1
|
Mousavi M, Moridi Farimani M, Kashfi K, Ghasemi A. Antidiabetic Potential of Sophora Species: Mechanisms, Bioactive Constituents, and Therapeutic Prospects. PLANTA MEDICA 2025. [PMID: 40306687 DOI: 10.1055/a-2597-8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Diabetes is a major global health concern, and achieving optimal glycemic control remains a challenge for many patients. Despite the availability of current antidiabetic medications, about two-thirds of patients worldwide fail to achieve adequate glycemic control, underscoring the need for novel treatments. Herbal medicine has significantly contributed to drug discovery, and Sophora, a genus in the Fabaceae family, has long been used in traditional medicine. Preclinical studies suggest that various chemical constituents of Sophora exhibit antidiabetic properties. This review summarizes in vitro and in vivo evidence on the antidiabetic effects of Sophora, highlighting its active ingredients and mechanisms of action. A literature search was conducted using Web of Science, Scopus, PubMed, and Google Scholar with the keywords 'Sophora', 'diabetes', and 'herbal medicine'. Studies indicate that Sophora reduces fasting glucose in type 1 and type 2 diabetes (T2D) by approximately 33% and 37%, respectively. Additionally, it decreases body weight, improves glucose tolerance, reduces insulin resistance, and enhances lipid profiles in T2D. The antidiabetic mechanisms of Sophora involve the activation of phospholipase C-protein kinase C (PLC-PKC), phosphatidylinositol-3-kinase (PI3K)-Akt (PI3K-Akt), and adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathways, leading to enhanced glucose uptake in the skeletal muscle. Furthermore, Sophora activates the PI3K-Akt pathway and inhibits nuclear factor-kappa B (NFκB), thereby reducing hepatic gluconeogenesis and inflammation. Among its active constituents, flavonoids exhibit the most significant antidiabetic activity. While Sophora holds promise for antidiabetic drug development, further preclinical studies assessing sex differences and long-term safety are required before progressing to human clinical trials.
Collapse
Affiliation(s)
- Mahdis Mousavi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
- Endocrine Physiology Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li Y, Qu S, Zuo J, Long H, Cao F, Jiang F. Progress on the functions and mechanisms of natural products in anti-glioma therapy. Chin J Nat Med 2025; 23:541-559. [PMID: 40383611 DOI: 10.1016/s1875-5364(25)60815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 01/14/2025] [Indexed: 05/20/2025]
Abstract
Glioma, the most prevalent primary tumor of the central nervous system (CNS), is also the most lethal primary malignant tumor. Currently, there are limited chemotherapeutics available for glioma treatment, necessitating further research to identify and develop new chemotherapeutic agents. A significant approach to discovering anti-glioma drugs involves isolating antitumor active ingredients from natural products (NPs) and optimizing their structures. Additionally, targeted drug delivery systems (TDDSs) are employed to enhance drug solubility and stability and overcome the blood-brain barrier (BBB). TDDSs can penetrate deep into the brain, increase drug concentration and retention time in the CNS, and improve the targeting efficiency of NPs, thereby reducing adverse effects and enhancing anti-glioma efficacy. This paper reviews the research progress of anti-glioma activities of NPs, including alkaloids, polyphenols, flavonoids, terpenoids, saponins, quinones, and their synthetic derivatives over the past decade. The review also summarizes anti-glioma mechanisms, such as suppression of related protein expression, regulation of reactive oxygen species (ROS) levels, control of apoptosis signaling pathways, reduction of matrix metalloproteinases (MMPs) expression, blocking of vascular endothelial growth factor (VEGF), and reversal of immunosuppression. Furthermore, the functions and advantages of NP-based TDDSs in anti-glioma therapy are examined. The key information presented in this review will be valuable for the research and development of NP-based anti-glioma drugs and related TDDSs.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuhui Qu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiayi Zuo
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoping Long
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Cao
- Department of Pharmaceutical, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Feng Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Zhao X, Ye X, Gu Y, Lou Y, Zhou Z, Ji Y, Xu D. Oxymatrine for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Med (Lausanne) 2025; 12:1542953. [PMID: 40370726 PMCID: PMC12075229 DOI: 10.3389/fmed.2025.1542953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a chronic, idiopathic inflammatory disorder of the intestines. Oxymatrine (OMT) is a naturally active substance found in the desiccated roots of Sophora flavescens. It possesses anti-tumor, antiviral, and anti-inflammatory properties. In recent years, its therapeutic role in IBD has gradually been discovered. This review aims to explore the impact of OMT on inflammatory bowel disease by animal models. Methods Conduct a systematic search in the PubMed, Embase, Web of Science, Cochrane, and Medline databases. Using SYRCLE's risk of bias tool to assess the bias risk and quality of the included studies. For some data presented as figures, Web Plot Digitizer 4.2 software was used to extract it. STATA 16.0 was selected for the final meta-analysis. Results After rigorous literature screening, 12 studies were included. The data analysis results indicated that the disease activity index (DAI), histopathological score (HS), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), and myeloperoxidase (MPO) activity in the IBD animal models significantly decreased following intervention with oxymatrine. Furthermore, OMT also extended the colon length in the animal models and improved the expression level of zonula occludens-1(ZO-1) and occludin. These results suggested that OMT may improve the condition of IBD through anti-inflammatory, antioxidative stress and protecting the intestinal barrier. Conclusion Meta-analysis suggests oxymatrine positively affects IBD animal models. This provides new insights for the clinical treatment of inflammatory bowel disease. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024570580, identifier [CRD42024570580].
Collapse
Affiliation(s)
- Xuan Zhao
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolu Ye
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuting Gu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yijie Lou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhanyi Zhou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxi Ji
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Daogun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Das A, Manna R, Chowdhury D, Sharma D, Bodakhe SH. Oxymatrine impedes Alzheimer's progression via the attenuation of hypercholesterolemia and fibrosis. Metab Brain Dis 2025; 40:187. [PMID: 40244482 DOI: 10.1007/s11011-025-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
This study highlights the potential therapeutic benefits of oxymatrine (OMT), a quinolizidine alkaloid found in Sophora flavescens, for Alzheimer's disease (AD). This study connects the dots between metabolic and neuronal origins by exploring the effects of oxymatrine in slowing down hypercholesterolemic and fibrotic changes that contribute to cognitive deficits. In our study, laboratory rats were fed a high-cholesterol diet for eight weeks. Cognitive abilities were assessed weekly using Hebb's Williams Maze and Radial arm mazes. Additionally, intraperitoneal doses of OMT were administered (20 mg/kg, 40 mg/kg, and 80 mg/kg) for 21 days. Furthermore, using ELISA, plasma and brain oxysterols, transforming growth factor β, amyloid β, matrix metalloproteinase- 9, claudin- 5, and ATP Binding Cassette Transporter A1 levels were measured biweekly. High-density lipoprotein, low-density lipoprotein, aspartate aminotransferase, and alanine transaminase levels were estimated using diagnostic kits. The findings demonstrate that The administration of oxymatrine to experimental animals resulted in a dose-dependent synergistic decline in several biomarkers, including oxysterols, transforming growth factor β, amyloid β, matrix metalloproteinase- 9, low-density lipoprotein, aspartate aminotransferase, and alanine transaminase levels. At the same time, a concomitant increase in the levels of Claudin- 5, ATP Binding Cassette transporter A1, high-density lipoprotein, and antioxidants in the same animals was observed, especially at a dose of 80 mg/kg. This study aims to establish a link between metabolic and neural origins by investigating the effects of oxymatrine in reducing the progression of hypercholesterolemia and fibrosis, which contribute to cognitive impairment in AD. The research explores how oxymatrine regulates mediators involved in oxysterol production and fibrotic alterations in AD. Preliminary results suggest that oxymatrine has the potential to significantly delay the development and progression of AD, offering a promising treatment alternative for those affected by the disease. The findings of the present study strongly suggest that OMT effectively retards the progression of AD, which is commonly associated with the intake of high-cholesterol diets. Subsequent investigations ought to examine the molecular mechanisms behind oxymatrine's interaction with oxysterols and lipid metabolism, including sophisticated imaging methodologies and metabolomics. Longitudinal studies are essential to evaluate the long-term efficacy and safety of oxymatrine in both animal models and people. Exploring its possible synergistic effects with current medications may yield more effective therapeutic techniques. Identifying biomarkers for personalised medication may also be beneficial. Clinical trials and research on oxymatrine's potential as a prophylactic medication may yield significant insights.
Collapse
Affiliation(s)
- Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Rahul Manna
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India.
| |
Collapse
|
5
|
Wan B, Hu J, Luo Y, Han Y, Zhang Y, Huang Q, Leng Y, Xie C. Inhibition of high glucose-induced cardiac fibroblast activation: an effective treatment for diabetic cardiomyopathy using Chinese herbal medicine. Front Pharmacol 2025; 16:1523014. [PMID: 39931690 PMCID: PMC11808154 DOI: 10.3389/fphar.2025.1523014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the common diabetic microangiopathy in clinical practice. In the early stage of the disease, there are no obvious clinical symptoms. In the middle and late stages, MF, arrhythmia, and even heart failure may occur, affecting the life and health of patients. MF, as one of the pathological features of DCM at the end stage, is the key factor of poor prognosis leading to ventricular wall stiffness and heart failure, which affects the clinical process and outcome of patients. The development of MF in a high glucose environment involves multiple complex fibrogenic pathways that work together to activate fibroblasts, thereby promoting MF. Indeed, aberrant activation of cardiac fibroblasts (CFs) is a key factor in MF. Therefore, inhibiting the activation of CFs may become a new strategy for the treatment of DCM. Previous studies have shown that Chinese herbal medicine (CHM) has potential in the treatment of DCM. In this review, we first introduced the physiology and function of CFs and discussed the conditions for the pathological activation of CFs in the process of diabetes, and then systematically summarized the effects of CHM on the activation of CFs by controlling the production of advanced glycosylation end products, oxidative stress and inflammation. This review will illustrate the potential of CHM to inhibit the activation of CFs and provide new ideas for the treatment of DCM.
Collapse
Affiliation(s)
- Bin Wan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Hu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Han
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaowen Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinchuan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Leng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wu Y, Xiong J, Chen G, Liu Y, Zhao C, Zhang Z, Xu H. Oxymatrine relieves non-alcoholic fatty liver disease by promoting sirtuin 1/adenosine 5'-monophosphate-activated protein kinase pathway and peroxisome proliferator activated receptor alpha-mediated hepatic fatty acid oxidation. Eur J Pharmacol 2025; 987:177173. [PMID: 39637931 DOI: 10.1016/j.ejphar.2024.177173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disease without approved treatment. Oxymatrine (OMT) has protective effects in various liver diseases. We aimed to investigate the roles and mechanisms of OMT in NAFLD. NAFLD models were established using high-fat and high-sucrose diet-fed rats and oleic acid (OA)-stimulated hepatocytes, respectively. Then, OMT was used to treat the NAFLD models, with metformin as a positive control. Liver damage, lipid accumulation and hepatic lipid profile of NAFLD rats were assessed. Peroxisome proliferator activated receptor alpha (PPARα), sirtuin 1 (Sirt1)/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway- and fatty acid oxidation (acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A)-associated proteins were measured both in vivo and in vitro. Furthermore, hepatocytes were transfected with si-Sirt1 and oe-PPARα to verify the mechanisms of OMT in NAFLD. NAFLD rats supplemented with OMT displayed reduced liver damage and lipid accumulation. After OMT intervention, the liver lipid profile of NAFLD rats was changed greatly, most of the top differentially expressed lipid metabolites were triglyceride, moreover, diacylglycerol content was decreased in NAFLD rats. OMT activated the Sirt1/AMPK pathway and PPARα, and upregulated acyl-CoA oxidase 1 and carnitine palmitoyltransferase 1A expressions in NAFLD models. In vitro, OMT enhanced viability, and improved lipid accumulation in OA-stimulated hepatocytes. However, the protective functions of OMT in OA-exposed hepatocytes were offset by Sirt1 knockdown, while PPARα overexpression further counteracted the effects of Sirt1 knockdown. OMT could relieve NAFLD by promoting Sirt1/AMPK pathway- and PPARα-mediated hepatic fatty acid oxidation, indicating that OMT is a potential approach for NAFLD treatment.
Collapse
Affiliation(s)
- Yijun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Changqing Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Raza I, Sohail A, Muneer H, Fayyaz H, Uddin Z, Almars AI, Aggad WS, Almohaimeed HM, Ullah I. Viscosol Treatment Ameliorates Insulin-Mediated Regulation of Dyslipidemia, Hepatic Steatosis, and Lipid Metabolism by Targeting PTP1B in Type-2 Diabetic Mice Model. Int J Endocrinol 2024; 2024:3914332. [PMID: 39759127 PMCID: PMC11698613 DOI: 10.1155/ije/3914332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM. Numerous studies claimed the anti-inflammatory, hypoglycemic, hepatoprotective, and hypolipidemic activities of Dodonaea viscosa. Previously, we generated the high-fat diet (HFD)-low dose streptozotocin (STZ)-induced diabetic male mice model and treated it with a PTP1B inhibitor (5, 7-dihydroxy-3, 6-dimethoxy-2- (4-methoxy-3- (3-methyl-2-enyl) phenyl)-4H-chromen-4-one), isolated from Dodonaea viscosa. In the current study, we aimed to investigate the De novo lipogenesis, adipocyte differentiation, augmentation of lipoproteins clearance, fatty acid uptake, antilipolysis activity, and hepatic steatosis of PTP1B inhibition in adipose and liver tissues of the HFD-STZ-induced diabetic mice model. We found the retrieval of normal morphology of adipocytes and hepatocytes in the compound-treated group. The biochemical parameters showed the gradual reduction of LDL, VLDL, TC, and TG in the serum of the compound-treated group. To further test our hypothesis, real-time PCR was performed, and data revealed the reduction of PTP1B and other inflammatory markers in both tissues, showing enhanced expression of insulin signaling markers (INSR, IRS1, IRS2, and PI3K). Our compound upregulated the adipogenic (PPARγ), lipogenic (SREBP1c, FAS, ACC, and DGAT2), lipoprotein clearance (LPL, LDLR, and VLDLR), fatty acid uptake (CD36 and FATP1), and lipid droplet forming (FSP27 and perilipin-1) markers expressions in adipocytes and downregulated in hepatocytes. Furthermore, we found elevated cholesterol efflux (in adipose and liver) and decreased lipolysis in adipocytes and elevated in hepatocytes. Hence, we can conclude that our compound protects the adipocytes from abrupt lipolysis and stimulates adipocyte differentiation. In addition, it plays a hepatic protective role by shifting clearance and uptake of lipoproteins and fatty acids to the peripheral tissues and retrieving the fatty liver condition.
Collapse
Affiliation(s)
- Idrees Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hamza Muneer
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry & Biotechnology, FVAS, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hajra Fayyaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waheeb S. Aggad
- Division of Anatomy, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
8
|
Chen S, Wu S, Lin B. The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1417672. [PMID: 39041001 PMCID: PMC11260750 DOI: 10.3389/fcvm.2024.1417672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-β1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.
Collapse
Affiliation(s)
| | | | - Bin Lin
- Department of Cardiovascular Medicine, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
9
|
Lou D, Fang Q, He Y, Ma R, Wang X, Li H, Qi M. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis. Biomed Pharmacother 2024; 174:116491. [PMID: 38537582 DOI: 10.1016/j.biopha.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a complex complication of type 2 diabetes mellitus (T2DM). Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens with broad pharmacological effects. However, there is currently a lack of research on OMT in the field of NAFLD. The present study aimed to explore the effects and underlying mechanisms of oxymatrine in treating T2DM with NAFLD. The T2DM mice model was induced by high-fat diet (HFD) combined with streptozotocin (STZ) injection in male C57BL/6 J mice. Animals were randomly divided into four groups (n = 8): Control group, DC group, OMT-L group (45 mg/kg i.g.), and OMT-H group (90 mg/kg, i.g.). The drug was administered once a day for 8 weeks. In addition, HepG2 hepatocytes were incubated with palmitic acid (PA) to establish a fatty liver cell model. Treated with OMT, the body weight and fasting blood glucose (FBG) of DC mice were reduced and the liver organ coefficient was significantly optimized. Meanwhile, OMT markedly enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and also reduced malondialdehyde (MDA) levels. These biochemical alterations were accompanied by noticeable improvements in liver histopathology. Furthermore, OMT down-regulated the expression of NOD-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1) and collagen I significantly, highlighting its potential in modulating inflammatory and fibrotic pathways. In conclusion, OMT improved liver impairment effectively in diabetic mice by suppressing oxidative stress, inflammation and fibrosis. These results suggest that OMT may represent a novel therapy for NAFLD with diabetes.
Collapse
Affiliation(s)
- Di Lou
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qing Fang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinghao He
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruyu Ma
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinyan Wang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hanbing Li
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Minyou Qi
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
10
|
Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117031. [PMID: 37579924 DOI: 10.1016/j.jep.2023.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aβ25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3β pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aβ25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3β signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3β pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuo Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Luting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Yan Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Liuying Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Xiaoxiao Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Haiyan Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
11
|
Jing Y, Yan M, Liu D, Tao C, Hu B, Sun S, Zheng Y, Wu L. Research progress on the structural characterization, biological activity and product application of polysaccharides from Crataegus pinnatifida. Int J Biol Macromol 2023; 244:125408. [PMID: 37343606 DOI: 10.1016/j.ijbiomac.2023.125408] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Crataegus pinnatifida is a plant of the Crataegus genus in the Rosaceae family and is commonly used as a food and medicinal resource. Crataegus pinnatifida polysaccharide, as one of the main active ingredients of Crataegus pinnatifida, has a variety of beneficial biological activities, such as antioxidant, hypoglycemic activity, lipid-lowering, intestinal flora regulation, promotion immune regulation, and antitumor activities. However, the extraction methods of Crataegus pinnatifida polysaccharides lack innovation, the primary structure is relatively limited, and the biological activity mechanism needs to be further explored. Therefore, this review summarizes the research status of the extraction, purification, structural characterization, biological activity, and product application of Crataegus pinnatifida polysaccharides. The purpose of this study is to generate support for further development and application of polysaccharides from Crataegus pinnatifida.
Collapse
Affiliation(s)
- Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Meng Yan
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Dongbo Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Cheng Tao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Beibei Hu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Shiguo Sun
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
12
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
13
|
Hao YY, Cui WW, Gao HL, Wang MY, Liu Y, Li CR, Hou YL, Jia ZH. Jinlida granules ameliorate the high-fat-diet induced liver injury in mice by antagonising hepatocytes pyroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:274-281. [PMID: 35138995 PMCID: PMC8843117 DOI: 10.1080/13880209.2022.2029501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Jinlida (JLD) as a traditional Chinese medicine formula has been used to treat type 2 diabetes mellitus (T2DM) and studies have shown its anti-obesity effect. OBJECTIVE To investigate the therapeutic effects of JLD in a mouse model of non-alcoholic fatty liver (NAFL). MATERIALS AND METHODS C57BL/6J mice were divided into three groups and fed a low-diet diet (LFD), high-fat diet (HFD), or HFD + JLD (3.8 g/kg) for 16 weeks, respectively. The free fatty acids-induced lipotoxicity in HepG2 cells were used to evaluate the anti-pyroptotic effects of JLD. The pharmacological effects of JLD on NAFL were investigated by pathological examination, intraperitoneal glucose and insulin tolerance tests, western blotting, and quantitative real-time PCR. RESULTS In vivo studies showed that JLD ameliorated HFD-induced liver injury, significantly decreased body weight and enhanced insulin sensitivity and improved glucose tolerance. Furthermore, JLD suppressed both the mRNA expression of caspase-1 (1.58 vs. 2.90), IL-1β (0.93 vs. 3.44) and IL-18 (1.34 vs. 1.60) and protein expression of NLRP3 (2.04 vs. 5.71), pro-caspase-1 (2.68 vs. 4.92) and IL-1β (1.61 vs. 2.60). In vitro, JLD inhibited the formation of lipid droplets induced by 2 mM FFA (IC50 = 2.727 mM), reduced the protein expression of NLRP3 (0.74 vs. 2.27), caspase-1 (0.57 vs. 2.68), p20 (1.67 vs. 3.33), and IL-1β (1.44 vs. 2.41), and lowered the ratio of p-IKB-α/IKB-α (0.47 vs. 2.19). CONCLUSION JLD has a protective effect against NAFLD, which may be related to its anti-pyroptosis, suggesting that JLD has the potential as a novel agent in the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuan-yuan Hao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Wen-wen Cui
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Huai-lin Gao
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Hospital, Hebei, China
| | - Ming-ye Wang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Yan Liu
- Xianghe Hospital of Traditional Chinese Medicine, Hebei, China
| | - Cui-ru Li
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| | - Yun-long Hou
- College of Integrative Medicine, Hebei University of Chinese Medicine, Hebei, China
- Hebei Yiling Pharmaceutical Research Institute, Hebei, China
| | - Zhen-hua Jia
- Hebei Yiling Hospital, Hebei, China
- National Key Laboratory of Luobing Research and Innovative Chinese Medicine, Hebei, China
| |
Collapse
|
14
|
Luo Z, Zhao T, Yi M, Wang T, Zhang Z, Li W, Lin N, Liang S, Verkhratsky A, Nie H. The exploration of the potential mechanism of oxymatrine-mediated antipruritic effect based on network pharmacology and weighted gene co-expression network analysis. Front Pharmacol 2022; 13:946602. [PMID: 36210824 PMCID: PMC9539766 DOI: 10.3389/fphar.2022.946602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
The treatment of chronic itch is considered to be a challenge for its non-histamine dependence and the search for alternative medicine is still striving. The pathology of the chronic itch is closely related to immune system regulation and inflammatory response. Oxymatrine (OMT) is a traditional Chinese medicine ingredient extracted from the roots of Sophora flavescens Aiton with significant antitumor, analgesic, and anti-inflammatory effects. However, the underlying mechanism of OMT on chronic itch is obscure, which limits clinical application. Hence, this study is aimed to clarify the pruritus alleviation mechanism of OMT by combining network pharmacology analysis, weighted gene co-expression analysis (WGCNA), and molecular docking. We screened 125 common targets of OMT regulating inflammation and pruritus with pharmacology technology, the GO enrichment function analysis and KEGG signaling pathway analysis to demonstrate the close relation to the signaling pathways regulating inflammation such as MAPK signaling pathway and PI3K-AKT signaling pathway. We adopted the most relevant templates for pruritus diseases, combined with network pharmacology to preliminarily screen out 3 OMT functions and regulatory targets, exerting a good connection and correlation with the target at the screened disease targets. Further experiments were conducted to explore the potential mechanism of OMT using the LPS-induced RAW264.7 cell inflammation model. The results showed that pretreatment with different concentrations of OMT (25 μM, 50 μM, and 100 μM) for 24 h, inhibited expression of IL-6, iNOS TLR4 and TGFR-1 as well as apoptosis of Raw264.7 cells induced by LPS. Moreover, OMT effectively inhibited LPS-induced MAPK pathway activation and the expression of related sites MAP2K1, MAPK8 MAP2K4, and MAPKAP-K2 in RAW 264.7 cells. The OMT also reduced the phosphorylation of p-38, associated with site in the activation of MAPK signaling pathway. These results could contribute to a better understanding of the mechanisms underlying how OMT alleviates inflammation to treat chronic pruritic diseases and provide a potential drug for the treatment of chronic itch.
Collapse
Affiliation(s)
- Zhenhui Luo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Tingting Zhao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Mengqin Yi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Tingting Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenglang Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenbin Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School, Nanchang University, Nanchang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Hong Nie,
| |
Collapse
|
15
|
Tartary Buckwheat Flavonoids Improve Colon Lesions and Modulate Gut Microbiota Composition in Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4524444. [PMID: 36016679 PMCID: PMC9398688 DOI: 10.1155/2022/4524444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Tartary buckwheat flavonoids (TBFs) exhibit diverse biological activities, with antioxidant, antidiabetes, anti-inflammatory, and cholesterol-lowering properties. In this study, we investigated the role of TBFs in attenuating glucose and lipid disturbances in diabetic mice and hence preventing the occurrence of diabetes-related colon lesions in mice by regulating the gut microbiota. The results showed that TBFs (1) reversed blood glucose levels and body weight changes; (2) improved levels of serum total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and fasting insulin; and (3) significantly reduced diabetes-related colon lesions in diabetic mice. In addition, TBFs also affected the diabetes-related imbalance of the gut microbiota and enriched beneficial microbiota, including Akkermansia and Prevotella. The TBF also selectively increased short-chain fatty acid-producing bacteria, including Roseburia and Odoribacter, and decreased the abundance of the diabetes-related gut microbiota, including Escherichia, Mucispirillum, and Bilophila. The correlation analysis indicated that TBFs improved metabolic parameters related to key communities of the gut microbiota. Our data suggested that TBFs alleviated glucose and lipid disturbances and improved colon lesions in diabetic mice, possibly by regulating the community composition of the gut microbiota. This regulation of the gut microbiota composition may explain the observed effects of TBFs to alleviate diabetes-related symptoms.
Collapse
|
16
|
Zhang J, Liu YQ, Fang J. The biological activities of quinolizidine alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 89:1-37. [PMID: 36731966 DOI: 10.1016/bs.alkal.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinolizidine alkaloids isolated from various marine and terrestrial animals and plants are primarily composed of lupinine-, matrine-, and sparteine-type alkaloids. Matrine, phenanthroquinolizidines, bis-quinolizidines, and small molecules from amphibian skins are representative compounds of such alkaloids. Quinolizidine alkaloids harbor anticancer, antibacterial, antiinflammatory, antifibrosis, antiviral, and anti-arrhythmia. In this chapter, we comprehensively outline the biological activity and pharmacological action of quinolizidine alkaloids and discuss new avenues toward the discovery of novel and more efficient drugs based on these naturally occurring compounds. It is urgent for basic research and clinical practice to conduct more targeted comprehensive research based on the lead drugs of quinolizidine alkaloids with significant pharmacological activity.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Ying-Qian Liu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China; State Key Laboratory of Grassland Agroecosystems, Lanzhou University, Lanzhou, China.
| | - Jianguo Fang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
17
|
Xie L, Yu D, Li Y, Ju H, Chen J, Hu L, Yu L. Characterization, Hypoglycemic Activity, and Antioxidant Activity of Methanol Extracts From Amomum tsao-ko: in vitro and in vivo Studies. Front Nutr 2022; 9:869749. [PMID: 35903449 PMCID: PMC9315379 DOI: 10.3389/fnut.2022.869749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The dried fruit of Amomum tsao-ko is well-known as a spice as well as a Chinese traditional herb. This study aimed to identify the bioactive constituents in the powder of methanol extract from Amomum tsao-ko (PMEAT) and to evaluate the hypoglycemic and antioxidant effects of PMEAT, in vitro and in vivo. We identified 36 phytochemicals in PMEAT by employing HPLC-MS/MS. PMEAT solution was found to have potent α-glucosidase-inhibiting activity (IC50, 0.145 mg/mL) in vitro, twice as strong as that of acarbose (IC50, 0.273 mg/mL). To investigate the hypoglycemic activity of PMEAT in vivo, we studied the impact of low-dose PMEAT (the addition of 100 mg/kg PMEAT to the mice diet) and high-dose PMEAT (200 mg/kg PMEAT addition) treatments in STZ-induced diabetic mice. After 6 weeks of intervention, significantly decreased fasting blood glucose (FBG) (p < 0.05), significantly decreased area under the curve (AUC) of the oral glucose tolerance test (p < 0.05), significantly decreased HOMA-IR (p < 0.05), and significantly increased HOMA-β (p < 0.05) were observed in the high-dose PMEAT group. Moreover, we performed an antioxidant activity experiment in vitro. The results showed that PMEAT had a strong ability to scavenge DPPH (IC50, 0.044 mg/mL) as well as ABTS free radicals (IC50, 0.040 mg/mL). In an animal experiment conducted on oxidative damage mice model which was induced by D-glucose and a high-fat diet, we observed significantly increased dismutase (SOD) (p < 0.01), glutathione (GSH) (p < 0.01), and glutathione peroxidase (GSH-Px) (p < 0.01) and significantly reduced malondialdehyde (MDA) and 8-ISO-prostaglandin-PGF2α (8-ISO-PGF2α), after treatment with PMEAT for 90 days. In conclusion, this study reveals the therapeutic potential of Amomum tsao-ko for the treatment of diabetes and helps us discover new antioxidant candidates from natural sources.
Collapse
Affiliation(s)
- Libin Xie
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Dan Yu
- Department of Nutrition, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanan Li
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Huidong Ju
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Jia Chen
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Lianxia Hu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Longquan Yu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
- *Correspondence: Longquan Yu
| |
Collapse
|
18
|
Peng J, Cai Z, Wang Q, Zhou J, Xu J, Pan D, Chen T, Zhang G, Tao L, Chen Y, Shen X. Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration. Molecules 2022; 27:3610. [PMID: 35684546 PMCID: PMC9182538 DOI: 10.3390/molecules27113610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary emphysema is a fatal lung disease caused by the progressive thinning, enlargement and destruction of alveoli that is closely related to inflammation and oxidative stress. Oxymatrine (OMT), as a bioactive constituent of traditional Chinese herbal Sophora flavescens, has great potential to alleviate pulmonary emphysema via its anti-inflammatory and antioxidative activities. Pulmonary administration is the most preferable way for the treatment of lung diseases. To improve the in vivo stability and pulmonary retention of OMT, OMT-loaded liposome with carboxymethyl chitosan (CMCS) modification was developed. The CMCS was modified on the surface of OMT liposomes via electrostatic attraction and covalent conjugation to obtain Lipo/OMT@CMCS and CMCS-Lipo/OMT, respectively. A porcine pancreatic elastase (PPE)-induced emphysema mice model was established to evaluate the alleviation effects of OMT on alveolar expansion and destruction. CMCS-modified liposomal OMT exhibited superior ameliorative effects on emphysema regardless of the preparation methods, and higher sedimentation and longer retention in the lung were observed in the CMCS-Lipo group. The mechanisms of OMT on emphysema were related to the downregulation of inflammatory cytokines and the rebalancing of antioxidant/oxidation via the Nrf2/HO-1 and NF-κB/IκB-α signaling pathways, leading to reduced cell apoptosis. Moreover, the OMT liposomal preparations further enhanced its anti-inflammatory and antioxidative effects. In conclusion, pulmonary administration of OMT is a potential strategy for the treatment of emphysema and the therapeutic effects can be further improved by CMCS-modified liposomes.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Zimin Cai
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jinzhuan Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Tingting Chen
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China;
| | - Guangqiong Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| |
Collapse
|
19
|
Jamal Gilani S, Nasser Bin-Jumah M, Al-Abbasi FA, Shahid Nadeem M, Afzal M, Sayyed N, Kazmi I. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes. Saudi J Biol Sci 2021; 28:6963-6971. [PMID: 34866996 PMCID: PMC8626260 DOI: 10.1016/j.sjbs.2021.07.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Streptozotocin (STZ) 60 mg/kg, i.p.-induced diabetes in rat’s results into hyperglycemia, impaired oxidative stress, lipid profile, insulin levels and changes in body weight. Treatment with antihyperglycemics and antioxidants are accounted to produce favorable effect in this paradigm. Fustin, a flavonoid derived from Rhus verniciflua, extract of Rhus verniciflua reported to exhibit anti-hyperglycemic, antioxidant, anti-microbial, anti-arthritic effects, anti-obesity effects, antiplatelet effects and anti-cancer effects. However, no evidence is existing on effect of fustin on STZ-induction diabetes. Thus, we evaluated its effects against diabetes in STZ-induced rodents. Blood glucose, Insulin, lipid peroxidation (MDA), superoxide dismutase (SOD), catalase activity (CAT), glutathione (GSH) and lipid profile levels was assessed. After 30 days diabetes induction rodents showed a severe increased blood sugar level, MDA, high density lipid and decreased cholestrol, triglyceride, GSH, SOD, CAT, respectively. Oppositely, treatment with fustin (50–100 mg/kg/p.o., two times daily, 30 days) enhanced blood glucose, lipid profile levels Insulin. Meanwhile, reduced MDA and enhanced GSH, SOD, and CAT in diabetic rats. Glibenclamide 5 mg/kg/p.o. also enhanced diabetes-induced complications and decreased oxidative stress. Further histopathology of pancreas confirms the protective effect fustin in STZ-induction diabetes in animals. In conclusion, the study revealed treatments with fustin avoid the changes in body weight, blood glucose, lipid profile and oxidative stress. As a results of these finding may lead to the growth of a choice of medicine for hyperglycemic in the future.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Nadeem Sayyed
- Clinical Research Department, Meril Life Sciences Pvt. Ltd., India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
20
|
Gilani S, Bin-Jumah MN, Al-Abbasi FA, Nadeem MS, Afzal M, Sayyed N, Kazmi I. Fustin Ameliorates Elevated Levels of Leptin, Adiponectin, Serum TNF-α, and Intracellular Oxidative Free Radicals in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. ACS OMEGA 2021; 6:26098-26107. [PMID: 34660970 PMCID: PMC8515611 DOI: 10.1021/acsomega.1c03068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Fustin is a prominent ingredient of Rhus verniciflua Stokes (Anacardiaceae) and has a wide range of pharmacological and clinical effects. The present study attempted to evaluate the antidiabetic potential of fustin in streptozotocin- and high-fat diet-induced diabetes in rats. The efficacy of fustin 50 mg/kg and 100 mg/kg/day p.o. was studied in 60% of total calories from fat as a high-fat diet along with single-dose administration streptozotocin (50 mg/kg, i.p.) experimentally induced diabetes in rats for 42 days. The mean body weight; blood glucose; and biochemical parameters such as lipid profile, total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), insulin, leptin levels, adiponectin levels, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activity in serum were measured. The rats' weight was maintained in the fustin groups compared to the diabetic control group. Diabetes caused a significant increase in serum levels in blood glucose, lipid profile, MDA, TNF-α, ALT, and AST parameters and a decrease in serum insulin, adiponectin, leptin, GSH, SOD, and CAT compared to healthy rats. The treatment regimen with fustin (50 and 100 mg/kg) significantly restored all serum parameters in test groups. The present study found clinical evidence for the first time regarding the significant antidiabetic property of fustin, which could be a worthwhile candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Sadaf
Jamal Gilani
- Department
of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakakah 72341, Saudi Arabia
| | - Nadeem Sayyed
- Department
of Clinical Research, Meril Life Sciences
Pvt. Ltd., Gujarat 396191, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
21
|
Oxymatrine Extends Survival by Attenuating Neuroinflammation in a Mouse Model of Amyotrophic Lateral Sclerosis. Neuroscience 2021; 465:11-22. [PMID: 33945797 DOI: 10.1016/j.neuroscience.2021.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the leading causes of death associated with neurodegenerative diseases worldwide, and the progression of the disease is characteristically accompanied by severe neuroinflammation. Neuroprotective effects of oxymatrine (OMT) were shown to be due to reduced neuroinflammation in the mouse models of Alzheimer's disease and Parkinson's disease. The present study investigated whether OMT has a therapeutic potential in transgenic SOD1-G93A (TgSOD1-G93A) mice. Daily OMT treatment started at the age of 55 days until the end stage of the disease. Body weight and rotarod motor performance were assessed every 3 days starting from 70 days of age. Footprints were recorded to measure the stride length 40 days and 60 days after the initiation of the treatment. Some animals were sacrificed at the age of 115 days, and the lumbar spinal cord was harvested for immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR) to evaluate the neuroinflammatory responses. The results indicated that treatment with OMT delayed body weight loss, improved motor performance, and prolonged the survival of SOD1-G93A mice. Mechanistically, OMT treatment enhanced motor neuronal survival and alleviated the activation of microglia and astrocytes compared with those in the vehicle-treated group. Furthermore, the expression of the proinflammatory mediators was downregulated, and the expression of the anti-inflammatory factors was upregulated in the OMT-treated group compared with those in the vehicle-treated group (P < 0.05). Thus, the treatment with OMT had neuroprotective effects, promoting neuronal survival and extending the lifetime of SOD1-G93A mice by suppressing neuroinflammation.
Collapse
|
22
|
Zhu YX, Hu HQ, Zuo ML, Mao L, Song GL, Li TM, Dong LC, Yang ZB, Ali Sheikh MS. Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation. Biomed Rep 2021; 15:56. [PMID: 34007449 PMCID: PMC8120346 DOI: 10.3892/br.2021.1432] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
An increase in liver gluconeogenesis is an important pathological phenomenon in type 2 diabetes mellitus (T2DM) and oxymatrine is an effective natural drug used for T2DM treatment. The present study aimed to explore the effect of oxymatrine on gluconeogenesis and elucidate the underlying mechanism. Male Sprague-Dawley rats were treated with a high-fat diet and streptozotocin for 4 weeks to induce T2DM, and HepG2 cells were treated with 55 mM glucose to simulate T2DM in vitro. T2DM rats were treated with oxymatrine (10 or 20 mg/kg weight) or metformin for 4 weeks, and HepG2 cells were treated with oxymatrine (0.1 or 1 µM), metformin (0.1 µM), or oxymatrine combined with MK-2206 (AKT inhibitor) for 24 h. Fasting blood glucose and insulin sensitivity of rats were measured to evaluate insulin resistance. Glucose production and uptake ability were measured to evaluate gluconeogenesis in HepG2 cells, and the expression of related genes was detected to explore the molecular mechanism. Additionally, the body weight, liver weight and liver index were measured and hematoxylin and eosin staining was performed to evaluate the effects of the disease. The fasting glucose levels of T2DM rats was 16.5 mmol/l, whereas in the control rats, it was 6.1 mmol/l. Decreased insulin sensitivity (K-value, 0.2), body weight loss (weight, 300 g), liver weight gain, liver index increase (value, 48) and morphological changes were observed in T2DM rats, accompanied by reduced AKT phosphorylation, and upregulated expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). High-glucose treatment significantly increased glucose production and decreased glucose uptake in HepG2 cells, concomitant with a decrease in AKT phosphorylation and increase of PEPCK and G6Pase expression. In vivo, oxymatrine dose-dependently increased the sensitivity of T2DM rats to insulin, increased AKT phosphorylation and decreased PEPCK and G6Pase expression in the liver, and reversed the liver morphological changes. In vitro, oxymatrine dose-dependently increased AKT phosphorylation and glucose uptake of HepG2 cells subjected to high-glucose treatment, which was accompanied by inhibition of the expression of the gluconeogenesis-related genes, PEPCK and G6Pase. MK-2206 significantly inhibited the protective effects of oxymatrine in high-glucose-treated cells. These data indicated that oxymatrine can effectively prevent insulin resistance and gluconeogenesis, and its mechanism may be at least partly associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation in the liver.
Collapse
Affiliation(s)
- Yu-Xian Zhu
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,College of Medicine, Hunan Normal University Changsha, Hunan 410000, P.R. China
| | - Hai-Qing Hu
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Mei-Ling Zuo
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha, Hunan 410600, P.R. China
| | - Gui-Lin Song
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan 410006, P.R. China
| | - Tao-Ming Li
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Li-Chen Dong
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China
| | - Zhong-Bao Yang
- The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan 410006, P.R. China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, Hunan 410006, P.R. China
| | - Md Sayed Ali Sheikh
- Internal Medicine Department, Cardiology, College of Medicine, Al Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| |
Collapse
|
23
|
Wei G, Chen Y, Guo X, Wei J, Dong L, Chen S. Biosyntheses characterization of alkaloids and flavonoids in Sophora flavescens by combining metabolome and transcriptome. Sci Rep 2021; 11:7388. [PMID: 33795823 PMCID: PMC8016917 DOI: 10.1038/s41598-021-86970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Sophora flavescens are widely used for their pharmacological effects. As its main pharmacological components, alkaloids and flavonoids are distributed in the root tissues wherein molecular mechanisms remain elusive. In this study, metabolite profiles are analyzed using metabolomes to obtain biomarkers detected in different root tissues. These biomarkers include alkaloids, phenylpropanoids, and flavonoids. The high-performance liquid chromatography analysis results indicate the differences in principal component contents. Oxymatrine, sophoridine, and matrine contents are the highest in the phloem, whereas trifolirhizin, maackiain, and kushenol I contents are the highest in the xylem. The transcript expression profiles also show tissue specificity in the roots. A total of 52 and 39 transcripts involved in alkaloid and flavonoid syntheses are found, respectively. Among them, the expression levels of LYSA1, LYSA2, AO2, AO6, PMT1, PMT17, PMT34, and PMT35 transcripts are highly and positively correlated with alkaloids contents. The expression levels of 4CL1, 4CL3, 4CL12, CHI5, CHI7, and CHI9 transcripts are markedly and positively correlated with flavonoids contents. Moreover, the quantitative profiles of alkaloids and flavonoids are provided, and the pivotal genes regulating their distribution in S. flavescens are determined. These results contribute to the existing data for the genetic improvement and target breeding of S. flavescens.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yongzhong Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaotong Guo
- College of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- , No.16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| |
Collapse
|
24
|
Youssef ME, Abdelrazek HM, Moustafa YM. Cardioprotective role of GTS-21 by attenuating the TLR4/NF-κB pathway in streptozotocin-induced diabetic cardiomyopathy in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:11-31. [PMID: 32776158 DOI: 10.1007/s00210-020-01957-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) was investigated in a variety of inflammatory conditions and constitutes a valuable line in their treatment. In the current study, we investigated the anti-inflammatory effect of GTS-21 (GTS) as a partial selective α7 nicotinic acetylcholine receptor (α7-nAchR) agonist in diabetic cardiomyopathy model in rats. This mechanism was elaborated to study whether it could alleviate the electrocardiographic, histopathological, and molecular levels of Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB) pathway proteins. Diabetes was induced by the injection of streptozotocin (STZ) (50 mg/kg). Diabetic rats were treated with GTS (1 or 2 mg/kg/day), methyllycaconitine (MLA), a selective α7-nAchR antagonist (2 mg/kg/day) plus GTS (2 mg/kg/day), or the vehicle. All treatments were given by the intraperitoneal route. Ventricular rate and different electrocardiograph (ECG) anomalies were detected. Plasma levels of cardiac troponin T (cTnT) and creatine kinase MB (CK-MB) were measured by ELISA. Additionally, we elucidated the levels of several proteins involved in the TLR4/NF-κB pathway. Cardiac levels of TLR4 and phosphorylated protein kinase B (p-Akt) were detected by ELISA. The cardiac expression of myeloid differentiation primary response 88 (Myd88), tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB, interleukin 1β (IL-1β), and active caspase-1 were evaluated by immunohistochemical staining. Finally, the cardiac levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were determined by ELISA. Diabetic rats showed (i) ECG signs of cardiomyopathy such as significant ST segment elevations, prolonged QRS, QT intervals, and ventricular tachycardia; (ii) increased plasma levels of cTnT and CK-MB; (iii) increased expression of cardiac TLR4; (iv) elevated immunohistochemical expression of cardiac, Myd88, TRAF6, and NF-κB; (v) diminution in the cardiac expression of p-Akt; and (vi) adaptive increases in cardiac expression of TNF-α and IL-6. These effects were ameliorated in diabetic rats treated with both doses of GTS. Pretreatment with MLA did not completely reverse the ameliorative effect of GTS on cTnT, TRAF6, TNF-α, and IL-6, thereby reinforcing the presence of possible α7-nAchR-independent mechanisms. The activation of α7-nAchR with GTS offers a promising prophylactic strategy for diabetic cardiomyopathy by attenuating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of pharmacology and biochemistry, Faculty of pharmacy, Delta University for Science and Technology, Mansoura, Egypt.
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of veterinary medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Dean of the Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
25
|
Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules 2020; 25:molecules25235713. [PMID: 33287318 PMCID: PMC7731446 DOI: 10.3390/molecules25235713] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in β-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.
Collapse
|
26
|
Han B, Niu D, Wang T, An S, Wang Y, Chen X, Bi H, Xue X, Kang J. Ultrasonic-microwave assisted extraction of total triterpenoid acids from Corni Fructus and hypoglycemic and hypolipidemic activities of the extract in mice. Food Funct 2020; 11:10709-10723. [PMID: 33226385 DOI: 10.1039/d0fo02568b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Triterpene acids, the main component of Corni Fructus, could improve diabetes mellitus, for which the underlying hypoglycemic mechanism is still unclear, in patients. In this study, total triterpenoid acids were extracted by ultrasonic-microwave assisted extraction optimized by the response surface methodology. The extract was then purified with an X-5 macroporous resin, and the yield of total triterpenoid acids increased to 281.24 mg g-1 as compared with the 35.71 mg g-1 obtained by unassisted extraction. The contents of five components were determined by ultrafast performance liquid chromatography. In addition, the hypoglycemic and hypolipidemic activities of total triterpenoid acids in diabetic mice induced by streptozotocin and a high fat diet were studied. The results indicated that all parameters (oral glucose tolerance, insulin resistance and liver damage) related to diabetes were significantly improved by total triterpenoid acids. Furthermore, total triterpenoid acids significantly recovered the expression level of AMP-activated protein kinase and its downstream proteins, including acetyl-CoA carboxylase, carnitine palmityltransferase-1, peroxisome proliferator-activated receptor alpha, sterol regulatory element-binding protein 1c and fatty acid synthase. Altogether, total triterpenoid acids could ameliorate hyperlipidemia and hyperglycemia in diabetic mice, probably by activating the AMP-activated protein kinase-peroxisome proliferator-activated receptor signaling pathway and inhibiting the sterol regulatory element-binding protein 1c and fatty acid synthase signaling pathways. Therefore, total triterpene acids, isolated from Corni Fructus which is a prevailing health food, could be a functional food ingredient with therapeutic and commercial values.
Collapse
Affiliation(s)
- Binkai Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang R, Li Y, Cai J, Ji J, Wang Y, Zhang W, Pan W, Chen Y. Polysaccharides from Armillariella tabescens mycelia ameliorate insulin resistance in type 2 diabetic mice. Food Funct 2020; 11:9675-9685. [PMID: 33057558 DOI: 10.1039/d0fo00728e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia mainly due to insulin resistance. The objective of this study was to investigate the effects of polysaccharides from Armillariella tabescens mycelia (AT) on insulin resistance in mice fed a high-fat diet in combination with streptozotocin to induce T2DM. Following treatment with different doses of AT, hyperglycemia and lipid metabolism dysfunction, insulin resistance, and hepatic function-related indices were markedly ameliorated; the histopathological alterations, oxidative stress, and inflammatory reaction in hepatic tissue were also alleviated; most importantly, AT inhibited the expression of hepatic thioredoxin-interacting protein (TXNIP) to repress the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation and activated the 5'AMP-activated protein kinase (AMPK) pathway in a dose-dependent manner in T2DM mice. In conclusion, these findings revealed that the hypoglycemic and hypolipidemic activities of AT were associated with the alleviation of insulin resistance through repression of the TXNIP/NLRP3 inflammasome pathway and activation of the AMPK pathway.
Collapse
Affiliation(s)
- Rui Yang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Xia C, Chen L, Zhao J, Tao W, Zhang X, Wang J, Gao X, Yong J, Duan JA. Phytochemical Information and Biological Activities of Quinolizidine Alkaloids in Sophora: A Comprehensive Review. Curr Drug Targets 2020; 20:1572-1586. [PMID: 31215388 DOI: 10.2174/1389450120666190618125816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Li Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Weiwei Tao
- Center for Translational Syhstems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing 210023, China
| |
Collapse
|
29
|
Beneficial effects of polysaccharide-rich extracts from Apocynum venetum leaves on hypoglycemic and gut microbiota in type 2 diabetic mice. Biomed Pharmacother 2020; 127:110182. [DOI: 10.1016/j.biopha.2020.110182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023] Open
|
30
|
Wu R, Qin Y, Shen Q, Li P. The complete genome sequence of Bacillus velezensis LPL061, an exopolysaccharide-producing bacterium. 3 Biotech 2020; 10:243. [PMID: 32405447 DOI: 10.1007/s13205-020-02228-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus velezensis LPL061, which shows strong exopolysaccharide (EPS) producing capacity, was isolated from carnations in Beijing, China. The complete genome of LPL061 comprised a single circular chromosome (3,907,268 bp; G+C content of 46.7%) with 3,737 coding DNA sequences, 26 rRNA, and 89 tRNA. According to genome analysis, 12 protein-coding genes which related to polysaccharide biosynthesis in LPL061 were identified. Comparative genome analysis revealed that the EPS biosynthetic gene cluster was relatively conserved among Bacillus species. EPS showed approximately 60% inhibitory activity on the α-glucosidase at 100 μg/mL. The results of quantitative reverse transcription PCR further demonstrated that compared to insulin-resistant model with insulin (500 μg/mL) (without EPS treatment), the insulin-resistant HepG2 cells treated with EPS decreased the expression of phosphoenolpyruvate carboxykinase (PEPCK) from 4.425 to 0.1587, glucose-6-phosphatase (G6Pase) decreased from 4.272 to 0.1929, and glycogen synthase kinase3β (GSK(3)β) decreased from 2.451 to 0.993, respectively. Meanwhile, EPS treatment increased GS expression and resulted in intracellular glycogen concentration increased from 28.30% to 86.48%, which further supported that EPS form LPL061 could reduce the concentration of blood glucose effectively. These results could be beneficial for better understanding of the hypoglycemic mechanism of B. velezensis LPL061 EPS and developing an EPS-based anti-diabetic agent in the future.
Collapse
Affiliation(s)
- Ruiyun Wu
- 1Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, East Campus, Haidian District, Beijing, 100083 China
| | - Yuxuan Qin
- 3Department of Biology, Northeastern University, Boston, MA 02115 USA
| | - Qian Shen
- 2Department of Microbiology, Ohio State University, Columbus, USA
| | - Pinglan Li
- 1Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education; College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, East Campus, Haidian District, Beijing, 100083 China
| |
Collapse
|
31
|
Zhang W, Meng J, Liu Q, Makinde EA, Lin Q, Olatunji OJ. Shorea roxburghii Leaf Extract Ameliorates Hyperglycemia Induced Abnormalities in High Fat/Fructose and Streptozotocin Induced Diabetic Rats. Chem Biodivers 2020; 17:e1900661. [PMID: 31981405 DOI: 10.1002/cbdv.201900661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the hypoglycemic effect of the methanol extract of Shorea roxburghii leaves (SRL) in high fat diet/high fructose solution (HFDHF) and streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) in rats as well as evaluating its ameliorative potentials in altered biochemical and hematological parameters in the treated rats. T2DM was induced in Sprague Dawley (SD) rats by feeding with HFDHF for 4 weeks and administering STZ (35 mg/kg, i. p.). Diabetic rats were given SRL extract at doses of 100 and 400 mg/kg for 30 days. The food and water intake were monitored on a daily basis, while the fasting blood glucose (FBG) levels and body weight were measured weekly. Biochemical and hematological parameters as well as histopathological studies of the pancreas were also evaluated. SRL significantly decreased FBG and improved the body weight, food and water intake of treated diabetic rats. Furthermore, biochemical and hematological parameters including liver and kidney function enzymes, lipid profiles, white blood and red blood cells parameters were markedly ameliorated by SRL. Histopathological analyses of the pancreas indicated reconstitution of β-cells architecture in SRL treated rats. The results of this study suggest that SRL has antidiabetic potential and can be considered for the treatment of T2DM.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | - Jie Meng
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | - Qian Liu
- Department of Endocrinology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330002, P. R. China
| | | | - Qing Lin
- Department of Cardiothoracic Surgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, P. R. China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
32
|
Effects of a combined fucoidan and traditional Chinese medicine formula on hyperglycaemia and diabetic nephropathy in a type II diabetes mellitus rat model. Int J Biol Macromol 2020; 147:408-419. [DOI: 10.1016/j.ijbiomac.2019.12.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
|
33
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y, Xu F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol Res 2020; 151:104541. [DOI: 10.1016/j.phrs.2019.104541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
|
34
|
Christodoulou MI, Tchoumtchoua J, Skaltsounis AL, Scorilas A, Halabalaki M. Natural Alkaloids Intervening the Insulin Pathway: New Hopes for Anti-Diabetic Agents? Curr Med Chem 2019; 26:5982-6015. [PMID: 29714135 DOI: 10.2174/0929867325666180430152618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accumulating experimental data supports the capacity of natural compounds to intervene in complicated molecular pathways underlying the pathogenesis of certain human morbidities. Among them, diabetes is now a world's epidemic associated with increased risk of death; thus, the detection of novel anti-diabetic agents and/or adjuvants is of vital importance. Alkaloids represent a diverse group of natural products with a range of therapeutic properties; during the last 20 years, published research on their anti-diabetic capacity has been tremendously increased. PURPOSE To discuss current concepts on the anti-diabetic impact of certain alkaloids, with special reference to their molecular targets throughout the insulin-signaling pathway. METHODOLOGY Upon in-depth search in the SCOPUS and PUBMED databases, the literature on alkaloids with insulin secretion/sensitization properties was critically reviewed. RESULTS In-vitro and in-vivo evidence supports the effect of berberine, trigonelline, piperine, oxymatrine, vindoneline, evodiamine and neferine on insulin-signaling and related cascades in beta-cells, myocytes, adipocytes, hepatocytes and other cells. Associated receptors, kinases, hormones and cytokines, are affected in terms of gene transcription, protein expression, activity and/or phosphorylation. Pathophysiological processes associated with insulin resistance, beta-cell failure, oxidative stress and inflammation, as well as clinical phenotype are also influenced. DISCUSSION Growing evidence suggests the ability of specific alkaloids to intervene in the insulin-signal transduction pathway, reverse molecular defects resulting in insulin resistance and glucose intolerance and improve disease complications, in-vitro and in-vivo. Future indepth molecular studies are expected to elucidate their exact mechanism of action, while large clinical trials are urgently needed to assess their potential as anti-diabetic agents.
Collapse
Affiliation(s)
- Maria-Ioanna Christodoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Job Tchoumtchoua
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou 15771, Athens, Greece
| |
Collapse
|
35
|
Yuan Y, Zheng Y, Zhou J, Geng Y, Zou P, Li Y, Zhang C. Polyphenol-Rich Extracts from Brown Macroalgae Lessonia trabeculate Attenuate Hyperglycemia and Modulate Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12472-12480. [PMID: 31642672 DOI: 10.1021/acs.jafc.9b05118] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown macroalgae are an important source of polyphenols with multiple health functions. In this work, polyphenol extracts from Lessonia trabeculate were purified and investigated for the antidiabetic activity in vitro and in vivo. The purified polyphenol extracts exhibited good antioxidant activities, α-glucosidase and lipase inhibition activities (IC50 < 0.25 mg/mL). The HPLC-DAD-ESI-MS/MS analysis indicated that the compounds in polyphenol extracts were mainly phlorotannin derivatives, phenolic acid derivatives, and gallocatechin derivatives. In vivo, C57BL/6J rats treated with polyphenol extracts for 4 weeks had lower fasting blood glucose levels, insulin levels, as well as better serum lipid profiles and antioxidant stress parameters, compared with the diabetic control (DC) group. Histopathology revealed that polyphenol extracts preserved the architecture and function of the liver. Short-chain fatty acid contents in rats' fecal samples with polyphenols administration were significantly recovered as compared with the DC group. Furthermore, the gut microflora of rats was investigated with high-throughput 16S rRNA gene sequencing and results indicated that polyphenol extracts had a positive effect on regulating the dysbiosis of the microbial ecology in diabetic rats. All of the results from the study provided a scientific reference of the potentially beneficial effects of L. trabeculate polyphenols on diabetes management.
Collapse
Affiliation(s)
- Yuan Yuan
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yanfen Zheng
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Jinhui Zhou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yuting Geng
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Ping Zou
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Yiqiang Li
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| | - Chengsheng Zhang
- Marine Agriculture Research Center , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , China
| |
Collapse
|
36
|
Zuo ML, Wang AP, Tian Y, Mao L, Song GL, Yang ZB. Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and AKT in the liver. J Cell Biochem 2019; 120:16185-16194. [PMID: 31087709 DOI: 10.1002/jcb.28898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022]
Abstract
Insulin resistance plays a key role in the development and progression of type 2 diabetes mellitus (T2DM). Recent studies found that insulin resistance was associated with the dysfunction of KH-type splicing regulatory protein (KSRP) expression and AKT pathway, and that oxymatrine possesses an antidiabetic effect. The aim of the present study was to investigate whether the protection of oxymatrine against T2DM was associated with the modulation of the KSRP expression and AKT pathway. Sprague-Dawley rats were fed a high-fat diet and injected with streptozotocin intraperitoneally to induce T2DM, which led to an increase in blood glucose levels and insulin resistance, and a decrease in insulin sensitivity and glycogen synthesis concomitant with KSRP downregulation, PTEN upregulation, and AKT phosphorylation deficiency. The administration of oxymatrine decreased blood glucose levels and insulin resistance, increased insulin sensitivity, and improved glycogen synthesis in the liver of T2DM rats, through a reversal in the expression of KSRP, PTEN, and AKT. On the basis of these observations, we concluded that oxymatrine can protect T2DM rats from insulin resistance through the regulation of the KSRP, PETN, and AKT expression in the liver.
Collapse
Affiliation(s)
- Mei-Ling Zuo
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ying Tian
- Institute of Clinical Research, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Li Mao
- Department of Basic Medicine, Changsha Health Vocational College, Changsha, Hunan, China
| | - Gui-Lin Song
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| | - Zhong-Bao Yang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China.,Institute of Emergency and Critical Care Medicine of Changsha, Changsha, China
| |
Collapse
|
37
|
Wang L, Li X, Zhang Y, Huang Y, Zhang Y, Ma Q. Oxymatrine ameliorates diabetes-induced aortic endothelial dysfunction via the regulation of eNOS and NOX4. J Cell Biochem 2019; 120:7323-7332. [PMID: 30456880 DOI: 10.1002/jcb.28006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
AIM Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait (the Chinese herb Kushen) and exhibits diverse pharmacological actions. In this study, we investigated the effects of OMT on diabetes-associated aortic endothelial dysfunction in a rat model of diabetes and its mechanisms. METHODS Male Sprague-Dawley rats were randomly divided into five groups: control, diabetic rats, diabetic rats treated with OMT (60, 120 mg/kg per day, by gavage), and diabetic rats treated with metformin (20 mg/kg per day, by gavage). The serum fasting blood glucose, insulin, total cholesterol, triglyceride, and nitric oxide (NO) levels were determined with commercial kits. Biochemical indices reflecting oxidative stress, such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were analyzed with commercial kits. Mitochondrial reactive oxygen species 2',7'-dichlorofluorescein diacetate (DCFH-DA) was measured by fluorescence microscopy. Histological analyses were conducted to observe morphological changes. Western blot analysis was applied to detect the expression levels of eNOS and NOX4. Reverse transcription polymerase chain reaction was used to detect the expressions of eNOS and NOX4 messenger RNA (mRNA). RESULTS The diabetic rats exhibited markedly reduced body weight and increased plasma glucose levels. Moreover, the diabetic rats showed oxidative stress (significantly increased MDA and decreased SOD, CAT, GSH-Px, and serum NO levels). Hyperglycemia caused significant endothelial injury and dysfunction, including vasodilative and histologic changes in the diabetic rats. The expressions of phospho-eNOS protein and mRNA were significantly decreased, while the NOX4 protein expression was increased in the aortas of the diabetic rats. All of these diabetes-induced effects were reversed by OMT in the diabetic rats. CONCLUSION The OMT treatment ameliorates diabetic endothelial dysfunction through enhanced NO bioavailability by upregulating eNOS expression and downregulating expression of NOX4.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xinliang Li
- Department of Pharmacology, Institue of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yanqi Zhang
- 2016 Class B, Department of Stomatology, School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Yongpan Huang
- Department of Pharmacology, Institue of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China.,Department of clinic, Medicine School, Changsha Social Work College, Changsha, China
| | - Yinzhuang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Tseng YH, Chang CW, Chiang W, Hsieh SC. Adlay Bran Oil Suppresses Hepatic Gluconeogenesis and Attenuates Hyperlipidemia in Type 2 Diabetes Rats. J Med Food 2019; 22:22-28. [PMID: 30673500 DOI: 10.1089/jmf.2018.4237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study aimed to examine the antidiabetic effects of various concentrations of adlay bran oil (ABO) in high fat diet and streptozotocin-induced diabetic rats. Dietary supplementation with 10% ABO for 4 weeks effectively decreased the blood triacylglycerol, glucose, and total cholesterol levels in diabetic rats, although body weight remained the same. The mRNA and protein expressions of hepatic glucose transporter 2 (GLUT-2) and phosphoenolpyruvate carboxykinase (PEPCK) were increased and that of glucokinase (GCK) were decreased in diabetic rats. However, 10% ABO treatment reduced the mRNA and protein expressions of GLUT-2 and PEPCK and elevated the expression of hepatic GCK in diabetic rats. Thus, ABO enhanced hepatic glucose metabolism to decrease blood glucose in diabetic rats. In addition, 10% ABO supplementation increased the expression of phosphorylated protein kinase B (Akt) relative to the total Akt levels in the muscles of diabetic rats, indicating enhanced insulin sensitivity. The results indicate that ABO displays a potential for improving hyperlipidemia and hyperglycemia in diabetes by enhancing insulin sensitivity and hepatic glucose metabolism.
Collapse
Affiliation(s)
- Yi-Han Tseng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ching-Wen Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wenchang Chiang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Kang J, Guo C, Thome R, Yang N, Zhang Y, Li X, Cao X. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K-Akt/PKB signaling pathway. RSC Adv 2018; 8:30539-30549. [PMID: 35546813 PMCID: PMC9085420 DOI: 10.1039/c8ra06045b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/22/2018] [Indexed: 11/26/2022] Open
Abstract
Iridoid glycosides (CIG) are the major component of Corni fructus. In this work, we researched the antioxidative, hypoglycemic and lowering blood lipids effects of CIG on diabetic mice induced by a high-fat diet (HFD) and streptozotocin (STZ). Furthermore, to investigate the molecular mechanism of action, the phosphorylation and protein expression of phosphoinositide 3-kinase (PI3K) and its downstream proteins, such as insulin receptor (INSR), protein kinase B (Akt/PKB) and glucose transporter 4 (GLUT4) have been detected. The results showed that CIG significantly improved oral glucose tolerance in diabetic mice. Biochemical indices also revealed that CIG had a positive effect on lipid metabolism and oxidative stress. In addition, CIG can significantly enhance the expression level of the PI3K-Akt/PKB pathway related proteins in skeletal muscle, which is the key pathway of insulin metabolism. These findings show that CIG can improve the hyperglycemia and hyperlipidemia of HFD-STZ-induced diabetic mice through the PI3K-Akt/PKB signaling pathway, and CIG might be a potential medicine or functional food for type 2 diabetes mellitus remedies.
Collapse
Affiliation(s)
- Jiefang Kang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Chen Guo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University Philadelphia PA 19107 USA
| | - Ning Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Xing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an Shaanxi China
| |
Collapse
|
40
|
Liu P, Xue J, Tong S, Dong W, Wu P. Structure Characterization and Hypoglycaemic Activities of Two Polysaccharides from Inonotus obliquus. Molecules 2018; 23:E1948. [PMID: 30081555 PMCID: PMC6222507 DOI: 10.3390/molecules23081948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023] Open
Abstract
In the present study, two polysaccharides (HIOP1-S and HIOP2-S) were isolated and purified from Inonotus obliquus using DEAE-52 cellulose and Sephadex G-100 column chromatography. The structural characterization and in vitro and in vivo hypoglycaemic activities of these molecules were investigated. HPLC analysis HIOP1-S was a heterpolysaccharide with glucose and galactose as the main compontent monosaccharides (50.247%, molar percentages). However, HIOP2-S was a heterpolysaccharide with glucose as the main monosaccharide (49.881%, molar percentages). The average molecular weights of HIOP1-S and HIOP2-S were 13.6 KDa and 15.2 KDa, respectively. The β-type glycosidic bond in HIOP1-S and HIOP2-S was determined using infrared analysis. ¹H-NMR spectra indicated that HIOP2-S contains the β-configuration glycosidic bond, and the glycoside bonds of HIOP1-S are both α-type and β-type. The ultraviolet scanning showed that both HIOP1-S and HIOP2-S contained a certain amount of binding protein. Congo red test showed that HIOP1-S and HIOP2-S could form a regular ordered triple helix structure in the neutral and weakly alkaline range. HIOP1-S and HIOP2-S showed strong α-glucosidase inhibitory activities and increased the glucose consumption of HepG2 cells. In addition, Streptozotocin (STZ)-induced hyperglycaemic mice were used to evaluate the antihyperglycaemic effects of HIOP1-S and HIOP2-S in vivo. The results showed that HIOP2-S had antihyperglycaemic effects. Taken together, these results suggest that HIOP1-S and HIOP2-S have potential anti-diabetic effects.
Collapse
Affiliation(s)
- Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiao Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Shisheng Tong
- Bio-Pharmaceutical College, Beijing City University, Beijing 100094, China.
| | - Wenxia Dong
- College of Life Sciences, Qufu Normal University, Jining 273165, China.
| | - Peipei Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
41
|
Characterization and Antimicrobial Activity of Alkaloid Extracts from Seeds of Different Genotypes of Lupinus spp. SUSTAINABILITY 2018. [DOI: 10.3390/su10030788] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Wang J, Du K, Fang L, Liu C, Min W, Liu J. Evaluation of the antidiabetic activity of hydrolyzed peptides derived fromJuglans mandshuricaMaxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice. J Food Biochem 2018. [DOI: 10.1111/jfbc.12518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ji Wang
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| | - Kaiying Du
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| | - Li Fang
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| | - Chunlei Liu
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| | - Weihong Min
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| | - Jingsheng Liu
- College of Food Science and Engineering; Jilin Agricultural University; Changchun 130118 People's Republic of China
- National Engineering Laboratory on Wheat and Corn Further Processing; Changchun JiLin 130118 People's Republic of China
| |
Collapse
|
43
|
Chen Z, Wang C, Pan Y, Gao X, Chen H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct 2018; 9:426-439. [PMID: 29220052 DOI: 10.1039/c7fo00983f] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Black soybean seed coat extract (BSSCE) is a rich source of anthocyanins with multiple health effects. This study was aimed at investigating the composition and hypoglycemic and hypolipidemic effects of BSSCE in vitro and in a high-fat diet and streptozotocin (STZ)-induced diabetic mice. The anthocyanins of BSSCE were identified as cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and peonidin-3-O-glucoside by HPLC-MS. Results demonstrated that BSSCE exhibited strong inhibitory activities for α-amylase, potent inhibition activity against lipid accumulation in HepG2 cells and protection effect on H2O2-induced oxidative stress-damaged HepG2 cells. The food and water intake, body weight loss, blood glucose and insulin level of BSSCE treatment group were found to be significantly reduced when compared with those of diabetic mice group (p < 0.05). The fasting blood glucose level and insulin level of the BSSCE 400 mg kg-1 group mice significantly decreased by 47.97% and 46.49%, respectively. The oral glucose tolerance and activities of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) notably improved (p < 0.05). BSSCE could also ameliorate the atherogenic dyslipidaemia of diabetic mice by remarkably decreasing the content of total cholesterol (T-CHO), total triglyceride (TG), and non-esterified fatty acid (NEFA) and increasing the content of high-density lipoprotein cholesterol (HDL-c) (p < 0.05). BSSCE could protect against liver, kidney and pancreas damages in diabetic mice. This study suggested that cyanidin-3-O-glucoside contributed to BSSCE-induced hypoglycemia and hypolipidemia effects in type 2 diabetes mellitus (T2DM), and BSSCE might be a promising functional food or medicine for T2DM treatment.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
Aydın AF, Bingül İ, Küçükgergin C, Doğan-Ekici I, Doğru Abbasoğlu S, Uysal M. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int J Exp Pathol 2017; 98:278-288. [PMID: 29205589 DOI: 10.1111/iep.12252] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
High-fat diet (HFD) and low-dose streptozotocin (STZ)-treated rats provide useful animal model for type II diabetes mellitus. Oxidative stress and advanced glycation end products (AGEs) play a role in the development of diabetic complications. Carnosine (CAR) has anti-oxidant and anti-glycating properties. We investigated the effects of CAR on oxidation and glycation products in HFD+STZ rats. Rats were fed with HFD (60% of total calories from fat) for 4 weeks, and then a single dose of STZ (40 mg/kg; i.p.) was applied. Rats with blood glucose levels above 200 mg/dl were fed with HFD until the end of the 12th week. CAR (250 mg/kg body weight; i.p.; five times a week) was administered to the rats for the last four weeks. CAR significantly decreased serum triglyceride (TG) (57.7%), cholesterol (35.6%) levels and hepatic marker enzyme activities of HFD+STZ rats. It significantly reduced serum reactive oxygen species (ROS) (23.7%), AGEs (13.4%) and advanced oxidized protein products (AOPP) (35.9%) and hepatic TG (59%), ROS (26%), malondialdehyde (MDA) (11.5%), protein carbonyl (PC) (19.2%) and AGE (20.2%) levels. Liver steatosis and hepatocyte ballooning were also significantly reduced. However, CAR treatment did not alter serum glucose and blood glycated haemoglobin and hepatic anti-oxidant enzyme activities/mRNA expressions in HFD+STZ rats. Our results indicate that CAR decreased accumulation of oxidation and glycation products, such as MDA, AGE, AOPP and PC in the serum and liver and ameliorated hepatic dysfunction in HFD+STZ rats. This effect may be related to its anti-oxidative, anti-glycating, and anti-lipogenic potential.
Collapse
Affiliation(s)
| | - İlknur Bingül
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Canan Küçükgergin
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Işın Doğan-Ekici
- Department of Pathology, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Semra Doğru Abbasoğlu
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Istanbul Medical Faculty, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Lu M, Zhang Q, Chen K, Xu W, Xiang X, Xia S. The regulatory effect of oxymatrine on the TLR4/MyD88/NF-κB signaling pathway in lipopolysaccharide-induced MS1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:153-159. [PMID: 29157809 DOI: 10.1016/j.phymed.2017.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Oxymatrine (OM), a major quinolizidine alkaloid extracted from the roots of Sophora flavescens, has been proved to regulate a variety of signaling pathways to produce a wide range of pharmacological effects. OBJECTIVES The regulatory effects of OM on the TLR4/MyD88/NF-κB signaling pathway under the stimulation of lipopolysaccharide (LPS) in MS1 cells were explored to illuminate the potential anti-inflammatory mechanism of OM for pancreatitis treatment. METHODS The signaling molecules related to the TLR4/MyD88/NF-κB pathway in MS1 cells were detected by Western blotting under different conditions, including OM pretreatment and LPS stimulation. The mRNA expression levels of TLR4, MyD88, NF-κB p65 and IκBα were detected by real-time PCR. The NF-κB p65 nuclear translocation in MS1 cells was measured by immunofluorescence, and the pro-inflammatory cytokine of IL-1β was detected by ELISA. RESULTS Increased levels of TLR4, MyD88 and NF-κB p65, induced by LPS stimulation, were significantly inhibited by OM pretreatment in MS1 cells. The decreased protein, but not mRNA, level of IκBα induced by LPS stimulation was increased by OM pretreatment. Meanwhile, LPS induced NF-κB p65 protein translocation to the nucleus as well as LPS increased expression of IL-1β were also inhibited by OM pretreatment. CONCLUSION Inhibitory effects of OM on molecules related to the TLR4/MyD88/NF-κB signaling pathway in pancreatic microvascular endothelial cells can alleviate inflammatory responses.
Collapse
Affiliation(s)
- Meili Lu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China
| | - Qing Zhang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Wei Xu
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Xiaohui Xiang
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China; Postgraduate Training Base in Affiliated Hospital of Logistics University of People's Armed Police Forces, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
46
|
Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J Pharm Anal 2017; 8:109-118. [PMID: 29736297 PMCID: PMC5934737 DOI: 10.1016/j.jpha.2017.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/04/2022] Open
Abstract
In this study, molecular interactions of the ligands, quercetin, gallic acid, and metformin with various diabetes mellitus-related protein targets, such as glycogen phosphorylase and peroxisome proliferator-activated receptor gamma, were assessed. It was revealed that quercetin possesses good binding affinity to both targets. Quercetin is a major constituent of methanolic extracts of Phyllanthus emblica fruit. The antihyperglycemic effect of quercetin in streptozotocin (STZ)-induced diabetic rats was examined. The isolated quercetin administered at a dose of 75 mg/kg body weight produced a maximum decrease of 14.78% in blood glucose levels in the diabetic rats after 7 days of treatment. Furthermore, quercetin doses of 50 and 75 mg/kg were shown to significantly improve the profiles of triglycerides, high-density lipoprotein, very-low-density lipoprotein, low-density lipoprotein, and total cholesterol at the end of the study in STZ-induced diabetic rats. The administration of quercetin (25, 50, and 75 mg/kg body weight) daily for 28 days in STZ-induced diabetic rats resulted in a significant decrease in blood glucose and urine sugar levels, with a considerable rise in plasma insulin and hemoglobin levels. Therefore, quercetin is a potential drug with antidiabetic and antihyperglycemic action mediated by changes in the levels of glucose, cholesterol, and triglycerides as indicated by in silico and in vivo studies.
Collapse
Affiliation(s)
- Prabhu Srinivasan
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, A. V. V. M Sri Pushpam College (Autonomous), Poondi 613 503, Tamil Nadu, India
| | - S Vijayakumar
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, A. V. V. M Sri Pushpam College (Autonomous), Poondi 613 503, Tamil Nadu, India
| | | | - Manogar Palani
- Computational Phytochemistry Lab, PG and Research Department of Botany and Microbiology, A. V. V. M Sri Pushpam College (Autonomous), Poondi 613 503, Tamil Nadu, India
| |
Collapse
|
47
|
Wang D, Zhao X, Liu Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from flower buds of Lonicera japonica in streptozotocin-induced diabetic rats. Int J Biol Macromol 2017; 102:396-404. [DOI: 10.1016/j.ijbiomac.2017.04.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/15/2017] [Accepted: 04/12/2017] [Indexed: 01/03/2023]
|
48
|
Hou Z, Sun G, Guo Y. Linear Quantitative Profiling Method Fast Monitors Alkaloids of Sophora Flavescens That Was Verified by Tri-Marker Analyses. PLoS One 2016; 11:e0161146. [PMID: 27529425 PMCID: PMC4987015 DOI: 10.1371/journal.pone.0161146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
The present study demonstrated the use of the Linear Quantitative Profiling Method (LQPM) to evaluate the quality of Alkaloids of Sophora flavescens (ASF) based on chromatographic fingerprints in an accurate, economical and fast way. Both linear qualitative and quantitative similarities were calculated in order to monitor the consistency of the samples. The results indicate that the linear qualitative similarity (LQLS) is not sufficiently discriminating due to the predominant presence of three alkaloid compounds (matrine, sophoridine and oxymatrine) in the test samples; however, the linear quantitative similarity (LQTS) was shown to be able to obviously identify the samples based on the difference in the quantitative content of all the chemical components. In addition, the fingerprint analysis was also supported by the quantitative analysis of three marker compounds. The LQTS was found to be highly correlated to the contents of the marker compounds, indicating that quantitative analysis of the marker compounds may be substituted with the LQPM based on the chromatographic fingerprints for the purpose of quantifying all chemicals of a complex sample system. Furthermore, once reference fingerprint (RFP) developed from a standard preparation in an immediate detection way and the composition similarities calculated out, LQPM could employ the classical mathematical model to effectively quantify the multiple components of ASF samples without any chemical standard.
Collapse
Affiliation(s)
- Zhifei Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutical Engineering, Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yong Guo
- School of Pharmacy, Fairleigh Dickinson University, Florham Park, New Jersey, United States of America
| |
Collapse
|
49
|
Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur J Pharmacol 2016; 773:13-23. [DOI: 10.1016/j.ejphar.2016.01.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023]
|
50
|
Guo C, Li C, Yu Y, Chen W, Ma T, Zhou Z. Antihyperglycemic and antihyperlipidemic activities of protodioscin in a high-fat diet and streptozotocin-induced diabetic rats. RSC Adv 2016. [DOI: 10.1039/c6ra18448k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protodioscin attenuated hyperglycaemia and dyslipidemia in diabetic rats by improving the insulin sensitivity and increasing adiponectin concentrations.
Collapse
Affiliation(s)
- Changrun Guo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
- School of Chinese Medicines
| | - Can Li
- School of Chinese Medicines
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yue Yu
- School of Chinese Medicines
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Wei Chen
- School of Chinese Medicines
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Teng Ma
- School of Chinese Medicines
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Zhangjin Zhou
- School of Chinese Medicines
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|