1
|
Cui J, Deng Y, Li X, Gao L, Li J, Li Z, Qu H, Chu Y, Gu Y, Meng M, Li R. Herbal-based Xuebijing injection ameliorated vascular endothelial dysfunction via inhibiting ACLY/MYB/RIG-I axis in sepsis-associated lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156573. [PMID: 40088739 DOI: 10.1016/j.phymed.2025.156573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Excessive endothelial pro-inflammatory response is an early hallmark of sepsis-induced acute lung injury (ALI). Xuebijing (XBJ), a traditional Chinese medicine, is widely used in clinical practice to treat sepsis. PURPOSE This study aims to investigate the molecular mechanisms underlying the beneficial effects of XBJ. METHODS Plasma samples from septic patients treated with or without XBJ were collected and analyzed. The mouse model of sepsis was established by intraperitoneal injection of LPS (10 mg/kg). XBJ (10 ml/kg) was administrated intraperitoneally twice before LPS challenge and one time after LPS challenge. The severity of lung injury and the levels of inflammation and coagulation were evaluated. In vitro, HUVEC were used to explore the mechanisms of XBJ and its compounds in regulating the ACLY/MYB/RIG-I axis. RESULTS XBJ significantly reduced the plasma levels of endothelial cell (EC) damage-related markers in septic patients. The in vivo and in vitro data demonstrated that XBJ alleviated LPS-induced lung injury and reduced the levels of inflammation and coagulation activation in ECs. XBJ inhibited the phosphorylation-dependent activation of ATP citrate lyase (ACLY), thereby suppressing the acetylation-dependent nuclear translocation of the transcription factor MYB. The expression of retinoic acid inducible gene I (RIG-I) was downregulated, leading to the inhibition of NF-κB signaling and EC pro-inflammatory and coagulation activation, which further alleviated sepsis-associated ALI. Moreover, XBJ compounds Quercetin, Ferulic Acid, Kaempferol and Paeoniflorin all showed inhibitory effects on the activation of the downstream MYB/RIG-I signaling by binding to ACLY protein. CONCLUSION Our study revealed a novel regulatory mechanism of XBJ in sepsis-induced EC dysfunction and ALI. The compounds in XBJ inhibited the activity of ACLY, thereby inhibiting the expression of RIG-I by reducing the acetylation of transcription factor MYB, leading to the alleviation of EC activation and lung injury induced by sepsis. Our findings provide a theoretical basis for the clinical application of XBJ and shedding light on novel therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Jiayin Cui
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yunxin Deng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xuechuan Li
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Liya Gao
- Yantai Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256600, PR China
| | - Jinrong Li
- Yantai Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256600, PR China
| | - Zuxian Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yufeng Chu
- Neurocritical Care Unit, Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong, 250012, PR China
| | - Yuchao Gu
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Mei Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
2
|
Zhang X, Qi F, Gao W, Li Y, Yang H, Li P. A newly discovered bioactive equivalence of combinatorial components of Angong Niuhuang pill improves ischemic stroke via the PI3K/AKT axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119453. [PMID: 39922326 DOI: 10.1016/j.jep.2025.119453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angong Niuhuang pill (ANP) is effective in preventing and treating ischemic stroke, however, the pharmacodynamic substances and mechanism of ANP have not been scientifically clarified. AIM OF THE STUDY This study aims to identify the bioactive equivalence of combinatorial components (BECCs) of ANP for treating ischemic stroke and discuss the underlying mechanisms. MATERIALS AND METHODS Network pharmacology was performed to screen key compounds and predict potential pathways. The effect of BECCs on ischemic stroke was screened and verified in ponatinib-induced zebrafish model and mice middle cerebral artery occlusion (MCAO) model. Finally, the mechanism of BECCs was preliminarily investigated. RESULTS Through network pharmacology, the degree values of each component in ANP were determined, and five candidate BECCs were obtained by combining the content of the components in the original prescription. The BECCs V has the same efficacy as the original formula in reducing the movement disorder and neuronal injury of zebrafish cerebral ischemia models and lowering the neurologic deficits and cerebral infarction volume of mouse MCAO models. Mechanistically, BECCs V and ANP blocked neuronal autophagy through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis, inhibited microglial inflammatory activation through the PI3K/AKT/hypoxia inducible factor-1α (HIF-1α) axis, protected microvascular endothelial function through the PI3K/AKT/forkhead box O3 (FoxO3a) axis, thereby improving ischemic cerebral injury. CONCLUSIONS The newly discovered BECCs V is equivalent to ANP in regulating the motor function recovery rate and neuroprotective rate of zebrafish and the neurological deficit scores and the average infarct volume of MCAO mice. This study suggests that the PI3K/AKT signaling axis plays a key role in neuronal autophagy, microglial inflammatory activation and microvascular endothelial dysfunction induced by cerebral ischemic injury, suggesting that the regulation of PI3K/AKT may be a potential therapeutic strategy for neuroprotection and ischemic stroke injury.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fenghua Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Yang L, Xuan R, Xu D, Sang A, Zhang J, Zhang Y, Ye X, Li X. Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques. Front Immunol 2025; 16:1526174. [PMID: 40129981 PMCID: PMC11931141 DOI: 10.3389/fimmu.2025.1526174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers and precise therapeutic targets. Methods We screened out five gene expression datasets (GSE69063, GSE236713, GSE28750, GSE65682 and GSE137340) from the Gene Expression Omnibus. First, we merged the first two datasets. We then identified differentially expressed genes (DEGs), which were subjected to KEGG and GO enrichment analyses. Following this, we integrated the DEGs with the genes from key modules as determined by Weighted Gene Co-expression Network Analysis (WGCNA), identifying 262 overlapping genes. 12 core genes were subsequently selected using three machine-learning algorithms: random forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVW-RFE). The utilization of the receiver operating characteristic curve in conjunction with the nomogram model served to authenticate the discriminatory strength and efficacy of the key genes. CIBERSORT was utilized to evaluate the inflammatory and immunological condition of sepsis. Astragalus, Salvia, and Safflower are the primary elements of Xuebijing, commonly used in the clinical treatment of sepsis. Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we identified the chemical constituents of these three herbs and their target genes. Results We found that CD40LG is not only one of the 12 core genes we identified, but also a common target of the active components quercetin, luteolin, and apigenin in these herbs. We extracted the common chemical structure of these active ingredients -flavonoids. Through docking analysis, we further validated the interaction between flavonoids and CD40LG. Lastly, blood samples were collected from healthy individuals and sepsis patients, with and without the administration of Xuebijing, for the extraction of peripheral blood mononuclear cells (PBMCs). By qPCR and WB analysis. We observed significant differences in the expression of CD40LG across the three groups. In this study, we pinpointed candidate hub genes for sepsis and constructed a nomogram for its diagnosis. Discussion This research not only provides potential diagnostic evidence for peripheral blood diagnosis of sepsis but also offers insights into the pathogenesis and disease progression of sepsis.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Rui Xuan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Dawei Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Aming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| | - Yanfang Zhang
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Anesthesiology, Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Sugery, Wuhan, China
- Department of Anesthesiology, Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China
| |
Collapse
|
4
|
Yin S, Wang C, Yue X, Huang Q, Wu W, Qin G, Luo L, Wu H. Experimental Study on Myocardial Protective Effect of Xuebijing Injection on Extracorporeal Membrane Oxygenation Perfused Isolated Heart: Based on Autophagy and NLRP3 Inflammatory Pathway. Transplant Proc 2025; 57:416-423. [PMID: 39837672 DOI: 10.1016/j.transproceed.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND The purpose of this study was to investigate the myocardial protective effect of Xuebijing (XBJ) injection in isolated donor heart preservation based on autophagy and NLRP3 inflammatory pathway, and to provide clues for improving the quality of donor heart preservation in the clinic. METHODS Fourteen Guangxi Bama miniature pigs were randomly divided into two groups to establish the isolated heart perfusion model of extracorporeal membrane oxygenation (ECMO): (1) normal saline group (NS group): 50 mL normal saline was added to the perfusion solution; and (2) Xuebijing injection group (XBJ group): 10 mL of XBJ was added to the perfusate. Both groups were continuously pumped with 5 mL/h for 8 hours. Hemodynamic changes, inflammatory reaction, and myocardial enzyme levels were observed at five different time points. Western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expression of autophagy markers and the NLRP3 signaling pathway related factors mRNA in myocardial tissue. Hematoxylin and eosin (H&E) staining and transmission electron microscopy were used to observe the pathomorphology and ultrastructure of the myocardium. RESULTS There was no significant difference in perfusion pressure, heart rate, perfusion flow, and PH value between the two groups. The degree of myocardial tissue injury in the XBJ group was lighter, and the levels of myocardial enzymes, serum inflammatory factors were lower. The mRNA expression levels of beclin-1 and LC3 in the XBJ group were higher than those in the saline group, and the mRNA expression levels of NLRP3, Caspase-1, and ASC were lower. CONCLUSIONS Xuebijing injection can effectively improve the level of autophagy, reduce the activation and release of NLRP3 inflammasome, and slow down the inflammatory response, which has a certain myocardial protection effect.
Collapse
Affiliation(s)
- Shijie Yin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Chunhua Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao Yue
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qiangxin Huang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Wu
- Department of Anesthesiology, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Guanbin Qin
- Department of Anesthesiology, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lan Luo
- Department of Anesthesiology, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Huabei Wu
- Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Lin TS, Cai XX, Wang YB, Xu JT, Xiao JH, Huang HY, Li SF, Liu KM, Chen JH, Li LP, Ni J, Chen YG, Zhu ZH, Li J, Hu YJ, Huang HD, Zuo HL, Lin YCD. Identifying Baicalein as a Key Bioactive Compound in XueBiJing Targeting KEAP1: Implications for Antioxidant Effects. Antioxidants (Basel) 2025; 14:248. [PMID: 40227198 PMCID: PMC11939276 DOI: 10.3390/antiox14030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND XueBiJing injection (XBJ) is renowned for its multi-target pharmacological effects, including immunomodulatory, antithrombotic, and antioxidant activities, offering potential therapeutic benefits for patients with severe infections such as sepsis and Coronavirus disease 2019 (COVID-19). Despite its clinical effectiveness, the molecular targets and mechanisms of XBJ remain unclear, warranting further investigation. PURPOSE This study aimed to identify the key bioactive compounds in XBJ and elucidate their molecular targets and mechanisms. METHODS The zebrafish model was first used to evaluate the anti-inflammatory and antioxidant effects of XBJ, and the differentially expressed genes (DEGs) were identified by RNA sequencing and network analysis. Network pharmacology was used to analyze the relationship between bioactive compounds and molecular targets, and molecular docking and kinetic simulation were used to explore the target binding ability of key compounds. Cellular Thermal Shift Assay-Western Blot (CETSA-WB) and Surface Plasmon Resonance (SPR) further verified the interaction between compounds and targets; finally, the key pathways were confirmed by gene silencing experiments. RESULTS The zebrafish model results reveal that XBJ significantly reduced neutrophil and macrophage counts in a dose-dependent manner, emphasizing its potent anti-inflammatory effects. A transcriptomic analysis highlighted the differential expression of key genes in the KEAP1/NRF2 pathway, including HMOX1, SLC7A11, NQO1, and TXNRD1. A network analysis further pinpointed KEAP1 as a central molecular target, with tanshinone IIA, baicalein, and luteolin identified as key active compounds modulating this pathway. Among these, tanshinone IIA and baicalein exhibited strong binding interactions with KEAP1, which were confirmed through molecular docking and kinetic simulations. Further validation showed that baicalein directly targets KEAP1, as demonstrated by CETSA-WB and SPR analysis. Additionally, the gene silencing experiments of KEAP1 and NRF2 reinforced their crucial roles in activating the KEAP1/NRF2 pathway. CONCLUSION These findings collectively establish baicalein as a critical bioactive compound in XBJ, driving its antioxidant and anti-inflammatory effects via KEAP1/NRF2 pathway activation through direct binding to KEAP1, providing new insights into the mechanism of action of XBJ.
Collapse
Affiliation(s)
- Ting-Syuan Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Bing Wang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jia-Tong Xu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ji-Han Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Shang-Fu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Kun-Meng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Ji-Hang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
| | - Li-Ping Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jie Ni
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zi-Hao Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jing Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (T.-S.L.); (X.-X.C.); (Y.-B.W.); (J.-T.X.); (J.-H.X.); (H.-Y.H.); (S.-F.L.); (J.-H.C.); (L.-P.L.); (J.N.); (Y.-G.C.); (Z.-H.Z.); (J.L.); (H.-D.H.)
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Li S, Xiao W. General expert consensus on the application of network pharmacology in the research and development of new traditional Chinese medicine drugs. Chin J Nat Med 2025; 23:129-142. [PMID: 39986690 DOI: 10.1016/s1875-5364(25)60802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 02/24/2025]
Abstract
The research and development of new traditional Chinese medicine (TCM) drugs have progressively established a novel system founded on the integration of TCM theory, human experience, and clinical trials (termed the "Three Combinations"). However, considering TCM's distinctive features of "syndrome differentiation and treatment" and "multicomponent formulations and complex mechanisms", current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system. Moreover, significant obstacles persist in gathering human experience data, evaluating clinical efficacy, and controlling the quality of active ingredients, which impede the innovation process in TCM drug development. Network pharmacology, centered on the "network targets" theory, transcends the limitations of the conventional "single target" reductionist research model. It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions. This approach aligns with the holistic perspective of TCM, offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs. It is internationally recognized as a "next-generation drug research model". To advance the research of new tools, methods, and standards for TCM evaluation and to overcome fundamental, critical, and cutting-edge technical challenges in TCM regulation, this consensus aims to explore the characteristics, progress, challenges, applicable pathways, and specific applications of network pharmacology as a new theory, method, and tool in TCM drug development. The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.
Collapse
Affiliation(s)
- Shao Li
- Institute of TCM-X/MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist/Department of Automation, Tsinghua University, Beijing 100084, China.
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222047, China.
| |
Collapse
|
7
|
Deng M, Chen S, Wu J, Su L, Xu Z, Jiang C, Sheng L, Yang X, Zeng L, Wang J, Dai W. Exploring the anti-inflammatory and immune regulatory effects of Taohe Chengqi decoction in sepsis-induced lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118404. [PMID: 38824977 DOI: 10.1016/j.jep.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis presents complex pathophysiological challenges. Taohe Chengqi Decoction (THCQ), a traditional Chinese medicine, offers potential in managing sepsis-related complications, though its exact mechanisms are not fully understood. AIM OF THE STUDY This research aimed to assess the therapeutic efficacy and underlying mechanisms of THCQ on sepsis-induced lung injury. MATERIALS AND METHODS The study began with validating THCQ's anti-inflammatory effects through in vitro and in vivo experiments. Network pharmacology was employed for mechanistic exploration, incorporating GO, KEGG, and PPI analyses of targets. Hub gene-immune cell correlations were assessed using CIBERSORT, with further scrutiny at clinical and single-cell levels. Molecular docking explored THCQ's drug-gene interactions, culminating in qPCR and WB validations of hub gene expressions in sepsis and post-THCQ treatment scenarios. RESULTS THCQ demonstrated efficacy in modulating inflammatory responses in sepsis, identified through network pharmacology. Key genes like MAPK14, MAPK3, MMP9, STAT3, LYN, AKT1, PTPN11, and HSP90AA1 emerged as central targets. Molecular docking revealed interactions between these genes and THCQ components. qPCR results showed significant modulation of these genes, indicating THCQ's potential in reducing inflammation and regulating immune responses in sepsis. CONCLUSION This study sheds light on THCQ's anti-inflammatory and immune regulatory mechanisms in sepsis, providing a foundation for further research and potential clinical application.
Collapse
Affiliation(s)
- Mingtao Deng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Siqi Chen
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jian Wu
- Department of Medical Technology, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Liling Su
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Zijin Xu
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Changrun Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Lei Sheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Xinyi Yang
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Dong Lake District, Nanchang, Jiangxi Province, 330000, People's Republic of China
| | - Long Zeng
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Jingwei Wang
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China
| | - Wei Dai
- Shangrao Key Laboratory of Health Hazards and Bioprevention of Heavy Metals, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Critical Care Medicine, The First Affiliated Hospital of Jiangxi Medical College, No. 31 Qingfeng Road, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China; Department of Clinical Medicine, Jiangxi Medical College, No. 399 Zhimin Avenue, Xinzhou District, Shangrao, Jiangxi Province, 334000, People's Republic of China.
| |
Collapse
|
8
|
Wang B, Xiao L, Chen P, Zhang T, Zhang P, Cao L, Zhou Z, Cheng H, Zhang T, Li S. Uncovering the role of traditional Chinese medicine in immune-metabolic balance of gastritis from the perspective of Cold and Hot: Jin Hong Tablets as a case study. Chin Med 2024; 19:134. [PMID: 39367502 PMCID: PMC11451182 DOI: 10.1186/s13020-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
Chronic gastritis (CG) is a common inflammatory disease of chronic inflammatory lesion of gastric mucosa and in the diagnosis of gastritis in traditional Chinese medicine (TCM), CG can be classified into Cold ZHENG (syndrome in TCM) and Hot ZHENG. However, the molecular features of Cold/Hot ZHENG in CG and the mechanism of Cold/Hot herbs in formulae for CG remained unclear. In this study, we collected a transcriptomics data including 35 patients of Cold/Hot ZHENG CG and 3 scRNA-seq CG samples. And 25 formulae for CG and 89 herbs recorded in these formulae were also collected. We conduct a comprehensive analysis based on the combination of transcriptomics datasets and machine learning algorithms, to discover biomarkers for Cold/Hot ZHENG CG. Then the target profiles of the collected formulae and Cold/Hot herbs were predicted to uncover the features and biomarkers of them against Cold/Hot ZHENG CG. These biomarkers suggest that Hot ZHENG CG might be characterized by over-inflammation and exuberant metabolism, and Cold ZHENG CG showed a trend of suppression in immune regulation and energy metabolism. Biomarkers and specific pathways of Hot herbs tend to regulate immune responses and energy metabolism, while those of Cold herbs are more likely to participate in anti-inflammatory effects. Finally, the findings were verified based on public transcriptomics datasets, as well as transcriptomics and ELISA detection, taking Jin Hong tablets as a case study. Biomarkers like leptin and IL-6 together with proportions of immune cells showed significant changes after the intervention. These findings might reflect the mechanism and build a bridge between macro and micro views of Cold/Hot ZHENG as well as Cold/Hot herbs.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lihao Xiao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Pan Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Ziyi Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Haibo Cheng
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Feng F, Hu P, Peng L, Xu L, Chen J, Chen Q, Zhang X, Tao X. Integrated network pharmacology and metabolomics to reveal the mechanism of Pinellia ternata inhibiting non-small cell lung cancer cells. BMC Complement Med Ther 2024; 24:263. [PMID: 38992647 PMCID: PMC11238457 DOI: 10.1186/s12906-024-04574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of bioactive compound-target gene-metabolic enzyme-metabolite interactions were constructed. In conclusion, this study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for identifying the potential mechanisms underlying the pharmacological effects of natural compounds.
Collapse
Affiliation(s)
- Fan Feng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Ping Hu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lei Peng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lisheng Xu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Jun Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Qiong Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingkui Tao
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China.
| |
Collapse
|
10
|
Bai Y, Cai G, Guo N, Huang X, Gong J, Liu S, Guo Y, Wang W. UHPLC-HRMS based saponins profiling of three morphological regions in American ginseng ( Panax quinquefolium L.) and their correlation with the antioxidant activity. Food Sci Biotechnol 2024; 33:1685-1696. [PMID: 38623439 PMCID: PMC11016038 DOI: 10.1007/s10068-023-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 04/17/2024] Open
Abstract
American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01453-4.
Collapse
Affiliation(s)
- Yuxin Bai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Guangzhi Cai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Na Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Yunlong Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Wei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 China
| |
Collapse
|
11
|
Cheng C, Ren C, Li MZ, Liu YH, Yao RQ, Yu Y, Yu X, Wang JL, Wang LX, Leng YC, Zhang H, Du FF, Dong N, Wang FQ, Wu Y, Xu F, Zhu XM, Zhang GP, Dong K, Liu S, Yao XQ, Li C, Yao YM. Pharmacologically significant constituents collectively responsible for anti-sepsis action of XueBiJing, a Chinese herb-based intravenous formulation. Acta Pharmacol Sin 2024; 45:1077-1092. [PMID: 38267547 PMCID: PMC11053071 DOI: 10.1038/s41401-023-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mu-Zi Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Hui Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yu
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Xuan Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Li Wang
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Li-Xue Wang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu-Chun Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Fei-Fei Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Feng-Qing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Fang Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Mei Zhu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Gui-Ping Zhang
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Kai Dong
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Si Liu
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Xiao-Qing Yao
- Tianjin Chasesun Pharmaceutical Co., Ltd, Tianjin, 301700, China
| | - Chuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Zhongshan, 528400, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Yang J, Ma D, Zhao Z, Guo J, Ren K, Wang F, Guo J. Exploring the mechanism of action of the combination of cinnamon and motherwort in the treatment of benign prostatic hyperplasia: A network pharmacology study. Medicine (Baltimore) 2024; 103:e37902. [PMID: 38669415 PMCID: PMC11049697 DOI: 10.1097/md.0000000000037902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Cinnamon and motherwort are traditional Chinese medicines and are often combined to treat benign prostatic hyperplasia; however, the specific therapeutic mechanisms involved remain unclear. Therefore, in this study, we applied a network pharmacology approach to investigate the potential mechanisms of action of the drug pair cinnamon and motherwort (PCM) for the treatment of benign prostatic hyperplasia. Relevant targets for the use of PCM to treat benign prostatic hyperplasia were obtained through databases. Protein-protein interactions were then identified by the STRING database and core targets were screened. Enrichment analysis was conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target proteins and ligands of PCM. We identified 22 active ingredients in PCM, 315 corresponding targets and 130 effective targets of PCM for the treatment of benign prostatic hyperplasia. These targets were related to the PI3K-Akt, MAPK, FoxO, TNF, and IL-17 signaling pathways. Network pharmacology was used to identify the effective components and action targets of PCM. We also identified potential mechanisms of action for PCM in the treatment of benign prostatic hyperplasia. Our results provide a foundation for expanding the clinical application of PCM and provide new ideas and directions for further research on the mechanisms of action of PCM and its components for the treatment of benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Jiutian Yang
- Graduate School of Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Dongyue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Ziwei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
- Graduate School of China Academy of Chinese Medical Sciences, Dongzhimen, Dongcheng District, Beijing, China
| | - Kai Ren
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Haidian District, Beijing, China
| |
Collapse
|
13
|
Chen X, Wu H, Li P, Peng W, Wang Y, Zhang X, Zhang A, Li J, Meng F, Wang W, Su W. Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:475. [PMID: 38675434 PMCID: PMC11053540 DOI: 10.3390/ph17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Tong T, Li P, Ding H, Huang Y, Liu S. Physical compatibility of Xuebijing injection with 53 intravenous drugs during simulated Y-site administration. PLoS One 2024; 19:e0299694. [PMID: 38517862 PMCID: PMC10959390 DOI: 10.1371/journal.pone.0299694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
OBJECTIVE Xuebijing injection (XBJ) is a commonly used herbal medicine injection in China. However, the physical compatibility of XBJ with other intravenous drugs remains unclear. The purpose of this research is to evaluate physical compatibility of Xuebijing injection (XBJ) with 53 intravenous drugs (including 31 Chinese medicine injections and 22 chemicals) during simulated Y-site administration. METHODS Y-site administration was simulated in vitro by admixing 0.33 ml/ml XBJ with an equal volume of other diluted 53 intravenous drugs, respectively. Physical compatibility including visual inspection, Tyndall beam, particle limits, turbidity, pH, chromacity value, spectroscopic absorption of 550 nm and 420 nm (A550 nm and A420 nm) were observed and assessed at 0, 1, 2, and 4 h. Physical compatibility was defined as all solutions with no color changes, no gas evolution, particulate formation and no Tyndall beam within 4 hours, turbidity changes <0.5 nephelometric turbidity unit (NTU) compared to 0 h, particle limits allowed by the Chinese Pharmacopoeia (Ch.P) 2020 edition, pH changes <10% compared to 0, chromacity value changes <200 compared to 0 h, or photometrical changes of A420 nm <0.0400 or A550 nm <0.0100 compared to 0 h. RESULTS XBJ was physically incompatible with 27 of the 53 intravenous drugs tested, 26 were compatible with XBJ for 4 h. CONCLUSIONS XBJ should not be simultaneously co-administered with 27 of the 53 intravenous drugs during simulated Y-site. If coadministration was inevitable, flushing tube with NS or D5W before and after infusion of XBJ was needed. Assessment included visual inspection, Tyndall beam, turbidity measurement, particle counts, pH measurement, chromacity value measurement and absorption of A550 nm were proved to be valid and robust for the quality control of infusion and compatibility of Chinese herbal injection.
Collapse
Affiliation(s)
- Tong Tong
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Peifang Li
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Haiwen Ding
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Ying Huang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| | - Sheng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, China
| |
Collapse
|
15
|
Lu Q, Wang N, Wen D, Guo P, Liu Y, Fu S, Ye C, Wu Z, Qiu Y. Baicalin attenuates lipopolysaccharide-induced intestinal inflammatory injury via suppressing PARP1-mediated NF-κB and NLRP3 signalling pathway. Toxicon 2024; 239:107612. [PMID: 38211803 DOI: 10.1016/j.toxicon.2024.107612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Bacterial lipopolysaccharide (LPS) exposure is a key inducer of intestinal inflammatory injury in weaned piglets, resulting in decreased growth performance of pigs and causing severe economic losses to the swine industry; however, the mechanism of intestinal inflammatory injury is still unclear. Baicalin is one of the main active ingredients extracted from the natural plant Scutellaria baicalensis that has biological functions, including anti-inflammatory activity. The aim of this study is to investigate the effect and mechanism of baicalin intervention on intestinal inflammatory injury caused by bacterial LPS exposure. In the present study, network pharmacology, molecular docking and DARTS results identified that baicalin has the potential to target PARP1, thereby potentially regulating a series of inflammation-related pathways, including the MAPK, NF-κB and Toll-like receptor signalling pathways, which play the role of antagonizing LPS-induced intestinal inflammatory injury. Further application of the LPS-induced IPEC-J2 cell model validated the finding that baicalin could alleviate LPS-induced intestinal inflammatory injury by inhibiting the PARP1-mediated NF-κB and NLRP3 signalling pathway. These findings demonstrate that baicalin can regulate the expression of PARP1 and that PARP1 has the potential to serve as an effective therapeutic target in the LPS-induced intestinal inflammatory injury.
Collapse
Affiliation(s)
- Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Defeng Wen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Wu X, Xin R, Zhang Y, Yang C, Sun F, Wang Y, Zheng F. Xuebijing improves inflammation and pyroptosis of acute lung injury by up-regulating miR-181d-5p-mediated SPP1 inactivation. Clinics (Sao Paulo) 2024; 79:100336. [PMID: 38325020 PMCID: PMC10862507 DOI: 10.1016/j.clinsp.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 μg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.
Collapse
Affiliation(s)
- XiaoYong Wu
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - RuoMei Xin
- Department of Nursing, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - YanZhong Zhang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - ChengRui Yang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - FangYuan Sun
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - YanLiang Wang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - FengXian Zheng
- Department of Critical Care Medicine, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China.
| |
Collapse
|
17
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Wang S, Sun Y, Zhang C, Chen B, Zhong M, Du R, Zhou Y, Tong G, Luo L. Network pharmacology, molecular docking and experimental verification reveal the mechanism of Yiguanjian decoction in treating acute liver failure. Eur J Integr Med 2024; 65:102326. [DOI: 10.1016/j.eujim.2023.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
19
|
Tang AL, Li Y, Sun LC, Liu XY, Gao N, Yan ST, Zhang GQ. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway. World J Emerg Med 2024; 15:206-213. [PMID: 38855370 PMCID: PMC11153371 DOI: 10.5847/wjem.j.1920-8642.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND This study aims to explore whether Xuebijing (XBJ) can improve intestinal microcirculation dysfunction in sepsis and its mechanism. METHODS A rat model of sepsis was established by cecal ligation and puncture (CLP). A total of 30 male SD rats were divided into four groups: sham group, CLP group, XBJ + axitinib group, and XBJ group. XBJ was intraperitoneally injected 2 h before CLP. Hemodynamic data (blood pressure and heart rate) were recorded. The intestinal microcirculation data of the rats were analyzed via microcirculation imaging. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the serum levels of interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α) in the rats. Histological analysis and transmission electron microscopy were used to analyze the injury of small intestinal microvascular endothelial cells and small intestinal mucosa in rats. The expression of vascular endothelial growth factor A (VEGF-A), phosphoinositide 3-kinase (PI3K), phosphorylated PI3K (p-PI3K), protein kinase B (Akt), and phosphorylated Akt (p-Akt) in the small intestine was analyzed via Western blotting. RESULTS XBJ improved intestinal microcirculation dysfunction in septic rats, alleviated the injury of small intestinal microvascular endothelial cells and small intestinal mucosa, and reduced the systemic inflammatory response. Moreover, XBJ upregulated the expression of VEGF-A, p-PI3K/total PI3K, and p-Akt/total Akt in the rat small intestine. CONCLUSION XBJ may improve intestinal microcirculation dysfunction in septic rats possibly through the VEGF-A/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- A-ling Tang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yan Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-chao Sun
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-yu Liu
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nan Gao
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Sheng-tao Yan
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| | - Guo-qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
20
|
Zhao L, Tian C, Yang Y, Guan H, Wei Y, Zhang Y, Kang X, Zhou L, Li Q, Ma J, Wan L, Zheng Y, Tong X. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19. Front Med 2023; 17:1014-1029. [PMID: 38157191 DOI: 10.1007/s11684-023-1040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
Traditional Chinese medicine (TCM) has played an important role in the prevention and treatment of Coronavirus disease 2019 (COVID-19) epidemic in China. The integration of Chinese and Western medicine is an important feature of Chinese COVID-19 prevention and treatment. According to a series of evidence-based studies, TCM can reduce the infection rate of severe acute respiratory syndrome coronavirus 2 in high-risk groups. For patients with mild and moderate forms of COVID-19, TCM can relieve the related signs and symptoms, shorten the period of nucleic-acid negative conversion, and reduce conversion rate to the severe form of the disease. For COVID-19 patients with severe and critical illnesses, TCM can improve inflammatory indicators and blood oxygen saturation, shorten the hospital stay, and reduce the mortality rate. During recovery, TCM can improve patients' symptoms, promote organ function recovery, boost the quality of patients' life, and reduce the nucleic-acid repositive conversion rate. A series of mechanism research studies revealed that capability of TCM to treat COVID-19 through antiviral and anti-inflammatory effects, immune regulation, and protection of organ function via a multicomponent, multitarget, and multipathway approach.
Collapse
Affiliation(s)
- Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chuanxi Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yingying Yang
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaomin Kang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qingwei Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Li Wan
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
21
|
Chen F, Yan S, Xu J, Jiang Y, Wang J, Deng H, Wang J, Zou L, Liu Y, Zhu Y. Exploring the potential mechanism of Xuebijing injection against sepsis based on metabolomics and network pharmacology. Anal Biochem 2023; 682:115332. [PMID: 37816419 DOI: 10.1016/j.ab.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Sepsis is a major contributor to the death of critically ill patients globally, in which metabolic disturbance is observed. Xuebijing injection (XBJ), a well-known traditional Chinese medicine, has received approval by the State Food and Drug Administration (SFDA) of China owing to its satisfactory clinical therapeutic effect. Nowadays, it has been applied clinically to the treatment of sepsis, but its effect on metabolic disorders remains unclear. In the present study, we sought to explore its underlying mechanism by employing a combination of network pharmacology and metabolomics. Initially, its protective effects were validated using a sepsis rat model created through cecal ligation puncture (CLP). Subsequently, the metabonomic strategy was utilized to discriminate the differential metabolic markers. Meanwhile, a comprehensive view of the potential ingredient-target-disease network was constructed based on a network pharmacology analysis. Next, the network diagram was constructed by integrating the results of network pharmacology and metabonomics. Finally, qRT-PCR together with Western blot was used to validate the expression levels of the associated genes. Based on our findings, we identified 34 differential metabolites in the sepsis group and 26 distinct metabolites in the XBJ group, with 8 common biological metabolites predominantly associated with arginine and proline metabolism. Through comprehensive analysis, we identified 21 genes that regulate metabolites, and qRT-PCR validation was conducted on six of these genes in both liver and kidney tissues. Additionally, XBJ demonstrated the capability to inhibit the activation of the NF-kB signaling pathway in both liver and kidney tissues, leading to a reduction in the occurrence of inflammatory responses. In summary, our study has validated the complexity of the natural compounds within XBJ and elucidated their potential mechanisms for addressing CLP-induced metabolic disturbances. This work contributes to our understanding of the bioactive compounds and their associated targets, providing insights into the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Fang Chen
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shifan Yan
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Xu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Jiang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Jia Wang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Huafei Deng
- Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
| | - Jingjing Wang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lianhong Zou
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yanjuan Liu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Yimin Zhu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
22
|
Hu T. Xuebijing Injection for Sepsis Treatment: When Will It Be Approved Outside of China? JAMA Intern Med 2023; 183:1280-1281. [PMID: 37721746 DOI: 10.1001/jamainternmed.2023.4398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Affiliation(s)
- Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Wang L, Ye B, Liu Y, Li J, Li C, Wen M, Li H. Xuebijing Injection Attenuates Heat Stroke-Induced Brain Injury through Oxidative Stress Blockage and Parthanatos Modulation via PARP-1/AIF Signaling. ACS OMEGA 2023; 8:33392-33402. [PMID: 37744847 PMCID: PMC10515343 DOI: 10.1021/acsomega.3c03084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 09/26/2023]
Abstract
Heat stroke (HS) is a potentially fatal acute condition caused by an interplay of complex events including inflammation, endothelial injury, and coagulation abnormalities that make its pharmacological treatment a challenging problem. The traditional Chinese medicine Xuebijing injection (XBJ) has been shown to reduce inflammatory responses and prevent organ injuries in HS-induced mice. However, the underlying mechanism of XBJ in HS-induced brain injury remains unclear. In this study, HS-induced rat models and cell models were established to elucidate the effects and underlying mechanisms of XBJ injection on HS-induced brain injury in vivo and in vitro. The results revealed that XBJ injection improved the survival outcome of HS rats and attenuated HS-induced brain injury in a concentration-dependent manner. Subsequently, the reduction in viability and proliferation of neurons induced by HS were reversed by XBJ treatment, while the HS-induced increased ROS levels and neuron death were also inhibited by XBJ injection. Mechanistically, HS activated PARP-1/AIF signaling in vitro and in vivo, inducing the translocation of AIF from the cytoplasm to the nucleus, leading to PARP-1-dependent cell death of neurons. Additionally, we compared XBJ injection effects in young and old age rats. Results showed that XBJ also provided protective effects in HS-induced brain injury in aging rats; however, the treatment efficacy of XBJ injection at the same concentration was more significant in the young age rats. In conclusion, XBJ injection attenuates HS-induced brain injury by inhibiting oxidative stress and Parthanatos via the PARP-1/AIF signaling, which might provide a novel therapeutic strategy for HS treatment.
Collapse
Affiliation(s)
- Lin Wang
- Department
of Emergency, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Boxin Ye
- The
First Clinical Medical School, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Yongrui Liu
- The
First Clinical Medical School, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Jun Li
- The
First Clinical Medical School, Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Chunhe Li
- Department
of Critical Care Medicine, The First Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Minyong Wen
- Department
of Critical Care Medicine, The First Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Hongbo Li
- Department
of Critical Care Medicine, The First Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| |
Collapse
|
24
|
Zhang M, Zheng R, Liu WJ, Hou JL, Yang YL, Shang HC. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:413-422. [PMID: 37652781 DOI: 10.1016/j.joim.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/30/2023] [Indexed: 09/02/2023]
Abstract
Severe pneumonia is one of the most common infectious diseases and the leading cause of sepsis and septic shock. Preventing infection, balancing the patient's immune status, and anti-coagulation therapy are all important elements in the treatment of severe pneumonia. As multi-target agents, Xuebijing injection (XBJ) has shown unique advantages in targeting complex conditions and saving the lives of patients with severe pneumonia. This review outlines progress in the understanding of XBJ's anti-inflammatory, endotoxin antagonism, and anticoagulation effects. From the hundreds of publications released over the past few years, the key results from representative clinical studies of XBJ in the treatment of severe pneumonia were selected and summarized. XBJ was observed to effectively suppress the release of pro-inflammatory cytokines, counter the effects of endotoxin, and assert an anticoagulation effect in most clinical trials, which are consistent with experimental studies. Collectively, this evidence suggests that XBJ could play an important and expanding role in clinical medicine, especially for sepsis, septic shock and severe pneumonia. Please cite this article as: Zhang M, Zheng R, Liu WJ, Hou JL, Yang YL, Shang HC. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. J Integr Med. 2023; 21(5): 413-422.
Collapse
Affiliation(s)
- Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton L8S 4K1, Canada
| | - Wen-Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jun-Ling Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Lei Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
25
|
Kang XF, Lu XL, Bi CF, Hu XD, Li Y, Li JK, Yang LS, Liu J, Ma L, Zhang JF. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging (Albany NY) 2023; 15:8501-8517. [PMID: 37650558 PMCID: PMC10496990 DOI: 10.18632/aging.204990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Compelling evidence has demonstrated that Xuebijing (XBJ) exerted protective effects against SIMI. The aims of this study were to investigate whether TLR4/IKKα-mediated NF-κB and JAK2/STAT3 pathways were involved in XBJ's cardio-protection during sepsis and the mechanisms. METHODS In this study, rats were randomly assigned to three groups: Sham group; CLP group; XBJ group. Rats were treated with XBJ or sanitary saline after CLP. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis were tested by TUNEL staining. The protein levels of Bax, Bcl-2, Bcl-xl, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3 in the myocardium were assayed by western blotting. And finally, immunofluorescence was used to assess the level of p-JAK2 and p-STAT3 in heart tissue. RESULTS The results of echocardiography, myocardial enzyme and HE test showed that XBJ could significantly improve SIMI. The IL-1β, IL-6 and TNF-α levels in the serum were markedly lower in the XBJ group than in the CLP group (p<0.05). TUNEL staining's results showed that XBJ ameliorated CLP-induced cardiomyocyte apoptosis. Meanwhile, XBJ downregulated the protein levels of Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP, TLR4, p-NF-κB, p-IKKα, p-JAK2 and p-STAT3, as well as upregulated the protein levels of Bcl-2, Bcl-xl (p <0.05). CONCLUSIONS In here, we observed that XBJ's cardioprotective advantages may be attributable to its ability to suppress inflammation and apoptosis via inhibiting the TLR4/ IKKα-mediated NF-κB and JAK2/STAT3 pathways during sepsis.
Collapse
Affiliation(s)
- Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Li Lu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Ying Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
26
|
Zhang C, Chen X, Wei T, Song J, Tang X, Bi J, Chen C, Zhou J, Su X, Song Y. Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells. Chin J Nat Med 2023; 21:576-588. [PMID: 37611976 DOI: 10.1016/s1875-5364(23)60463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 08/25/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Collapse
Affiliation(s)
- Cuiping Zhang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianchang Wei
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Bi
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao Su
- The Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China.
| |
Collapse
|
27
|
Wang L, Li J, Wang Y, Ge C, Huang Q, Li L, Wang N, Chen Y, Zhou X, Chang D, Li D, Hou J. Dan-Deng-Tong-Nao softgel capsule promotes angiogenesis of cerebral microvasculature to protect cerebral ischemia reperfusion injury via activating HIF-1α-VEGFA-Notch1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154966. [PMID: 37487254 DOI: 10.1016/j.phymed.2023.154966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND A proprietary Chinese herbal product called Dan-Deng-Tong-Nao softgel capsule (DDTNC) is used to treat ischemic stroke. However, the preventive mechanisms of DDTNC against cerebral ischemia reperfusion injury (CIRI) haven not been characterized. OBJECTIVE To explore the mechanisms of protective effects of DDTNC against CIRI from both internal and external levels. METHODS Chemical characterization was performed using UPLC. The potential protective mechanisms of DDTNC against CIRI were predicted using network pharmacology. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in rats. An model of brain microvascular endothelial cells (BMECs) induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was also established. We evaluated neurological deficits, cerebral infarct volume, cortical neuron damage, and mitochondrial swelling in vivo. We evaluated the expression of VEGFR2, VEGFA, HIF-1α, CD31, and CD34 in ischemic cortex, and VEGF, bFGF, BDNF, angiostatin, and endostatin in serum of rats and in BMEC supernatants. We also evaluated cell viability, cytotoxicity, intracellular ROS, apoptosis, and migration ability in vitro. RESULTS Seven components were detected in DDTNC. KEGG enrichment analysis showed that DDTNC may modulate angiogenesis via the HIF-1 signaling pathway. DDTNC treatment reduced neurological score and infarct volume, and improved cell morphology of damaged neurons. Transmission electron microscopy showed that DDTNC reduced mitochondria swelling in cortical neurons. Furthermore, DDTNC reduced intracellular ROS and inhibited apoptosis. DDTNC boosted the expression of CD31, CD34, VEGFR2, VEGFA and HIF-1α, highlighting its involvement in angiogenesis, according to immunofluorescence studies. Furthermore, DDTNC enhanced tube formation and migration of BMECs in vitro. ELISA and western blotting indicated that DDTNCCSF induced the expression of VEGF, BDNF and bFGF, reduced the level of angiostatin and endostatin, increased the protein expression of VEGFA, Notch1 and HIF-1α in vitro and in vivo. CONCLUSIONS DDTNC promoted angiogenesis to protect brain tissue against MCAO/R, and exerted protective effects against OGD/R in BMECs via activating HIF-1α-VEGFA-NOTCH1 signal transduction pathway.
Collapse
Affiliation(s)
- Lei Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Jiacheng Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Chaowen Ge
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Qi Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Lili Li
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China.
| | - Yuang Chen
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui(,) 230012, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead(,) NSW 2145(,) Australia
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co. Ltd. Shijiazhuang 51430(,) China
| |
Collapse
|
28
|
Zhao L, Zhang H, Li N, Chen J, Xu H, Wang Y, Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116306. [PMID: 36858276 DOI: 10.1016/j.jep.2023.116306] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Network pharmacology is a new discipline based on systems biology theory, biological system network analysis, and multi-target drug molecule design specific signal node selection. The mechanism of action of TCM formula has the characteristics of multiple targets and levels. The mechanism is similar to the integrity, systematization and comprehensiveness of network pharmacology, so network pharmacology is suitable for the study of the pharmacological mechanism of Chinese medicine compounds. AIM OF THE STUDY The paper summarizes the present application status and existing problems of network pharmacology in the field of Chinese medicine formula, and formulates the research ideas, up-to-date key technology and application method and strategy of network pharmacology. Its purpose is to provide guidance and reference for using network pharmacology to reveal the modern scientific connotation of Chinese medicine. MATERIALS AND METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, ScienceDirect and Google Scholar using the keywords "traditional Chinese medicine", "Chinese herb medicine" and "network pharmacology". The literature cited in this review dates from 2002 to 2022. RESULTS Using network pharmacology methods to predict the basis and mechanism of pharmacodynamic substances of traditional Chinese medicines has become a trend. CONCLUSION Network pharmacology is a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.
Collapse
Affiliation(s)
- Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinman Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Ministry of Education of Theory and Therapy of Muscles and Bones, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
29
|
Bi CF, Liu J, Hao SW, Xu ZX, Ma X, Kang XF, Yang LS, Zhang JF. Xuebijing injection protects against sepsis induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging (Albany NY) 2023; 15:204740. [PMID: 37219401 DOI: 10.18632/aging.204740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Apoptosis and autophagy are significant factors of sepsis induced myocardial injury (SIMI). XBJ improves SIMI by PI3K/AKT/mTOR pathway. Present study is devised to explore the protective mechanism of XBJ in continuous treatment of SIMI caused by CLP. METHODS Rat survival was first recorded within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and XBJ group. The animals in each group were divided into 12 h group, 1 d, 2 d, 3 d and 5 d according to the administration time of 12 hours, 1 day, 2 days, 3 days or 5 days, respectively. Echocardiography, myocardial injury markers and H&E staining were used to detect cardiac function and injury. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis was assayed by TUNEL staining. Apoptosis and autophagy related proteins regulated by the PI3K/AKT/mTOR signaling pathway were tested using western blot. RESULTS XBJ increased the survival rate in CLP-induced septic Rat. First of all, the results of echocardiography, H&E staining and myocardial injury markers (cTnI, CK, and LDH levels) showed that XBJ could effectively improve the myocardial injury caused by CLP with the increase of treatment time. Moreover, XBJ significantly decreased the levels of serum inflammatory cytokines IL-1β, IL-6 and TNF-α in SIMI rats. Meanwhile, XBJ downregulated the expression of apoptosis-related proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-PARP, while upregulated the protein levels of Bcl-2 in SIMI rats. And, XBJ upregulated the expression of autophagy related protein Beclin-1 and LC3-II/LC3-I ratio in SIMI rats, whereas downregulated the expression of P62. Finally, XBJ administration downregulated the phosphorylation levels of proteins PI3K, AKT and mTOR in SIMI rats. CONCLUSIONS Our results showed that XBJ has a good protective effect on SIMI after continuous treatment, and it was speculated that it might be through inhibiting apoptosis and promoting autophagy via, at least partially, activating PI3K/AKT/mTOR pathway in the early stage of sepsis, as well as promoting apoptosis and inhibiting autophagy via suppressing PI3K/AKT/mTOR pathway in the late stage of sepsis.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Shao-Wen Hao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Zhi-Xia Xu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
30
|
Li X, Li C, Li C, Wu C, Bai Y, Zhao X, Bai Z, Zhang X, Xiao X, Niu M. A novel perspective on the preventive treatment of hydrazine compound-induced liver injury: Isoniazid liver injury as an example. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116616. [PMID: 37182677 DOI: 10.1016/j.jep.2023.116616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1β, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Chenyi Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China; College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Chengzhao Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yuxuan Bai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xigang Zhang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xiaohe Xiao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
31
|
Limcharoen T, Dasuni Wasana PW, Angsuwattana P, Muangnoi C, Warinhomhoun S, Ongtanasup T, Sritularak B, Vajragupta O, Rojsitthisak P, Towiwat P. An Integrative Approach to Investigate the Mode of Action of (-)-Dendroparishiol in Bacterial Meningitis: Computer-Aided Estimation of Biological Activity and Network Pharmacology. Int J Mol Sci 2023; 24:ijms24098072. [PMID: 37175777 PMCID: PMC10179348 DOI: 10.3390/ijms24098072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.
Collapse
Affiliation(s)
- Thanchanok Limcharoen
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Peththa Wadu Dasuni Wasana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornpoom Angsuwattana
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chawanphat Muangnoi
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Sakan Warinhomhoun
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Opa Vajragupta
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasarapa Towiwat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
32
|
Agrawal S, Das R, Singh AK, Kumar P, Shukla PK, Bhattacharya I, Tripathi AK, Mishra SK, Tiwari KN. Network pharmacology-based anti-pancreatic cancer potential of kaempferol and catechin of Trema orientalis L. through computational approach. Med Oncol 2023; 40:133. [PMID: 37010624 DOI: 10.1007/s12032-023-01996-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
In pancreatic cancer, healthy cells in the pancreas begin to malfunction and proliferate out of control. According to our conventional knowledge, many plants contain several novel bioactive compounds, having pharmaceutical applications for the treatment of disease like pancreatic cancer. The methanolic fraction of fruit extract of Trema orientalis L. (MFETO) was analysed through HRMS. In this in silico study, pharmacokinetic and physicochemical properties of the identified flavonoids from MFETO were screened out by ADMET analysis. Kaempferol and catechin followed Lipinski rules and showed no toxicity in Protox II. Targets of these compounds were taken from SwissTarget prediction and TCMSP whilst targets for pancreatic cancer were taken from GeneCards and DisGeNET databases. The protein-protein interaction (PPI) network of common genes was generated through STRING and then exported to the Cytoscape to get top 5 hub genes (AKT1, SRC, EGFR, TNF, and CASP3). The interaction between compounds and hub genes was analysed using molecular docking, and high binding affinity between them can be visualised by Biovia discovery studio visualizer. Our study shows that, five hub genes related to pancreatic cancer play an important role in tumour growth induction, invasion and migration. Kaempferol effectively check cell migration by inhibiting ERK1/2, EGFR-related SRC, and AKT pathways by scavenging ROS whilst catechin inhibited TNFα-induced activation and cell cycle arrest at G1 and G2/M phases by induction of apoptosis of malignant cells. Kaempferol and catechin containing MFETO can be used for formulation of potent drugs for pancreatic cancer treatment in future.
Collapse
Affiliation(s)
- Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Richa Das
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Praveen Kumar Shukla
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Indrani Bhattacharya
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Amit Kumar Tripathi
- School of Basic and Applied Science, Galgotias University, Gautam Budha Nagar, Greater Noida, 203201, UP, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
33
|
Luo L, Guan Z, Jin X, Guan Z, Jiang Y. Identification of kukoamine a as an anti-osteoporosis drug target using network pharmacology and experiment verification. Mol Med 2023; 29:36. [PMID: 36941586 PMCID: PMC10029210 DOI: 10.1186/s10020-023-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a major and growing public health problem characterized by decreased bone mineral density and destroyed bone microarchitecture. Previous studies found that Lycium Chinense Mill (LC) has a potent role in inhibiting bone loss. Kukoamine A (KuA), a bioactive compound extract from LC was responsible for the anti-osteoporosis effect. This study aimed to investigate the anti-osteoporosis effect of KuA isolated from LC in treating OP and its potential molecular mechanism. METHOD In this study, network pharmacology and molecular docking were investigated firstly to find the active ingredients of LC such as KuA, and the target genes of OP by the TCMSP platform. The LC-OP-potential Target gene network was constructed by the STRING database and network maps were built by Cytoscape software. And then, the anti-osteoporotic effect of KuA in OVX-induced osteoporosis mice and MC3T3-E1 cell lines were investigated and the potential molecular mechanism including inflammation level, cell apoptosis, and oxidative stress was analyzed by dual-energy X-ray absorptiometry (DXA), micro-CT, ELISA, RT-PCR, and Western Blotting. RESULT A total of 22 active compounds were screened, and we found KuA was identified as the highest active ingredient. Glycogen Phosphorylase (PYGM) was the target gene associated with a maximum number of active ingredients of LC and regulated KuA. In vivo, KuA treatment significantly increased the bone mineral density and improve bone microarchitecture for example increased BV/TV, Tb.N and Tb.Th but reduced Tb.Sp in tibia and lumber 4. Furthermore, KuA increased mRNA expression of osteoblastic differentiation-related genes in OVX mice and protects against OVX-induced cell apoptosis, oxidative stress level and inflammation level. In vitro, KuA significantly improves osteogenic differentiation and mineralization in cells experiment. In addition, KuA also attenuated inflammation levels, cell apoptosis, and oxidative stress level. CONCLUSION The results suggest that KuA could protect against the development of OP in osteoblast cells and ovariectomized OP model mice and these found to provide a better understanding of the pharmacological activities of KuA again bone loss.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24065313. [PMID: 36982389 PMCID: PMC10048972 DOI: 10.3390/ijms24065313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Safflower (Carthamus tinctorius. L) possesses anti-tumor, anti-thrombotic, anti-oxidative, immunoregulatory, and cardio-cerebral protective effects. It is used clinically for the treatment of cardio-cerebrovascular disease in China. This study aimed to investigate the effects and mechanisms of action of safflower extract on myocardial ischemia–reperfusion (MIR) injury in a left anterior descending (LAD)-ligated model based on integrative pharmacology study and ultra-performance liquid chromatography–quadrupole time-of-flight-tandem mass spectrometer (UPLC-QTOF-MS/MS). Safflower (62.5, 125, 250 mg/kg) was administered immediately before reperfusion. Triphenyl tetrazolium chloride (TTC)/Evans blue, echocardiography, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) ability, and superoxide dismutase (SOD) levels were determined after 24 h of reperfusion. Chemical components were obtained using UPLC-QTOF-MS/MS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze mRNA and protein levels, respectively. Safflower dose-dependently reduced myocardial infarct size, improved cardiac function, decreased LDH levels, and increased SOD levels in C57/BL6 mice. A total of 11 key components and 31 hub targets were filtered based on the network analysis. Comprehensive analysis indicated that safflower alleviated inflammatory effects by downregulating the expression of NFκB1, IL-6, IL-1β, IL-18, TNFα, and MCP-1 and upregulating NFκBia, and markedly increased the expression of phosphorylated PI3K, AKT, PKC, and ERK/2, HIF1α, VEGFA, and BCL2, and decreased the level of BAX and phosphorylated p65. Safflower shows a significant cardioprotective effect by activating multiple inflammation-related signaling pathways, including the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling pathways. These findings provide valuable insights into the clinical applications of safflower.
Collapse
|
35
|
Wang B, Zhou W, Zhang H, Wang W, Zhang B, Li S. Exploring the effect of Weifuchun capsule on the toll-like receptor pathway mediated HES6 and immune regulation against chronic atrophic gastritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115930. [PMID: 36403744 DOI: 10.1016/j.jep.2022.115930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Weifuchun capsule (WFC) is a traditional Chinese patent medicine for chronic atrophic gastritis (CAG) in clinic. However, the mechanism of action of WFC for CAG still remains unclear due to its complex composition. AIM OF THE STUDY The study was projected to uncover the mechanism of action of WFC and the corresponding pharmacodynamic substance of WFC against CAG as well as providing a standard example for the research of traditional Chinese medicine (TCM) from the perspective of the network and the system. MATERIALS AND METHODS We identified the compounds of WFC through LC-MS/MS analysis and performed a systematic network targets analysis for WFC in the treatment of CAG which thoroughly described the mechanism of action of WFC for CAG. Based on analysis integrating omics data and algorithms, we focused on the specific immune regulatory role of WFC in the treatment of CAG, especially on a hub pathway, Toll-like receptor signaling pathway and thus deciphered the role of WFC in immune regulation, anti-inflammation and mediation of HES6. In experiments part, MNNG-GES-1-cell line and rat models were used to validate our findings. RESULTS In this study, compounds of WFC are identified through LC‒MS/MS and network target analysis is performed to dissect the specific immunoregulatory effect as well as mediation of HES6, a newly discovered biomolecule related to gastritis carcinoma progression, of WFC on CAG through the Toll-like receptor signaling pathway. Based on cell line and rat models, we verify the mechanism of action of WFC for CAG in inhibiting inflammatory cytokines, regulating immune cells like T cells and macrophages, related genes including TLR2 and CD14. It is also validated that WFC inhibits the expression of HES6 (P < 0.05). CONCLUSION Based on the combination of computational strategy and experiments, our study offers a comprehensive analysis to reveal the role of WFC in regulating immune response, inhibiting inflammation in the treatment of CAG, and provides a standard example for the research of TCM from the perspective of the network and the system.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Wuai Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Huan Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, China
| | - Bo Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, 300457, Tianjin, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
36
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Wang H, Li Y, Bian Y, Li X, Wang Y, Wu K, Liu C, Liu Y, Wang X. Potential hepatoprotective effects of Cistanche deserticola Y.C. Ma: Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment. Front Pharmacol 2022; 13:1018572. [PMID: 36313288 PMCID: PMC9597371 DOI: 10.3389/fphar.2022.1018572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 10/09/2023] Open
Abstract
Cistanche deserticola Y.C. Ma (CD) possesses hepatoprotective activity, while the active ingredients and involved mechanisms have not been fully explored. The objective of this study was to investigate the chemical composition and hepatoprotective mechanisms of CD. We primarily used ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) to identify the phenylethanoid glycoside (PhG) components of CD. Then, network analysis was used to correlate and predict the pharmacology of the identified active components of PhGs with hepatoprotection. Next, the mechanisms of the core components and targets of action were explored by cellular assays and toll-like receptor 4 (TLR4) target competition assays. Finally, its hepatoprotective effects were further validated in in vivo experiments. The results showed that a total of 34 PhGs were identified based on the UPLC-Q-TOF-MS/MS method. Echinacoside (ECH) was identified as the key ingredient, and TLR4 and nuclear factor-kappa B (NF-κB) were speculated as the core targets of the hepatoprotective effect of CD via network analysis. The cellular assays confirmed that PhGs had significant anti-inflammatory activity. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot indicated that ECH notably reduced the levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as the mRNA expression of TLR4, TNF-α, and IL-6, and decreased the high expression of the TLR4 protein, which in turn downregulated the myeloid differentiation factor 88 (MyD88), p-P65 and TNF-α proteins in the inflammatory model. The target competition experiments suggested that ECH and LPS could competitively bind to the TLR4 receptor, thereby reducing the expression of TLR4 downstream proteins. The results of in vivo studies showed that ECH significantly ameliorated LPS-induced hepatic inflammatory infiltration and liver tissue damage and reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in mice. Moreover, ECH remarkably inhibited the release of inflammatory factors such as TNF-α, IL-6, IL-1β, and MCP-1 in the serum of mice, exerting the hepatoprotective effect by the TLR4/NF-κB signaling pathway. More importantly, ECH could act as a potential inhibitor of TLR4 and deserves further in-depth study. Our results could provide a basis for exploring the hepatoprotective properties of CD.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Li
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yubei Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
38
|
Zhu H, Xiong XG, Lu Y, Wu HC, Zhang ZH, Sun MJ. The mechanism of the anti-inflammatory effect of Oldenlandia diffusa on arthritis model rats: a quantitative proteomic and network pharmacologic study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1098. [PMID: 36388817 PMCID: PMC9652507 DOI: 10.21037/atm-22-3678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 07/28/2023]
Abstract
BACKGROUND In China, Oldenlandia diffusa (OD) has been prescribed as a therapeutic herb for rheumatoid arthritis (RA). We previously conducted a preliminary study of the anti-inflammatory effect of OD, and the purpose of this study is to further investigate its mechanism. METHODS We performed a quantitative proteomic analysis of synovium, identified the differentially expressed proteins, and performed bioinformatics analyses. With the help of network pharmacology, we aimed to find the key synovial proteins which OD or its key compound might influence. To verify the result, liquid chromatography-mass spectrometry (LC-MS) was applied to quantify and qualify the absorbable potential compounds of OD. The anti-inflammatory effect was evaluated by morphological, histopathological, and cytokine analyses. Target proteins were observed by immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). RESULTS MMP3 and CAV1 were identified as 2 of the differentially expressed proteins in RA synovium, and might be influenced by quercetin, the active compound of OD. MMP3 might be altered through atherosclerosis signaling, while CAV1 might be altered through caveolar-mediated endocytosis signaling. According to our verification, quercetin was identified as the absorbed and effective compound of OD, and it could exert an anti-inflammatory effect on the collagen-induced arthritis (CIA) model, including serum cytokine expression, synovial hyperplasia and lymphocyte infiltration, articular cartilage lesion. Quercetin could also down-regulate the synovial expression of MMP3 and CAV1, and could exert better effects at a high dose. CONCLUSIONS Quercetin was the main active compound of OD in the treatment of RA. OD might alleviate inflammatory responses in CIA rats by suppressing the expression of MMP3 and CAV1 through quercetin, and at a high dose, quercetin could exert a better anti-inflammatory effect.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xin-Gui Xiong
- Institute of Combined Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Lu
- Department of General Practice, Dushu Lake Hospital, Soochow University, Suzhou, China
| | - Hui-Chun Wu
- Department of Infectious Disease, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Zhi-Hui Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Mei-Juan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Zhang Q, Zeng M, Zhang B, Ren Y, Li S, Wang R, Hu Y, Fan R, Wang M, Yu X, Wu Z, Zheng X, Feng W. Salvianolactone acid A isolated from Salvia miltiorrhiza ameliorates lipopolysaccharide-induced acute lung injury in mice by regulating PPAR-γ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154386. [PMID: 35985183 DOI: 10.1016/j.phymed.2022.154386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Severe inflammation of the lungs results from acute lung injury (ALI), a common life-threatening lung disease with a high mortality rate. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays essential roles in diverse biological processes including inflammation, metabolism, development, and immune response. Salvianolactone acid A (SA) is a terpenoid derived from the herb Salvia miltiorrhiza. However, there is a scarcity of experimental evidence indicating whether the effect of SA on ALI occurs via PPAR-γ. METHODS SA (20 or 40 mg/kg, i.g., 1 time/day) was administered to mice for 3 d, followed by the induction of ALI by intranasal lipopolysaccharide (LPS, 10 mg/kg). The lung function and levels of inflammation, reactive oxygen species (ROS), immune cells, apoptosis, and PPAR-γ were examined. The antagonistic activity of GW9662 (GW, 1 µM, specific PPAR-γ blocker) and PPAR-γ transfection silencing against SA (10 μM) in BEAS-2B cells induced by LPS (10 μg/ml, 24 h) was also investigated to assess whether the observed effects caused by SA were mediated by PPAR-γ. RESULTS The results showed that lung histopathological injury, the B-line, the fluorescence intensity of live small animal, and the biomarkers in BALF or lung in the treatment of SA could regulate significantly. In addition, SA obviously decreased the levels of ROS and apoptosis in the primary lung cells, and MDA, increased the levels of GSH-Px and SOD. SA reduced levels of macrophages and neutrophils. Furthermore, SA reduced the protein levels of Keap-1, Cleaved-caspase-3, Cleaved-caspase-9, p-p65/p65, NLRP3, IL-1β, and upregulated the levels of p-Nrf2/Nrf2, HO-1, Bcl-2/Bax, PPAR-γ, p-AMPK/AMPK in lung tissue. In addition, silencing and inhibition of PPAR-γ effectively decreased the protective effects of SA in BEAS-2B cells induced by LPS, which might indicate that the active molecules of SA regulate ALI via mediation by PPAR-γ, which exhibited that the effect of SA related to PPAR-γ. CONCLUSIONS The anti-ALI effects of SA were partially mediated through PPAR-γ signaling. These data provide the molecular justification for the usage of SA in treating ALI and can assist in increasing the comprehensive utilization rate of Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Qinqin Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Beibei Zhang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yingjie Ren
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Shujing Li
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ru Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yingbo Hu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ruyi Fan
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengya Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiao Yu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Zhe Wu
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiaoke Zheng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Weisheng Feng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R., Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
40
|
Traditional processing increases biological activities of Dendrobium offificinale Kimura et. Migo in Southeast Yunnan, China. Sci Rep 2022; 12:14814. [PMID: 36045147 PMCID: PMC9433373 DOI: 10.1038/s41598-022-17628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/28/2022] [Indexed: 12/28/2022] Open
Abstract
The orchid Dendrobium officinale grows throughout southeast China and southeast Asian countries and is used to treat inflammation and diabetes in traditional Chinese medicine. Tie pi feng dou is a well-known traditional Chinese medicine made from the dried D. officinale stems. Processing alters the physicochemical properties of TPFD; however, it is unclear how processing affects the quality and medicinal value of this plant. Here, we analyzed and compared the chemical composition of fresh stems of D. officinale and TPFD and explored possible explanations for the enhanced medicinal efficacy of processed D. officinale stems using qualitative and quantitative methods. To identify the components of FSD and TPFD, we used ultra-high-performance liquid chromatography combined with mass spectrometry in negative and positive ion modes and interpreted the data using the Human Metabolome Database and multivariate statistical analysis. We detected 23,709 peaks and identified 2352 metabolites; 370 of these metabolites were differentially abundant between FSD and TPFD (245 more abundant in TPFD than in FSD, and 125 less abundant), including organooxygen compounds, prenol lipids, flavonoids, carboxylic acids and their derivatives, and fatty acyls. Of these, 43 chemical markers clearly distinguished between FSD and TPFD samples, as confirmed using orthogonal partial least squares discriminant analysis. A pharmacological activity analysis showed that, compared with FSD, TPFD had significantly higher levels of some metabolites with anti-inflammatory activity, consistent with its use to treat inflammation. In addition to revealing the basis of the medicinal efficacy of TPFD, this study supports the benefits of the traditional usage of D. officinale.
Collapse
|
41
|
Bi JH, Jiang YH, Ye SJ, Wu MR, Yi Y, Wang HX, Wang LM. Investigation of the inhibition effect of 1,2,3,4,6-pentagalloyl-β-D-glucose on gastric cancer cells based on a network pharmacology approach and experimental validation. Front Oncol 2022; 12:934958. [PMID: 35992839 PMCID: PMC9383036 DOI: 10.3389/fonc.2022.934958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGastric cancer (GC) is ranked as the third leading cause of cancer-related mortality worldwide. 1,2,3,4,6-Pentagalloyl-β-D-glucose (β-PGG) has various pharmacological activities and has been shown to suppress cancer development. However, the mechanism by which β-PGG inhibits gastric cancer has not been elucidated.ObjectiveThis study explored the potential targets and mechanism of β-PGG in GC using the network pharmacology approach combined with in-vitro experiments.MethodsThe PharmMapper software was used to predict the potential targets of β-PGG, and GC-related genes were identified on the GeneCards database. PPI analysis of common genes was performed using the STRING database. The potential regulatory mechanism of β-PGG in GC was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The binding ability of key genes and target proteins was verified by molecular docking. The effects of β-PGG on genes and proteins were evaluated using the CCK-8 assay, cell cycle analysis, apoptosis assay, real-time fluorescence quantification polymerase chain reaction (qRT-PCR), and Western blotting.ResultsEight hub genes involved in cell cycle progression and apoptosis were identified. Cancer-related signaling pathways were identified using the Cytoscape tool. Some of those genes were significantly enriched in the p53 signaling pathway. The CCK-8 assay showed that β-PGG inhibited the proliferation of GC cells. Cell cycle and apoptosis experiments revealed that β-PGG induced cell cycle arrest and apoptosis of gastric cancer cells. qRT-PCR and Western blot analysis showed that β-PGG inhibited β-PGG cells by modulating the p53 signaling pathway.ConclusionIn the present study, the targets and mechanism of β-PGG in gastric cancer were explored. The results indicate that β-PGG can be used to develop treatments for GC.
Collapse
Affiliation(s)
- Jing-hui Bi
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yu-han Jiang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Shi-jie Ye
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min-rui Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Yi
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hong-xun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Li-mei Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Li-mei Wang,
| |
Collapse
|
42
|
Cao D, Fan Q, Li Z, Chen M, Jiang Y, Lin R, Li J, Zhao C. Transcriptomic profiling revealed the role of apigenin-4'-O-α-L-rhamnoside in inhibiting the activation of rheumatoid arthritis fibroblast-like synoviocytes via MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154201. [PMID: 35660352 DOI: 10.1016/j.phymed.2022.154201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Activated fibroblast-like synoviocyte (FLS) played a significant role in the pathogenesis and progression of rheumatoid arthritis (RA). Apigenin-4'-O-α-L-rhamnoside showed remarkable effects against RA, however, no relevant studies on pharmacology of apigenin-4'-O-α-L-rhamnoside yet, the effects and underlying molecular mechanism of apigenin-4'-O-α-L-rhamnoside on RA are still unclear. PURPOSE This study aimed to investigate the therapeutic effects and mechanisms of apigenin-4'-O-α-L-rhamnoside on RA-FLS cells by transcriptomic analysis. METHODS In vitro, RA-FLS cell viability and migration were measured by CCK-8 and scratch assays, respectively. The effects of apigenin-4'-O-α-L-rhamnoside on inflammatory levels of MMP-1, MMP-3, RANKL and TNF-α in RA-FLS cells were detected using ELISA kits. High-throughput transcriptome analysis was performed to screen the key genes and related pathways of apigenin-4'-O-α-L-rhamnoside inhibit RA-FLSs, and the result of which were validated by RT-qPCR and western blot. Furthermore, in vivo, we also evaluated the effects of apigenin-4'-O-α-L-rhamnoside in rat with CIA. RESULTS Apigenin-4'-O-α-L-rhamnoside significantly suppressed RA-FLS migration, exerted remarkable inhibiting effects on the expression levels on MMP-1, MMP3, RANKL and TNF-α in RA-FLS cells. It seemed that MAPK signaling pathway might be closely related to the pathogenesis of RA by down-regulated relevant core targets (MAPK1, HRAS, ATF-2, p38 and JNK). Moreover, apigenin-4'-O-α-L-rhamnoside attenuated the severity of arthritis in CIA rat. CONCLUSION Apigenin-4'-O-α-L-rhamnoside inhibited pro-inflammatory cytokine, chemokine and MMPs factors production of RA-FLS by targeting the MAPK signaling pathway, which provided a scientific basis for potential application in the treatment of RA.
Collapse
Affiliation(s)
- Dan Cao
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China; Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing 102488, China
| | - Qiqi Fan
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China
| | - Zhiqi Li
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China
| | - Yangyu Jiang
- Beijing University of Chinese Medicine, Beijing 102488, China; Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing 102488, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China.
| | - Jian Li
- Beijing University of Chinese Medicine, Beijing 102488, China; Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing 102488, China.
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing 102488, China; Beijing key lab for quality evaluation of Chinese Materia Medica, Beijing 102488, China.
| |
Collapse
|
43
|
Wang Z, Wang X, Guo Z, Liao H, Chai Y, Wang Z, Wang Z. Reduning Attenuates LPS-Induced Human Unmilical Vein Endothelial Cells (HUVECs) Apoptosis Through PI3K-AKT Signaling Pathway. Front Pharmacol 2022; 13:921337. [PMID: 35903333 PMCID: PMC9315302 DOI: 10.3389/fphar.2022.921337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism of Reduning (RDN) in the treatment of sepsis was analyzed based on network pharmacology. The system pharmacology method was administered to search the active ingredients and targets of RDN, identify the sepsis-related genes, and determine the targets of RDN in the treatment of sepsis. Cytoscape was used to build a “drug component-target” network to screen key compounds. A protein-protein interaction (PPI) network was constructed using STRING, and core targets were revealed through topological analysis. 404 shared targets of RDN and sepsis were introduced into DAVID Bioinformatics Resources 6.8 for GO and KEGG enrichment analysis to predict their possible signaling pathways and explore their molecular mechanisms. GO enrichment analysis highlighted that they were largely related to protein phosphorylation, inflammatory reaction, and positive regulation of mitogen-activated protein kinase (MAPK) cascade. KEGG enrichment analysis outlined that they were enriched in PI3K-AKT signaling pathway, calcium signaling pathway, rhoptry-associated protein 1 (Rap1) signaling pathway, and advanced glycation end products and receptors for advanced glycation end products (AGE-RAGE) signaling pathway. Molecular biological validation results exposed that RDN could significantly improve the protein expression of p-AKT and p-PI3K, alleviate apoptosis-related proteins expression level and decrease apoptosis rate in LPS-induced HUVECs. In conclusion, it was illustrated that RDN could considerably constrain LPS-induced apoptosis by activating the PI3K-AKT signaling pathway, which advocated a basis for fundamental mechanism research and clinical application of RDN in the treatment of sepsis.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Liver Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yan Chai
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
- *Correspondence: Zhong Wang,
| |
Collapse
|
44
|
A Novel Based-Network Strategy to Identify Phytochemicals from Radix Salviae Miltiorrhizae (Danshen) for Treating Alzheimer's Disease. Molecules 2022; 27:molecules27144463. [PMID: 35889336 PMCID: PMC9317794 DOI: 10.3390/molecules27144463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.
Collapse
|
45
|
Anti-Inflammatory Mechanisms of Total Flavonoids from Mosla scabra against Influenza A Virus-Induced Pneumonia by Integrating Network Pharmacology and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2154485. [PMID: 35722153 PMCID: PMC9200497 DOI: 10.1155/2022/2154485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Influenza virus is one of the most common infectious pathogens that could cause high morbidity and mortality in humans. However, the occurrence of drug resistance and serious complications extremely complicated the clinic therapy. Mosla scabra is a natural medicinal plant used for treating various lung and gastrointestinal diseases, including viral infection, cough, chronic obstructive pulmonary disease, acute gastroenteritis, and diarrhoea. But the therapeutic effects of this herbal medicine had not been expounded clearly. In this study, a network pharmacology approach was employed to investigate the protective mechanism of total flavonoids from M. scabra (MSTF) against influenza A virus- (IAV-) induced acute lung damage and inflammation. The active compounds of MSTF were analyzed by LC-MS/MS and then evaluated according to their oral bioavailability and drug-likeness index. The potential targets of each active compound in MSTF were identified by using PharmMapper Server, whereas the potential genes involved in IAV infection were obtained from GeneGards. The results showed that luteoloside, apigenin, kaempherol, luteolin, mosloflavone I, and mosloflavone II were the main bioactive compounds found in MSTF. Primarily, 23 genes were identified as the targets of those five active compounds, which contributed to the inactivation of chemical carcinogenesis ROS, lipid and atherosclerosis, MAPK signaling pathway, pathways in cancer, PI3K-AKT signaling pathway, proteoglycans in cancer, and viral carcinogenesis. Finally, the animal experiments validated that MSTF improved IAV-induced acute lung inflammation via inhibiting MAPK, PI3K-AKT, and oxidant stress pathways. Therefore, our study demonstrated the potential inhibition of MSTF on viral pneumonia in mice and provided a strategy to characterize the molecular mechanism of traditional Chinese medicine by a combinative method using network pharmacology and experimental validation.
Collapse
|
46
|
Liu Z, Zhao J, Yang S, Zhang Y, Song L, Wu N, Liu Z. Network Pharmacology and Absolute Bacterial Quantification-Combined Approach to Explore the Mechanism of Tianqi Pingchan Granule Against 6-OHDA-Induced Parkinson’s Disease in Rats. Front Nutr 2022; 9:836500. [PMID: 35600818 PMCID: PMC9121100 DOI: 10.3389/fnut.2022.836500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 12/01/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Tianqi Pingchan Granule (TPG) is a clinically effective formula of traditional Chinese medicine to treat PD. However, the therapeutic effect and underlying mechanisms of TPG in PD remain unclear. Based on network pharmacology, the corresponding targets of TPG were identified using the Traditional Chinese Medicine Database and Analysis Platform Database. Differentially expressed genes in PD were obtained from the Therapeutic Target Database, Online Mendelian Inheritance in Man, GeneCards, and DrugBank databases. The protein-protein interaction (PPI) networks of intersected targets were constructed using the STRING database and visualized using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the pathways directly related to the pathogenesis of PD were integrated manually. Furthermore, in vivo studies were carried out based on network pharmacology. The gut microbiota, peripheral inflammatory cytokines, and glia-mediated neuroinflammation in substantia nigra were evaluated. A total of 99 target genes were intersected between targets of TPG and deferentially expressed genes in PD. The PPI network analysis indicated the proinflammatory cytokine as essential targets. GO and KEGG analyses indicated that inflammatory response and its related signaling pathways were closely associated with TPG-mediated PD treatment. In vivo studies revealed that class Negativicutes and order Selenomonadales decreased, whereas class Mollicutes, order Enterobacteriales, and Mycoplasmatales increased in fecal samples of PD rats via 16S rRNA sequence analysis. Furthermore, the function prediction methods purposely revealed that TPG therapy may be involved in flavonoid biosynthesis, which have anti-inflammatory properties. In addition, in vivo studies revealed that TPG exposure was found to not only attenuate the production of peripheral inflammatory cytokines but also inhibit the activation of microglia and astrocytes in substantia nigra of PD rats. Through network pharmacology and in vivo experiment-combined approach, the mechanisms of TPG in the treatment of PD were revealed, and the role of TPG in the regulation of gut microbiota and inflammatory response was confirmed.
Collapse
|
47
|
Su Y, Zhang Y, Yuan H, Shen C. Efficacy of Xuebijing Combined with Ulinastatin in the Treatment of Traumatic Sepsis and Effects on Inflammatory Factors and Immune Function in Patients. Front Surg 2022; 9:899753. [PMID: 35592125 PMCID: PMC9112656 DOI: 10.3389/fsurg.2022.899753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
ObjectiveTo investigate the efficacy of xuebijing combined with ulinastatin in the treatment of traumatic sepsis and analyze the effects on inflammatory factors and immune function of patients.Methods182 patients with traumatic sepsis were selected from June 2017 to September 2021 in our hospital. The patients were divided into the control group and the observation group. Patients in both groups were given routine treatments such as initial resuscitation, blood transfusion, monitoring of lactic acid to guide fluid replacement, early control of infection source, selection of appropriate antibiotics, correction of acidosis, treatment of primary disease, prevention of hypothermia and stress ulcer, application of vasoactive drugs, application of glucocorticoid and nutritional support. The control group was treated with Xuebijing injection on the basis of routine treatment, and the observation group was given Xuebijing injection combined with ulinastatin treatment on the basis of routine treatment. The APACHE II score was applied to evaluate the patients before and after treatment, and the routine blood indicators, inflammatory factor indicators, immune function indicators and liver function indicators were tested.ResultsAfter the treatment, the APACHE II score of the observation group was (10.35 ± 3.04) lower than that of the control group (15.93 ± 4.52) (P < 0.05). After treatment, the WBC and neutrophils in the observation group (15.19 ± 2.91) and (0.65 ± 0.04) were lower than those in the control group (16.42 ± 3.44) and (0.79 ± 0.05), and the PLT(162.85 ± 43.92) was higher than that in the control group (122.68 ± 36.89) (P < 0.05). After treatment, the levels of serum PCT, IL-6, TNF-α in the observation group were (11.38 ± 3.05), (10.74 ± 3.82) and (9.82 ± 2.35) lower than those in the control groups (17.34 ± 3.29), (15.28 ± 4.05) and (13.24 ± 3.06) (P < 0.05). After treatment, the levels of CD3+, CD4+, CD8+, CD4+/CD8+ in the observation group were (50.64 ± 4.98), (40.56 ± 4.82), (27.22 ± 3.29), (1.49 ± 0.24) higher than those in the control groups (46.08 ± 4.75), (34.69 ± 4.08), (25.14 ± 3.18), (1.38 ± 0.19) (P < 0.05). After treatment, the levels of TBIL and AST in the observation group were (12.35 ± 3.82), (25.66 ± 4.49) lower than those in the control group (18.43 ± 4.06), (34.58 ± 5.06) (P < 0.05).ConclusionXubijing combined with ulinastatin has a good effect in the treatment of patients with traumatic sepsis, which can effectively improve the condition, reduce the body’s inflammatory response, and promote the recovery of patients’ immune function and liver function.
Collapse
|
48
|
Jiang Z, Li Z, Wang F, Zhou Z. The Protective Effects of Sour Orange ( Citrus aurantium L.) Polymethoxyflavones on Mice Irradiation-Induced Intestinal Injury. Molecules 2022; 27:1934. [PMID: 35335298 PMCID: PMC8948989 DOI: 10.3390/molecules27061934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sour orange (Citrus aurantium L.) is one of the biological sources of polymethoxyflavones (PMFs), which are often used to deal with gastrointestinal diseases. The intestine is highly sensitive to irradiation damage. However, limited certain cures have been released for irradiation-induced gastrointestinal injury, and the potentials of sour orange PMFs as radio-resistance agents have not been fully discussed yet. The present study aims to (1) investigate the PMF components in 12 sour orange cultivars, (2) determine the protective effects of PMFs on irradiation-induced intestinal injury by treating mice that received 12 Gy abdominal irradiation with different doses of PMFs and observing the changes in organ indexes and pathological sections and (3) test cytotoxicity of PMFs by CCK-8 method. The results showed that sour orange PMFs appeared to have high intraspecies similarity. Besides, PMFs protected mice from irradiation-induced injury by alleviating body weight loss, reliving organ index changing and maintaining the intestinal structure. Finally, IC50 concentrations to cell line CCD 841 CoN of PMFs and nobiletin were calculated as 42.23 μg/mL and 51.58 μg/mL, respectively. Our study uncovered PMF contents in 12 sour orange materials and determined the protective effects on irradiation-induced intestinal injuries, providing guidance for the utilization of sour orange resources.
Collapse
Affiliation(s)
- Zixiao Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
| | - Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
| | - Fengchao Wang
- State Key Laboratory of Trauma, Institute of Combined Injury of PLA, Burns and Combined Injury, Army Medical University, Shapingba, Chongqing 400038, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Z.J.); (Z.L.)
- The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China
| |
Collapse
|
49
|
Zhou W, Zhang H, Wang X, Kang J, Guo W, Zhou L, Liu H, Wang M, Jia R, Du X, Wang W, Zhang B, Li S. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153837. [PMID: 34883416 DOI: 10.1016/j.phymed.2021.153837] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Moluodan (MLD) is a traditional Chinese patent medicine for the treatment of chronic atrophic gastritis (CAG). However, the mechanism of action (MoA) of MLD for treating CAG still remain unclear. PURPOSE Elucidate the MoA of MLD for treating CAG based on network pharmacology. STUDY DESIGN Integrate computational prediction and experimental validation based on network pharmacology. METHODS Computationally, compounds of MLD were scanned by LC-MS/MS and the target profiles of compounds were identified based on network-based target prediction method. Compounds in MLD were compared with western drugs used for gastritis by hierarchical clustering of target profile. Key biological functional modules of MLD were analyzed, and herb-biological functional module network was constructed to elucidate combinatorial rules of MLD herbs for CAG. Experimentally, MLD's effect on different biological functional modules were validated from both phenotypic level and molecular level in 1- Methyl-3-nitro-1-nitrosoguanidine (MNNG)-induced GES-1 cells. RESULTS Computational results show that the target profiles of compounds in MLD can cover most of the biomolecules reported in literature. The MoA of MLD can cover most types of MoA of western drugs for CAG. The treatment of CAG by MLD involved the regulation of various biological functional modules, e.g., inflammation/immune, cell proliferation, cell apoptosis, cell differentiation, digestion and metabolism. Experimental results show that MLD can inhibit cell proliferation, promote cell apoptosis and differentiation, reduce the inflammation level and promote lipid droplet accumulation in MNNG-induced GES-1 cells. CONCLUSION The network pharmacology framework integrating computational prediction and experimental validation provides a novel way for exploring the MoA of MLD.
Collapse
Affiliation(s)
- Wuai Zhou
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Huan Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xin Wang
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wuyan Guo
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Lihua Zhou
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China; College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Huiyun Liu
- Hebei (Handan) TCM Industrial Technology Research Institute, Handan Pharmaceutical Co., Ltd., Handan 056000, China
| | - Menglei Wang
- Hebei (Handan) TCM Industrial Technology Research Institute, Handan Pharmaceutical Co., Ltd., Handan 056000, China
| | - Ruikang Jia
- Hebei (Handan) TCM Industrial Technology Research Institute, Handan Pharmaceutical Co., Ltd., Handan 056000, China
| | - Xinjun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weihua Wang
- Center of Pharmaceutical Technology, Tsinghua University, China
| | - Bo Zhang
- TCM Network Pharmacology Department, Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Shao Li
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Qi G, Jiang K, Qu J, Zhang A, Xu Z, Li Z, Zheng X, Li Z. The Material Basis and Mechanism of Xuefu Zhuyu Decoction in Treating Stable Angina Pectoris and Unstable Angina Pectoris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3741027. [PMID: 35140797 PMCID: PMC8820872 DOI: 10.1155/2022/3741027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
METHODS Firstly, we used a network proximity approach to calculate and compare the effectiveness of the formula with that of Western drugs for each type of angina, including all targets and intersecting targets, from a topological perspective. Secondly, we compared the mechanisms of action of the two angina pectoris at three levels and five aspects, including conventional and modular analysis approaches. Thirdly, based on the unique functions of each angina in the complex heterogeneous network, we designed a reverse process for finding the material basis using dynamic, static, and enriched items as well as a total item. Finally, the designed inverse process, material basis, and mechanism of action were validated. RESULTS The target network of Xuefu Zhuyu decoction is closer to the target network of each type of angina than that of Western drugs, and the intersection targets have a closer proximity. Comparison of the mechanisms of action showed that stable angina and unstable angina had 158 common targets, while the unique targets were 34 and 1, respectively. Modularity analysis showed that the GO similarity of target modules was highly correlated with KEGG similarity. We ended up with 67 compounds upregulated for stable angina and 47 compounds upregulated for unstable angina. Our results were validated by literature mining, high-volume molecular docking, and miRNA enrichment analysis. CONCLUSIONS For both types of angina pectoris, Xuefu Zhuyu decoction is superior to Western drugs. A comparison of various aspects led to the unique mechanisms of action, from which the material basis of each type of angina was deduced.
Collapse
Affiliation(s)
- Guanpeng Qi
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaiwen Jiang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiaming Qu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Aijun Zhang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ze Xu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhaohang Li
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaosong Zheng
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Zuojing Li
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|