, calcium hexacyanoferrate (III) nanocatalysts (CaH NCs), is designed and engineered for efficient ASD treatment. CaH NCs can mimic the activities of natural enzymes including superoxide dismutase, peroxidase, catalase, and glutathione peroxidase, which mitigates intracellular excessive ROS and regulates redox equilibrium. These CaH NCs modulate mitochondrial membrane potential, elevate B-cell lymphoma-2 levels, and suppress pro-apoptotic proteins, including Caspase-3 and B-cell lymphoma-2-associated X, thus effectively reducing cellular apoptosis. Importantly, CaH NCs alleviate inflammation by upregulating anti-inflammatory cytokine interleukin-10 and downregulating pro-inflammatory factors, resulting in attenuated activation of microglial and astrocytic and subsequent reduction in neuroinflammation. Subsequently, CaH NCs enhance social abilities, decrease anxiety levels, ameliorate repetitive behaviors, and improve learning and memory in ASD animal models through inflammation regulation and apoptosis inhibition. The CaH NCs in managing and preventing ASD represents a paradigm shift in autism treatment, paving the alternative but efficient way for clinical interventions in neurological conditions.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yan Gong
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yue Lang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yizhe Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
13
|
Lana JV, Rios A, Takeyama R, Santos N, Pires L, Santos GS, Rodrigues IJ, Jeyaraman M, Purita J, Lana JF. Nebulized Glutathione as a Key Antioxidant for the Treatment of Oxidative Stress in Neurodegenerative Conditions. Nutrients 2024; 16:2476. [PMID: 39125356 PMCID: PMC11314501 DOI: 10.3390/nu16152476] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutathione (GSH), a tripeptide synthesized intracellularly, serves as a pivotal antioxidant, neutralizing reactive oxygen species (ROS) and reactive nitrogen species (RNS) while maintaining redox homeostasis and detoxifying xenobiotics. Its potent antioxidant properties, particularly attributed to the sulfhydryl group (-SH) in cysteine, are crucial for cellular health across various organelles. The glutathione-glutathione disulfide (GSH-GSSG) cycle is facilitated by enzymes like glutathione peroxidase (GPx) and glutathione reductase (GR), thus aiding in detoxification processes and mitigating oxidative damage and inflammation. Mitochondria, being primary sources of reactive oxygen species, benefit significantly from GSH, which regulates metal homeostasis and supports autophagy, apoptosis, and ferroptosis, playing a fundamental role in neuroprotection. The vulnerability of the brain to oxidative stress underscores the importance of GSH in neurological disorders and regenerative medicine. Nebulization of glutathione presents a novel and promising approach to delivering this antioxidant directly to the central nervous system (CNS), potentially enhancing its bioavailability and therapeutic efficacy. This method may offer significant advantages in mitigating neurodegeneration by enhancing nuclear factor erythroid 2-related factor 2 (NRF2) pathway signaling and mitochondrial function, thereby providing direct neuroprotection. By addressing oxidative stress and its detrimental effects on neuronal health, nebulized GSH could play a crucial role in managing and potentially ameliorating conditions such as Parkinson's Disease (PD) and Alzheimer's Disease (AD). Further clinical research is warranted to elucidate the therapeutic potential of nebulized GSH in preserving mitochondrial health, enhancing CNS function, and combating neurodegenerative conditions, aiming to improve outcomes for individuals affected by brain diseases characterized by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- João Vitor Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
| | - Alexandre Rios
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Renata Takeyama
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Izair Jefthé Rodrigues
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Joseph Purita
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
| | - Jose Fábio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.)
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (A.R.); (R.T.); (N.S.); (L.P.); (I.J.R.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (J.P.)
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13918-110, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| |
Collapse
|
14
|
Chen F, Dong X, Yu Z, Zhang Y, Shi Y. The brain-heart axis: Integrative analysis of the shared genetic etiology between neuropsychiatric disorders and cardiovascular disease. J Affect Disord 2024; 355:147-156. [PMID: 38518856 DOI: 10.1016/j.jad.2024.03.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Multiple observational studies have reported substantial comorbidity between neuropsychiatric disorders and cardiovascular disease (CVD), but the underlying mechanisms remain largely unknown. METHODS Using GWAS summary datasets of 8 neuropsychiatric disorders and 6 cardiovascular diseases, an integrative analysis incorporating linkage-disequilibrium-score-regression (LDSC), Mendelian randomization (MR), functional mapping and annotation (FUMA), and functional enrichment analysis, was conducted to investigate shared genetic etiology of the brain-heart axis from the whole genome level, single-nucleotide polymorphism (SNP) level, gene level, and biological pathway level. RESULTS In LDSC analysis, 18 pairwise traits between neuropsychiatric disorders and CVD were identified with significant genetic overlaps, revealing extensive genome-wide genetic correlations. In bidirectional MR analysis, 19 pairwise traits were identified with significant causal relationships. Genetic liabilities to neuropsychiatric disorders, particularly attention-deficit hyperactivity disorder and major depressive disorder, conferred extensive significant causal effects on the risk of CVD, while hypertension seemed to be a risk factor for multiple neuropsychiatric disorders, with no significant heterogeneity or pleiotropy. In FUMA analysis, 13 shared independent significant SNPs and 887 overlapping protein-coding genes were detected between neuropsychiatric disorders and CVD. With GO and KEEG functional enrichment analysis, biological pathways of the brain-heart axis were highly concentrated in neurotransmitter synaptic transmission, lipid metabolism, aldosterone synthesis and secretion, glutathione metabolism, and MAPK signaling pathway. CONCLUSION Extensive genetic correlations and genetic overlaps between neuropsychiatric disorders and CVD were identified in this study, which might provide some new insights into the brain-heart axis and the therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Feifan Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing 400014, China.
| | - Xinyu Dong
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Zhiwei Yu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| | - Yihan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing 400014, China.
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing 400014, China.
| |
Collapse
|
15
|
Li C, Fan J, Sun G, Zhao H, Zhong X, Huang X, Zhu X, Qi X. Nrf2 pathway activation promotes the expression of genes related to glutathione metabolism in alcohol-exposed astrocytes. PeerJ 2024; 12:e17541. [PMID: 38832034 PMCID: PMC11146317 DOI: 10.7717/peerj.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Oxidative and antioxidant pathways play essential roles in the development of alcohol-induced brain injury. The Nrf2 pathway is an endogenous antioxidant response pathway, but there has been little research on the role of Nrf2 in alcohol-related diseases. Thus, we examined the effects of alcohol and an Nrf2 agonist (TBHQ) on astrocyte function, mRNA expression, and metabolite content to further explore the protective mechanisms of Nrf2 agonists in astrocytes following alcohol exposure. Methods CTX TNA2 astrocytes were cultured with alcohol and TBHQ and then subjected to transcriptome sequencing, LC-MS/MS analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and malondialdehyde (MDA) and superoxide dismutase (SOD) activity assays. Results Alcohol exposure significantly increased malondialdehyde (MDA) levels while decreasing superoxide dismutase (SOD) levels in astrocytes. Treatment with TBHQ effectively reversed these effects, demonstrating its protective role against oxidative stress induced by alcohol. Transcriptome sequencing and qRT-PCR analysis revealed that TBHQ specifically upregulates genes involved in glutathione metabolism, including a notable increase in the expression of the glutathione S-transferase A5 (GSTA5) gene, which was suppressed by alcohol exposure. Additionally, metabolomic analysis showed that TBHQ regulates key components of ether lipid metabolism in alcohol-exposed astrocytes, with significant reductions in the levels of lysophosphatidylcholine (18:0) (LysoPC (18:0)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, both of which are critical markers in the ether lipid metabolic pathway. Discussion The findings underscore the role of TBHQ as an Nrf2 agonist in mitigating alcohol-induced oxidative damage in astrocytes by modulating glutathione metabolism and ether lipid metabolism. The regulation of GSTA5 gene expression emerges as a key mechanism through which Nrf2 agonists confer neuroprotection against oxidative stress and lipid oxidation. These insights pave the way for potential therapeutic strategies targeting the Nrf2 pathway to protect astrocytes from alcohol-induced damage.
Collapse
Affiliation(s)
- Congyan Li
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jingxin Fan
- Jiamusi University, Jiamusi, People’s Republic of China
| | - Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Huiying Zhao
- Department of Neurology, Yichun Forestry Administration Central Hospital, Yichun, China
| | - Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyan Huang
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, China
| | | | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
16
|
Soltani Z, Shariatpanahi M, Aghsami M, Owliaey H, Kheradmand A. Investigating the effect of exposure to monosodium glutamate during pregnancy on development of autism in male rat offspring. Food Chem Toxicol 2024; 185:114464. [PMID: 38244665 DOI: 10.1016/j.fct.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
In present study, we investigated the relationship between the pregnancy exposure to monosodium glutamate (MSG) and autism development in male offspring of rats. Pregnant Wistar rats were allocated into five groups. The first group was control group that pregnant animals received normal saline orally from day 1-18 of pregnancy. Group 2, 3 and 4 pregnant rats received different doses (1.5, 5 and 10 g/kg) of MSG by the same way respectively. Group 5 received 500 mg/kg of Valproic acid (VPA) on the 12.5th day of pregnancy. Different behavioral tests including marble burying, self-grooming, and Barnes maze test were performed on offspring. The levels of glutamate and GSH markers were also measured. The results showed that MSG similar to VPA led to induction of autistic anxiety and repetitive behaviors. It could also deteriorate the spatial memory. Besides we found that behavioral symptoms potentiated with increasing the MSG dosage. Similarly, we had an increase in glutamate and a reduction in GSH levels in offspring. Findings indicated that MSG was able to induce autism in offspring of rats in a dose-dependent way. This effect could be through increasing of glutamate and reduction of GSH. Consequently, MSG should be avoided during pregnancy.
Collapse
Affiliation(s)
- Zohreh Soltani
- School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shariatpanahi
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Owliaey
- Department of Forensic Medicine & Clinical Toxicology, Yazd Branch, Islamic Azad University, Yaz, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cui J, Zhai Z, Wang S, Song X, Qiu T, Yu L, Zhai Q, Zhang H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct 2024; 15:1099-1115. [PMID: 38221882 DOI: 10.1039/d3fo03735e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder with a predominance of social behavioral disorders, has increased dramatically in various countries in recent decades. The interplay between genetic and environmental factors is believed to underlie ASD pathogenesis. Recent analyses have shown that abnormal vitamin levels in early life are associated with an increased risk of autism. As essential substances for growth and development, vitamins have been shown to have significant benefits for the nervous and immune systems. However, it is unknown whether certain vitamin types influence the emergence or manifestation of ASD symptoms. Several studies have focused on vitamin levels in children with autism, and neurotypical children have provided different insights into the types of vitamins and their intake. Here, we review the mechanisms and significance of several vitamins (A, B, C, D, E, and K) that are closely associated with the development of ASD in order to prevent, mitigate, and treat ASD. Efforts have been made to discover and develop new indicators for nutritional assessment of children with ASD to play a greater role in the early detection of ASD and therapeutic remission after diagnosis.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
18
|
Zhang G, Chu M, Wang S, Feng P, Shi J, Li H, Li X, Pan Z. Integration of multi-omics reveals the important role of the BBS10 gene in reproduction. J Anim Sci 2024; 102:skae273. [PMID: 39315571 PMCID: PMC11495222 DOI: 10.1093/jas/skae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Blood samples are easily obtained from sheep. Therefore, blood analysis can be a convenient method for evaluating reproductive traits in sheep by detecting genetic and metabolic changes in the ovary. By combining 167 RNA sequencing data and 60 untargeted metabolomics data, this study analyzed the relationship between genes and metabolites in the ovary and blood. The conjoint KEGG enrichment analysis enriched glutathione (GSH) metabolic pathways both in the ovary and blood. This finding provides an explanation for possible GSH metabolic processes in the ovary with metabolite exchange in the blood. The metabolite-gene-disease interaction network revealed a correlation between the expression of certain Bardet-Biedl syndrome (BBS) family genes in the ovary and blood. This indicates that BBS family genes, such as BBS10 in sheep blood, could be a potential biomarker for BBS. We investigated the relationship between BBS10 gene expression in the ovary and lambing numbers using whole-genome sequencing data from 450 ewes. Our findings suggest that g.112314188C>G may lead to decreased litter size in ewes carrying the FecB gene. These single nucleotide polymorphisms could be potential molecular markers for breeding sheep.
Collapse
Affiliation(s)
- Guoqing Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pingjie Feng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianxin Shi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Hao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xinyue Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zhangyuan Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
19
|
Dehkordi HT, Ghasemi S. Glutathione Therapy in Diseases: Challenges and Potential Solutions for Therapeutic Advancement. Curr Mol Med 2024; 24:1219-1230. [PMID: 37594114 DOI: 10.2174/1566524023666230818142831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023]
Abstract
An endogenous antioxidant, reduced glutathione (GSH), is found at high concentrations in nearly all typical cells. GSH synthesis is a controlled process, and any disruption in the process of GSH synthesis could result in GSH depletion. Cellular oxidative damage results from GSH depletion. Various pathological conditions such as aging, cardiovascular disease (CVD), psychiatric disorders, neurological disorders, liver disorders, and diabetes mellitus are more affected by this stress. There are various reasons for GSH reduction, but replenishing it can help to improve this condition. However, there are challenges in this field. Low bioavailability and poor stability of GSH limit its delivery to tissues, mainly brain tissue. Today, new approaches are used for the optimal amount and efficiency of drugs and alternative substances such as GSH. The use of nano-materials and liposomes are effective methods for improving the treatment effects of GSH. The difficulties of GSH decrease and its connection to the most important associated disorders are reviewed for the first time in this essay. The other major concerns are the molecular mechanisms involved in them; the impact of treatment with replacement GSH; the signaling pathways impacted; and the issues with alternative therapies. The utilization of nano-materials and liposomes as potential new approaches to solving these issues is being considered.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
20
|
Messedi M, Makni-Ayadi F. 24S-Hydroxycholesterol in Neuropsychiatric Diseases: Schizophrenia, Autism Spectrum Disorder, and Bipolar Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:293-304. [PMID: 38036886 DOI: 10.1007/978-3-031-43883-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Neuropsychiatric diseases (NPDs) are severe, debilitating psychiatric conditions that affect the nervous system. These are among the most challenging disorders in medicine. Some examples include Alzheimer's, anxiety disorders, autism spectrum disorder, bipolar disorder, and schizophrenia. NPDs represent an ever-increasing burden on public health and are prevalent throughout the world. For most of these diseases, the particular etiopathogeneses are still enigmatic. NPDs are also associated with structural and functional changes in the brain, along with altered neurotransmitter and neuroendocrine systems.Approximately 25% of the total human body cholesterol is located in the brain. Its involvement in neuronal functions starts in the early growth stages and remains important throughout adulthood. It is also an integral part of the neuronal membrane, ensuring membrane lipid organization and regulating membrane fluidity. The main mechanism for removing cholesterol from the brain is cholesterol 24-hydroxylation by cytochrome P450 46A1 (CYP46A1), an enzyme specifically found in the central nervous system. Although research on 24S-OHC and its role in neuropsychiatric diseases is still in its early stages, this oxidized cholesterol metabolite is thought to play a crucial role in the etiology of NPDs. 24S-OHC can affect neurons, astrocytes, oligodendrocytes, and vascular cells. In addition to regulating the homeostasis of cholesterol in the brain, this oxysterol is involved in neurotransmission, oxidative stress, and inflammation. The role of 24S-OHC in NPDs has been found to be controversial in terms of the findings so far. There are several intriguing discrepancies in the data gathered so far regarding 24S-OHC and NPDs. In fact, 24S-OHC levels were reported to have decreased in a number of NPDs and increased in others.Hence, in this chapter, we first summarize the available data regarding 24S-OHC as a biomarker in NPDs, including schizophrenia, autism spectrum disorder, and bipolar disorder. Then, we present a brief synopsis of the pharmacological targeting of 24S-OHC levels through the modulation of CYP46A1 activity.
Collapse
Affiliation(s)
- Meriam Messedi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
| | - Fatma Makni-Ayadi
- Research Laboratory "Molecular Basis of Human Diseases", LR19ES13, Sfax Medicine School, University of Sfax, Sfax, Tunisia
- Department of Clinical biochemistry, Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
21
|
Yenkoyan K, Ounanian Z, Mirumyan M, Hayrapetyan L, Zakaryan N, Sahakyan R, Bjørklund G. Advances in the Treatment of Autism Spectrum Disorder: Current and Promising Strategies. Curr Med Chem 2024; 31:1485-1511. [PMID: 37888815 PMCID: PMC11092563 DOI: 10.2174/0109298673252910230920151332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 08/26/2023] [Indexed: 10/28/2023]
Abstract
Autism spectrum disorder (ASD) is an umbrella term for developmental disorders characterized by social and communication impairments, language difficulties, restricted interests, and repetitive behaviors. Current management approaches for ASD aim to resolve its clinical manifestations based on the type and severity of the disability. Although some medications like risperidone show potential in regulating ASD-associated symptoms, a comprehensive treatment strategy for ASD is yet to be discovered. To date, identifying appropriate therapeutic targets and treatment strategies remains challenging due to the complex pathogenesis associated with ASD. Therefore, a comprehensive approach must be tailored to target the numerous pathogenetic pathways of ASD. From currently viable and basic treatment strategies, this review explores the entire field of advancements in ASD management up to cutting-edge modern scientific research. A novel systematic and personalized treatment approach is suggested, combining the available medications and targeting each symptom accordingly. Herein, summarize and categorize the most appropriate ways of modern ASD management into three distinct categories: current, promising, and prospective strategies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zadik Ounanian
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Margarita Mirumyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Liana Hayrapetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
- Department of Radiation Oncology, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Naira Zakaryan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Raisa Sahakyan
- Department of Biochemistry, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| |
Collapse
|
22
|
Lemons JMS, Narrowe AB, Liu L, Firrman J, Mahalak KK, Van den Abbeele P, Baudot A, Deyaert S, Li Y, Yu L(L. Impact of Baizhu, Daqingye, and Hehuanhua extracts on the human gut microbiome. Front Cell Infect Microbiol 2023; 13:1298392. [PMID: 38145049 PMCID: PMC10740150 DOI: 10.3389/fcimb.2023.1298392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction In traditional Chinese medicine, the rhizome of Atractylodes macrocephala (Baizhu), the leaves of Isatis indigotica (Daqingye), and the flowers of Albizia julibrissin (Hehuanhua) have been used to treat gastrointestinal illnesses, epidemics, and mental health issues. Modern researchers are now exploring the underlying mechanisms responsible for their efficacy. Previous studies often focused on the impact of purified chemicals or mixed extracts from these plants on cells in tissue culture or in rodent models. Methods As modulation of the human gut microbiome has been linked to host health status both within the gastrointestinal tract and in distant tissues, the effects of lipid-free ethanol extracts of Baizhu, Daqingye, and Hehuanhua on the human adult gut microbiome were assessed using Systemic Intestinal Fermentation Research (SIFR®) technology (n=6). Results and discussion Baizhu and Daqingye extracts similarly impacted microbial community structure and function, with the extent of effects being more pronounced for Baizhu. These effects included decreases in the Bacteroidetes phylum and increases in health-related Bifidobacterium spp. and short chain fatty acids which may contribute to Baizhu's efficacy against gastrointestinal ailments. The changes upon Hehuanhua treatment were larger and included increases in multiple bacterial species, including Agathobaculum butyriciproducens, Adlercreutzia equolifaciens, and Gordonibacter pamelaeae, known to produce secondary metabolites beneficial to mental health. In addition, many of the changes induced by Hehuanhua correlated with a rise in Enterobacteriaceae spp., which may make the tested dose of this herb contraindicated for some individuals. Overall, there is some evidence to suggest that the palliative effect of these herbs may be mediated, in part, by their impact on the gut microbiome, but more research is needed to elucidate the exact mechanisms.
Collapse
Affiliation(s)
- Johanna M. S. Lemons
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, United States
| | - Adrienne B. Narrowe
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, United States
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, United States
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, United States
| | - Karley K. Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, United States
| | | | | | | | - Yanfang Li
- Department of Nutrition and Food Science, 0112 Skinner Building University of Maryland, College Park, MD, United States
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science, 0112 Skinner Building University of Maryland, College Park, MD, United States
| |
Collapse
|
23
|
Ren Z, Wang J, Xue C, Deng M, Yu H, Lin T, Zheng J, He R, Wang X, Li J. Ultrahighly Sensitive and Selective Glutathione Sensor Based on Carbon Dot-Functionalized Solution-Gate Graphene Transistor. Anal Chem 2023; 95:17750-17758. [PMID: 37971943 DOI: 10.1021/acs.analchem.3c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A new type of carbon dot (CD)-functionalized solution-gated graphene transistor (SGGT) sensor was designed and fabricated for the highly sensitive and highly selective detection of glutathione (GSH). The CDs were synthesized via a one-step hydrothermal method using DL-thioctic acid and triethylenetetramine (TETA) as sources of S, N, and C. The CDs have abundant amino and carboxyl groups and were used to modify the surface of the gate electrode of SGGT as probes for detecting GSH. Remarkably, the CDs-SGGT sensor exhibited excellent selectivity and ultrahigh sensitivity to GSH, with an ultralow limit of detection (LOD) of up to 10-19 M. To the best of our knowledge, the sensor outperforms previously reported systems. Moreover, the CDs-SGGT sensor shows rapid detection and good stability. More importantly, the detection of GSH in artificial serum samples was successfully demonstrated.
Collapse
Affiliation(s)
- Zhanpeng Ren
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jianying Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Chenglong Xue
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Minghua Deng
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Haiyang Yu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Tianci Lin
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jiayuan Zheng
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, P. R. China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
24
|
Liu L, Lu YH, Wang MD, Zhao QF, Chen XP, Yin H, Feng CG, Zhang F. DMMIC derivatization-assisted liquid chromatography-mass spectrometry method for metabolite profiling of the glutathione anabolic pathway in esophageal cancer tissues and cells. J Pharm Anal 2023; 13:1365-1373. [PMID: 38174115 PMCID: PMC10759256 DOI: 10.1016/j.jpha.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a new pyrylium derivatization-assisted liquid chromatography-mass spectrometry (LC-MS) method was developed for metabolite profiling of the glutathione anabolic pathway (GAP) in cancer tissues and cells. The pyrylium salt of 6,7-dimethoxy-3-methyl isochromenylium tetrafluoroborate (DMMIC) was used to label the amino group of metabolites, and a reductant of dithiothreitol (DTT) was employed to stabilize the thiol group. By combining DMMIC derivatization with LC-MS, it was feasible to quantify the 13 main metabolites on the GAP in complex biological samples, which had good linearity (R2 = 0.9981-0.9999), precision (interday precision of 1.6%-19.0% and intraday precision of 1.4%-19.8%) and accuracy (83.4%-115.7%). Moreover, the recovery assessments in tissues (82.5%-107.3%) and in cells (98.1%-118.9%) with GSH-13C2, 15N, and Cys-15N demonstrated the reliability of the method in detecting tissues and cells. Following a methodological evaluation, the method was applied successfully to investigate difference in the GAP between the carcinoma and para-carcinoma tissues of esophageal squamous cell carcinoma (ESCC) and the effect of p-hydroxycinnamaldehyde (CMSP) on the GAP in KYSE-150 esophageal cancer cells. The results demonstrate that the developed method provides a promising new tool to elucidate the roles of GAP in physiological and pathological processes, which can contribute to research on drugs and diseases.
Collapse
Affiliation(s)
- Li Liu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yu-Han Lu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min-Dan Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qun-Fei Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiu-Ping Chen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Yin
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fang Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
25
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Xue G, Zheng Z, Liang X, Zheng Y, Wu H. Uterine Tissue Metabonomics Combined with 16S rRNA Gene Sequencing To Analyze the Changes of Gut Microbiota in Mice with Endometritis and the Intervention Effect of Tau Interferon. Microbiol Spectr 2023; 11:e0040923. [PMID: 37067455 PMCID: PMC10269590 DOI: 10.1128/spectrum.00409-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Endometritis is a common cow disease characterized by inflammation of endometrium, which leads to infertility or low fertility of cows and brings huge economic losses to the dairy industry. Tau interferon (IFN-τ) has many important biological functions, including an anti-inflammatory effect. The present study aimed to survey the effects of IFN-τ administration on gut microflora and body metabolism in mice with endometritis and to explore the potential relationship. The results indicated that IFN-τ obviously alleviated the damage and ultrastructural changes of mouse endometrium induced by Escherichia coli and enhanced tight junction protein's expression level. Through analysis by 16S rRNA gene sequencing, we found that IFN-τ, especially at 12 h, could regulate the composition of gut microbiota associated with Pediococcus, Staphylococcus, and Enterorhabdus in E. coli-induced mouse endometritis. Through histometabonomics, it was found that endometritis was related to 11 different metabolites and 4 potential metabolic pathways. These metabolites and metabolic pathways were major participants in metabolic pathways, cysteine and methionine metabolism, arachidonic acid metabolism, and pyrimidine metabolism. Correlation analysis of gut microbiota with uterine tissue metabolomics showed that changes in metabolic pathways might be affected by gut microbiota, such as Enterorhabdus in mouse endometritis. The above results indicated that the anti-inflammatory mechanism of IFN-τ might be reduction of the abundance of Enterorhabdus in the gut microbiota, affecting the expression level of important metabolites in uterine tissue and thus playing an anti-inflammatory role. IMPORTANCE The change in intestinal flora has been the focus of many disease studies in recent years, but the pathogenetic effect of interferon on endometritis is still unclear. The results of this study showed that IFN-τ alleviated the damage in mouse endometritis induced by E. coli and improved the endometrial tissue barrier. Its functional mechanism may be reduction of the abundance of Enterorhabdus in the intestinal microbiota, affecting the expression level of important metabolites in uterine tissue and thus playing an anti-inflammatory role.
Collapse
Affiliation(s)
- Guanhong Xue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhijie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoben Liang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghui Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
27
|
Jia S, Wang R, Zhang D, Guan Z, Ding T, Zhang J, Zhao X. Quercetin modulates the liver metabolic profile in a chronic unpredictable mild stress rat model based on metabolomics technology. Food Funct 2023; 14:1726-1739. [PMID: 36722921 DOI: 10.1039/d2fo03277e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Depression is the most prevalent psychiatric disease, and its pathogenesis is still unclear. Currently, studies on the pathogenesis of depression are mainly focused on the brain. The liver can modulate brain function via the liver-brain axis, indicating that the liver plays an important role in the development of depression. This study aims to explore the protective effect of quercetin against chronic unpredictable mild stress (CUMS)-induced metabolic changes and the corresponding mechanisms in the rat liver based on untargeted metabolomics technology. In this study, 96 male rats were divided into six groups: control, different doses of quercetin (10 mg per kg bw or 50 mg per kg bw), CUMS, and CUMS + different doses of quercetin. After 8 weeks of CUMS modeling, the liver samples were collected for metabolomics analysis. A total of 17 altered metabolites were identified, including D-glutamic acid, S-adenosylmethionine, lithocholylglycine, L-homocystine, prostaglandin PGE2, leukotriene E4, cholic acid, 5-methyltetrahydrofolic acid, taurochenodeoxycholic acid, S-adenosylhomocysteine, deoxycholic acid, folic acid, L-methionine, leukotriene C5, estriol-17-glucuronide, PE, and PC, indicating that methionine metabolism, bile acid metabolism, and phosphatidylcholine biosynthesis are the major pathways involved in CUMS-induced hepatic metabolic disorders. Hepatic methylation damage may play a role in the pathophysiology of depression, as evidenced by the first discovery of the abnormality of hepatic methionine metabolism. Abnormal changes in hepatic bile acids may provide stronger evidence for depression pathogenesis involving the microbiota-gut-brain axis, suggesting that the liver is involved in depression development and may be a treatment target. The quercetin treatment alleviated the CUMS-induced liver metabolism disorder, suggesting that quercetin may protect against depression by regulating liver metabolism.
Collapse
Affiliation(s)
- Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Ruijuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Dongyan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Zhiyu Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Tingting Ding
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Jingnan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
28
|
Elbeltagi R, Al-Beltagi M, Saeed NK, Alhawamdeh R. Play therapy in children with autism: Its role, implications, and limitations. World J Clin Pediatr 2023; 12:1-22. [PMID: 36685315 PMCID: PMC9850869 DOI: 10.5409/wjcp.v12.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 01/03/2023] Open
Abstract
Play is a pleasurable physical or mental activity that enhances the child's skills involving negotiation abilities, problem-solving, manual dexterity, sharing, decision-making, and working in a group. Play affects all the brain's areas, structures, and functions. Children with autism have adaptive behavior, adaptive response, and social interaction limitations. This review explores the different applications of play therapy in helping children with autism disorder. Play is usually significantly impaired in children with autism. Play therapy is mainly intended to help children to honor their unique mental abilities and developmental levels. The main aim of play therapy is to prevent or solve psychosocial difficulties and achieve optimal child-healthy growth and development. Play therapy helps children with autism to engage in play activities of their interest and choice to express themselves in the most comfortable ways. It changes their way of self-expression from unwanted behaviors to more non-injurious expressive behavior using toys or activities of their choice as their words. Play therapy also helps those children to experience feeling out various interaction styles. Every child with autism is unique and responds differently. Therefore, different types of intervention, like play therapy, could fit the differences in children with autism. Proper evaluation of the child is mandatory to evaluate which type fits the child more than the others. This narrative review revised the different types of play therapy that could fit children with autism in an evidence-based way. Despite weak evidence, play therapy still has potential benefits for patients and their families.
Collapse
Affiliation(s)
- Reem Elbeltagi
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Pathology Department, Salmaniya Medical Complex, Manama 12, Bahrain
- Pathology Department, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Bahrain
| | - Rawan Alhawamdeh
- Pediatrics Research and Development Department, Genomics Creativity and Play Center, Manama 0000, Bahrain
- School of Continuing Education, Masters in Psychology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
29
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
30
|
Nantachai G, Vasupanrajit A, Tunvirachaisakul C, Solmi M, Maes M. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 79:101639. [PMID: 35537662 DOI: 10.1016/j.arr.2022.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
This study aims to systematically review and meta-analyze the nitro-oxidative stress (O&NS)/antioxidant (ANTIOX) ratio in the peripheral blood of people with mild cognitive impairment (MCI). We searched PubMed, Scopus, Google Scholar, and Web of Science for articles published from inception until July 31, 2021. Forty-six studies on 3.798 MCI individuals and 6.063 healthy controls were included. The O&NS/ANTIOX ratio was significantly higher in MCI than in controls with a Standardized Mean Difference (SMD)= 0.378 (95% CI: 0.250; 0.506). MCI individuals showed increased lipid peroxidation (SMD=0.774, 95%CI: 4.416; 1.132) and O&NS-associated toxicity (SMD=0.621, CI: 0.377; 0.865) and reduced glutathione (GSH) defenses (SMD=0.725, 95%CI: 0.269; 1.182) as compared with controls. MCI was also accompanied by significantly increased homocysteine (SMD=0.320, CI: 0.059; 0.581), but not protein oxidation, and lowered non-vitamin (SMD=0.347, CI: 0.168; 0.527) and vitamin (SMD=0.564, CI: 0.129; 0.999) antioxidant defenses. The results show that MCI is at least in part due to increased neuro-oxidative toxicity and suggest that treatments targeting lipid peroxidation and the GSH system may be used to treat or prevent MCI.
Collapse
Affiliation(s)
- Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Somdet Phra Sungharaj Nyanasumvara Geriatric Hospital, Department of Medical Services, Ministry of Public health, Chon Buri Province, Thailand.
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom; Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, and NHS Trust, Southampton, United Kingdom
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Deakin University, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
31
|
Zhang J, Wang P, Tan C, Zhao Y, Zhu Y, Bai J, Xiao X. Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1. Food Funct 2022; 13:4302-4314. [PMID: 35302565 DOI: 10.1039/d1fo02450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of our previous study showed that the structure and function of β-glucan in barley were changed after fermentation by L. plantarum DY-1. In this study, the antioxidant activities of RBG (regular barley β-glucan, unfermented) and FBG (barley β-glucan, fermented with L. plantarum DY-1) were evaluated by adopting an in vivo animal model, Caenorhabditis elegans (C. elegans). We also carried out an integrated transcriptomic and metabolomic profiling for RBG and FBG to delineate their signature pathways. RBG treatment has better effects on SOD enzyme activity and ROS levels than FBG, while FBG treatment has better effects on the CAT enzyme activity and MDA content than RBG in C. elegans. Transcription group analysis showed that FBG mainly decreases the expression of the Cyp-D gene to inhibit the calcium signaling pathway, promotes the Wnt signaling pathway by up-regulating the GSK-3β gene and improving the oxidative damage of C. elegans; RBG mainly inhibits calcium signal pathways by reducing the expression of ANT-solute carrier family 25 genes, promoting life adjustment pathways by reducing the expression of the HSP-12.6 gene to improve the oxidative stress of C. elegans. Joint analysis showed that the difference between FBG and RBG in the regulation of oxidative stress is mainly reflected in the metabolism pathway of arachidonic acid. Under the regulation of FBG, the expression of the C03H5.4 gene was decreased, the expression of leukotriene A4, prostaglandin G2, arachidonic acid and phosphatidylcholine was decreased, and the expression of 14,15-DiHETrE was increased. Under the regulation of RBG, the expression of gene C03H5.4 was up-regulated, the expression of metabolites such as leukotriene B4 was up-regulated, and the expression of arachidonic acid and phosphatidylcholine was down-regulated.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ping Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
32
|
α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7450514. [PMID: 35391928 PMCID: PMC8983239 DOI: 10.1155/2022/7450514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
The research determined the role of α-lipoic acid (ALA) in reducing the brain manifestations of insulin resistance. The mechanism of ALA action is mainly based on its ability to “scavenge” oxygen free radicals and stimulate biosynthesis of reduced glutathione (GSH), considered the most critical brain antioxidant. Although the protective effect of ALA is widely documented in various diseases, there are still no studies assessing the influence of ALA on brain metabolism in the context of insulin resistance and type 2 diabetes. The experiment was conducted on male Wistar rats fed a high-fat diet for ten weeks with intragastric administration of ALA for four weeks. We are the first to demonstrate that ALA improves the function of enzymatic and nonenzymatic brain antioxidant systems, but the protective effects of ALA were mainly observed in the hypothalamus of insulin-resistant rats. Indeed, ALA caused a significant increase in superoxide dismutase, catalase, peroxidase, and glutathione reductase activities, as well as GSH concentration and redox potential ([GSH]2/[GSSG]) in the hypothalamus of HFD-fed rats. A consequence of antioxidant barrier enhancement by ALA is the reduction of oxidation, glycation, and nitration of brain proteins, lipids, and DNA. The protective effects of ALA result from hypothalamic activation of the transcription factor Nrf2 and inhibition of NF-κB. In the hypothalamus of insulin-resistant rats, we demonstrated reduced levels of oxidation (AOPP) and glycation (AGE) protein products, 4-hydroxynoneal, 8-isoprostanes, and 3-nitrotyrosine and, in the cerebral cortex, lower levels of 8-hydroxydeoxyguanosine and peroxynitrite. In addition, we demonstrated that ALA decreases levels of proinflammatory TNF-α but also increases the synthesis of anti-inflammatory IL-10 in the hypothalamus of insulin-resistant rats. ALA also prevents neuronal apoptosis, confirming its multidirectional effects within the brain. Interestingly, we have shown no correlation between brain and serum/plasma oxidative stress biomarkers, indicating the different nature of redox imbalance at the central and systemic levels. To summarize, ALA improves antioxidant balance and diminishes oxidative/glycative stress, protein nitrosative damage, inflammation, and apoptosis, mainly in the hypothalamus of insulin-resistant rats. Further studies are needed to determine the molecular mechanism of ALA action within the brain.
Collapse
|
33
|
Schiavi S, La Rosa P, Petrillo S, Carbone E, D'Amico J, Piemonte F, Trezza V. N-Acetylcysteine Mitigates Social Dysfunction in a Rat Model of Autism Normalizing Glutathione Imbalance and the Altered Expression of Genes Related to Synaptic Function in Specific Brain Areas. Front Psychiatry 2022; 13:851679. [PMID: 35280167 PMCID: PMC8916240 DOI: 10.3389/fpsyt.2022.851679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, University "Roma Tre", Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Rome, Italy
| | - Sara Petrillo
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilia Carbone
- Department of Science, University "Roma Tre", Rome, Italy
| | - Jessica D'Amico
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy
| |
Collapse
|
34
|
Liu W, Li L, Xia X, Zhou X, Du Y, Yin Z, Wang J. Integration of Urine Proteomic and Metabolomic Profiling Reveals Novel Insights Into Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:780747. [PMID: 35615451 PMCID: PMC9124902 DOI: 10.3389/fpsyt.2022.780747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders whose etiology and pathogenesis are not fully understood. To gain insight into the molecular basis of ASD, we performed comparative integrated proteomic and metabolomic analyses of urine samples from children diagnosed with ASD and healthy children. All 160 samples underwent proteomics analysis and 60 were analyzed by liquid chromatography-mass spectrometry to obtain metabolite profiles. We identified 77 differentially expressed proteins (DEPs; 21 downregulated and 56 upregulated) and 277 differentially expressed metabolites; 31 of the DEPs including glutathione, leukocyte antigens, glycoproteins, neural adhesion factors, and immunoglobulins, have been implicated in neuroinflammation. The proteomic analysis also revealed 8 signaling pathways that were significantly dysregulated in ASD patients; 3 of these (transendothelial leukocyte migration, antigen processing and presentation, and graft vs. host disease) were associated with the neuroimmune response. The metabolism of tryptophan, which is also related to the neuroimmune response, has been found to play a potential role in ASD. Integrated proteome and metabolome analysis showed that 6 signaling pathways were significantly enriched in ASD patients, 3 of which were correlated with impaired neuroinflammation (glutathione metabolism, metabolism of xenobiotics by cytochrome P450 and transendothelial migration of leukocyte). We also found a correlation between prostaglandin (PG) E2 levels and the inflammatory response in ASD. These results underscore the prominent role of the neuroimmune response in ASD and provide potential biomarkers that can be used for diagnosis or as targets for early intervention.
Collapse
Affiliation(s)
- Wenlong Liu
- Department of Child Development and Behavior, School of Medicine, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Liming Li
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xiaochun Xia
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Xulan Zhou
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| | - Yukai Du
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqing Yin
- Division of Neonatology, The People's Hospital of Dehong Autonomous Prefecture, Mangshi, China
| | - Juan Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
35
|
Sapey-Triomphe LA, Temmerman J, Puts NAJ, Wagemans J. Prediction learning in adults with autism and its molecular correlates. Mol Autism 2021; 12:64. [PMID: 34615532 PMCID: PMC8493731 DOI: 10.1186/s13229-021-00470-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Background According to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates. Methods Twenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus). Results Neurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group. Limitations We used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions. Conclusions Autistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00470-6.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium. .,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium.
| | - Joke Temmerman
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, King's College London, London, SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 8AF, UK
| | - Johan Wagemans
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
36
|
Schrier MS, Zhang Y, Trivedi MS, Deth RC. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie 2021; 192:1-12. [PMID: 34517051 DOI: 10.1016/j.biochi.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) promotes expression of a large number of antioxidant genes and multiple studies have described oxidative stress and impaired methylation in autism spectrum disorder (ASD), including decreased brain levels of methylcobalamin(III) (MeCbl). Here we report decreased expression of the Nrf2 gene (NFE2L2) in frontal cortex of ASD subjects, as well as differences in other genes involved in redox homeostasis. In pooled control and ASD correlation analyses, hydroxocobalamin(III) (OHCbl) was inversely correlated with NFE2L2 expression, while MeCbl and total cobalamin abundance were positively correlated with NFE2L2 expression. Levels of methionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) and cystathionine were positively correlated with NFE2L2 expression, while homocysteine (HCY) was negatively correlated. The relationship between Nrf2 activity and cobalamin was further supported by a bioinformatics-based comparison of cobalamin levels in different tissues with expression of a panel of 40 Nrf2-regulated genes, which yielded a strong correlation. Lastly, Nrf2-regulated gene expression was also correlated with expression of intracellular cobalamin trafficking and processing genes, such as MMADHC and MTRR. These findings highlight a previously unrecognized relationship between the antioxidant-promoting role of Nrf2 and cobalamin status, which is dysfunctional in ASD.
Collapse
Affiliation(s)
- Matthew Scott Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yiting Zhang
- Biologics, Bristol Myers Squibb, Devens, MA, USA
| | - Malav Suchin Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
37
|
Davies DA, Adlimoghaddam A, Albensi BC. The Effect of COVID-19 on NF-κB and Neurological Manifestations of Disease. Mol Neurobiol 2021; 58:4178-4187. [PMID: 34075562 PMCID: PMC8169418 DOI: 10.1007/s12035-021-02438-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease that presumably began in 2019 (COVID-19) is a highly infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic. Initially, COVID-19 was thought to only affect respiration. However, accumulating evidence shows a wide range of neurological symptoms are also associated with COVID-19, such as anosmia/ageusia, headaches, seizures, demyelination, mental confusion, delirium, and coma. Neurological symptoms in COVID-19 patients may arise due to a cytokine storm and a heighten state of inflammation. The nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) is a central pathway involved with inflammation and is shown to be elevated in a dose-dependent matter in response to coronaviruses. NF-κB has a role in cytokine storm syndrome, which is associated with greater severity in COVID-19-related symptoms. Therefore, therapeutics that reduce the NF-κB pathway should be considered in the treatment of COVID-19. Neuro-COVID-19 units have been established across the world to examine the neurological symptoms associated with COVID-19. Neuro-COVID-19 is increasingly becoming an accepted term among scientists and clinicians, and interdisciplinary teams should be created to implement strategies for treating the wide range of neurological symptoms observed in COVID-19 patients.
Collapse
Affiliation(s)
- Don A Davies
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
| | - Aida Adlimoghaddam
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
38
|
Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685204. [PMID: 34336113 PMCID: PMC8315852 DOI: 10.1155/2021/6685204] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Perinatal exposure to neurotoxicants has been implicated in several neurodevelopmental disorders, including autism spectrum disorder, attention-deficit hyperactive disorder, and schizophrenia. Studies of the molecular and cellular events related to developmental neurotoxicity have identified a number of “adverse outcome pathways,” many of which share oxidative stress as a key event. Oxidative stress occurs when the balance between the production of free oxygen radicals and the activity of the cellular antioxidant system is dysregulated. In this review, we describe some of the developmental neurotoxins that target the antioxidant system and the mechanisms by which they elicit stress, including oxidative phosphorylation in mitochondria and plasma membrane redox system in rodent models. We also discuss future directions for identifying adverse outcome pathways related to oxidative stress and developmental neurotoxicity, with the goal of improving our ability to quickly and accurately screen chemicals for their potential developmental neurotoxicity.
Collapse
|
39
|
Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 2021; 95:1161-1178. [DOI: 10.1007/s00204-021-02974-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
|
40
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|