1
|
El-Sayed NS, Khalil NA, Saleh SR, Aly RG, Basta M. The Possible Neuroprotective Effect of Caffeic Acid on Cognitive Changes and Anxiety-Like Behavior Occurring in Young Rats Fed on High-Fat Diet and Exposed to Chronic Stress: Role of β-Catenin/GSK-3B Pathway. J Mol Neurosci 2024; 74:61. [PMID: 38954245 DOI: 10.1007/s12031-024-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/β-catenin pathway which was associated with activation of glycogen synthase kinase 3β (GSK3β). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.
Collapse
Affiliation(s)
- Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Nehal Adel Khalil
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
- Bioscreening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
| | - Rania G Aly
- Department of pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marianne Basta
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
He T, Chen Q, Yuan Z, Yang Y, Cao K, Luo J, Dong G, Peng X, Yang Z. Effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles. Food Funct 2023; 14:9391-9406. [PMID: 37791601 DOI: 10.1039/d3fo02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Epidemiological and experimental studies suggest that there is a strong correlation between maternal high-fat diet and fetal-placental development. The current study aims to investigate the effects of maternal high-fat diet on fetal growth, placental nutrient transporters and circular RNA expression profiles in a mouse model. Forty C57BL/6 female mice were randomly assigned to two groups, fed either a control (10% fat for energy) diet (CON) or a high-fat (60% fat for energy) diet (HFD) for 4 weeks before mating and throughout pregnancy, and were killed on day 19.5 of pregnancy. The serum glucose, total cholesterol and low-density lipoprotein, the glucolipid metabolism-related hormones, and the insulin resistance index were significantly increased. High-throughput sequencing showed that differentially expressed circRNAs (DE circRNAs) in the placenta can regulate various biological processes, cellular components, and molecular functions through various energy metabolism pathways, and mmu-let-7g-5p was found to target and bind to multiple DE circRNAs. In addition, this study also predicted that various circRNAs with protein coding functions can regulate maternal placental nutrient transport. In general, the ceRNA (circRNAs-miRNAs-mRNAs) regulatory network of maternal placental nutrient transport constructed in this study is of great significance for further understanding the effect of maternal nutrition on fetal growth in the future.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhidong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Yulian Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Kai Cao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Guozhong Dong
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Xie Peng
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Soto-Covasich J, Reyes-Farias M, Torres R, Vasquez K, Duarte L, Quezada J, Jimenez P, Pino M, Garcia-Nannig L, Mercado L, Garcia-Diaz D. A polyphenol-rich Calafate (Berberis microphylla) extract rescues glucose tolerance in mice fed with cafeteria diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
4
|
Yang Z, Yang HM, Gong DQ, Rose SP, Pirgozliev V, Chen XS, Wang ZY. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018; 97:3463-3477. [PMID: 29931118 DOI: 10.3382/ps/pey242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Dietary methionine (Met) restriction produces a coordinated series of transcriptional responses in the liver that limits growth performance and amino acid metabolism. Methyl donor supplementation with betaine (Bet) may protect against this disturbance and affect the molecular basis of gene regulation. However, a lack of genetic information remains an obstacle to understand the mechanisms underlying the relationship between Met and Bet supplementation and its effects on genetic mechanisms. The goal of this study was to identify the effects of dietary supplementation of Met and Bet on growth performance, transcriptomic gene expression, and epigenetic mechanisms in geese on a Met-deficient diet. One hundred and fifty 21-day-old healthy male Yangzhou geese of similar body weight were randomly distributed into 3 groups with 5 replicates per treatment and 10 geese per replicate: Met-deficient diet (Control), Control+1.2 g/kg of Met (Met), and Control+0.6 g/kg of Bet (Bet). All geese had free access to the diet and water throughout rearing. Our results indicated that supplementation of 1.2 g/kg of Met in Met-deficient feed increased growth performance and plasma homocysteine (HCY) levels, indicating increased transsulfuration flux in the liver. Supplementation of 0.6 g/kg Bet had no apparent sparing effect on Met needs for growth performance in growing geese. The expression of many genes critical for Met metabolism is increased in Met supplementation group. In the Bet-supplemented group, genes involved in energy production and conversion were up-regulated. Dietary supplementation with Bet and Met also altered DNA methylation. We observed changes in the methylation of the LOC106032502 promoter and corresponding changes in mRNA expression. In conclusion, Met and Bet supplementation in geese affects the transcriptional regulatory network and alters the hepatic DNA methylation of LOC106032502.
Collapse
Affiliation(s)
- Z Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China.,The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - S P Rose
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - V Pirgozliev
- The National Institute of Poultry Husbandry, Harper Adams University, Edgmond, Newport TF10 8NB, UK
| | - X S Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225000, P.R. China
| |
Collapse
|
5
|
Ali EF, MacKay JC, Graitson S, James JS, Cayer C, Audet MC, Kent P, Abizaid A, Merali Z. Palatable Food Dampens the Long-Term Behavioral and Endocrine Effects of Juvenile Stressor Exposure but May Also Provoke Metabolic Syndrome in Rats. Front Behav Neurosci 2018; 12:216. [PMID: 30283308 PMCID: PMC6156124 DOI: 10.3389/fnbeh.2018.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
The juvenile period is marked by a reorganization and growth of important brain regions including structures associating with reward seeking behaviors such as the nucleus accumbens (NA) and prefrontal cortex (PFC). These changes are impacted by stressors during the juvenile period and may lead to a predisposition to stress induced psychopathology and abnormal development of brain reward systems. Like in humans, adult rodents engage certain coping mechanisms such as increases in the consumption of calorie-rich palatable foods to reduce stress, but this behavior can lead to obesity and metabolic disorders. In this study, we examined whether stressors during the juvenile period led to increased caloric intake when a palatable diet was accessible, and whether this diet attenuated adult stress responses. In addition, we examined if the stress buffering effects produced by the palatable diet were also accompanied by an offset propensity towards obesity, and by alterations in mRNA expression of dopamine (DA) receptors in the NA and PFC in adulthood. To this end, juvenile male Wistar rats underwent episodic stressor exposure (forced swim, elevated platform stress and restraint) on postnatal days (PD) 27-29 and received access to regular chow or daily limited access to a palatable diet until adulthood. At the age of 2 months, rats were tested on a social interaction test that screens for anxiety-like behaviors and their endocrine responses to an acute stressor. Animals were sacrificed, and their brains processed to detect differences in DA receptor subtype expression in the PFC and NA using qPCR. Results showed that rats that were stressed during the juvenile period displayed higher social anxiety and a sensitized corticosterone response as adults and these effects were attenuated by access to the palatable diet. Nevertheless, rats that experienced juvenile stress and consumed a palatable diet showed greater adiposity in adulthood. Interestingly, the same group displayed greater mRNA expression of DA receptors at the NA. This suggests that access to a palatable diet mitigates the behavioral and endocrine effects of juvenile stressor exposure in adulthood, but at the cost of metabolic imbalances and a sensitized dopaminergic system.
Collapse
Affiliation(s)
- Eliza Fatima Ali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Samantha Graitson
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Stewart James
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Christian Cayer
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Claude Audet
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Pamela Kent
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Zul Merali
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Exposure to an obesogenic diet during adolescence leads to abnormal maturation of neural and behavioral substrates underpinning fear and anxiety. Brain Behav Immun 2018; 70:96-117. [PMID: 29428401 PMCID: PMC7700822 DOI: 10.1016/j.bbi.2018.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and obesity are highly prevalent in adolescents. Emerging findings from our laboratory and others are consistent with the novel hypothesis that obese individuals may be predisposed to developing PTSD. Given that aberrant fear responses are pivotal in the pathogenesis of PTSD, the objective of this study was to determine the impact of an obesogenic Western-like high-fat diet (WD) on neural substrates associated with fear. METHODS Adolescent Lewis rats (n = 72) were fed with either the experimental WD (41.4% kcal from fat) or the control diet. The fear-potentiated startle paradigm was used to determine sustained and phasic fear responses. Diffusion tensor imaging metrics and T2 relaxation times were used to determine the structural integrity of the fear circuitry including the medial prefrontal cortex (mPFC) and the basolateral complex of the amygdala (BLA). RESULTS The rats that consumed the WD exhibited attenuated fear learning and fear extinction. These behavioral impairments were associated with oversaturation of the fear circuitry and astrogliosis. The BLA T2 relaxation times were significantly decreased in the WD rats relative to the controls. We found elevated fractional anisotropy in the mPFC of the rats that consumed the WD. We show that consumption of a WD may lead to long-lasting damage to components of the fear circuitry. CONCLUSIONS Our findings demonstrate that consumption of an obesogenic diet during adolescence has a profound impact in the maturation of the fear neurocircuitry. The implications of this research are significant as they identify potential biomarkers of risk for psychopathology in the growing obese population.
Collapse
|
7
|
Bengoetxea X, Paternain L, Martisova E, Milagro FI, Martínez JA, Campión J, Ramírez MJ. Effects of perinatal diet and prenatal stress on the behavioural profile of aged male and female rats. J Psychopharmacol 2017; 31:356-364. [PMID: 28114845 DOI: 10.1177/0269881116686881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present work studies whether chronic prenatal stress (PS) influences the long-term sex-dependent neuropsychological status of offspring and the effects of an early dietary intervention in the dam. In addition, dams were fed with either a high-fat sugar diet (HFSD) or methyl donor supplemented diet (MDSD). PS procedure did not affect body weight of the offspring. MDSD induced decreases in body weight both in male and female offspring (1 month) that were still present in aged rats. HFSD induced an increase in body weight both in male and female offspring that did not persist in aged rats. In the Porsolt forced swimming test, only young males showed increases in immobility time that were reversed by MDSD. In old female rats (20 months), PS-induced cognitive impairment in both the novel object recognition test (NORT) and in the Morris water maze that was reversed by MDSD, whereas in old males, cognitive impairments and reversion by MDSD was evident only in the Morris water maze. HFSD induced cognitive impairment in both control and PS old rats, but there was no additive effect of PS and HFSD. It is proposed here that the diversity of symptoms following PS could arise from programming effects in early brain development and that these effects could be modified by dietary intake of the dam.
Collapse
Affiliation(s)
- Xabier Bengoetxea
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Laura Paternain
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Eva Martisova
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Fermin I Milagro
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| | - J Alfredo Martínez
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain.,4 IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Javier Campión
- 2 Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,3 CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| | - María J Ramírez
- 1 Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,4 IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| |
Collapse
|
8
|
Majercikova Z, Horvathova L, Osacka J, Pecenak J, Kiss A. Impact of repeated asenapine treatment on FosB/ΔFosB expression in the forebrain structures under normal conditions and mild stress preconditioning in the rat. Brain Res Bull 2016; 127:29-37. [PMID: 27542594 DOI: 10.1016/j.brainresbull.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 12/30/2022]
Abstract
Long-term effect of asenapine (ASE), an atypical antipsychotic drug, on FosB/ΔFosB quantitative variations in the striatum, septum, nucleus accumbens, and prefrontal cortex, was light microscopically evaluated in normal rats and rats preconditioned with chronic unpredictable mild stress (CMS). CMS included restraint, social isolation, crowding, swimming, and cold. The rats were exposed to CMS for 21 days. From the 7th day of CMS, the rats were injected subcutaneously with saline (300μl/rat) or ASE (0.3mg/kg b.w.), twice a day for 14 days. On the 22nd day, i.e. 16-18h after the last treatment, the animals were perfused with fixative and the brains cut into 30μm thick coronal sections. FosB/ΔFosB protein was immunohistochemically visualized by avidin-biotin peroxidase complex (ABC). Four groups of animals were investigated: control+vehicle, control+ASE, CMS+vehicle, and CMS+ASE. Repeated ASE treatment significantly increased the amount of FosB/ΔFosB immunostained cell nuclei in the dorsolateral and dorsomedial striatum and the shell of the nucleus accumbens, followed by strVM and coACC, as assessed by numerical analysis in both total (different size for each structure) and unified (equal size for each structure) brain sectors. The effect of ASE was significantly lowered by CMS preconditioning only in the dorsolateral striatum, dorsomedial striatum, and the shell of the nucleus accumbens, indicated by both total and unified calculations. Although, highest FosB/ΔFosB expression was seen in the prefrontal cortex and lowest in the dorsolateral and ventrolateral septum, no differences between the groups occurred. CMS itself did not affect FosB/ΔFosB expression level. These findings demonstrate for the first time that repeated administration of ASE may result in eliciting of long-lasting FosB/ΔFosB-like transcription factors that could mediate some of the persistent and region-specific changes in brain function, interconnected with chronic drug exposure. However, it cannot be excluded that the impact of repeated ASE exposure might be influenced by an ambient stressogen leverage.
Collapse
Affiliation(s)
- Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jan Pecenak
- Department of Psychiatry, Faculty of Medicine in Bratislava, Comenius University, Mickiewiczova 13, 81369 Bratislava, Slovakia
| | - Alexander Kiss
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia.
| |
Collapse
|
9
|
Paternain L, Martisova E, Campión J, Martínez JA, Ramírez MJ, Milagro FI. Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour. Behav Brain Res 2015; 299:51-8. [PMID: 26628207 DOI: 10.1016/j.bbr.2015.11.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022]
Abstract
Adverse early life events are associated with altered stress responsiveness and metabolic disturbances in the adult life. Dietary methyl donor supplementation could be able to reverse the negative effects of maternal separation by affecting DNA methylation in the brain. In this study, maternal separation during lactation reduced body weight gain in the female adult offspring without affecting food intake, and altered total and HDL-cholesterol levels. Also, maternal separation induced a cognitive deficit as measured by NORT and an increase in the immobility time in the Porsolt forced swimming test, consistent with increased depression-like behaviour. An 18-week dietary supplementation with methyl donors (choline, betaine, folate and vitamin B12) from postnatal day 60 also reduced body weight without affecting food intake. Some of the deleterious effects induced by maternal separation, such as the abnormal levels of total and HDL-cholesterol, but especially the depression-like behaviour as measured by the Porsolt test, were reversed by methyl donor supplementation. Also, the administration of methyl donors increased total DNA methylation (measured by immunohistochemistry) and affected the expression of insulin receptor in the hippocampus of the adult offspring. However, no changes were observed in the DNA methylation status of insulin receptor and corticotropin-releasing hormone (CRH) promoter regions in the hypothalamus. In summary, methyl donor supplementation reversed some of the deleterious effects of an early life-induced model of depression in rats and altered the DNA methylation profile in the brain.
Collapse
Affiliation(s)
- Laura Paternain
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Eva Martisova
- Department of Pharmacology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Javier Campión
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain; IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Maria J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain; IDISNA, Navarra's Health Research Institute, Pamplona, Spain.
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain; CIBERobn, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
10
|
Aslani S, Vieira N, Marques F, Costa PS, Sousa N, Palha JA. The effect of high-fat diet on rat's mood, feeding behavior and response to stress. Transl Psychiatry 2015; 5:e684. [PMID: 26795748 PMCID: PMC5545690 DOI: 10.1038/tp.2015.178] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/12/2015] [Accepted: 07/11/2015] [Indexed: 12/01/2022] Open
Abstract
An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior.
Collapse
Affiliation(s)
- S Aslani
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal
| | - N Vieira
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal
| | - F Marques
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal
| | - P S Costa
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal
| | - N Sousa
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal
| | - J A Palha
- Life and Health Sciences Research
Institute (ICVS), School of Health Sciences, University of Minho,
Braga, Portugal,Life and Health Sciences Research
Institute (ICVS)/3B’s - PT Government Associate Laboratory,
Guimarães, Braga, Portugal,Neuroscience Research Domain, Life and Health Sciences
Research Institute (ICVS), School of Health Sciences, University of Minho,
Campus Gualtar, Braga
4710-057, Portugal. E-mail:
| |
Collapse
|
11
|
High Dietary Fat Intake during Lactation Promotes the Development of Social Stress-Induced Obesity in the Offspring of Mice. Nutrients 2015; 7:5916-32. [PMID: 26193313 PMCID: PMC4517034 DOI: 10.3390/nu7075257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/05/2023] Open
Abstract
This study examined how a maternal high-fat diet (HD) during lactation and exposure of offspring to isolation stress influence the susceptibility of offspring to the development of obesity. C57BL/6J mice were fed a commercial diet (CD) during pregnancy and a CD or HD during lactation. Male offspring were weaned at three weeks of age, fed a CD until seven weeks of age, and fed a CD or HD until 11 weeks of age. Offspring were housed alone (isolation stress) or at six per cage (ordinary circumstances). Thus, offspring were assigned to one of eight groups: dams fed a CD or HD during lactation and offspring fed a CD or HD and housed under ordinary circumstances or isolation stress. Serum corticosterone level was significantly elevated by isolation stress. High-fat feeding of offspring reduced their serum corticosterone level, which was significantly elevated by a maternal HD. A maternal HD and isolation stress had combined effects in elevating the serum corticosterone level. These findings suggest that a maternal HD during lactation enhances the stress sensitivity of offspring. White adipose tissue weights were significantly increased by a maternal HD and isolation stress and by their combination. In addition, significant adipocyte hypertrophy was induced by a maternal HD and isolation stress and exacerbated by their combination. Thus, a maternal HD and isolation stress promote visceral fat accumulation and adipocyte hypertrophy, accelerating the progression of obesity through their combined effects. The mechanism may involve enhanced fatty acid synthesis and lipid influx from blood into adipose tissue. These findings demonstrate that a maternal HD during lactation may increase the susceptibility of offspring to the development of stress-induced obesity.
Collapse
|
12
|
Sun C, Fan JG, Qiao L. Potential epigenetic mechanism in non-alcoholic Fatty liver disease. Int J Mol Sci 2015; 16:5161-5179. [PMID: 25751727 PMCID: PMC4394469 DOI: 10.3390/ijms16035161] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/14/2015] [Accepted: 02/25/2015] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive fat accumulation in the liver. It ranges from simple steatosis to its more aggressive form, non-alcoholic steatohepatitis (NASH), which may develop into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma (HCC) if it persists for a long time. However, the exact pathogenesis of NAFLD and the related metabolic disorders remain unclear. Epigenetic changes are stable alterations that take place at the transcriptional level without altering the underlying DNA sequence. DNA methylation, histone modifications and microRNA are among the most common forms of epigenetic modification. Epigenetic alterations are involved in the regulation of hepatic lipid metabolism, insulin resistance, mitochondrial damage, oxidative stress response, and the release of inflammatory cytokines, all of which have been implicated in the development and progression of NAFLD. This review summarizes the current advances in the potential epigenetic mechanism of NAFLD. Elucidation of epigenetic factors may facilitate the identification of early diagnositic biomarkers and development of therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Chao Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, University of Sydney, the Westmead Clinical School, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
13
|
Sickmann HM, Li Y, Mørk A, Sanchez C, Gulinello M. Does stress elicit depression? Evidence from clinical and preclinical studies. Curr Top Behav Neurosci 2014; 18:123-159. [PMID: 24633891 DOI: 10.1007/7854_2014_292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Exposure to stressful situations may induce or deteriorate an already existing depression. Stress-related depression can be elicited at an adolescent/adult age but evidence also shows that early adverse experiences even at the fetal stage may predispose the offspring for later development of depression. The hypothalamus-pituitary-adrenal axis (HPA-axis) plays a key role in regulating the stress response and dysregulation in the system has been linked to depression both in humans and in animal models. This chapter critically reviews clinical and preclinical findings that may explain how stress can cause depression, including HPA-axis changes and alterations beyond the HPA-axis. As stress does not elicit depression in the majority of the population, this motivated research to focus on understanding the biology underlying resilient versus sensitive subjects. Animal models of depression have contributed to a deeper understanding of these mechanisms. Findings from these models will be presented.
Collapse
Affiliation(s)
- Helle M Sickmann
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
14
|
Cordero P, Campion J, Milagro FI, Martinez JA. Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: effect of dietary methyl donor supplementation. Mol Genet Metab 2013; 110:388-95. [PMID: 24084163 DOI: 10.1016/j.ymgme.2013.08.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease is a primary hepatic manifestation of obesity and an important adverse metabolic syndrome trait. Animal models of diet-induced obesity promote liver fat accumulation putatively associated with alterations in epigenetic profile. Dietary methyl donor-supplementation may protect against this disturbance during early developmental stages affecting the molecular basis of gene regulation. The aim of this study was to investigate the transcriptomic and epigenetic mechanisms implicated in liver fat accumulation as a result of an obesogenic diet and the putative preventive role of dietary methyl donors. Forty-eight male Wistar rats were assigned into four dietary groups for 8 weeks; control, control methyl-donor-supplemented with a dietary cocktail containing betaine, choline, vitamin B12 and folic acid, high-fat-sucrose and high-fat-sucrose methyl-donor-supplemented. Liver fat accumulation induced by a HFS diet was prevented by methyl donor supplementation in HFS-fed animals. A liver mRNA microarray, subsequently validated by real time-qPCR, showed modifications in some biologically relevant genes involved in obesity development and lipid metabolism (Lepr, Srebf2, Agpat3 and Esr1). Liver global DNA methylation was decreased by methyl donor supplementation in control-fed animals. Methylation levels of specific CpG sites from Srebf2, Agpat3 and Esr1 promoter regions showed changes due to the obesogenic diet and the supplementation with methyl donors. Interestingly, Srebf2 CpG23_24 methylation levels (-167 bp and -156 bp with respect to the transcriptional start site) correlated with HDLc plasma levels, whereas Esr1 CpG14 (-2623 bp) methylation levels were associated with body and liver weights and fat content. Furthermore HFS diet-induced liver fat accumulation was prevented by methyl donor supplementation. In conclusion, both obesogenic diet and methyl donor supplementation modified the mRNA hepatic profile as well as the methylation of specific gene promoters and total DNA.
Collapse
Affiliation(s)
- Paul Cordero
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain.
| | | | | | | |
Collapse
|
15
|
Paternain L, de la Garza AL, Batlle MA, Milagro FI, Martínez JA, Campión J. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner. Stress 2013; 16:220-32. [PMID: 22738222 DOI: 10.3109/10253890.2012.707708] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.
Collapse
Affiliation(s)
- L Paternain
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Zeeni N, Daher C, Fromentin G, Tome D, Darcel N, Chaumontet C. A cafeteria diet modifies the response to chronic variable stress in rats. Stress 2013; 16:211-9. [PMID: 22775984 DOI: 10.3109/10253890.2012.708952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stress is known to lead to metabolic and behavioral changes. To study the possible relationships between stress and dietary intake, male Sprague-Dawley rats were fed one of three diets for 6 weeks: high carbohydrate (HC), high fat (HF), or "Cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). After the first 3 weeks, half of the animals from each group (experimental groups) were stressed daily using a chronic variable stress (CVS) paradigm, while the other half of the animals (control groups) were kept undisturbed. Rats were sacrificed at the end of the 6-week period. The effects of stress and dietary intake on animal adiposity, serum lipids, and corticosterone were analyzed. Results showed that both chronic stress and CAF diet resulted in elevated total cholesterol, increased low-density lipoprotein (LDL), and lower high-density lipoprotein (HDL). In addition, increases in body weight, food intake, and intra-abdominal fat were observed in the CAF group compared with the other dietary groups. In addition, there was a significant interaction between stress and diet on serum corticosterone levels, which manifest as an increase in corticosterone levels in stressed rats relative to non-stressed controls in the HC and HF groups but not in the CAF group. These results show that a highly palatable diet, offering a choice of food items, is associated with a reduction in the response to CVS and could validate a stressor-induced preference for comfort food that in turn could increase body weight.
Collapse
Affiliation(s)
- N Zeeni
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos, Lebanon.
| | | | | | | | | | | |
Collapse
|
17
|
Fernando HA, Chin HF, Ton SH, Abdul Kadir K. Stress and Its Effects on Glucose Metabolism and 11β-HSD Activities in Rats Fed on a Combination of High-Fat and High-Sucrose Diet with Glycyrrhizic Acid. J Diabetes Res 2013; 2013:190395. [PMID: 23671857 PMCID: PMC3647599 DOI: 10.1155/2013/190395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 11/17/2022] Open
Abstract
Chronic stress has been shown to have a strong link towards metabolic syndrome (MetS). Glycyrrhizic acid (GA) meanwhile has been shown to improve MetS symptoms caused by an unhealthy diet by inhibiting 11 β -HSD 1. This experiment aimed to determine the effects of continuous, moderate-intensity stress on rats with and without GA intake on systolic blood pressure (SBP) across a 28-day period, as well as glucose metabolism, and 11 β -HSD 1 and 2 activities at the end of the 28-day period. Adaptation to the stressor (as shown by SBP) resulted in no significant defects in glucose metabolism by the end of the experimental duration. However, a weakly significant increase in renal 11 β -HSD 1 and a significant increase in subcutaneous adipose tissue 11 β -HSD 1 activities were observed. GA intake did not elicit any significant benefit in glucose metabolism, indicating that the stress response may block its effects. However, GA-induced improvements in 11 β -HSD activities in certain tissues were observed, although it is uncertain if these effects are manifested after adaptation due to the withdrawal of the stress response. Hence the ability of GA to improve stress-induced disturbances in the absence of adaptation needs to be investigated further.
Collapse
Affiliation(s)
- Hamish Alexander Fernando
- Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia
- *Hamish Alexander Fernando: and
| | - Hsien-Fei Chin
- Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia
| | - So Ha Ton
- Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia
- *So Ha Ton:
| | - Khalid Abdul Kadir
- Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
18
|
Paternain L, Martisova E, Milagro FI, Ramírez MJ, Martínez JA, Campión J. Postnatal maternal separation modifies the response to an obesogenic diet in adulthood in rats. Dis Model Mech 2012; 5:691-7. [PMID: 22773756 PMCID: PMC3424467 DOI: 10.1242/dmm.009043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An early-life adverse environment has been implicated in the susceptibility to different diseases in adulthood, such as mental disorders, diabetes and obesity. We analyzed the effects of a high-fat sucrose (HFS) diet for 35 days in adult female rats that had experienced 180 minutes daily of maternal separation (MS) during lactancy. Changes in the obesity phenotype, biochemical profile, levels of glucocorticoid metabolism biomarkers, and the expression of different obesity- and glucocorticoid-metabolism-related genes were analyzed in periovaric adipose tissue. HFS intake increased body weight, adiposity and serum leptin levels, whereas MS decreased fat pad masses but only in rats fed an HFS diet. MS reduced insulin resistance markers but only in chow-fed rats. Corticosterone and estradiol serum levels did not change in this experimental model. A multiple gene expression analysis revealed that the expression of adiponutrin (Adpn) was increased owing to MS, and an interaction between HFS diet intake and MS was observed in the mRNA levels of leptin (Lep) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a). These results revealed that early-life stress affects the response to an HFS diet later in life, and that this response can lead to phenotype and transcriptomic changes.
Collapse
Affiliation(s)
- Laura Paternain
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Paternain L, Batlle MA, De la Garza AL, Milagro FI, Martínez JA, Campión J. Transcriptomic and epigenetic changes in the hypothalamus are involved in an increased susceptibility to a high-fat-sucrose diet in prenatally stressed female rats. Neuroendocrinology 2012; 96:249-60. [PMID: 22986707 DOI: 10.1159/000341684] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/08/2012] [Indexed: 11/19/2022]
Abstract
Disturbances in the prenatal period are linked to metabolic disorders in adulthood, implying the hypothalamic systems of appetite and energy balance regulation. In order to analyze the central effects of a high-fat-sucrose (HFS) diet in prenatally stressed (PNS) female adult rats, Wistar dams were exposed to chronic-mild-stress during the third week of gestation and were then compared with unstressed controls. Adult female offspring were fed a chow or HFS diet for 10 weeks. Changes in body weight, adiposity as well as expression and methylation levels of selected hypothalamic genes were analyzed. PNS induced lower birthweight and body length with no changes in body fat mass. After the HFS diet, the expected overweight model was observed accompanied by higher adiposity and insulin resistance, which was worsened by PNS. The stress model induced higher energy intake in adulthood. Hypothalamic gene expression analysis revealed that the HFS diet decreased Slc6a3 (dopamine active transporter), NPY (neuropeptide Y) and IR (insulin receptor) and increased POMC (pro-opiomelanocortin). Hypothalamic DNA methylation levels in the promoter region of Slc6a3 revealed that Slc6a3 was hypermethylated by the HFS diet in CpG site -53 bp to the transcription start site. HFS diet also hypermethylated CpG site -167 bp of the POMC promoter only in nonstressed animals. No correlations were found between gene expression and DNA methylation levels. These results imply that early-life stress in females increased predisposition to diet-induced obesity in adulthood.
Collapse
Affiliation(s)
- L Paternain
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|