1
|
Zhao Y, Lu Y, Li W, Liu P, Xu X. Acquired resistance to vemurafenib restrains thyroid cancer stem cell self-renewal by suppressing STAT3 activation. Cell Signal 2025; 133:111845. [PMID: 40345509 DOI: 10.1016/j.cellsig.2025.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Vemurafenib (PLX4032) is a B-Raf kinase-specific inhibitor that has been approved for treating BRAF-mutated melanoma but is ineffective in treating thyroid cancer. Cancer stem cells (CSCs) play an important role in drug resistance (DR). Our present study aims to determine the status of CSCs in thyroid cancer cells that have acquired adaptive drug resistance to PLX4032. We first established a DR anaplastic thyroid cancer (ATC) cell line by culturing SW1736 cells in the media containing gradually increasing concentrations of PLX4032 (0.1-4 μM) for 6 months. We found that HER3, a member of the ErbB/HER receptor tyrosine kinase (RTK) family, and its downstream MAPK and PI3K pathways are highly activated in DR cells due to increased expression of Yes-associated protein (YAP), a key transcription factor in the Hippo signaling pathway. DR cells can readily proliferate in the presence of PLX4032 (4 μM). However, DR cells express lower levels of the stemness-related genes including Gli1, BMI1, and SOX2, form fewer thyrosphere, and contain fewer aldehyde dehydrogenase (ALDH)-positive cells than parent naïve (PN) cells. DR cells also fail to form tumor xenografts in immunodeficient mice. Mechanistically, constitutive ERK activation in DR cells results in the increased expression of SOCS3 (Suppressor Of Cytokine Signaling 3 expression) and the suppression of STAT3 activation. STAT3 knockout and Ruxolitinib (Rux), a specific inhibitor of Janus kinases (JAK), inhibit the expression of the stemness-related genes. In contrast, STAT3 overexpression increases stemness-related gene expression. Our study suggests that thyroid cancer cells adapted to PLX4032 have limited self-renewal capacity due to impaired STAT3 activation and decreased expression of the stemness-related genes.
Collapse
Affiliation(s)
- Yuqing Zhao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Yurong Lu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Wei Li
- College of Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Penggang Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou 225009, Jiangsu Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Xu Q, Zhou Y, Wu M, Wu S, Yu J, Xu Y, Wei Z, Jin L. MTHFD2: A metabolic checkpoint altering trophoblast invasion and migration by remodeling folate-nucleotide metabolism in recurrent spontaneous abortion. Cell Signal 2025; 132:111808. [PMID: 40250694 DOI: 10.1016/j.cellsig.2025.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Recurrent spontaneous abortion (RSA) affects female reproduction worldwide, yet its pathological mechanisms are still unclear. It has been reported that cellular metabolism reprogramming is a critical step for trophoblasts during embryo implantation. Herein, MTHFD2 was recognized as a key metabolic checkpoint attributed to RSA occurrence. This work figured out that the expression level of MTHFD2 was significantly inhibited in villus tissues from RSA patients, suggesting the potential role of MTHFD2 in RSA occurrence. Moreover, MTHFD2 knockdown impaired cellular folate-nucleotide metabolism, induced the accumulation of AICAR, and thereby impairing the EMT process to inhibit the invasion and migration of trophoblasts Besides, the AICAR accumulation further activated the downstream AMPK which deactivated the JAK/STAT/Slug pathway and ultimately deactivated the EMT process. Using a mouse model, MTHFD2 inhibition was observed to induce embryo implantation failure in vivo. Our results highlighted MTHFD2 as a metabolic checkpoint that remodeled folate-nucleotide metabolism to regulate the EMT process and ultimately altered the migration and invasion of trophoblasts in RSA occurrence. Our findings suggested that MTHFD2 was a promising therapeutic target in recurrent spontaneous abortion treatment.
Collapse
Affiliation(s)
- Qingxin Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yicheng Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Meijuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shengnan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China.
| |
Collapse
|
3
|
Jiang XL, Liu B, Li JK, Lin YF, Zhu PL, Zhang Z, Wang Y, Deng B, Zhang JZ, Yung KKL. Przewaquinone A, as a natural STAT3 inhibitor, suppresses the growth of melanoma cells and induces autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156810. [PMID: 40311593 DOI: 10.1016/j.phymed.2025.156810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Melanoma is a deadly malignant skin cancer with common risk factors including prolonged ultraviolet exposure. Understanding the mechanisms of signal transducer and activator of transcription (STAT3) signaling and discovering inhibitors of STAT3 signaling are considered promising melanoma treatments for melanoma. Przewaquinone A (PrA), a lipophilic diterpene quinone isolated from Salvia przewalskii Maxim. var. mandarinorum (Diels) Stib, has been shown to have neuro-protective properties. Nevertheless, it remains unclear how PrA functions in the anti-melanoma process. PURPOSE Herein, the aim was to investigate the suppressive action of PrA on melanoma growth and metastasis as well as the underlying mechanisms. METHODS The in vitro proliferation ratio, cell migration, cell invasion, cell cycle and cell apoptosis were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) staining, wound-healing, transwell assays, flow cytometry and western blotting, respectively. The amount of STAT3 signaling-related proteins was determined using western blotting and immunofluorescence. The interaction between PrA and STAT3 was assessed using conducted by molecular docking, molecular dynamics (MD), surface plasmon resonance imaging (SPRi) and cellular thermal shift assay (CETSA). Autophagic fluxautophagic flux in melanoma cells was determined using the RFP-GFP-LC3 double-staining method. The STAT3C plasmid was used to overexpress STAT3 and investigate its role in the anti-melanoma action of PrA . The action of PrA on melanoma growth was validated in vivo. RESULTS PrA reduced cell proliferation, caused cell cycle arrest, and increased cell apoptosis, and inhibited cell migration and invasion. Additionally, PrA inhibited Src/STAT3 signaling and decreased the amount of STAT3 in the nucleus. We further confirmed that STAT3 was a direct target of PrA using molecular docking, MD, SPRi assay and CETSA. Additionally, STAT3 overexpression partially blocked the anti-melanoma effects of PrA. PrA induced autophagy in melanoma cells via STAT3 signaling. Moreover, combination with the autophagy inhibitors CQ (chloroquine) or 3MA (3-methyladenine) enhanced its anti-melanoma effects. PrA inhibited tumor growth and suppressed STAT3 signaling in vivo. CONCLUSION These findings collectively demonstrated that PrA inhibits the growth and metastasis of melanoma cells and induces protective autophagy of melanoma cells by inhibiting STAT3 signaling. Therefore, PrA may be a viable candidate for the treatment of melanoma and the results of this study may help to guide the development of new therapeutic approaches for patients with melanoma.
Collapse
Affiliation(s)
- Xiao-Li Jiang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China; Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China
| | - Bin Liu
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Jun-Kui Li
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China
| | - Yu-Fang Lin
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China
| | - Pei-Li Zhu
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China
| | - Ying Wang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China
| | - Bo Deng
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Jing-Zhi Zhang
- Department of Traditional Chinese Medicine, Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, PR China.
| | - Ken-Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong, PR China; Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, Hong Kong, PR China; Department of Science and Environmental Studies, Education University of Hong Kong, Tai Po, Hong Kong, PR China.
| |
Collapse
|
4
|
Wang Z, Su X, Zhan Z, Wang H, Zhou S, Mao J, Xu H, Duan S. miR-660: A novel regulator in human cancer pathogenesis and therapeutic implications. Gene 2025; 953:149434. [PMID: 40120868 DOI: 10.1016/j.gene.2025.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. Among these, miR-660, located on chromosome Xp11.23, is increasingly studied for its role in cancer due to its abnormal expression in various biological contexts. It is regulated by 8 competing endogenous RNAs (ceRNAs), which adds complexity to its function. miR- 660 targets 19 genes involved in 6 pathways such as PI3K/AKT/mTOR, STAT3, Wnt/β-catenin, p53, NF‑κB, and RAS, influencing cell cycle, proliferation, apoptosis, and invasion/migration. It also plays a role in resistance to chemotherapies like cisplatin, gemcitabine, and sorafenib in lung adenocarcinoma (LUAD), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC), thus highlighting its clinical importance. Additionally, leveraging liposomes as nanocarriers presents a promising avenue for enhancing cancer drug delivery. Our comprehensive study not only elucidates the aberrant expression patterns, biological functions, and regulatory networks of miR-660 and its ceRNAs but also delves into the intricate signaling pathways implicated. We envisage that our findings will furnish a robust framework and serve as a seminal reference for future investigations of miR-660, fostering advancements in cancer research and potentially catalyzing breakthroughs in cancer diagnosis and treatment paradigms.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiqing Zhan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangxuan Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shuhan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jiasheng Mao
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hening Xu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Wei XM, Lu SC, Li L, Gao YJ, Wang JY, Xi SY, Ye LYL, Shen WX, Wu MH, Duan DD, Cheng HB. Norcantharidin promotes M1 macrophage polarization and suppresses colorectal cancer growth. Acta Pharmacol Sin 2025:10.1038/s41401-025-01578-8. [PMID: 40394236 DOI: 10.1038/s41401-025-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/27/2025] [Indexed: 05/22/2025]
Abstract
Colorectal cancer (CRC) is characterized by an immunosuppressive and inflammatory microenvironment, thus responds poorly to therapy. Previous studies show that norcantharidin (NCTD), a demethylated cantharidin (CTD) derived from Mylabris, exerts high efficacy in treating various cancers. In this study we investigated the antitumor effects of NCTD against CRC and the underlying mechanisms. Subcutaneous CRC models were established in balb/c mice using mouse colorectal cancer cell line CT26 and in balb/c nude mice using human colorectal cancer cell line HCT116. The mice were administered NCTD (2 or 4 mg·kg-1·d-1, i.p.) for 14 days. We showed that NCTD dose-dependently reduced the tumor growth in both the CRC models. Furthermore, NCTD markedly increased M1 macrophage infiltration in tumor tissue in both the CRC models. NCTD-induced macrophage M1 polarization was confirmed by flow cytometry and qPCR assays in both THP-1 cell-derived and RAW264.7 macrophage models in vitro. We demonstrated that NCTD (20, 40 μM) dose-dependently increased CSF2 secretion from CRC cells and macrophages, and suppressed the JAK2/STAT3 signaling pathway in CRC cells. Concurrently, NCTD (10-40 μM) dose-dependently inhibited CRC cell proliferation, invasion and migration in vitro. In conclusion, this study provides new evidence for the effects of NCTD against CRC and elucidates its antitumor mechanisms through remodeling the inflammatory microenvironment via CSF2-mediated macrophage M1 polarization and inhibiting JAK2/STAT3 phosphorylation in CRC cells.
Collapse
Affiliation(s)
- Xiao-Man Wei
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Si-Cheng Lu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
- School of Integrative Medicine of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Li
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Ying-Jie Gao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Jun-Yi Wang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Song-Yang Xi
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Ling-Yu Linda Ye
- School of Integrative Medicine of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Xing Shen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| | - Mian-Hua Wu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| | - Dayue Darrel Duan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA.
| | - Hai-Bo Cheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| |
Collapse
|
6
|
Han JY, Rhee WJ, Shin JS. Cytoplasmic HMGB1 promotes the activation of JAK2-STAT3 signaling and PD-L1 expression in breast cancer. Mol Med 2025; 31:197. [PMID: 40389855 PMCID: PMC12090602 DOI: 10.1186/s10020-025-01235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/28/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) plays various roles depending on its subcellular localization. Extracellular HMGB1 interacts with receptors, such as toll-like receptor 4 and receptor for advanced glycation end products (RAGE), promoting cell proliferation, survival, and migration in cancer cells. It also increases the expression of programmed death-ligand 1 (PD-L1) in cancer cells by binding to RAGE. However, the effect of intracellular HMGB1 on the regulation of immune checkpoints such as PD-L1 has not been well characterized. In this study, we aimed to investigate the effects of intracellular HMGB1 on PD-L1 expression in breast cancer cells. METHODS Human and mouse triple-negative breast cancer cells, MDA-MB-231 and 4T1, along with HMGB1-deficient mouse embryonic fibroblast cells, were cultured. HMGB1 overexpression was achieved using a Myc-tagged plasmid, while siHMGB1 constructs were used for gene silencing. Quantitative reverse-transcriptase PCR and western blot analysis were performed to assess gene and protein expressions. Confocal imaging, immunoprecipitation, and proximity ligation assays were used to investigate HMGB1 localization and Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) interactions. In vivo experiments were performed using tumor-bearing mice treated with STAT3 and HMGB1 inhibitors. Statistical analyses were performed using Student's t-tests, one-way analysis of variance, Pearson's correlation, and Kaplan-Meier survival analysis, with significance set at p < 0.05. RESULTS In breast cancer cells, HMGB1 translocation from the nucleus to the cytoplasm increased the JAK2-STAT3 interaction and induced STAT3 phosphorylation, leading to increased STAT3 target signaling, including the epithelial-mesenchymal transition (EMT) phenotype and PD-L1 expression. Inhibition of nucleo-cytoplasmic translocation of HMGB1 decreased STAT3 phosphorylation and PD-L1 expression. Furthermore, HMGB1 enhanced breast cancer cell migration, invasion, and EMT, contributing to tumor growth in an in vivo mouse model that were mitigated by the HMGB1-targeted approach. CONCLUSIONS These findings underscore the critical role of intracellular HMGB1 in modulating PD-L1 expression via the JAK2-STAT3 signaling pathways in breast cancer and suggest that targeting HMGB1 translocation is a promising strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Ju-Young Han
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Woo Joong Rhee
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea.
- Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Qin CH, Zhang SM, Huo XO, Song RP, Ling J. Effects of SB939 are mediated by STAT3 to inhibit breast cancer cell metastasis-related genes. Oncol Lett 2025; 29:236. [PMID: 40151421 PMCID: PMC11948958 DOI: 10.3892/ol.2025.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The histone deacetylase inhibitor pracinostat (SB939) may inhibit metastasis of triple-negative breast cancer by downregulating fibronectin (FN1) expression through the STAT3 signaling pathway. SB939 exhibits low cytotoxicity and is a potential targeted agent against breast cancer. The present study investigated the value of STAT3 and FN1 as breast cancer treatment targets and integrated cancer databases and bioinformatics tools to evaluate the effect of SB939 on breast cancer metastasis. Gene Set Enrichment Analysis, Gene Expression Profiling Interactive Analysis, Gene Expression Database of Normal and Tumor Tissues 2, The University of Alabama at Birmingham Cancer data analysis portal, GeneMANIA, Search Tool for the Retrieval of Interacting Genes/Proteins, LinkedOmics and Tumor Immune Estimation Resource databases were used in the present study. SB939 inhibited enrichment of the STAT3 pathway and decreased the expression of FN1. FN1 and STAT3 expression was markedly higher in breast cancer tissues compared with normal tissues. Kaplan-Meier curves demonstrated that increased expression of STAT3 and FN1 was associated with low survival in patients with breast cancer with overall, recurrence-free and disease-specific survival and FN1 having the strongest association with MMP2, which facilitating extracellular matrix degradation and metastatic niche formation. Furthermore, MMP2 exhibits crosstalk STAT3 to induce metastasis of breast cancer cells. To conclude, SB939 may be used as a small molecule compound for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Chen-Hui Qin
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Shu-Min Zhang
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Xiao-Ou Huo
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Ruo-Piao Song
- Department of Oncology, Taiyuan City Central Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Jun Ling
- Clinical Laboratory Department, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Liu X, Cui Y, Gong J, Yu X, Cui Y, Xuan Y. SETD5 facilitates stemness and represses ferroptosis via m6A-mediating PKM2 stabilization in non-small cell lung cancer. Oncogene 2025:10.1038/s41388-025-03426-9. [PMID: 40307507 DOI: 10.1038/s41388-025-03426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
SETD5, an atypical member of the histone lysine methyltransferase family known for its association with cancer stemness, is a significant predictor of unfavorable survival outcomes in non-small cell lung cancer (NSCLC). However, the function of SETD5 in NSCLC stemness remains unclear, and whether it is an active H3K36me3 is controversial. Consequently, further investigation is required to clarify the pivotal role of SETD5 in NSCLC stemness and its related mechanism. Thus, this study employed the NSCLC tissue microarray and bioinformatics tools to analyze SETD5 expression and determine its effect on stemness and investigated the role of SETD5 in the metastasis of NSCLC using in vitro and in vivo analyses. The findings indicated high SETD5 expression in embryonic and NSCLC tissues, which was related to the pathological tumor stage, lymph node metastasis, and clinical stage, indicating that SETD5 could be used as a biomarker and prognostic factor in NSCLC. In addition, we found that SETD5 can promote glycolysis, thereby inhibiting ferroptosis and promoting the stemness of NSCLC, causing tumor metastasis and adverse prognosis in patients. In terms of mechanism, SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates PKM2 nuclear translocation and phosphorylation of p-PKM2 Tyr105, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness in NSCLC. The findings emphasize that SETD5 may serve as a promising indicator of stemness in NSCLC, which can help develop therapeutic targets for NSCLC and prognostic evaluation. This study provides evidence that SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates the nuclear translocation of PKM2, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness, causing tumor metastasis and adverse prognosis in patients.
Collapse
Affiliation(s)
- Xingzhe Liu
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Yuzhen Cui
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jie Gong
- Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Xinhui Yu
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan Cui
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yanhua Xuan
- Department of Pathology, Yanbian University College of Medicine, Yanji, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China.
- Institute of Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
9
|
Yang Y, Kang Z, Cai J, Jia S, Fan S, Zhu H. Role of FHOD1 in tumor cells and tumor immune microenvironment. Front Immunol 2025; 16:1514488. [PMID: 40364836 PMCID: PMC12069282 DOI: 10.3389/fimmu.2025.1514488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
FHOD 1 (Formin homology 2 domain containing protein 1) is a member of Diaphanous-related formins (DRFs) which contains a GTP-binding domain (GBD), formin homology (FH) 1 and FH 2 domains, a coiled-coil, and a diaphanous-like autoregulatory domain. Studies have shown that FHOD1 can not only regulate intracellular signals in tumor cells but also regulate various components of the tumor microenvironment (TME), such as T cells, B cells, cancer-associated fibroblasts (CAFs), some cytokines. Aberrant expression and dysfunction of the FHOD1 protein play a key role in tumor immunosuppression. Specifically, FHOD1 can impair function of chemokine receptors that are supposed to direct immune cells to localize to the tumor site accurately. As a result of this impairment, immune cells cannot migrate efficiently into TME, thereby impairing their ability to attack tumor cells. In addition, FHOD1 activated signaling pathways within the immune cells abnormally, resulting in their inability to recognize and destroy tumor cells effectively. Therefore, FHOD1 ultimately leads to a state of immunosuppression in TME, providing favorable conditions for the growth and spread of tumor cells. Altogether this review provides an in-depth understanding of the role of FHOD1 in tumor immunosuppression.
Collapse
Affiliation(s)
| | | | | | | | | | - Huifang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
10
|
Jin W, Zhang Y, Wang B, Kang Z, Li H, Song J, Chen Y, Xiong H, Chen J. Structural optimization and characterization of highly potent and selective STAT3 inhibitors for the treatment of triple negative breast cancer. Eur J Med Chem 2025; 287:117332. [PMID: 39938409 DOI: 10.1016/j.ejmech.2025.117332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Effective targeted treatments for triple-negative breast cancer (TNBC), which has the worst prognosis among various types of breast cancer, are lacking owing to its clinical heterogeneity and malignant nature. STAT3, a key transcription factor, regulates multiple physiological functions. Aberrant activation of STAT3 plays a pivotal role in the initiation and progression of TNBC and is closely associated with a poor prognosis. Therefore, targeting STAT3 is a promising potential therapeutic approach for TNBC. In this study, we further optimized the core structure of 6f, which our research group previously identified as a STAT3 inhibitor and treatment for osteosarcoma, to identify additional potential STAT3 inhibitors for TNBC treatment. We identified WR-S-462 as a high-binding affinity inhibitor of STAT3 that effectively suppresses its phosphorylation and biological functions in vitro. Notably, WR-S-462 significantly inhibits TNBC growth and metastasis in a dose-dependent manner, providing robust evidence for its potential as a clinical intervention for TNBC.
Collapse
Affiliation(s)
- Wangrui Jin
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Yunnan, 650500, Kunming, China; Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yuzhu Zhang
- Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China
| | - Zhaoyong Kang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Huachao Li
- Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, China
| | - Jingfeng Song
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Yunnan, 650500, Kunming, China
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Yunnan, 650500, Kunming, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China; Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Ningxia, 750004, China.
| |
Collapse
|
11
|
Yuan L, Cai Y, Wang G, Liu X, Chen B, Zhou D, Wu Y, Qu N, Li X, Zhou W. SGK3 promotes estrogen receptor-positive breast cancer proliferation by activating STAT3/ZMIZ2 pathway to stabilise β-catenin. Br J Pharmacol 2025; 182:1856-1875. [PMID: 39876548 DOI: 10.1111/bph.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer is a leading threat to women's health, with approximately 70% of cases being estrogen receptor-positive. SGK3 is regulated by estrogen and is positively associated with estrogen receptor expression, although its molecular role remains unclear. EXPERIMENTAL APPROACH Proteomics was used to identify SGK3's downstream targets. Tissue microarray immunofluorescence evaluated SGK3 and ZMIZ2 expression in ER+ breast cancer. Lentiviral-mediated knockdown and overexpression of SGK3 and/or ZMIZ2 assessed their effects on cell proliferation in vitro and in vivo. Chromatin immunoprecipitation (ChIP) analyzed p-STAT3 binding to the ZMIZ2 promoter, and Co-immunoprecipitation (Co-IP) examined ZMIZ2-β-catenin interaction. KEY RESULTS SGK3 expression was elevated in breast tumour tissues correlating with reduced patient survival. Proteomic analysis identified ZMIZ2 as a downstream target of SGK3. Overexpression of SGK3 promoted the proliferation of estrogen receptor-positive breast cancer in MCF-7 and T47D cells. Inhibition had the opposite effects. ZMIZ2 overexpression rescued the proliferation deficit in SGK3 knockdown cells. ZMIZ2 was found to bind and stabilises β-catenin. Knockdown of SGK3 led to β-catenin degradation via polyubiquitination, a process reversed by ZMIZ2 overexpression. STAT3 was identified as a downstream effector of SGK3 and its knockdown reduced cytoplasmic and nuclear p-STAT3 and STAT3, and inhibited ZMIZ2 and β-catenin expression. Celastrol suppressed estrogen receptor-positive breast cancer cell proliferation by inhibiting the SGK3/STAT3/ZMIZ2/β-catenin pathway. CONCLUSIONS AND IMPLICATIONS SGK3 expression is associated with poorer survival rates, thus SGK3 is a potential therapeutic target. As celastrol can inhibit SGK3 expression it could be an effective therapeutic agent.
Collapse
Affiliation(s)
- Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The Third People's Hospital of Chengdu, Sichuan, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
13
|
Sun X, Yang J, Wang Z, Nie Q, Yang Q, Zhang W, Liu M, Wang L, Zhu L. ZEB1 expression in Th17 cells correlated with p-STAT3 in human apical periodontitis. BMC Oral Health 2025; 25:315. [PMID: 40016707 PMCID: PMC11869427 DOI: 10.1186/s12903-025-05633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND ZEB1, a zinc-finger E homeobox-binding transcription factor most frequently associated with developmental programs linked to epithelial-mesenchymal transition, has been demonstrated to regulate immune cell function. The study aimed to investigate the expression pattern of ZEB1 in Th17 cells and its colocalization with p-STAT3 in human apical periodontitis lesions. METHODS Thirty-nine human periapical tissues were collected for ex vivo study, including periapical granulomas (PGs, n = 14), radicular cysts (RCs, n = 12), and healthy control tissues (control group, n = 13). Inflammatory infiltration of the lesions was assessed using hematoxylin-eosin staining. The expression of ZEB1 was detected and analyzed by immunohistochemistry. The localization of ZEB1 in Th17 cells and its colocalization with p-STAT3 were assessed using fluorescence colocalization. RESULTS ZEB1 expression was significantly higher in PGs and RCs than in the healthy control group; however no significant difference between the two groups was observed. Immunofluorescence analysis revealed that ZEB1 expression was correlated with IL17 and CD4 double-positive cells in human periapical lesions. ZEB1/ p-STAT3 double-positive cells were predominant in RCs and PGs than in the healthy control group. CONCLUSIONS The expression of ZEB1 was significantly elevated in PGs and RCs, and correlated with Th17 cells and p-STAT3 expression. This study revealed that ZEB1 is a potential player correlated with STAT3 activation and Th17 cells in apical periodontitis pathogenesis.
Collapse
Affiliation(s)
- Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qing Nie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mingwen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
14
|
Qi H, Wang J, Cao L. TRIM44 facilitates aggressive behaviors in multiple myeloma through promoting ZEB1 deubiquitination. Discov Oncol 2025; 16:248. [PMID: 40014271 PMCID: PMC11867989 DOI: 10.1007/s12672-025-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 44 (TRIM44) involves in various tumor development. This study investigated role of TRIM44 in multiple myeloma (MM). MATERIALS AND METHODS TRIM44 levels in bone marrow tissues and MM cell lines was detected by quantitative reverse transcription PCR (RT-qPCR). Cell viability, migration, and invasion of MM cells were evaluated under the interference of TRIM44 expression. The role of TRIM44 on regulating tumor growth in vivo was also investigated in subcutaneous tumor xenograft models. The protein interact between TRIM44 and Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was also studied according IP followed by western blotting assay. RESULTS TRIM44 was all highly expressed in collected bone marrow tissues and MM cell lines. Cell viability, migration, and invasion of MM cells with low expression of TRIM44 was significantly inhibited. Over-expression of TRIM44 can down-regulate the ZEB1 ubiquitination to enhance the protein stability. CONCLUSIONS TRIM44 exerts as an oncogenic factor to induce the oncogenesis of MM by stabilizing ZEB1.
Collapse
Affiliation(s)
- Hui Qi
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Jing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Lixia Cao
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China.
| |
Collapse
|
15
|
Haidurov A, Zheltukhin AO, Snezhkina AV, Krasnov GS, Kudryavtseva AV, Budanov AV. p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3. Cell Commun Signal 2025; 23:105. [PMID: 39985075 PMCID: PMC11846189 DOI: 10.1186/s12964-025-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.
Collapse
Affiliation(s)
- Alexander Haidurov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Andrei O Zheltukhin
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anastasiya V Snezhkina
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Andrei V Budanov
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Shi M, Li H, Liang R, Lin H, Tang Q. The transcription factor STAT3 and aging: an intermediate medium. Biogerontology 2025; 26:55. [PMID: 39920354 DOI: 10.1007/s10522-025-10193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Aging is a physiological/pathological process accompanied by progressive impairment of cellular function, leading to a variety of aging-related diseases. STAT3 is one of the core regulatory factors of aging. It is involved in body metabolism, development and senescence, cell apoptosis and so on. During the aging process, the changes of growth factors and cytokines will cause the activation of STAT3 to varying degrees, regulate the inflammatory pathways related to aging, regulate body inflammation, mitochondrial function, cell aging and autophagy to regulate and influence the aging process. Drugs targeting STAT3 can treat senescence related diseases. This review summarizes the role of STAT3 signaling factors in the pathogenesis of aging, including mitochondrial function, cellular senescence, autophagy, and chronic inflammation mediated by inflammatory pathways. Finally, the key regulatory role of STAT3 in senescence related diseases is emphasized. In summary, we reveal that drug development and clinical application targeting STAT3 is one of the key points in delaying aging and treating aging-related diseases in the future.
Collapse
Affiliation(s)
- Min Shi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Haiyan Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
17
|
Yuan Y, Tang Y, Fang Z, Wen J, Wicha MS, Luo M. Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness. Cells 2025; 14:227. [PMID: 39937018 PMCID: PMC11817775 DOI: 10.3390/cells14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein-protein interactions. Epithelial-mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Yun Tang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China;
| | - Max S. Wicha
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Luo
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Yu W, Chen S, Guan X, He G, Zhang W, Zhang H, Huang S, Ye Z, Pan H, Zhong Z. Yiqi Huayu Jiedu formula inhibits JAK2/STAT3-mediated partial EMT in treating chronic atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156356. [PMID: 39799895 DOI: 10.1016/j.phymed.2024.156356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a precursor to gastric cancer, a leading cause of cancer-related deaths worldwide. Despite current therapeutic strategies, preventing the transition from gastritis to cancer remains a challenge. Traditional Chinese Medicine (TCM), particularly the Yiqi-Huayu-Jiedu (YQHYJD) formula, have exhibited promising results in CAG management. However, the pharmacological underpinnings of this formula remain elusive. PURPOSE The study aimed to elucidate the pharmacological mechanisms of the YQHYJD formula in treating CAG and its role in inhibiting the progression to gastric cancer through the modulation of the "inflammation-cancer" sequence. METHODS Mass spectrometric analysis of YQHYJD formula-containing serum was conducted to determine the active compounds involved in CAG treatment. A CAG rat model was induced using a combination of deoxycholic acid and ammonia, while a gastric precancerous lesion cell model was generated by exposing GES-1 cells to deoxycholic acid. Both models were treated with varying concentrations of the YQHYJD formula to assess its effects of the JAK2/STAT3 signaling-mediated epithelial-mesenchymal transition (EMT) pathway. RESULTS Mass spectrometry analysis identified 80 active compounds in the YQHYJD formula, including quercetin. Network pharmacology analysis revealed that these active compounds may exert their therapeutic effects on CAG through various mechanisms, including the JAK/STAT signaling. Using rat and cellular models of CAG, we found that the JAK/STAT pathway is activated alongside partial epithelial-mesenchymal transition (pEMT). YQHYJD treatment effectively mitigated the activation of the JAK2/STAT3 activation and pEMT. Furthermore, the therapeutic effect of the YQHYJD formula was maintained even in the presence of Colivelin or overexpressed STAT3. CONCLUSIONS The YQHYJD formula treats CAG by inhibiting the JAK2/STAT3 -mediated pEMT, thereby suppressing the gastric "inflammation-cancer" transformation. This study provides mechanistic insights into the efficacy of YQHYJD in CAG treatment and suggests new therapeutic strategies for preventing gastric cancer development.
Collapse
Affiliation(s)
- Weifeng Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China; Department of Gastroenterology, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shuni Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China; Department of Spleen and Stomach Diseases, Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, China
| | - Xiuming Guan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Guihua He
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Wang Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Haiyan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Suiping Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China
| | - Zhenhao Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China.
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China.
| | - Zishao Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences/State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China.
| |
Collapse
|
19
|
Shu R, Yu Z, Wu J, Cheng Q, Peng Z, Zhou H, Zhao M. Inhibition of id-1 reduces osteosarcoma growth and metastasis through mediation of snail. J Orthop Surg Res 2025; 20:124. [PMID: 39891119 PMCID: PMC11784002 DOI: 10.1186/s13018-024-05412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
OBJECTIVE Osteosarcoma (OS) is a highly invasive bone tumor that frequently metastasizes to the lungs. This study aims to investigate the role of the Id-1 gene in OS invasion and metastasis, and its relationship with the Snail gene. METHODS This study included tissue samples from 12 non-metastatic osteosarcomas and 9 metastatic osteosarcoma patients to examine the expression of Id-1 and Snail using RT-qPCR and analyze their correlation. In cell-based experiments, four osteosarcoma cell lines (Saos-2, U2OS, MG-63, and 143B) and the human osteoblast cell line hFOB 1.19 were cultured. The expression of Id-1 and Snail was evaluated by RT-qPCR and Western blotting.Cells were randomly divided into the Control group, sh-NC group, and sh-Id-1 group using lentiviral infection. Transwell invasion and scratch assays were used to assess cell migration and invasion. WB was employed to detect the expression of Id-1, Snail, and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, vimentin, and N-cadherin) in the OS cells of each group. In animal experiments, Tumor formation in each group was evaluated by injecting cells subcutaneously into mice. An osteosarcoma lung metastasis model was established by injecting infected cells into the tibia of mice. Tumor growth and lung metastasis were observed using HE staining. The expression of Id-1, Snail, and EMT-related proteins in osteosarcoma and lung tissues from each group of mice was assessed using Western blot and immunohistochemistry. RESULTS The expression of Id-1 and Snail was significantly higher in osteosarcoma tissues than in normal bone tissues, and the expression of Id-1 was positively correlated with that of Snail. In cell experiments, downregulation of Id-1 reduced Snail expression and significantly inhibited EMT, as well as the migration and invasion of OS cells (P < 0.05). In animal experiments, compared to the Control group, the sh-Id-1 group mice was no significant change in body weight, but the tumor volume was significantly reduced, and fewer lung metastatic nodules (P < 0.05). HE staining indicated decreased nuclear atypia, reduced invasion and destruction, fewer new blood vessels, and less calcification in the sh-Id-1 group tumors. Immunohistochemistry and WB results showed upregulation of E-cadherin and downregulation of vimentin, N-cadherin, Id-1, and Snail in the sh-Id-1 group (P < 0.05). CONCLUSION Downregulation of Id-1 inhibits the EMT process by reducing Snail expression, effectively suppressing the growth, invasion, and lung metastasis of OS.
Collapse
Affiliation(s)
- Rongbing Shu
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Zhuanyi Yu
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Jianmin Wu
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Qiuxin Cheng
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Zhihao Peng
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Huaqiang Zhou
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China
| | - Min Zhao
- Department of Orthopedic, Yingtan People's Hospital, Yingtan, 335000, Jiangxi, China.
| |
Collapse
|
20
|
Cho HJ, Jung HJ. Cyclophilin A knockdown inhibits the proliferation and metastatic ability of AGS gastric cancer stem cells by downregulating CD147/STAT3/AKT/ERK and epithelial‑mesenchymal transition. Mol Med Rep 2025; 31:14. [PMID: 39513611 PMCID: PMC11551680 DOI: 10.3892/mmr.2024.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) contribute to the challenging aspects of gastric cancer, such as progression, metastasis, treatment resistance and recurrence. Inhibitors targeting cyclophilin A (CypA) have shown potential in curtailing GCSC growth. Building upon this, the current study delved deeper into understanding the functional role of CypA in controlling the proliferation and metastatic capabilities of GCSCs, employing CypA‑specific small interfering RNA. The results revealed that knockdown of CypA led to significant suppression of the growth and tumorsphere‑forming capacity of GCSCs derived from AGS cells. This effect was mediated by arresting the cell cycle at the G0/G1 and S phases, and promoting apoptosis. Furthermore, silencing of CypA exerted inhibitory effects on the migration and invasion of AGS GCSCs by modulating the process of epithelial‑mesenchymal transition. Notably, the observed antiproliferative and antimetastatic effects of CypA knockdown were associated with the downregulation of critical regulators of gastric cancer stemness, such as CD44, CD133, aldehyde dehydrogenase 1 family member A1, NANOG, OCT4 and SOX2. This regulation occurred through inactivation of the CD147/STAT3/AKT/ERK signaling pathway. Additionally, CypA knockdown effectively curbed in vivo tumor growth of AGS GCSCs in a chorioallantoic membrane assay using chick embryos. These findings underscore the critical role of CypA in promoting the proliferation and metastasis of GCSCs, highlighting its potential as an effective therapeutic target for eradicating GCSCs and improving gastric cancer treatment outcomes.
Collapse
Affiliation(s)
- Hee Jeong Cho
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
| |
Collapse
|
21
|
Gong H, Yang X, An L, Zhang W, Liu X, Shu L, Yang L. PCSK5 downregulation promotes the inhibitory effect of andrographolide on glioblastoma through regulating STAT3. Mol Cell Biochem 2025; 480:521-533. [PMID: 38553549 DOI: 10.1007/s11010-024-04977-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 01/03/2025]
Abstract
Proprotein convertase subtilisin/kexin type 5 (PCSK5) is a member of the proprotein convertase (PC) family, which processes immature proteins into functional proteins and plays an important role in the process of cell migration and transformation. Andrographolide is a non-peptide compound with PC inhibition and antitumor activity. Our research aimed to investigate the functional role of PCSK5 downregulation combined with Andro on GBM progression. Results from the cancer genome atlas (TCGA) and clinical samples revealed a significant upregulation of PCSK5 in GBM tissues than in non-tumor brain tissues. Higher expression of PCSK5 was correlated with advanced GBM stages and worse patient prognosis. PCSK5 knockdown attenuated the epithelial-mesenchymal transition (EMT)-like properties of GBM cells induced by IL-6. PCSK5 knockdown in combination with Andro treatment significantly inhibited the proliferation and invasion of GBM cells in vitro, as well as tumor growth in vivo. Mechanistically, PCSK5 downregulation reduced the expression of p-STAT3 and Matrix metalloproteinases (MMPs), which could be rescued by the p-STAT3 agonist. STAT3 silencing downregulated the expression of MMPs without affecting PCSK5. Furthermore, Andro in combination with PCSK5 silencing significantly inhibited STAT3/MMPs axis. These observations provided evidence that PCSK5 functioned as a potential tumor promoter by regulating p-STAT3/MMPs and the combination of Andro with PCSK5 silencing might be a good strategy to prevent GBM progression.
Collapse
Affiliation(s)
- Huiyuan Gong
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaomin Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lijun An
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Wangming Zhang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaohua Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liping Shu
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liuqi Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, No.6, Ankang Road, Guian New District, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
22
|
Li Q, Zhang H, He Y, Zhang H, Han C. Inhibition of Colorectal Cancer Metastasis by Total Flavones of Abelmoschus manihot via LncRNA AL137782-mediated STAT3/EMT Pathway Regulation. Curr Pharm Des 2025; 31:219-232. [PMID: 39289944 DOI: 10.2174/0113816128298998240828060306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the most lethal malignancies globally, particularly following metastasis which results in poor prognosis. In recent years, CRC incidence in China has persistently increased. Total flavonoids (TFA) from Abelmoschus manihot, a natural compound, are recognized for their anti-inflammatory, analgesic, and antioxidant properties. However, despite extensive research into the therapeutic potential of TFA, coverage of its role in cancer treatment is notably lacking. To address this research void, our study aims to unveil the role and potential mechanisms of TFA in treating CRC. METHODS We conducted a series of experiments to assess the impact of TFA on CRC cells. Two specific CRC cell lines, DLD-1 and HCT116, were employed in cell proliferation, colony formation, flow cytometry, and cell migration assays. Additionally, to test the in vivo effects of TFA, we developed a nude mouse xenograft tumor model to assess TFA's impact on tumor growth and liver metastasis. Furthermore, we meticulously analyzed the gene expression differences between CRC cells pretreated with TGF-β and those treated with TFA using RNA-seq technology. We also examined the molecular mechanisms of TFA and assessed the expression of proteins related to the STAT3/EMT signaling pathway through Western blotting and siRNA technology. RESULTS Our research findings reveal for the first time the effect of TFA on CRC cells. Result shows that TFA could suppress cell proliferation, migration, and induce apoptosis. In vivo results showed that TFA inhibited tumor growth and liver metastasis. Molecular mechanism studies have shown that TFA exerts these effects by upregulating the expression of non-coding RNA AL137782, inhibiting the EMT/STAT3 signaling pathway. These results suggest that TFA is a potential candidate for mitigating CRC metastasis. CONCLUSION However, further research is needed to comprehensively evaluate the efficacy and safety of TFA in animal models and clinical settings. These findings bring great hope for the development of innovative CRC treatment methods.
Collapse
Affiliation(s)
- Qian Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, PR China
- Department of Proctology, Xinyi Hospital of Traditional Chinese Medicine, Xinyi, Jiangsu 221400, PR China
| | - Hui Zhang
- Department of Ultrasound, Xu Zhou Hospital of Traditional Chinese Medicine, Zhongshan South Road 169, Yunlong District, Xu Zhou, Jiangsu 221000, PR China
| | - Yongshan He
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Kongjiang Road 1665, Yangpu District, Shanghai 200092, PR China
| | - Hao Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Changqing District, Jinan, Shandong, PR China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, PR China
| |
Collapse
|
23
|
Li J, Zhou Z, Zhang J, Wang M, Luan X, Zhao M, Jiang G, Wang G, Li S, Xiang W, Chen L, Zhou J. TUBB2B regulates epithelial-mesenchymal transition via interaction with Vimentin to promote glioma migration and invasion. Cancer Cell Int 2024; 24:423. [PMID: 39707368 DOI: 10.1186/s12935-024-03618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) plays a crucial role in the migration and invasion capabilities of glioblastoma (GBM) cells. Several studies have established tubulin as a significant regulator of the EMT process. Tubulin beta 2B class IIb (TUBB2B), a critical component of microtubules, has been linked to the prognosis of various tumors. However, the specific biological function and mechanism of TUBB2B in GBM remain unclear. METHODS In vitro experiments demonstrated that TUBB2B knockdown inhibited the migration and invasion of GBM cells, while its overexpression enhanced these capabilities. Western blot, immunofluorescence (IF) and co-immunoprecipitation (Co-IP) assays revealed that TUBB2B interacts with Vimentin. Molecular docking and residue mutation scanning indicated that TUBB2B interacts with Vimentin at the R391/K392/A393/F394 sites. In vivo experiments using nude mice confirmed that TUBB2B knockdown inhibited GBM cell invasion and migration. RESULTS TUBB2B was upregulated in GBM tissue samples compared with normal tissues. The sites of TUBB2B(R391/K392/A393/F394) physically interacts with Vimentin to induce EMT, which promotes migration and invasion. CONCLUSION TUBB2B may regulate EMT and promote the migration and invasion of GBM cells through its interaction with Vimentin, highlighting TUBB2B as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Junxi Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
- Department of Neurosurgery, Yibin No.4 People's Hospital, Yibin, Sichuan, China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Junrong Zhang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
- Department of Neurosurgery, Suining First People's Hospital, Suining, Sichuan, China
| | - Ming Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Mingkuan Zhao
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Geng Jiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Guiyuan Wang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
- Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan, China.
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
- Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan, China.
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
- Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan, China.
| |
Collapse
|
24
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
25
|
Xu M, Jin X, Shen Z. ZAG promotes colorectal cancer cell proliferation and epithelial-mesenchymal transition by promoting lipid synthesis. Open Life Sci 2024; 19:20221007. [PMID: 39711976 PMCID: PMC11662974 DOI: 10.1515/biol-2022-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor characterized by a high degree of invasiveness, and since zinc-α2 glycoprotein (ZAG) has been implicated in the progression of several malignancies, this study was designed to investigate the role of ZAG in CRC. Its expression was assessed using the GEPIA database, and short hairpin RNA (shRNA) interference was conducted to create ZAG knockdown in CRC cell lines. We also conducted lipid synthesis, cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) experiments to elucidate the effects of ZAG expression on CRC, as well as explored the potential underlying mechanistic pathways. Our findings reveal that ZAG is overexpressed in CRC. In vitro, ZAG knockdown resulted in the suppression of lipid production, cell division, and EMT while concurrently promoting apoptosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway was found to mediate the effects of ZAG on CRC cells. In conclusion, the downregulation of ZAG can inhibit CRC cell survival, EMT, and lipid production via the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Maotao Xu
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, Chognqing, 400700, China
| | - Xingzheng Jin
- Department of Surgery, Southwest University Hospital, Chongqing, 400700, China
| | - Zhouli Shen
- Department of Gastroenterology, The Ninth People’s Hospital of Chongqing, No. 69, Jialing Village, Beibei District, Chognqing, 400700, China
| |
Collapse
|
26
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
27
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
28
|
Li Y, Zhong Y, Li C, Han Z, Cui Y, He R, Liu Y, Cui Q, He D, Hu Z, Zhang Q, Bai J. Interleukin-9 promotes EMT-mediated PM 2.5-induced pulmonary fibrosis by activating the STAT3 pathway. Arch Toxicol 2024; 98:4047-4058. [PMID: 39259283 DOI: 10.1007/s00204-024-03864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
This study investigated the impact of PM2.5 on promoting EMT in PM2.5-induced pulmonary fibrosis (PF) development and explored molecular mechanisms of the IL-9/STAT3/Snail/TWIST1 signaling pathway in PF owing to PM2.5. Four groups of male SD rats were formed: control (0 mg/kg.bw), low (1 mg/kg.bw), medium (5 mg/kg.bw), and high-dose (25 mg/kg.bw) PM2.5 groups. Experimental rats were subjected to PM2.5 exposure via intratracheal instillation, given once weekly for 16 weeks. 24 h after the final exposure, blood, BALF, and lung tissues were collected. Pulmonary epithelial cells underwent cultivation and exposure to varying PM2.5 concentrations with/without inhibitors for 24 h, after which total protein was extracted for relevant protein assays. The findings demonstrated that PM2.5 damaged lung tissue to different degrees and led to PF in rats. Rats subjected to PM2.5 exposure exhibited elevated concentrations of IL-9 protein in both serum and BALF, and elevated levels of IL-9 and its receptor, IL-9R, in lung tissues, compared to control counterparts. Furthermore, PM2.5-exposed groups demonstrated significantly augmented protein levels of p-STAT3, Snail, TWIST1, Vimentin, COL-I, and α-SMA, while displaying notably diminished levels of E-Cadherin compared to control group. The same findings were observed in PM2.5-treated cells. In BEAS-2B cells co-treated with Stattic (STAT3 inhibitor) and PM2.5, the opposite results occurred. Similar results were obtained for cells co-treated with IL-9-neutralizing antibody and PM2.5. Our findings suggest PM2.5 mediates PF development by promoting IL-9 expression, leading to STAT3 phosphorylation and upregulation of Snail and TWIST1 expression, triggering EMT occurrence and progression in lung epithelial cells.
Collapse
Affiliation(s)
- Yuxuan Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yi Zhong
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Chenwen Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
- Yongchuan District Center for Disease Control and Prevention, Chongqing, 402160, China
| | - Zhixia Han
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yan Cui
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Renjiang He
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yingyi Liu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qinlin Cui
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Daping He
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Zhengquan Hu
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, 646000, China.
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
29
|
Li Q, He G, Yu Y, Li X, Peng X, Yang L. Exosome crosstalk between cancer stem cells and tumor microenvironment: cancer progression and therapeutic strategies. Stem Cell Res Ther 2024; 15:449. [PMID: 39578849 PMCID: PMC11583673 DOI: 10.1186/s13287-024-04061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small yet pivotal subset of tumor cells endowed with self-renewal capabilities. These cells are intricately linked to tumor progression and are central to drug resistance, metastasis, and recurrence. The tumor microenvironment (TME) encompasses the cancer cells and their surrounding milieu, including immune and inflammatory cells, cancer-associated fibroblasts, adjacent stromal tissues, tumor vasculature, and a variety of cytokines and chemokines. Within the TME, cells such as immune and inflammatory cells, endothelial cells, adipocytes, and fibroblasts release growth factors, cytokines, chemokines, and exosomes, which can either sustain or disrupt CSCs, thereby influencing tumor progression. Conversely, CSCs can also secrete cytokines, chemokines, and exosomes, affecting various components of the TME. Exosomes, a subset of extracellular vesicles (EVs), carry a complex cargo of nucleic acids, proteins, and lipids, playing a crucial role in the communication between CSCs and the TME. This review primarily focuses on the impact of exosomes secreted by CSCs (CSC-exo) on tumor progression, including their roles in maintaining stemness, promoting angiogenesis, facilitating metastasis, inducing immune suppression, and contributing to drug resistance. Additionally, we discuss how exosomes secreted by different cells within the TME affect CSCs. Finally, we explore the potential of utilizing exosomes to mitigate the detrimental effects of CSCs or to target and eliminate them. A thorough understanding of the exosome-mediated crosstalk between CSCs and the TME could provide valuable insights for developing targeted therapies against CSCs.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
30
|
Xiao Y, Tao P, Zhang K, Chen L, Lv J, Chen Z, He L, Jia H, Sun J, Cao M, Hong J, Qu C. Myofibroblast-derived extracellular vesicles facilitate cancer stemness of hepatocellular carcinoma via transferring ITGA5 to tumor cells. Mol Cancer 2024; 23:262. [PMID: 39574133 PMCID: PMC11580229 DOI: 10.1186/s12943-024-02170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Myofibroblasts constitute a significant component of the tumor microenvironment (TME) and play a pivotal role in the progression of hepatocellular carcinoma (HCC). Integrin α5 (ITGA5) is a crucial regulator in myofibroblasts of malignant tumors. Therefore, the potential of ITGA5 as a novel target for the therapeutic strategy of HCC should be investigated. METHODS Digital scanning and analysis of the HCC tissue microarray were performed to locate the distribution of ITGA5 and conduct the prognosis analysis. CRISPR Cas9-mediated ITGA5 knockout was performed to establish the ITGA5-KO myofibroblast cell line. Extracellular vesicles (EVs) derived from LX2 were extracted for the treatment of HCC cells. Subsequently, the sphere-forming ability and the stemness markers expression of the treated HCC cells were examined. An orthotopic HCC mouse model with fibrotic injury was constructed to test the outcomes of ITGA5-targeting therapy and its efficacy in the programmed death-ligand 1 (PD-L1) treatment. Co-immunoprecipitation/mass spectrometry and transcriptome data were integrated to delve into the mechanism. RESULTS The tissue microarray results revealed that ITGA5 was highly enriched in the stromal myofibroblasts of HCC tissues and contributed to enhanced tumor progression and poor prognosis. Notably, ITGA5 transmission via extracellular vesicles (EVs) from myofibroblasts to HCC cells induced the acquisition of cancer stem cell-like properties. Mechanistically, ITGA5 directly bind to YES1, facilitating the activation of YES1 and its downstream pathways, thereby enhancing the stemness of HCC cells. Furthermore, the blockade of ITGA5 impeded tumor progression driven by ITGA5+ myofibroblasts and enhanced the efficacy of treatment with PD-L1 in a mouse model of HCC. CONCLUSIONS Our findings elucidated a novel mechanism by which the EV-mediated transfer of ITGA5 from myofibroblasts to tumor cells augmented HCC stemness. ITGA5-targeting therapy helped prevent the progression of HCC and improved the efficacy of PD-L1 treatment.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
- Endoscopy Department, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, 610000, China
| | - Ping Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jinyu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
31
|
Wei Y, Li Q, He K, Liao G, Cheng L, Li M, He Z. Mechanism of cigarette smoke in promoting small airway remodeling in mice via STAT 3 / PINK 1-Parkin / EMT. Free Radic Biol Med 2024; 224:447-456. [PMID: 39214258 DOI: 10.1016/j.freeradbiomed.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Airway remodeling is an important pathological of airflow limitation in chronic obstructive pulmonary disease (COPD).However,its mechanism still needs to be further clarify. METHODS Animals:Healthy male C57BL/6 mice aged 4-6 weeks were randomly divided into control group and cigarette smoke(CS)group. Mice in the CS group were placed in a homemade glass fumigator, 5 cigarettes/time, 40 min/time, 4 times/day, 5 days/week, for 24 weeks. Mice in the control group were placed in a normal air environment.Cells:BEAS-2B cells were stimulated with 0.1%cigarette smoke extract(CSE).HE staining, immunohistochemical staining and Masson staining were used to observe the pathological of lung tissues, transmission electron microscopy was used to observe the structural of mitochondria in bronchial epithelial cells.Western blotting was used to detect the expression of STAT3,transforming growth factor-β1(TGF-β1),microtubule-associated protein 1A/1B-light chain3(LC3),PINK1,Parkin,E-cadherin,zonula occludens1(ZO-1),vimentin and snail family transcriptional inhibitor1 (Snail1),and MitoSOX Red was used to detect mitochondrial reactive oxygen species(mtROS). RESULTS CS exposure causes lung parenchymal destruction and airway remodeling in mice.Compared to the control group,the expression of p-STAT3,TGF-β1 and EMT in the whole lung homogenate of the CS group was increased.Mitochondrial architecture disruption in bronchial epithelial cells of CS mice, with impaired PINK1-Parkin-dependent mitophagy.In vitro experiments showed that CSE exposure led to STAT3 activation, increased TGF-β1,EMT and enhanced PINK1-Parkin-mediated mitophagy.STAT3 inhibition reversed TGF-β1 upregulation induced by CSE and improved CSE-induced EMT and mitophagy.Inhibition of mitophagy improves EMT induced by CSE. Inhibition of mitophagy reduces STAT3-induced EMT. CONCLUSION CS activates the STAT3,and activated STAT3 promotes EMT in bronchial epithelial cells by enhancing PINK1-Parkin-mediated mitophagy and TGF-β1 signaling.Moreover, activated STAT3 can promote EMT directly.This may be one of the mechanisms by which CS causes small airway remodeling in COPD.
Collapse
Affiliation(s)
- Yunjie Wei
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Qiqi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Kaiye He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Guopeng Liao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Lingyun Cheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Meihua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
32
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
33
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
34
|
Chen J, Ji C, Liu S, Wang J, Wang C, Pan J, Qiao J, Liang Y, Cai M, Ma J. Transforming growth factor-β (TGF-β) signaling pathway-related genes in predicting the prognosis of colon cancer and guiding immunotherapy. CANCER PATHOGENESIS AND THERAPY 2024; 2:299-313. [PMID: 39371100 PMCID: PMC11447362 DOI: 10.1016/j.cpt.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 10/08/2024]
Abstract
Background Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME) regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk prediction signature for colon cancer, which may provide a means for developing new effective treatment strategies. Methods Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy. Results Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prognosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of 0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune checkpoints in the TME, suggesting that these patients had better responses to immunotherapy. Conclusions Patients with colon cancer were divided into two subtypes with different survival and immune characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The constructed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer, with potential utility for screening individuals for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Che Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jue Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinyu Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
35
|
Focaccio A, Rossi L, De Luca A. A spotlight on the role of copper in the epithelial to mesenchymal transition. Life Sci 2024; 354:122972. [PMID: 39142503 DOI: 10.1016/j.lfs.2024.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The complex process known as epithelial to mesenchymal transition (EMT) plays a fundamental role in several biological settings, encompassing embryonic development, wound healing, and pathological conditions such as cancer and fibrosis. In recent years, a bulk of research has brought to light the key role of copper, a trace element with essential functions in cellular metabolism, cancer initiation and progression. Indeed, copper, besides functioning as cofactor of enzymes required for essential cellular processes, such as energy production and oxidation reactions, has emerged as an allosteric regulator of kinases whose activity is required to fulfill cancer dissemination through the EMT. In this comprehensive review, we try to describe the intricate relationship between the transition metal copper and EMT, spanning from the earliest foundational studies to the latest advancements. Our aim is to shed light on the multifaceted roles undertaken by copper in EMT in cancer and to unveil the diverse mechanisms by which copper homeostasis exerts its influence over EMT regulators, signaling pathways, cell metabolic reprogramming and transcription factors ultimately contributing to the spread of cancer. Therefore, this review not only may contribute to a deeper comprehension of copper-mediated mechanisms in EMT but also supports the hypothesis that targeting copper may contribute to counteract the progression of EMT-associated pathologies.
Collapse
Affiliation(s)
- Antonio Focaccio
- PhD School in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
36
|
Vaghari-Tabari M, Qujeq D, Hashemzadeh MS. Long noncoding RNAs as potential targets for overcoming chemoresistance in upper gastrointestinal cancers. Biomed Pharmacother 2024; 179:117368. [PMID: 39214010 DOI: 10.1016/j.biopha.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the last decade, researchers have paid much attention to the role of noncoding RNA molecules in human diseases. Among the most important of these molecules are LncRNAs, which are RNA molecules with a length of more than 200 nucleotides. LncRNAs can regulate gene expression through various mechanisms, such as binding to DNA sequences and interacting with miRNAs. Studies have shown that LncRNAs may be valuable therapeutic targets in treating various cancers, including upper-gastrointestinal cancers. Upper gastrointestinal cancers, mainly referring to esophageal and gastric cancers, are among the deadliest gastrointestinal cancers. Despite notable advances, traditional chemotherapy remains a common strategy for treating these cancers. However, chemoresistance poses a significant obstacle to the effective treatment of upper gastrointestinal cancers, resulting in a low survival rate. Chemoresistance arises from various events, such as the enhancement of efflux and detoxification of chemotherapy agents, reduction of drug uptake, alteration of drug targeting, reduction of prodrug activation, strengthening of EMT and stemness, and the attenuation of apoptosis in cancerous cells. Tumor microenvironment also plays an important role in chemoresistance. Interestingly, a series of studies have revealed that LncRNAs can influence important mechanisms associated with some of the aforementioned events and may serve as promising targets for mitigating chemoresistance in upper gastrointestinal cancers. In this review paper, following a concise overview of chemoresistance mechanisms in upper gastrointestinal cancers, we will review the most intriguing findings of these investigations in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
37
|
Zhou FM, Wang KK, Wang LH, Qiu JG, Wang W, Liu WJ, Wang L, Jiang BH. CIB2 mediates acquired gefitinib resistance by inducing ZEB1 expression and epithelial-mesenchymal transition. Aging (Albany NY) 2024; 16:12277-12292. [PMID: 39264588 PMCID: PMC11424576 DOI: 10.18632/aging.206086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
EGFR-TKIs have been used as frontline treatment in patients with advanced non-small cell lung cancer (NSCLC) suffering from the EGFR mutation. Gefitinib, the first-generation EGFR-TKI, has greatly improved survival rates in lung cancer patients, whereas acquired gefitinib resistance is still a critical issue that needs to be overcome. In our research, high expression levels of CIB2 were found in gefitinib-resistant lung cancer cells. CIB2 knockout rendered gefitinib-resistant cells more sensitive to gefitinib, and overexpression of CIB2 in parental cells was sufficient to induce more resistance to gefitinib. Inhibition of CIB2 in gefitinib-resistant lung cancer cells significantly induced cell apoptosis. To clarify the major molecular mechanism by which CIB2 increases gefitinib resistance, we demonstrated that raised CIB2 in lung cancer cells promoted epithelial-to-mesenchymal transition (EMT) through upregulation of ZEB1. Moreover, FOSL1 transcriptionally regulated CIB2 expression. Finally, CIB2 rendered tumors resistant to gefitinib treatment in vivo. Our results explored a new mechanism: upregulated CIB2 promoted EMT through ZEB1 to regulate gefitinib resistance, which could be a candidate therapeutic target for overcoming acquired resistance to EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun-Kun Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Li-Hong Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jian-Ge Qiu
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wei Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Bing-Hua Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
38
|
Phookphan P, Racha S, Yokoya M, Ei ZZ, Hotta D, Zou H, Chanvorachote P. A New Renieramycin T Right-Half Analog as a Small Molecule Degrader of STAT3. Mar Drugs 2024; 22:370. [PMID: 39195486 DOI: 10.3390/md22080370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Constitutive activation of STAT3 contributes to tumor development and metastasis, making it a promising target for cancer therapy. (1R,4R,5S)-10-hydroxy-9-methoxy-8,11-dimethyl-3-(naphthalen-2-ylmethyl)-1,2,3,4,5,6-hexahydro-1,5-epiminobenzo[d]azocine-4-carbonitrile, DH_31, a new derivative of the marine natural product Renieramycin T, showed potent activity against H292 and H460 cells, with IC50 values of 5.54 ± 1.04 µM and 2.9 ± 0.58 µM, respectively. Structure-activity relationship (SAR) analysis suggests that adding a naphthalene ring with methyl linkers to ring C and a hydroxyl group to ring E enhances the cytotoxic effect of DH_31. At 1-2.5 µM, DH_31 significantly inhibited EMT phenotypes such as migration, and sensitized cells to anoikis. Consistent with the upregulation of ZO1 and the downregulation of Snail, Slug, N-cadherin, and Vimentin at both mRNA and protein levels, in silico prediction identified STAT3 as a target, validated by protein analysis showing that DH_31 significantly decreases STAT3 levels through ubiquitin-proteasomal degradation. Immunofluorescence and Western blot analysis confirmed that DH_31 significantly decreased STAT3 and EMT markers. Additionally, molecular docking suggests a covalent interaction between the cyano group of DH_31 and Cys-468 in the DNA-binding domain of STAT3 (binding affinity = -7.630 kcal/mol), leading to destabilization thereafter. In conclusion, DH_31, a novel RT derivative, demonstrates potential as a STAT3-targeting drug that significantly contribute to understanding of the development of new targeted therapy.
Collapse
Affiliation(s)
- Preeyaphan Phookphan
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Satapat Racha
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Masashi Yokoya
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Zin Zin Ei
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Daiki Hotta
- Department of Pharmaceutical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
39
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Yin H, Wu D, Qu Q, Li Z, Zhao L. Ubiquitin-specific peptidase 15 regulates the TFAP4/PCGF1 axis facilitating liver metastasis of colorectal cancer and cell stemness. Biochem Pharmacol 2024; 226:116319. [PMID: 38801926 DOI: 10.1016/j.bcp.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The tumor recurrence and metastasis of colorectal cancer (CRC) are responsible for most of CRC-linked mortalities. It is an urgent need to deeply investigate the pathogenesis of CRC metastasis and look for novel targets for its treatment. The current study aimed to investigate the effects of ubiquitin-specific peptidase 15 (USP-15) on the CRC progression. In vivo, a mouse model of liver metastasis of CRC tumor was established to investigate the role of USP-15. In vitro, the migrated and invasive abilities of CRC cells were assessed by transwell assay. Cell stemness was evaluated by using sphere formation assay. The underlying mechanism was further explored by employing the co-immunoprecipitation, dual luciferase reporter assay, oligonucleotide pull-down assay, and chromatin immunoprecipitation assay. The results showed that USP-15 was upregulated in CRC patients with liver metastasis and high metastatic potential cell lines of CRC. Loss of USP-15 repressed the epithelial-to-mesenchymal transition (EMT), migration, invasion, and stemness properties of CRC cells in vitro. Downregulation of USP-15 reduced the liver metastasis of mice in vivo. USP-15 upregulation obtained the contrary effects. Subsequently, USP-15 deubiquitinated transcription factor AP-4 (TFAP4) and enhanced its protein stability. TFAP4 could transcriptionally activated polycomb group ring finger 1 (PCGF1). The pro-cancer effects of USP-15 were rescue by the knockdown of TFAP4 or PCGF1. In conclusions: USP-15 facilitated the liver metastasis by the enhancement of cell stemness and EMT in CRC, which was at least partly mediated by the deubiquitination of TFAP4 upon the upregulation of PCGF1.
Collapse
Affiliation(s)
- Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Qiao Qu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Zhilong Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China
| | - Lianrong Zhao
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning, China.
| |
Collapse
|
41
|
Lv L, Yi L, Huang B, Zhou C, Zhang L. Hsa_circ_0071589 aggravates stemness and oxaliplatin resistance in colorectal cancer through sponging miR-133b to upregulate SOX13 expression. Mol Cell Biochem 2024; 479:2055-2068. [PMID: 37522976 DOI: 10.1007/s11010-023-04819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Hsa_circ_0071589 can exacerbate the malignant behavior of colorectal cancer (CRC) cells. However, its function in stemness and oxaliplatin (OXP) resistance of CRC cells remains unclear. To assess the function of hsa_circ_0071589 in stemness and OXP resistance of CRC cells. Western blotting and qRT-PCR were applied to assess protein and mRNA levels. The association between hsa_circ_0071589, miR-133b and SOX13 was explored via a correlation analysis. Sphere formation was used to assess cell stemness. Meanwhile, the viability of CRC cells and OXP-resistant CRC cells was evaluated with the MTT assay. Cell stemness marker (CD133) levels and apoptosis of CRC cells and OXP-resistant CRC cells were tested using flow cytometry. The ALDH level was investigated using the related detection kit. In addition, the association between hsa_circ_0071589 and miR-133b and SOX13 was investigated using the RIP and dual luciferase assay. Finally, in vivo experiments were performed to detect the function of hsa_circ_0071589 in CRC, and the levels of SOX13, Ki67, and CD44 in mice were evaluated via immunohistochemistry staining. The expression of hsa_circ_0071589 and SOX13 was upregulated in CRC, whereas the expression of miR-133b was downregulated. Hsa_circ_0071589 knockdown significantly inhibited CRC stemness via the mediation of miR-133b. Moreover, hsa_circ_0071589 silencing significantly sensitized CRC cells to OXP by upregulating miR-133b. SOX13 was the direct target of miR-133b, and miR-133b could attenuate stemness and OXP resistance in CRC cells by targeting SOX13. Notably, hsa_circ_0071589 knockdown inhibited tumor growth and decreased OXP resistance in mice with CRC. Hsa_circ_0071589 aggravates stemness and OXP resistance by sponging miR-133b to indirectly target SOX13 in CRC. Thus, our study might present a novel treatment strategy against OXP-resistant CRC.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/metabolism
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oxaliplatin/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/biosynthesis
- Up-Regulation
Collapse
Affiliation(s)
- Lv Lv
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China
| | - Lu Yi
- Department of Dermatology & Venerology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Bojie Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Cong Zhou
- Clinical Medical College of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Lei Zhang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, NO.15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|
42
|
Li Y, Wang M, Jiang L, Jia J, Pan F, Li W, Wang B, Huang K, Luo J. SIPA1 promotes epithelial-mesenchymal transition in colorectal cancer through STAT3 activation. Heliyon 2024; 10:e34527. [PMID: 39130435 PMCID: PMC11315193 DOI: 10.1016/j.heliyon.2024.e34527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cancer type worldwide and accounts for the second highest rate of cancer-related mortality. Liver metastasis significantly contributes to the mortality associated with CRC, but the fundamental mechanisms behind it remain unclear. Signal-induced proliferation-associated protein 1 (SIPA1), a GTPase activating protein, has been shown to promote metastasis in breast cancer. In this study, our objective was to explore the role of SIPA1 in regulating epithelial-mesenchymal transition (EMT) in CRC. The analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression level of SIPA1 mRNA was notably upregulated and exhibited a positively correlated with EMT and STAT3 signaling pathways in CRC. Knockdown of SIPA1 impairs CRC cell proliferation and migration. Further studies on the reliance of SIPA1 on STAT3 signaling for EMT regulation have shown that SIPA1 stimulates the activation of STAT3, resulting in its nuclear translocation. The co-treatment of overexpressed SIPA1 with the STAT3 inhibitor STTITA has shown that SIPA1 regulates the expression of EMT-related markers through STAT3. Our study indicate that SIPA1 promotes CRC metastasis by activating the STAT3 signaling pathway, underscoring the potential of SIPA1 as a therapeutic target for metastatic CRC patients.
Collapse
Affiliation(s)
- Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengjie Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Jiang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jiehong Jia
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Fei Pan
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wen Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Bochu Wang
- Biomedical and Health Engineering Laboratory, Chongqing University, Chongqing, China
| | - Ke Huang
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Jie Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
- Biomedical and Health Engineering Laboratory, Chongqing University, Chongqing, China
| |
Collapse
|
43
|
Chiang YC, Selvam P, Liu YX, Shih PC, Chen NF, Kuo HM, Lin HYH, Wen ZH, Chen WF. STAT3 phosphorylation inhibitor Bt354 exhibits anti-neoplastic activity in glioblastoma multiforme cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3292-3303. [PMID: 38415901 DOI: 10.1002/tox.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
The high mortality rate of glioblastoma multiforme (GBM), a lethal primary brain tumor, is attributable to postsurgical recurrence. STAT3, an oncogenic protein, is a signal transducer and transcription activator encourages cancer cell migration and proliferation, which results in resistance to therapy. STAT3 inhibition reduces cancer metastasis and improves patient prognosis. Bt354, a small molecule STAT inhibitor, exhibits significant cytotoxic and anti-proliferative activities against certain cancer types. Here, we demonstrated that exposure of GBM cells (U87 MG) to Bt354 had a significant, concentration-dependent growth suppression. Bt354 also induced apoptosis and downregulated the expression of the epithelial-mesenchymal transition genes. Therefore, this study suggests the potential of Bt354 for treating GBM owing to its ability to induce cytotoxicity.
Collapse
Affiliation(s)
- Yi-Chun Chiang
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - You-Xuan Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Po-Chang Shih
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsiao-Mei Kuo
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hugo You-Hsien Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
44
|
Wu S, Huisman BW, Rietveld MH, Rissmann R, Vermeer MH, van Poelgeest MIE, El Ghalbzouri A. The development of in vitro organotypic 3D vulvar models to study tumor-stroma interaction and drug efficacy. Cell Oncol (Dordr) 2024; 47:883-896. [PMID: 38057628 DOI: 10.1007/s13402-023-00902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Vulvar squamous cell carcinoma (VSCC) is a rare disease with a poor prognosis. To date, there's no proper in vitro modeling system for VSCC to study its pathogenesis or for drug evaluation. METHODS We established healthy vulvar (HV)- and VSCC-like 3D full thickness models (FTMs) to observe the tumor-stroma interaction and their applicability for chemotherapeutic efficacy examination. VSCC-FTMs were developed by seeding VSCC tumor cell lines (A431 and HTB117) onto dermal matrices harboring two NF subtypes namely papillary fibroblasts (PFs) and reticular fibroblasts (RFs), or cancer-associated fibroblasts (CAFs) while HV-FTMs were constructed with primary keratinocytes and fibroblasts isolated from HV tissues. RESULTS HV-FTMs highly resembled HV tissues in terms of epidermal morphogenesis, basement membrane formation and collagen deposition. When the dermal compartment shifted from PFs to RFs or CAFs in VSCC-FTMs, tumor cells demonstrated more proliferation, EMT induction and stemness. In contrast to PFs, RFs started to lose their phenotype and express robust CAF-markers α-SMA and COL11A1 under tumor cell signaling induction, indicating a favored 'RF-to-CAF' transition in VSCC tumor microenvironment (TME). Additionally, chemotherapeutic treatment with carboplatin and paclitaxel resulted in a significant reduction in tumor-load and invasion in VSCC-FTMs. CONCLUSION We successfully developed in vitro 3D vulvar models mimicking both healthy and tumorous conditions which serve as a promising tool for vulvar drug screening programs. Moreover, healthy fibroblasts demonstrate heterogeneity in terms of CAF-activation in VSCC TME which brings insights in the future development of novel CAF-based therapeutic strategies in VSCC.
Collapse
Affiliation(s)
- Shidi Wu
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Bertine W Huisman
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Robert Rissmann
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Mariette I E van Poelgeest
- Center for Human Drug Research, Leiden, 2333 CL, The Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | | |
Collapse
|
45
|
Chen Y, Cui R, Xiong D, Zhao Y, Pang J, Gul S, Qi Q, Tang Y, Zhou X, Tang W. Cervical cancer subtype identification and model building based on lipid metabolism and post-infection microenvironment immune landscape. Heliyon 2024; 10:e30746. [PMID: 38765128 PMCID: PMC11098854 DOI: 10.1016/j.heliyon.2024.e30746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Background As the second most common gynecological cancer, cervical cancer (CC) seriously threatens women's health. The poor prognosis of CC is closely related to the post-infection microenvironment (PIM). This study investigated how lipid metabolism-related genes (LMRGs) affect CC PIM and their role in diagnosing CC. Methods We analyzed lipid metabolism scores in the CC single-cell landscape by AUCell. The differentiation trajectory of epithelial cells to cancer cells was revealed using LMRGs and Monocle2. Consensus clustering was used to identify novel subgroups using the LMRGs. Multiple immune assessment methods were used to evaluate the immune landscape of the subgroups. Prognostic genes were determined by the LASSO and multivariate Cox regression analysis. Finally, we perform molecular docking of prognostic genes to explore potential therapeutic agents. Results We revealed the differentiation trajectory of epithelial cells to cancer cells in CC by LMRGs. The higher LMRGs expression cluster had higher survival rates and immune infiltration expression. Functional enrichment showed that two clusters were mainly involved in immune response regulation. A novel LMR signature (LMR.sig) was constructed to predict clinical outcomes in CC. The expression of prognostic genes was correlated with the PIM immune landscape. Small molecular compounds with the best binding effect to prognostic genes were obtained by molecular docking, which may be used as new targeted therapeutic drugs. Conclusion We found that the subtype with better prognosis could regulate the expression of some critical genes through more frequent lipid metabolic reprogramming, thus affecting the maturation and migration of dendritic cells (DCs) and the expression of M1 macrophages, reshaping the immunosuppressive environment of PIM in CC patients. LMRGs are closely related to the PIM immune landscape and can accurately predict tumor prognosis. These results further our understanding of the underlying mechanisms of LMRGs in CC.
Collapse
Affiliation(s)
- Yongzhi Chen
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Rongjie Cui
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Dun Xiong
- Department of Thyroid and Breast Surgery, Pu'er People's Hospital, Puer, Yunnan, PR China
| | - Yuan Zhao
- Department of Thyroid and Breast Surgery, Pu'er People's Hospital, Puer, Yunnan, PR China
| | - Jianyu Pang
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Samina Gul
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Qi Qi
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Yuheng Tang
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| | - Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, PR China
| | - Wenru Tang
- Medicine School, Kunming University of Science and Technology, Kunming, PR China
| |
Collapse
|
46
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
47
|
Nakamura H, Watanabe M, Takada K, Sato T, Hikage F, Umetsu A, Muramatsu J, Furuhashi M, Ohguro H. Modulation of Epithelial-Mesenchymal Transition Is a Possible Underlying Mechanism for Inducing Chemoresistance in MIA PaCa-2 Cells against Gemcitabine and Paclitaxel. Biomedicines 2024; 12:1011. [PMID: 38790973 PMCID: PMC11118094 DOI: 10.3390/biomedicines12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.
Collapse
Affiliation(s)
- Hajime Nakamura
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Kohichi Takada
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| | - Joji Muramatsu
- Departments of Medical Oncology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (H.N.); (K.T.); (J.M.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (A.U.)
| |
Collapse
|
48
|
Lin Y, Chen X, Lin L, Xu B, Zhu X, Lin X. Sesamolin serves as an MYH14 inhibitor to sensitize endometrial cancer to chemotherapy and endocrine therapy via suppressing MYH9/GSK3β/β-catenin signaling. Cell Mol Biol Lett 2024; 29:63. [PMID: 38698330 PMCID: PMC11067147 DOI: 10.1186/s11658-024-00583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3β-mediated β-catenin ubiquitination and degradation, thus facilitating the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/β-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/β-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Xiao Chen
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Intensive Care Unit, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Linping Lin
- Hunan Institute of Engineering, Xiangtan, 411100, Hunan, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Gulou District, Fuzhou, 350001, Fujian, China.
| | - Xiaofeng Zhu
- Department of Oral Maxillo-Facial Surgery, The First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijing District, Fuzhou, 350005, Fujian, China.
- Department of Oral Maxillo-Facial Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, No. 1120 Lianhua Road, Futian District, Shenzhen, 518036, Guangdong, China.
- Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
49
|
Gao T, Yuan S, Liang S, Huang X, Liu J, Gu P, Fu S, Zhang N, Liu Y. In Situ Hydrogel Modulates cDC1-Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305832. [PMID: 38564766 PMCID: PMC11132059 DOI: 10.1002/advs.202305832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Indexed: 04/04/2024]
Abstract
Effective presentation of antigens by dendritic cells (DC) is essential for achieving a robust cytotoxic T lymphocytes (CTLs) response, in which cDC1 is the key DC subtype for high-performance activation of CTLs. However, low cDC1 proportion, complex process, and high cost severely hindered cDC1 generation and application. Herein, the study proposes an in situ cDC1 recruitment and activation strategy with simultaneous inhibiting cancer stemness for inducing robust CTL responses and enhancing the anti-tumor effect. Fms-like tyrosine kinase 3 ligand (FLT3L), Poly I:C, and Nap-CUM (NCUM), playing the role of cDC1 recruitment, cDC1 activation, inducing antigen release and decreasing tumor cell stemness, respectively, are co-encapsulated in an in situ hydrogel vaccine (FP/NCUM-Gel). FP/NCUM-Gel is gelated in situ after intra-tumoral injection. With the near-infrared irradiation, tumor cell immunogenic cell death occurred, tumor antigens and immunogenic signals are released in situ. cDC1 is recruited to tumor tissue and activated for antigen cross-presentation, followed by migrating to lymph nodes and activating CTLs. Furthermore, tumor cell stemness are inhibited by napabucasin, which can help CTLs to achieve comprehensive tumor killing. Collectively, the proposed strategy of cDC1 in situ recruitment and activation combined with stemness inhibition provides great immune response and anti-tumor potential, providing new ideas for clinical tumor vaccine design.
Collapse
Affiliation(s)
- Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shijun Yuan
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Xinyan Huang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Jinhu Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Panpan Gu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)NMPA Key Laboratory for Technology Research and Evaluation of Drug ProductsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| |
Collapse
|
50
|
Shi X, Lai Y, Liu W, Zhang X, Cang Y. Natural compound Byakangelicin suppresses breast tumor growth and motility by regulating SHP-1/JAK2/STAT3 signal pathway. Biochem Biophys Res Commun 2024; 706:149758. [PMID: 38484571 DOI: 10.1016/j.bbrc.2024.149758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Byakangelicin mostly obtained from the root of Angelica dahurica and has protective effect on liver injury and fibrosis. In addition, Byakangelicin, as a traditional medicine, is also used to treat colds, headache and toothache. Recent studies have shown that Byakangelicin exhibits anti-tumor function; however, the role of Byakangelicin in breast tumor progression and related mechanism has not yet been elucidated. Our study aims to investigate the role of Byakangelicin in breast tumor progression and the underlying mechanism. To measure the effect of Byakangelicin on JAK2/STAT3 signaling, a dual luciferase reporter assay and a Western blot assay were performed. CCK8, colony formation, apoptosis and cell invasion assays were used to examine the inhibitory potential of Byakangelicin on breast cancer cells. Additionally, SHP-1 was silenced by specific siRNA duplex and the function of SHP-1 on Byakangelicin-mediated inhibition of JAK2/STAT3 signaling was evaluated. Byakangelicin treatment significantly inhibited STAT3 transcriptional activity. In addition, Byakangelicin treatment blocked JAK2/STAT3 signaling in a dose-dependent manner. Byakangelicin-treated tumor cells showed a dramatically reduced proliferation, colony formation and invasion ability. Moreover, Byakangelicin remarkedly induced breast cancer cell apoptosis. Furthermore, Byakangelicin regulated the expression of SHP1.In conclusion, our current study indicated that Byakangelicin, a natural compound, inhibits SHP-1/JAK2/STAT3 signaling and thus blocks tumor growth and motility.
Collapse
Affiliation(s)
- Xiuzhen Shi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yuexing Lai
- Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Wenjing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xi Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yanqin Cang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| |
Collapse
|