1
|
Rahmati M, Nikooie R. High-intensity interval training alleviates STZ-induced muscle atrophy by restoration of nuclear positioning defects in C57BL/6 male mice. Sci Rep 2025; 15:6891. [PMID: 40011606 PMCID: PMC11865543 DOI: 10.1038/s41598-025-91259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
We tested the hypothesis that improper myonuclei arrangement and morphology are involved in diabetes-induced myofiber atrophy and whether and how high-intensity interval training (HIIT) affects these impairments in isolated skeletal muscle myofibers. STZ-induced diabetes decreased muscle fiber cross-sectional area (CSA) mediated by reduced myonuclear number, enhanced nuclear apoptotic, and failed nuclear accretion from satellite cells. STZ-induced muscle atrophy was accompanied by improper nuclear positioning (sinus of the maximum diameter angles and distance between adjacent myonuclei) and morphology (maximum diameter, area, and volume of the nuclei), which was mediated by suppressed expression of proteins involved in nuclear positioning including KIF5B, dynein, and Nesprin1. Disturbing nuclear positioning by inhibition of Kinsein1 activity reduced CSA to a greater extent than in diabetes alone, suggesting STZ-induced muscle atrophy is mediated by changes in nuclear positioning. HIIT alleviated the STZ-induced decline in muscle CSA and myonuclei per fiber by restoring myonuclear morphometry impairments and improper nuclear positioning to the normal level. HIIT-induced increase in muscle CSA deterred by inhibition of Kinesin1 activity, suggesting its effect is mediated by proper nuclear positioning. These findings suggest that normal nuclear positioning are required for the changes in fiber size properties associated with HIIT in diabetic skeletal muscle fibers.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Exercise Physiology, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Rohollah Nikooie
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
2
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
3
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
4
|
Feng Y, Chen P, Li T, Wan P, Shi R. Effects of exercise with or without β-hydroxy- β-methylbutyrate supplementation on muscle mass, muscle strength, and physical performance in patients with sarcopenia: a systematic review and meta-analysis. Front Nutr 2024; 11:1460133. [PMID: 39360288 PMCID: PMC11444964 DOI: 10.3389/fnut.2024.1460133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Objectives This systematic review and meta-analysis aimed to assess the effects of exercise with/without β-hydroxy-β-methylbutyrate (HMB) supplementation on muscle mass, muscle strength, physical performance, and body composition in patients with sarcopenia. Methods A literature search for randomized controlled trials (RCTs) on the effects of exercise with or without HMB supplementation on muscle mass, muscle strength, physical performance, and body composition in patients with sarcopenia was conducted using PubMed, Web of Science, EBSCO, The Cochrane Library, EMBASE, Scopus, Science Direct, China Knowledge Resource Integrated Database (CNKI), and Wan Fang database. The search was limited to studies published up to April 2024 for each database. The outcome measures included muscle mass, muscle strength, physical performance, and body composition. The Cochrane Risk of Bias Assessment Tool was used to evaluate the quality of the included literature, and RevMan 5.4 software was employed to perform a meta-analysis of the outcome indicators. Results Five RCTs involving 257 elderly patients with sarcopenia were included in this study. Meta-analysis showed that in terms of physical performance, exercise with HMB supplementation significantly increased gait speed in sarcopenic patients compared to the exercise combined with the placebo group (SMD = 0.48, 95% CI: 0.15 to 0.82, p = 0.005), but exercise combined with HMB supplementation did not have significant effects on SMI (SMD = 0.06, 95% CI: -0.20 to 0.32, p = 0.66), grip strength (SMD = 0.23, 95% CI: -0.05 to 0.52, p = 0.11), five-time chair stand test (SMD = -0.83, 95% CI: -1.88 to 0.21, p = 0.12), fat-free mass (SMD = 0.04, 95% CI: -0.26 to 0.35, p = 0.78), BMI (SMD = -0.09, 95% CI: -0.43 to 0.25, p = 0.60), and fat mass (SMD = 0.01, 95% CI: -0.25 to 0.27, p = 0.94). Conclusion The current evidence indicates that exercise with HMB supplementation may enhance physical performance in patients with sarcopenia compared to exercise with the placebo group. However, the effects on muscle mass, muscle strength, and body composition are likely minimal. The above findings are limited by the number of included studies and require further validation through high-quality studies. Systematic Review Registration Prospero (CRD42024500135).
Collapse
Affiliation(s)
- Yiwei Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peng Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Tao Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Ping Wan
- School of Sports and Health, Shanghai Lixin University of Accounting and Finance, Shanghai, China
| | - Rengfei Shi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Taitano RI, Gritsenko V. Evaluating Joint Angle Data for Clinical Assessment Using Multidimensional Inverse Kinematics with Average Segment Morphometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611088. [PMID: 39282382 PMCID: PMC11398373 DOI: 10.1101/2024.09.03.611088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Movement analysis is a critical tool in understanding and addressing various disabilities associated with movement deficits. By analyzing movement patterns, healthcare professionals can identify the root causes of these alterations, which is essential for preventing, diagnosing, and rehabilitating a broad spectrum of medical conditions, disabilities, and injuries. With the advent of affordable motion capture technologies, quantitative data on patient movement is more accessible to clinicians, enhancing the quality of care. Nonetheless, it is crucial that these technologies undergo rigorous validation to ensure their accuracy in collecting and monitoring patient movements, particularly for remote healthcare services where direct patient observation is not possible. In this study, motion capture technology was used to track upper extremity movements during a reaching task presented in virtual reality. Kinematic data was then calculated for each participant using a scaled dynamic inertial model. The goal was to evaluate the accuracy of joint angle calculations using inverse kinematics from motion capture relative to the typical movement redundancy. Shoulder, elbow, radioulnar, and wrist joint angles were calculated with models scaled using either direct measurements of each individual's arm segment lengths or those lengths were calculated from individual height using published average proportions. The errors in joint angle trajectories calculated using the two methods of model scaling were compared to the inter-trial variability of those trajectories. The variance of this error was primarily within the normal range of variability between repetitions of the same movements. This suggests that arm joint angles can be inferred with good enough accuracy from motion capture data and individual height to be useful for the clinical assessment of motor deficits.
Collapse
Affiliation(s)
- Rachel I Taitano
- Department of Neuroscience, School of Medicine, West Virginia University, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, USA
| | - Valeriya Gritsenko
- Department of Human Performance, Division of Physical Therapy, School of Medicine, West Virginia University, Department of Neuroscience, School of Medicine, West Virginia University, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, USA
| |
Collapse
|
6
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
7
|
Villalba MM, Silva NRS, Fujita RA, Fogagnolo C, Gomes MM, Pacheco MM. Muscle Recruitment Strategies in a Redundant Task: Age Differences Through Network Analyses. J Mot Behav 2024:1-15. [PMID: 38565202 DOI: 10.1080/00222895.2024.2332767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
There are numerous studies comparing young and old adults in terms of muscle coordination in standard tasks (e.g., walking, reaching) and small variations of them. These tasks might hide differences: individuals would converge to similar behavior as they practice these throughout life. Also, we are unaware of studies that considered the muscle recruitment nested dynamics. For this reason, our study evaluated how young and old women coordinate and control the movement system while performing an unusual redundant motor control task through the network physiology approach. We acquired electromyographic signals from nine leg muscles of the dominant and non-dominant limbs during maximum voluntary isometric contractions (knee extension and flexion) and co-contraction bouts. Our results showed that young participants presented higher peak torque output, with similar EMG variability, compared to older participants. Considering firing rate frequencies, old and young women demonstrated different traits for network clustering and efficiency for the task. Age seems to affect muscle coordination at higher frequencies, even with a similar number of muscle synergies, indicating that younger women might have more integrated synergies than older women. The findings also point to differential muscle coordination adaptability.
Collapse
Affiliation(s)
- Marina M Villalba
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Nilson R S Silva
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Mechanical and Biomedical Engineering, Mechanical Adaptations Laboratory, Boise State University, Boise, USA
| | - Rafael A Fujita
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Carol Fogagnolo
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus M Gomes
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Ribeirão Preto College of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus M Pacheco
- Biomechanics and Motor Control Laboratory, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Faculty of Sport, LABIOMEP, CIFI2D, University of Porto, Porto, Portugal
- Department of Physical Education, GEDEM, Federal University of Rondônia, Porto Velho, Brazil
| |
Collapse
|
8
|
Thompson SD, Pichika R, Lieber RL, Lavasani M. Extracting high-quality RNA from formaldehyde-fixed naturally aged neuromusculoskeletal tissues. Biotechniques 2024; 76:153-160. [PMID: 38334498 PMCID: PMC10988388 DOI: 10.2144/btn-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Modern approaches to discovering molecular mechanisms and validating treatments for age-related neuromusculoskeletal dysfunction typically rely on high-throughput transcriptome analysis. Previously harvested and fixed tissues offer an incredible reservoir of untapped molecular information. However, obtaining RNA from such formaldehyde-fixed neuromusculoskeletal tissues, especially fibrotic aged tissues, is technically challenging and often results in RNA degradation, chemical modification and yield reduction, prohibiting further analysis. Therefore, we developed a protocol to extract high-quality RNA from formaldehyde-fixed brain, cartilage, muscle and peripheral nerve isolated from naturally aged mice. Isolated RNA produced reliable gene expression data comparable to fresh and flash-frozen tissues and was sensitive enough to detect age-related changes, making our protocol valuable to researchers in the field of aging.
Collapse
Affiliation(s)
- Seth D Thompson
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Rajeswari Pichika
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Edward Hines Jr VA Medical Center, Maywood, IL 60153, USA
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Edward Hines Jr VA Medical Center, Maywood, IL 60153, USA
| | - Mitra Lavasani
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
10
|
Kim S, An S, Lee J, Jeong Y, You C, Kim H, Bae J, Yun C, Ryu D, Bae G, Kang J. Cdon ablation in motor neurons causes age-related motor neuron degeneration and impaired sciatic nerve repair. J Cachexia Sarcopenia Muscle 2023; 14:2239-2252. [PMID: 37559423 PMCID: PMC10570074 DOI: 10.1002/jcsm.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The functional deterioration and loss of motor neurons are tightly associated with degenerative motor neuron diseases and aging-related muscle wasting. Motor neuron diseases or aging-related muscle wasting in turn contribute to increased risk of adverse health outcomes in the elderly. Cdon (cell adhesion molecule-downregulated oncogene) belongs to the immunoglobulin superfamily of cell adhesion molecule and plays essential roles in multiple signalling pathways, including sonic hedgehog (Shh), netrin, and cadherin-mediated signalling. Cdon as a Shh coreceptor plays a critical role in motor neuron specification during embryonic development. However, its role in adult motor neuron function is unknown. METHODS Hb9-Cre recombinase-driven motor neuron-specific Cdon deficient mice (mnKO) and a compound mutant mice (mnKO::SOD1G93A ) were generated to investigate the role of Cdon in motor neuron degeneration. Motor neuron regeneration was examined by using a sciatic nerve crush injury model. To investigate the phenotype, physical activity, compound muscle action potential, immunostaining, and transmission electron microscopy were carried out. In the mechanism study, RNA sequencing and RNA/protein analyses were employed. RESULTS Mice lacking Cdon in motor neurons exhibited middle age onset lethality and aging-related decline in motor function. In the sciatic nerve crush injury model, mnKO mice exhibited an impairment in motor function recovery evident by prolonged compound muscle action potential duration (4.63 ± 0.35 vs. 3.93 ± 0.22 s for f/f, P < 0.01) and physical activity. Consistently, neuromuscular junctions of mnKO muscles were incompletely occupied (49.79 ± 5.74 vs. 79.39 ± 3.77% fully occupied neuromuscular junctions for f/f, P < 0.0001), suggesting an impaired reinnervation. The transmission electron microscopy analysis revealed that mnKO sciatic nerves had smaller axon diameter (0.88 ± 0.13 vs. 1.43 ± 0.48 μm for f/f, P < 0.0001) and myelination defects. RNA sequencing of mnKO lumbar spinal cords showed alteration in genes related to neurogenesis, inflammation and cell death. Among the altered genes, ErbB4 and FgfR expressions were significantly altered in mnKO as well as in Cdon-depleted NSC34 motor neuron cells. Consistently, Cdon-depleted NSC34 cells exhibited elevated levels of cleaved Caspase3 and γH2AX proteins, as well as Bax transcription. Cdon-depleted NSC34 cells also exhibited impaired activation of Akt in response to neuregulin-1 (NRG1) treatment. CONCLUSIONS Our current data demonstrate the functional importance of Cdon in motor neuron function and nerve repair. Cdon ablation causes alterations in neurotrophin signalling that leads to motor neuron degeneration.
Collapse
Affiliation(s)
- Sunghee Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Subin An
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Jinwoo Lee
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Yideul Jeong
- Research Institute of Animuscure INCSuwonSouth Korea
| | - Chang‐Lim You
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Hyebeen Kim
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Ju‐Hyeon Bae
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Chae‐Eun Yun
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| | - Dongryul Ryu
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
| | - Gyu‐Un Bae
- College of PharmacySookmyung Women's UniversitySeoulSouth Korea
| | - Jong‐Sun Kang
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonSouth Korea
- Single Cell Network Research CenterSungkyunkwan University School of MedicineSuwonSouth Korea
| |
Collapse
|
11
|
GrönholdtKlein M, Gorzi A, Wang L, Edström E, Rullman E, Altun M, Ulfhake B. Emergence and Progression of Behavioral Motor Deficits and Skeletal Muscle Atrophy across the Adult Lifespan of the Rat. BIOLOGY 2023; 12:1177. [PMID: 37759577 PMCID: PMC10526071 DOI: 10.3390/biology12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The facultative loss of muscle mass and function during aging (sarcopenia) poses a serious threat to our independence and health. When activities of daily living are impaired (clinical phase), it appears that the processes leading to sarcopenia have been ongoing in humans for decades (preclinical phase). Here, we examined the natural history of sarcopenia in male outbred rats to compare the occurrence of motor behavioral deficits with the degree of muscle wasting and to explore the muscle-associated processes of the preclinical and clinical phases, respectively. Selected metrics were validated in female rats. We used the soleus muscle because of its long duty cycles and its importance in postural control. Results show that gait and coordination remain intact through middle age (40-60% of median lifespan) when muscle mass is largely preserved relative to body weight. However, the muscle shows numerous signs of remodeling with a shift in myofiber-type composition toward type I. As fiber-type prevalence shifted, fiber-type clustering also increased. The number of hybrid fibers, myofibers with central nuclei, and fibers expressing embryonic myosin increased from being barely detectable to a significant number (5-10%) at late middle age. In parallel, TGFβ1, Smad3, FBXO32, and MuRF1 mRNAs increased. In early (25-month-old) and advanced (30-month-old) aging, gait and coordination deteriorate with the progressive loss of muscle mass. In late middle age and early aging due to type II atrophy (>50%) followed by type I atrophy (>50%), the number of myofibers did not correlate with this process. In advanced age, atrophy is accompanied by a decrease in SCs and βCatenin mRNA, whereas several previously upregulated transcripts were downregulated. The re-expression of embryonic myosin in myofibers and the upregulation of mRNAs encoding the γ-subunit of the nicotinic acetylcholine receptor, the neuronal cell adhesion molecule, and myogenin that begins in late middle age suggest that one mechanism driving sarcopenia is the disruption of neuromuscular connectivity. We conclude that sarcopenia in rats, as in humans, has a long preclinical phase in which muscle undergoes extensive remodeling to maintain muscle mass and function. At later time points, these adaptive mechanisms fail, and sarcopenia becomes clinically manifest.
Collapse
Affiliation(s)
- Max GrönholdtKlein
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Lingzhan Wang
- Department of Human Anatomy, Histology and Embryology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Mikael Altun
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| |
Collapse
|
12
|
Jang JY, Kim D, Kim ND. Pathogenesis, Intervention, and Current Status of Drug Development for Sarcopenia: A Review. Biomedicines 2023; 11:1635. [PMID: 37371730 DOI: 10.3390/biomedicines11061635] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Sarcopenia refers to the loss of muscle strength and mass in older individuals and is a major determinant of fall risk and impaired ability to perform activities of daily living, often leading to disability, loss of independence, and death. Owing to its impact on morbidity, mortality, and healthcare expenditure, sarcopenia in the elderly has become a major focus of research and public policy debates worldwide. Despite its clinical importance, sarcopenia remains under-recognized and poorly managed in routine clinical practice, partly owing to the lack of available diagnostic testing and uniform diagnostic criteria. Since the World Health Organization and the United States assigned a disease code for sarcopenia in 2016, countries worldwide have assigned their own disease codes for sarcopenia. However, there are currently no approved pharmacological agents for the treatment of sarcopenia; therefore, interventions for sarcopenia primarily focus on physical therapy for muscle strengthening and gait training as well as adequate protein intake. In this review, we aimed to examine the latest information on the epidemiology, molecular mechanisms, interventions, and possible treatments with new drugs for sarcopenia.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Donghwan Kim
- Functional Food Materials Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Use of a novel technique to assess impact of age-related denervation on mouse soleus muscle function. Biogerontology 2023; 24:377-390. [PMID: 36790689 PMCID: PMC10147802 DOI: 10.1007/s10522-023-10021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
Denervation contributes to loss of force-generating capacity in aged skeletal muscles, but problems with quantification of denervated fibers mean the precise impact of denervation on muscle function remains unclear. This study therefore looked to develop a reliable assay for identifying denervated muscle fibers, and used this to explore the impact of denervation on age-related force-generation in mouse skeletal muscle. Thirteen young (6-month-old) and 10 old (24-months-old) C57Bl/6 J female mice were utilized. Anaesthetized mice were infused with the fluorescent deoxyglucose analog 2[N-(7-nitrobenz-2-oxa-1,2-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG) and the tibial nerve was repeatedly stimulated to label active skeletal muscle fibers by activity-dependent uptake of 2-NBDG. Data on muscle force generation were acquired as part of the stimulation routine. Labeled muscles were removed, snap frozen, sectioned, and slide mounted. Sections were imaged to show accumulation of 2-NBDG in activated fibers and lack of 2-NBDG accumulation in quiescent (denervated) fibers, then processed using immunohistochemistry to allow collection of data on fiber number and morphology. Soleus muscles from older mice had nine times as many denervated fibers as those from young mice (average n = 36 vs 4, old vs young). Older muscles developed significantly more passive force and less specific force, but denervation only partly accounted for age-related deficits in specific force. Further investigations are required to definitively identify contributors to the decrease in force generation that remain unaccounted for.
Collapse
|
14
|
Pereira da Silva Alves II, Santos Bueno GA, Brito Elmescany R, Aparecida Borges L, Kran Pinto D, Correia Martins A, de Menezes RL. Motor Reaction Time, Sarcopenia and Functional Skills in Elderly Women: A Cross-Sectional Study. J Nutr Health Aging 2023; 27:878-884. [PMID: 37960911 DOI: 10.1007/s12603-023-1983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2023]
Abstract
IMPORTANCE Aging generates changes over the years. Because of this, the musculoskeletal system is directly degraded and suffer deficits in its performance in elderly patients with Sarcopenia, as this condition is characterized by a decrease in muscle mass and function. OBJECTIVE Correlate the motor reaction time and functional skills of non-sarcopenic, pre-sarcopenic and sarcopenic elderly women, and analyze influence on the risk of falls. DESIGN Cross-sectional observational analytical study, following the methodological strategies of STROBE (Strengthening the Reporting of Observational Studies in Epidemiology), carried out under the approval of the Research Ethics Committee of the Unievangélica University, no. 3.694.235/2019. SETTING Participants were evaluated regarding: cognitive status, level of physical activity, fear of falling, body composition, motor reaction time, static and dynamic balance, gait kinetics, strength and endurance of the lower limbs and finally handgrip strength. PARTICIPANTS A total of 59 volunteer elderly women were assessed following the diagnostic criteria for sarcopenia proposed by the European Working Group on Sarcopenia in Older People (EWGSOP). RESULTS The results show that there was a greater difference in motor reaction time between the non-sarcopenic and sarcopenic elderly women due to the executing organ being damaged by the presence of sarcopenia, causing motor response to slowdown. Functional deficit, fear of falling and greater risk of falls were observed in the sarcopenic group, under the harmful influence of increased motor reaction time. CONCLUSION Sarcopenic elderly women present increased motor reaction time, that is, slowed motor responses due to decreased muscle mass, strength and impaired musculature, which generate functional deficits that contribute to an increased risk of falls.
Collapse
Affiliation(s)
- I I Pereira da Silva Alves
- Guilherme Augusto Santos Bueno, Postgraduate Program in Health Sciences and Technologies, University of Brasilía, Federal District, Brazil,
| | | | | | | | | | | | | |
Collapse
|
15
|
Cho MR, Lee S, Song SK. A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. J Korean Med Sci 2022; 37:e146. [PMID: 35535373 PMCID: PMC9091430 DOI: 10.3346/jkms.2022.37.e146] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcopenia is a progressive and generalized loss of skeletal muscle mass and function. The prevalence of sarcopenia was reported to be up to 29% in older persons in the community healthcare setting. Sarcopenia diagnosis is confirmed by the presence of low muscle mass plus low muscle strength or low physical performance. Sarcopenia management options include non-pharmacological and pharmacological approaches. Non-pharmacological approaches include resistance exercise and adequate nutrition. Of the two, resistance exercise is the standard non-pharmacological treatment approach for sarcopenia with significant positive evidence. Some dietary approaches such as adequate intake of protein, vitamin D, antioxidant nutrients, and long-chain polyunsaturated fatty acid have been shown to have positive effects against sarcopenia. Currently, no specific drugs have been approved by the Food and Drug Administration for the treatment of sarcopenia. However, several agents, including growth hormone, anabolic or androgenic steroids, selective androgenic receptor modulators, protein anabolic agents, appetite stimulants, myostatin inhibitors, activating II receptor drugs, β-receptor blockers, angiotensin-converting enzyme inhibitors, and troponin activators, are recommended and have been shown to have variable efficacy. Future research should focus on sarcopenia biological pathway and improved diagnostic approaches such as biomarkers for early detection, development of consistently pre-eminent treatment methods for severe sarcopenia patients, and establishing sensitive measures for predicting sarcopenia treatment response.
Collapse
Affiliation(s)
- Myung-Rae Cho
- Department of Orthopaedic Surgery, Daegu Catholic University Medical Center, Daegu, Korea
| | - Sungho Lee
- Department of Orthopaedic Surgery, Daegu Catholic University Medical Center, Daegu, Korea
| | - Suk-Kyoon Song
- Department of Orthopaedic Surgery, Daegu Catholic University Medical Center, Daegu, Korea.
| |
Collapse
|
16
|
Induction of Accelerated Aging in a Mouse Model. Cells 2022; 11:cells11091418. [PMID: 35563724 PMCID: PMC9102583 DOI: 10.3390/cells11091418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. This review will discuss some of the common and emerging mouse models of accelerated aging and related chronic diseases in recent years, with the aim of serving as a reference for future application in fundamental and translational research.
Collapse
|
17
|
Hsu WB, Lin SJ, Hung JS, Chen MH, Lin CY, Hsu WH, Hsu WWR. Effect of resistance training on satellite cells in old mice - a transcriptome study : implications for sarcopenia. Bone Joint Res 2022; 11:121-133. [PMID: 35188421 PMCID: PMC8882320 DOI: 10.1302/2046-3758.112.bjr-2021-0079.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aims The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. Methods We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics. Results After the bioinformatic analysis, the PI3K-Akt signalling pathway and the regulation of actin cytoskeleton in particular were highlighted among the top ten pathways with the most differentially expressed genes involved in the young/MID and MID+ T/MID groups. The expression of Gng5, Atf2, and Rtor in the PI3K-Akt signalling pathway was higher in the young and MID+ T groups compared with the MID group. Similarly, Limk1, Arhgef12, and Araf in the regulation of the actin cytoskeleton pathway had a similar bias. Moreover, the protein expression profiles of Atf2, Rptor, and Ccnd3 in each group were paralleled with the results of NGS. Conclusion Our results revealed that age-induced muscle loss might result from age-influenced genes that contribute to muscle development in SCs. After resistance training, age-impaired genes were reactivated, and age-induced genes were depressed. The change fold in these genes in the young/MID mice resembled those in the MID + T/MID group, suggesting that resistance training can rejuvenate the self-renewing ability of SCs by recovering age-influenced genes to prevent sarcopenia. Cite this article: Bone Joint Res 2022;11(2):121–133.
Collapse
Affiliation(s)
- Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Shih-Jie Lin
- Department of Orthopaedic Surgery, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ji-Shiuan Hung
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Mei-Hsin Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology Academia Sinica, Taipei, Taiwan
| | - Wei-Hsiu Hsu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Wen-Wei Robert Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan.,Department of Orthopaedic Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Jofré-Saldía E, Villalobos-Gorigoitía Á, Gea-García G. Methodological Proposal for Strength and Power Training in Older Athletes: A Narrative Review. Curr Aging Sci 2022; 15:135-146. [PMID: 35227189 DOI: 10.2174/1874609815666220228153646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Within the adult population, it is not uncommon to meet older athletes who challenge the negative stereotypes associated with aging. Although their physical performance is superior to their sedentary counterparts, they are not immune to impaired neuromuscular function, leading to a decreased physical capacity and an increased risk of injuries. Despite the abundant information about the benefits of strength/power training in advanced ages, there are no methodological proposals that guide physical activity professionals to program this type of training. OBJECTIVE This study aimed to review the factors related to the decrease in sports performance within older athletes and the benefits of a strength/power program in order to provide a methodological proposal to organize training in this population. METHODS This is a review article. First, databases from PubMed, Science Direct, and SPORTSDiscus and search engines, namely Google Scholar and Scielo, were reviewed, using standard keywords such as strength and power training, evaluation of physical performance, neuromuscular function, and risk of injury in the elderly athlete. All related articles published during the period 1963 to 2020 were considered. A total of 1837 documents were found. By removing 1715 unrelated documents, 122 articles were included in the study after revision control. RESULTS Strength/power training is key to alleviating the loss of performance in older athletes and the benefits in neuromuscular function, which helps reduce the rate of serious injuries, maintaining sports practice for a longer period of time. In order to design an appropriate program, a prior evaluation of the individual's physical-technical level must be carried out, respecting the biologicalpedagogical principles and safety regulations. CONCLUSION The methodological proposal delivered in this review can serve as a technical guide for physical activity professionals, which will be able to structure the strength/power training and thus preserve the sports practice in older athletes for a longer time.
Collapse
Affiliation(s)
- Emilio Jofré-Saldía
- Instituto del Deporte, Universidad de las Américas, Santiago, Chile
- Departamento de Ciencias de la Actividad Física y el Deporte, Facultad de Deporte, Universidad Católica San Antonio de Murcia, Murcia, España
| | | | - Gemma Gea-García
- Departamento de Ciencias de la Actividad Física y el Deporte, Facultad de Deporte, Universidad Católica San Antonio de Murcia, Murcia, España
| |
Collapse
|
19
|
Jayawardena TU, Kim SY, Jeon YJ. Sarcopenia; functional concerns, molecular mechanisms involved, and seafood as a nutritional intervention - review article. Crit Rev Food Sci Nutr 2021; 63:1983-2003. [PMID: 34459311 DOI: 10.1080/10408398.2021.1969889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seo-Young Kim
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo-si, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.,Marine Science Institute, Jeju National University, Jeju, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
20
|
Gustafsson T, Ulfhake B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021; 12:688526. [PMID: 34276788 PMCID: PMC8285098 DOI: 10.3389/fgene.2021.688526] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023] Open
Abstract
We here review the loss of muscle function and mass (sarcopenia) in the framework of human healthspan and lifespan, and mechanisms involved in aging. The rapidly changing composition of the human population will impact the incidence and the prevalence of aging-induced disorders such as sarcopenia and, henceforth, efforts to narrow the gap between healthspan and lifespan should have top priority. There are substantial knowledge gaps in our understanding of aging. Heritability is estimated to account for only 25% of lifespan length. However, as we push the expected lifespan at birth toward those that we consider long-lived, the genetics of aging may become increasingly important. Linkage studies of genetic polymorphisms to both the susceptibility and aggressiveness of sarcopenia are still missing. Such information is needed to shed light on the large variability in clinical outcomes between individuals and why some respond to interventions while others do not. We here make a case for the concept that sarcopenia has a neurogenic origin and that in manifest sarcopenia, nerve and myofibers enter into a vicious cycle that will escalate the disease progression. We point to gaps in knowledge, for example the crosstalk between the motor axon, terminal Schwann cell, and myofiber in the denervation processes that leads to a loss of motor units and muscle weakness. Further, we argue that the operational definition of sarcopenia should be complemented with dynamic metrics that, along with validated biomarkers, may facilitate early preclinical diagnosis of individuals vulnerable to develop advanced sarcopenia. We argue that preventive measures are likely to be more effective to counter act aging-induced disorders than efforts to treat manifest clinical conditions. To achieve compliance with a prescription of preventive measures that may be life-long, we need to identify reliable predictors to design rational and convincing interventions.
Collapse
Affiliation(s)
- Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brun Ulfhake
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Thomas AB, Olesh EV, Adcock A, Gritsenko V. Muscle torques and joint accelerations provide more sensitive measures of poststroke movement deficits than joint angles. J Neurophysiol 2021; 126:591-606. [PMID: 34191634 DOI: 10.1152/jn.00149.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The whole repertoire of complex human motion is enabled by forces applied by our muscles and controlled by the nervous system. The impact of stroke on the complex multijoint motor control is difficult to quantify in a meaningful way that informs about the underlying deficit in the active motor control and intersegmental coordination. We tested whether poststroke deficit can be quantified with high sensitivity using motion capture and inverse modeling of a broad range of reaching movements. Our hypothesis is that muscle moments estimated based on active joint torques provide a more sensitive measure of poststroke motor deficits than joint angles. The motion of 22 participants was captured while performing reaching movements in a center-out task, presented in virtual reality. We used inverse dynamic analysis to derive active joint torques that were the result of muscle contractions, termed muscle torques, that caused the recorded multijoint motion. We then applied a novel analysis to separate the component of muscle torque related to gravity compensation from that related to intersegmental dynamics. Our results show that muscle torques characterize individual reaching movements with higher information content than joint angles do. Moreover, muscle torques enable distinguishing the individual motor deficits caused by aging or stroke from the typical differences in reaching between healthy individuals. Similar results were obtained using metrics derived from joint accelerations. This novel quantitative assessment method may be used in conjunction with home-based gaming motion capture technology for remote monitoring of motor deficits and inform the development of evidence-based robotic therapy interventions.NEW & NOTEWORTHY Functional deficits seen in task performance have biomechanical underpinnings, seen only through the analysis of forces. Our study has shown that estimating muscle moments can quantify with high-sensitivity poststroke deficits in intersegmental coordination. An assessment developed based on this method could help quantify less observable deficits in mildly affected stroke patients. It may also bridge the gap between evidence from studies of constrained or robotically manipulated movements and research with functional and unconstrained movements.
Collapse
Affiliation(s)
- Ariel B Thomas
- Department of Human Performance, Division of Physical Therapy, School of Medicine West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Erienne V Olesh
- Department of Human Performance, Division of Physical Therapy, School of Medicine West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Amelia Adcock
- West Virginia University Center for Teleneurology and Telestroke, Morgantown, West Virginia.,Department of Neurology, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Valeriya Gritsenko
- Department of Human Performance, Division of Physical Therapy, School of Medicine West Virginia University, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
22
|
Costa Riela NDA, Alvim Guimarães MM, Oliveira de Almeida D, Araujo EMQ. Effects of Beta-Hydroxy-Beta-Methylbutyrate Supplementation on Elderly Body Composition and Muscle Strength: A Review of Clinical Trials. ANNALS OF NUTRITION AND METABOLISM 2021; 77:16-22. [PMID: 33709969 DOI: 10.1159/000514236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aging process has great impact on body composition, such as the increase of adipose tissue in abdominal region, and the decrease of lean body mass, due to skeletal muscle loss. A reduction in muscle mass is associated to high risk of fractures and falls, loss of mobility, and increased number of hospitalizations. Beta-hydroxy-beta-methylbutyrate (HMB) is a biological substance derived from leucine metabolism, with anabolic and anticatabolic properties. Some HMB effects are tissue repair stimulation and protein anabolism. AIMS We aimed to evaluate the effects of HMB supplementation on body composition and muscle strength in elderly, as well as to identify the efficient dosages to reach these effects. METHODS This review included studies that evaluated muscle mass and muscle strength, associated or not with physical exercise and diet in elderly people. Only studies published from 2008 to 2019 were selected for analysis. RESULTS Six articles were included in the review. The used doses varied from 1.5 to 3 g. In 5 studies, HMB supplementation was associated with calcium; only 1 study did not use the oral administration route. Two studies used 4 g of maltodextrin as a vehicle; 1 used HMB with a hypercaloric and hyperproteic supplement; 1 associated HMB with lysine and arginine; and 1 with arginine and glutamine. Supplementation of 3 g of HMB has shown to be most beneficial in improving strength and body composition in people over 65 years, especially in bed rest and untrained conditions. CONCLUSION Our findings suggest that HMB has a positive effect on body composition and strength, especially in bedridden or sedentary elderly, due to its anticatabolic properties.
Collapse
Affiliation(s)
| | | | - Daniela Oliveira de Almeida
- Life Sciences Department, Nucleus of Research and Extension in Nutritional Genomics and Metabolic Dysfunctions (GENUT), University of The State of Bahia (UNEB), Salvador, Brazil.,Professor of undergraduate medical course, UniFTC, Salvador, Brazil
| | - Edilene Maria Queiroz Araujo
- Life Sciences Department, Nucleus of Research and Extension in Nutritional Genomics and Metabolic Dysfunctions (GENUT), University of The State of Bahia (UNEB), Salvador, Brazil, .,Life Sciences Department/UNEB, Health Sciences Institute/UFBA, Coordinator of Nutrition Course and GENUT, Professor at Post-Graduation Program Interactive Process of Organs and Systems, Salvador, Brazil,
| |
Collapse
|
23
|
Prevalence of and Factors Associated With Sarcopenia Among Older Adults With Knee Osteoarthritis. TOPICS IN GERIATRIC REHABILITATION 2021. [DOI: 10.1097/tgr.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control. Front Physiol 2020; 11:583478. [PMID: 33224037 PMCID: PMC7667253 DOI: 10.3389/fphys.2020.583478] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Exercise training is one of the most effective interventional strategies for sarcopenia in aged people. Nevertheless, the underlying mechanisms are not well recognized. Increasing studies have reported abnormal regulation of autophagy in aged skeletal muscle. Our current study aims to explore the efficiency of exercise interventions, including treadmill exercise, resistance exercise, alternating exercise with treadmill running and resistance exercise, and voluntary wheel running, on 21-month-old rats with sarcopenia and to detect the underlying mechanisms. Results showed the declined mass of gastrocnemius muscle with deficient autophagy and excessive apoptosis as a result of up-regulated Atrogin-1 and MuRF1, declined Beclin1 level and LC3-II/LC3-I ratio, accumulated p62, increased Bax, and reduced Bcl-2 levels, and also exhibited a defective mitochondrial quality control due to declined PGC-1α, Mfn2, Drp1, and PINK1 levels. However, 12-week exercise interventions suppressed the decline in mass loss of skeletal muscle, accompanied by down-regulated Atrogin-1 and MuRF1, increased Beclin1 level, improved LC3-II/LC3-I ratio, declined p62 level, and reduced Bax and increased Bcl-2 level, as well as enhanced mitochondrial function due to the increased PGC-1α, Mfn2, Drp1, and PINK1 levels. Moreover, exercise interventions also down-regulated the phosphorylation of Akt, mTOR, and FoxO3a, and up-regulated phosphorylated AMPK to regulate the functional status of autophagy and mitochondrial quality control. Therefore, exercise-induced autophagy is beneficial for remedying sarcopenia by modulating Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control, and resistance exercise exhibits the best interventional efficiency.
Collapse
Affiliation(s)
- Zhengzhong Zeng
- Graduate School, Wuhan Sports University, Wuhan, China.,Sports Institute, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jiling Liang
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Liangwen Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Hu Zhang
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Jun Lv
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
25
|
|
26
|
Ferri E, Marzetti E, Calvani R, Picca A, Cesari M, Arosio B. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci 2020; 21:ijms21155236. [PMID: 32718064 PMCID: PMC7432902 DOI: 10.3390/ijms21155236] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle aging is associated with a significant loss of skeletal muscle strength and power (i.e., dynapenia), muscle mass and quality of life, a phenomenon known as sarcopenia. This condition affects nearly one-third of the older population and is one of the main factors leading to negative health outcomes in geriatric patients. Notwithstanding the exact mechanisms responsible for sarcopenia are not fully understood, mitochondria have emerged as one of the central regulators of sarcopenia. In fact, there is a wide consensus on the assumption that the loss of mitochondrial integrity in myocytes is the main factor leading to muscle degeneration. Mitochondria are also key players in senescence. It has been largely proven that the modulation of mitochondrial functions can induce the death of senescent cells and that removal of senescent cells improves musculoskeletal health, quality, and function. In this review, the crosstalk among mitochondria, cellular senescence, and sarcopenia will be discussed with the aim to elucidate the role that the musculoskeletal cellular senescence may play in the onset of sarcopenia through the mediation of mitochondria.
Collapse
Affiliation(s)
- Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.); (B.A.)
- Correspondence:
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.); (A.P.)
- Geriatric Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.); (A.P.)
- Geriatric Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (E.M.); (R.C.); (A.P.)
- Geriatric Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.); (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.); (B.A.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
27
|
Melouane A, Yoshioka M, St-Amand J. Extracellular matrix/mitochondria pathway: A novel potential target for sarcopenia. Mitochondrion 2020; 50:63-70. [DOI: 10.1016/j.mito.2019.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022]
|
28
|
Delafontaine A, Vialleron T, Fischer M, Laffaye G, Chèze L, Artico R, Genêt F, Fourcade PC, Yiou E. Acute Effects of Whole-Body Vibration on the Postural Organization of Gait Initiation in Young Adults and Elderly: A Randomized Sham Intervention Study. Front Neurol 2019; 10:1023. [PMID: 31616369 PMCID: PMC6768974 DOI: 10.3389/fneur.2019.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Whole-body vibration (WBV) is a training method that exposes the entire body to mechanical oscillations while standing erect or seated on a vibrating platform. This method is nowadays commonly used by clinicians to improve specific motor outcomes in various sub-populations such as elderly and young healthy adults, either sedentary or well-trained. The present study investigated the effects of acute WBV application on the balance control mechanisms during gait initiation (GI) in young healthy adults and elderly. It was hypothesized that the balance control mechanisms at play during gait initiation may compensate each other in case one or several components are perturbed following acute WBV application, so that postural stability and/or motor performance can be maintained or even improved. It is further hypothesized that this capacity of adaptation is altered with aging. Main results showed that the effects of acute WBV application on the GI postural organization depended on the age of participants. Specifically, a positive effect was observed on dynamic stability in the young adults, while no effect was observed in the elderly. An increased stance leg stiffness was also observed in the young adults only. The positive effect of WBV on dynamic stability was ascribed to an increase in the mediolateral amplitude of "anticipatory postural adjustments" following WBV application, which did overcompensate the potentially destabilizing effect of the increased stance leg stiffness. In elderly, no such anticipatory (nor corrective) postural adaptation was required since acute WBV application did not elicit any change in the stance leg stiffness. These results suggest that WBV application may be effective in improving dynamic stability but at the condition that participants are able to develop adaptive changes in balance control mechanisms, as did the young adults. Globally, these findings are thus in agreement with the hypothesis that balance control mechanisms are interdependent within the postural system, i.e., they may compensate each other in case one component (here the leg stiffness) is perturbed.
Collapse
Affiliation(s)
- Arnaud Delafontaine
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,ENKRE, Saint-Maurice, France
| | - Thomas Vialleron
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Matthieu Fischer
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Guillaume Laffaye
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | | | - Romain Artico
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,ENKRE, Saint-Maurice, France
| | - François Genêt
- UMR End:icap équipe 3, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France
| | - Paul Christian Fourcade
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Eric Yiou
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| |
Collapse
|
29
|
Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:175-185. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
The human genome contains around 20,000-25,000 genes coding for 30,000 proteins. Some proteins and genes represent therapeutic targets for human diseases. RNA and protein expression profiling tools allow the study of the molecular basis of aging and drug discovery validation. Throughout the life, there is an age-related and disease-related muscle decline. Sarcopenia is defined as a loss of muscle mass and a decrease in functional properties such as muscle strength and physical performance. Yet, there is still no consensus on the evaluation methods of sarcopenia prognosis. The main challenge of this complex biological phenomena is its multifactorial etiology. Thus, functional genomics methods attempt to shape the related scientific approaches via an innovative in-depth view on sarcopenia. Gene and drug high throughput screening combined with functional genomics allow the generation and the interpretation of a large amount of data related to sarcopenia and therapeutic progress. This review focuses on the application of selected functional genomics techniques such as RNA interference, RNA silencing, proteomics, transgenic mice, metabolomics, genomics, and epigenomics to better understand sarcopenia mechanisms.
Collapse
Affiliation(s)
- Aicha Melouane
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Abdelaziz Ghanemi
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada
| | - Jonny St-Amand
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada.
| |
Collapse
|
30
|
Krishnan VS, Shavlakadze T, Grounds MD, Hodgetts SI, Harvey AR. Age-related loss of VGLUT1 excitatory, but not VGAT inhibitory, immunoreactive terminals on motor neurons in spinal cords of old sarcopenic male mice. Biogerontology 2018; 19:385-399. [DOI: 10.1007/s10522-018-9765-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
|
31
|
Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A. Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification. Front Genet 2018; 9:242. [PMID: 30050560 PMCID: PMC6052089 DOI: 10.3389/fgene.2018.00242] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
For the past several decades, research in understanding the molecular basis of human muscle aging has progressed significantly. However, the development of accessible tissue-specific biomarkers of human muscle aging that may be measured to evaluate the effectiveness of therapeutic interventions is still a major challenge. Here we present a method for tracking age-related changes of human skeletal muscle. We analyzed publicly available gene expression profiles of young and old tissue from healthy donors. Differential gene expression and pathway analysis were performed to compare signatures of young and old muscle tissue and to preprocess the resulting data for a set of machine learning algorithms. Our study confirms the established mechanisms of human skeletal muscle aging, including dysregulation of cytosolic Ca2+ homeostasis, PPAR signaling and neurotransmitter recycling along with IGFR and PI3K-Akt-mTOR signaling. Applying several supervised machine learning techniques, including neural networks, we built a panel of tissue-specific biomarkers of aging. Our predictive model achieved 0.91 Pearson correlation with respect to the actual age values of the muscle tissue samples, and a mean absolute error of 6.19 years on the test set. The performance of models was also evaluated on gene expression samples of the skeletal muscles from the Gene expression Genotype-Tissue Expression (GTEx) project. The best model achieved the accuracy of 0.80 with respect to the actual age bin prediction on the external validation set. Furthermore, we demonstrated that aging biomarkers can be used to identify new molecular targets for tissue-specific anti-aging therapies.
Collapse
Affiliation(s)
- Polina Mamoshina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Marina Volosnikova
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Ivan V Ozerov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Evgeny Putin
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Computer Technologies Lab, Saint Petersburg State University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
| | - Ekaterina Skibina
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States
| | - Franco Cortese
- Biogerontology Research Foundation, London, United Kingdom
| | - Alex Zhavoronkov
- Pharmaceutical Artificial Intelligence Department, Insilico Medicine, Inc., Baltimore, MD, United States.,Biogerontology Research Foundation, London, United Kingdom.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
32
|
Verschuren O, Smorenburg AR, Luiking Y, Bell K, Barber L, Peterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle 2018; 9:453-464. [PMID: 29392922 PMCID: PMC5989853 DOI: 10.1002/jcsm.12287] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/23/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022] Open
Abstract
In individuals with cerebral palsy (CP), smaller muscle and atrophy are present at young age. Many people with CP also experience a decline in gross motor function as they age, which might be explained by the loss of muscle mass. The clinical observation of muscle wasting has prompted a comparison with sarcopenia in older adults, and the term accelerated musculoskeletal ageing is often used to describe the hallmark phenotype of CP through the lifespan. However, there has been very little research emphasis on the natural history of ageing with CP and even less with respect to the determinants or prevention of muscle loss with CP. Considering the burgeoning interest in the science of muscle preservation, this paper aims to (i) describe the characteristics of accelerated musculoskeletal ageing in people with CP, (ii) describe the pathophysiology of sarcopenia and parallels with CP, and (iii) discuss possible therapeutic approaches, based on established approaches for sarcopenia.
Collapse
Affiliation(s)
- Olaf Verschuren
- Brain Center Rudolf Magnus, Center of Excellence for Rehabilitation Medicine, De Hoogstraat RehabilitationUniversity Medical Center UtrechtRembrandtkade 10Utrecht3583TMThe Netherlands
| | | | - Yvette Luiking
- Nutricia ResearchAdvanced Medical NutritionUtrechtThe Netherlands
| | - Kristie Bell
- Child Health Research CentreThe University of QueenslandBrisbaneAustralia
- Lady Cilento Children's HospitalSouth BrisbaneQueenslandAustralia
| | - Lee Barber
- Queensland Cerebral Palsy and Rehabilitation Research Centre, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Mark D. Peterson
- Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
33
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
34
|
Azpurua J, Mahoney RE, Eaton BA. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function. Aging Cell 2018; 17:e12729. [PMID: 29411505 PMCID: PMC5847883 DOI: 10.1111/acel.12729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/12/2022] Open
Abstract
The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age.
Collapse
Affiliation(s)
- Jorge Azpurua
- Department of AnesthesiologyStony Brook University School of MedicineStony BrookNYUSA
| | - Rebekah E. Mahoney
- Department of Cellular and Integrative PhysiologyUTHSCSASan AntonioTXUSA
- Barshop Institute for Longevity and Aging StudiesUTHSCSASan AntonioTXUSA
| | - Benjamin A. Eaton
- Department of Cellular and Integrative PhysiologyUTHSCSASan AntonioTXUSA
- Barshop Institute for Longevity and Aging StudiesUTHSCSASan AntonioTXUSA
| |
Collapse
|
35
|
Epro G, Mierau A, McCrum C, Leyendecker M, Brüggemann GP, Karamanidis K. Retention of gait stability improvements over 1.5 years in older adults: effects of perturbation exposure and triceps surae neuromuscular exercise. J Neurophysiol 2018. [PMID: 29537914 DOI: 10.1152/jn.00513.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The plantarflexors play a crucial role in recovery from sudden disturbances to gait. The objective of this study was to investigate whether medium (months)- or long(years)-term exercise-induced enhancement of triceps surae (TS) neuromuscular capacities affects older adults' ability to retain improvements in reactive gait stability during perturbed walking acquired from perturbation training sessions. Thirty-four adult women (65 ± 7 yr) were recruited to a perturbation training group ( n = 13) or a group that additionally completed 14 wk of TS neuromuscular exercise ( n = 21), 12 of whom continued with the exercise for 1.5 yr. The margin of stability (MoS) was analyzed at touchdown of the perturbed step and the first recovery step following eight separate unexpected trip perturbations during treadmill walking. TS muscle-tendon unit mechanical properties and motor skill performance were assessed with ultrasonography and dynamometry. Two perturbation training sessions (baseline and after 14 wk) caused an improvement in the reactive gait stability to the perturbations (increased MoS) in both groups. The perturbation training group retained the reactive gait stability improvements acquired over 14 wk and over 1.5 yr, with a minor decay over time. Despite the improvements in TS capacities in the additional exercise group, no benefits for the reactive gait stability following perturbations were identified. Therefore, older adults' neuromotor system shows rapid plasticity to repeated unexpected perturbations and an ability to retain these adaptations in reactive gait stability over a long time period, but an additional exercise-related enhancement of TS capacities seems not to further improve these effects. NEW & NOTEWORTHY Older adults' neuromotor system shows rapid plasticity to repeated exposure to unexpected perturbations to gait and an ability to retain the majority of these adaptations in reactive recovery responses over a prolonged time period of 1.5 yr. However, an additional exercise-related enhancement of TS neuromuscular capacities is not necessarily transferred to the recovery behavior during unexpected perturbations to gait in older adults.
Collapse
Affiliation(s)
- G Epro
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University , United Kingdom.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - A Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne , Cologne , Germany.,Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - C McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , Maastricht , The Netherlands.,Institute of Movement and Sport Gerontology, German Sport University Cologne , Cologne , Germany
| | - M Leyendecker
- Institute of Movement and Neurosciences, German Sport University Cologne , Cologne , Germany
| | - G-P Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany.,Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne , Cologne , Germany
| | - K Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University , United Kingdom
| |
Collapse
|
36
|
|
37
|
Zampieri S, Mammucari C, Romanello V, Barberi L, Pietrangelo L, Fusella A, Mosole S, Gherardi G, Höfer C, Löfler S, Sarabon N, Cvecka J, Krenn M, Carraro U, Kern H, Protasi F, Musarò A, Sandri M, Rizzuto R. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiol Rep 2017; 4:4/24/e13005. [PMID: 28039397 PMCID: PMC5210373 DOI: 10.14814/phy2.13005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 01/04/2023] Open
Abstract
Age‐related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU‐dependent mitochondrial Ca2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70‐year‐old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU. Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES‐trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES‐dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial‐related proteins involved in Ca2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria‐related proteins as potential pharmacological targets to counteract age‐related muscle loss.
Collapse
Affiliation(s)
- Sandra Zampieri
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria .,Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | | | | | - Laura Barberi
- DAHFMO-Unit of Histology and Medical Embryology, IIM, Institute Pasteur Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Laura Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Aurora Fusella
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Simone Mosole
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Christian Höfer
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Stefan Löfler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Nejc Sarabon
- Science and Research Centre, Institute for Kinesiology Research, University of Primorska, Koper, Slovenia
| | - Jan Cvecka
- Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia
| | - Matthias Krenn
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ugo Carraro
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,IRCCS Fondazione Ospedale San Camillo, Venezia, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Feliciano Protasi
- Department of Neuroscience, Imaging and Clinical Sciences, CeSI-Met - Center for Research on Aging and Translational Medicine & DNICS University G. d'Annunzio, Chieti, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, IIM, Institute Pasteur Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | | |
Collapse
|
38
|
Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice. Exp Gerontol 2016; 83:22-30. [PMID: 27435496 DOI: 10.1016/j.exger.2016.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023]
Abstract
The gastrocnemius muscle (GM) of young (3months) and aged (12months) female wild-type C57/BL6 mice was examined by light and electron microscopy, looking for the presence of structural changes at early stage of the aging process. Morphometrical parameters including body and gastrocnemius weights, number and type of muscle fibers, cross section area (CSA), perimeter, and Feret's diameter of single muscle fiber, were measured. Moreover, lengths of the sarcomere, A-band, I-band, H-zone, and number and CSA of intermyofibrillar mitochondria (IFM), were also determined. The results provide evidence that 12month-old mice had significant changes on skeletal muscle structure, beginning with the reduction of gastrocnemius weight to body weight ratio, compatible with an early loss of skeletal muscle function and strength. Moreover, light microscopy revealed increased muscle fibers size, with a significant increase on their CSA, perimeter, and diameter of both type I and type II muscle fibers, and a reduction in the percentage of muscle area occupied by type II fibers. Enhanced connective tissue infiltrations, and the presence of centrally nucleated muscle fibers, were also found in aged mice. These changes may underlie an attempt to compensate the loss of muscle mass and muscle fibers number. Furthermore, electron microscopy discovered a significant age-dependent increase in the length of sarcomeres, I and H bands, and reduction on the overlapped actin/myosin length, supporting contractile force loss with age. Electron microscopy also showed an increased number and CSA of IFM with age, which may reveal more endurance at 12months of age. Together, mice at early stage of aging already show significant changes in gastrocnemius muscle morphology and ultrastructure that are suggestive of the onset of sarcopenia.
Collapse
|
39
|
Perry RA, Brown LA, Lee DE, Brown JL, Baum JI, Greene NP, Washington TA. Differential effects of leucine supplementation in young and aged mice at the onset of skeletal muscle regeneration. Mech Ageing Dev 2016; 157:7-16. [PMID: 27327351 DOI: 10.1016/j.mad.2016.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/29/2022]
Abstract
Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice.
Collapse
Affiliation(s)
- Richard A Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Jamie I Baum
- Department of Food Science, University of Arkansas, Fayetteville AR 72701, United States
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
40
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
41
|
|
42
|
Abstract
Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data.
Collapse
Affiliation(s)
- L Harkema
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
de Oliveira LR, Mombach JCM, Castellani G. A simple stochastic model for the feedback circuit between p16INK4a and p53 mediated by p38MAPK: implications for senescence and apoptosis. MOLECULAR BIOSYSTEMS 2015; 11:2955-63. [PMID: 26281034 DOI: 10.1039/c5mb00230c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms leading to the cell fate decision between apoptosis and senescence upon DNA damage are still unclear and have stochastic features. Cellular oxidative stress can generate DNA damage and activate the important mitogen-activated protein kinase 14 (p38MAPK) that is involved in pathologies like Alzheimer's disease. Based on experimental evidence we propose a simple network that might operate at the core of the cell control machinery for the choice between apoptosis and senescence involving the cross-talk between p38MAPK, the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitor (p16INK4a). We have performed two types of analyses, deterministic and stochastic, exploring the system's parameter space, in the first, we calculated the fixed points of the deterministic model and, in the second, we numerically integrated the master equation for the stochastic version. The model shows a variety of behaviors dependent on the parameters including states of high expression levels of p53 or p16INK4a that can be associated with an apoptotic or senescent phenotype, respectively, in agreement with experimental data. In addition, we observe both monostable and bistable behavior (where bistability is a phenomenon in which two stable steady states coexist for a fixed set of control parameter values) which here we suggest to be involved in the cell fate decision problem.
Collapse
Affiliation(s)
- L R de Oliveira
- Physics Department, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
44
|
Mokhonova EI, Avliyakulov NK, Kramerova I, Kudryashova E, Haykinson MJ, Spencer MJ. The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2. Hum Mol Genet 2015; 24:2873-83. [PMID: 25701873 DOI: 10.1093/hmg/ddv049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022] Open
Abstract
Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell senescence is due to accumulation of the SUMO ligase PIASy, a substrate of TRIM32. The goal of this investigation was to identify additional substrates of TRIM32 using 2D fluorescence difference gel electrophoresis (2D-DIGE) in order to further explore its role in skeletal muscle. Because TRIM32 is an E3 ubiquitin ligase, we reasoned that TRIM32's substrates would accumulate in its absence. 2D-DIGE identified 19 proteins that accumulate in muscles from the T32KO mouse. We focused on two of these proteins, NDRG2 and TRIM72, due to their putative roles in myoblast proliferation and myogenesis. Follow-up analysis confirmed that both proteins were ubiquitinated by TRIM32 in vitro; however, only NDRG2 accumulated in skeletal muscle and myoblasts in the absence of TRIM32. NDRG2 overexpression in myoblasts led to reduced cell proliferation and delayed cell cycle withdrawal during differentiation. Thus, we identified NDRG2 as a novel target for TRIM32; these findings further corroborate the hypothesis that TRIM32 is involved in control of myogenic cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Nuraly K Avliyakulov
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | - Michael J Haykinson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Melissa J Spencer
- Department of Neurology and Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, USA and Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
45
|
Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des 2015; 20:3178-97. [PMID: 24050165 DOI: 10.2174/13816128113196660690] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed antisarcopenic interventions in older persons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - C Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, S. Andrea delle Fratte, 06100, Perugia, Italy.
| |
Collapse
|
46
|
Frank AW, Farthing JP, Chilibeck PD, Arnold CM, Olszynski WP, Kontulainen SA. Community-dwelling female fallers have lower muscle density in their lower legs than non-fallers: evidence from the Saskatoon Canadian Multicentre Osteoporosis Study (CaMos) cohort. J Nutr Health Aging 2015; 19:113-20. [PMID: 25560824 DOI: 10.1007/s12603-014-0476-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Our objectives were to determine whether peripheral quantitative computed tomography (pQCT)-derived lower leg muscle density and area, and basic functional mobility differ between community-dwelling older women who do and do not report recent falls. DESIGN Matched case-control comparison. SETTING Academic biomedical imaging laboratory. PARTICIPANTS 147 Women, 60 years or older (mean age 74.3 y, SD 7.7) recruited from a longitudinal, population-based cohort representing community-dwelling residents in the area of Saskatoon, Canada. MEASUREMENTS A cross-sectional pQCT scan of the non-dominant lower leg was acquired to determine muscle density and area. Basic functional mobility (Timed Up and Go Test [TUG]) and SF36 health status were also measured. Fallers (one or more falls) and non-fallers (no falls) were grouped according to a 12-month retrospective survey and matched on measured covariates. RESULTS The muscle density of fallers (n = 35) was a median of 2.1 mg/cm3 lower (P = 0.019, 95% C.I. -3.9 to -0.1) than non-fallers (n = 78) after matching and adjusting for age, body mass index, and SF36 general health scores. Muscle area and TUG did not differ between fallers and non-fallers. CONCLUSIONS Muscle density may serve as a physiological marker in the assessment of lower leg muscular health and fall risk in community-dwelling elderly women. These results are limited to our study population who were mostly Caucasian. Prospective studies are required for verification.
Collapse
Affiliation(s)
- A W Frank
- A.W. Frank, M.Sc., College of Kinesiology, University of Saskatchewan, 87 Campus Drive, Saskatoon, SK. S7N5B2, Canada, Phone: +1 (306) 966-1123, Fax: +1 (306) 966-6464, E-mail:
| | | | | | | | | | | |
Collapse
|
47
|
Alchin DR. Sarcopenia: describing rather than defining a condition. J Cachexia Sarcopenia Muscle 2014; 5:265-8. [PMID: 25092476 PMCID: PMC4248413 DOI: 10.1007/s13539-014-0156-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/09/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Traditional definitions of sarcopenia have described an aging-associated disorder roughly defined as muscle mass two standard deviations below the young adult demographic. In an effort to clear the ambiguity pertaining to such descriptions, two international bodies have put forth working definitions of sarcopenia, namely The Society of Sarcopenia, Cachexia and Wasting Disorders in 2011, and The European Working Group on Sarcopenia in Older People in 2009. REVIEW This paper will look at the current zeitgeist of sarcopenia through a range of studies and will argue that what we have is an amalgamated and often conflicted description, rather than a definition, of the sarcopenic condition. Herein, we will consider whether such descriptions of sarcopenia should center on the consideration of the neuromuscular junction (NMJ) rather than describing the condition more in terms of muscular pathology. CONCLUSION Consideration was given to studies of the NMJ to advance the idea that present notions of the sarcopenic condition are incomplete and that at its' core, sarcopenia is an age-related disorder of the NMJ.
Collapse
|
48
|
Palmio J, Udd B. Borderlines between Sarcopenia and Mild Late-Onset Muscle Disease. Front Aging Neurosci 2014; 6:267. [PMID: 25324776 PMCID: PMC4179539 DOI: 10.3389/fnagi.2014.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy, and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat are seen on muscle imaging. However, the degree of these changes varies greatly between individuals, and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very old age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle magnetic resonance imaging (MRI) is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly.
Collapse
Affiliation(s)
- Johanna Palmio
- Department of Neurology, Neuromuscular Research Center, Tampere University Hospital, University of Tampere , Tampere , Finland
| | - Bjarne Udd
- Department of Neurology, Neuromuscular Research Center, Tampere University Hospital, University of Tampere , Tampere , Finland ; Department of Medical Genetics, Folkhälsan Institute of Genetics, University of Helsinki , Helsinki , Finland ; Department of Neurology, Vaasa Central Hospital , Vaasa , Finland
| |
Collapse
|
49
|
Hepple RT. Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci 2014; 6:211. [PMID: 25309422 PMCID: PMC4159998 DOI: 10.3389/fnagi.2014.00211] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023] Open
Abstract
Atrophy is a defining feature of aging skeletal muscle that contributes to progressive weakness and an increased risk of mobility impairment, falls, and physical frailty in very advanced age. Amongst the most frequently implicated mechanisms of aging muscle atrophy is mitochondrial dysfunction. Recent studies employing methods that are well-suited to interrogating intrinsic mitochondrial function find that mitochondrial respiration and reactive oxygen species emission changes are inconsistent between aging rat muscles undergoing atrophy and appear normal in human skeletal muscle from septuagenarian physically active subjects. On the other hand, a sensitization to permeability transition seems to be a general property of atrophying muscle with aging and this effect is even seen in atrophying muscle from physically active septuagenarian subjects. In addition to this intrinsic alteration in mitochondrial function, factors extrinsic to the mitochondria may also modulate mitochondrial function in aging muscle. In particular, recent evidence implicates oxidative stress in the aging milieu as a factor that depresses respiratory function in vivo (an effect that is not present ex vivo). Furthermore, in very advanced age, not only does muscle atrophy become more severe and clinically relevant in terms of its impact, but also there is evidence that this is driven by an accumulation of severely atrophied denervated myofibers. As denervation can itself modulate mitochondrial function and recruit mitochondrial-mediated atrophy pathways, future investigations need to address the degree to which skeletal muscle mitochondrial alterations in very advanced age are a consequence of denervation, rather than a primary organelle defect, to refine our understanding of the relevance of mitochondria as a therapeutic target at this more advanced age.
Collapse
Affiliation(s)
- Russell T Hepple
- Department of Kinesiology, McGill University Health Center, McGill University , Montreal, QC , Canada
| |
Collapse
|
50
|
Malatesta M, Cardani R, Pellicciari C, Meola G. RNA Transcription and Maturation in Skeletal Muscle Cells are Similarly Impaired in Myotonic Dystrophy and Sarcopenia: The Ultrastructural Evidence. Front Aging Neurosci 2014; 6:196. [PMID: 25126079 PMCID: PMC4115624 DOI: 10.3389/fnagi.2014.00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/15/2014] [Indexed: 01/23/2023] Open
Affiliation(s)
- Manuela Malatesta
- Anatomy and Histology Section, Department of Neurological and Movement Sciences, University of Verona , Verona , Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy
| | - Carlo Pellicciari
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia , Pavia , Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato , Milan , Italy ; Department of Neurology, University of Milan , Milan , Italy
| |
Collapse
|