1
|
Cody SG, Adam A, Siniavin A, Kang SS, Wang T. Flaviviruses-Induced Neurological Sequelae. Pathogens 2024; 14:22. [PMID: 39860983 PMCID: PMC11768111 DOI: 10.3390/pathogens14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues. Here, we discuss these major neurotropic flaviviruses-induced clinical diseases in humans and the recent findings in animal models and provide insights into the underlying disease mechanisms.
Collapse
Affiliation(s)
- Samantha Gabrielle Cody
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrei Siniavin
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Sam S. Kang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
4
|
Chen X, Zhang Y. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease. Neural Regen Res 2024; 19:324-330. [PMID: 37488885 PMCID: PMC10503617 DOI: 10.4103/1673-5374.379042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
The dichotomized brain system is a concept that was generalized from the 'dual syndrome hypothesis' to explain the heterogeneity of cognitive impairment, in which anterior and posterior brain systems are independent but partially overlap. The dopaminergic system acts on the anterior brain and is responsible for executive function, working memory, and planning. In contrast, the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function. Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson's disease. Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections. However, whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated. Furthermore, the precise role of the cerebellum in patients with Parkinson's disease and cognitive impairment remains unclear. Therefore, in this review, we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition, as reported by previous studies, and investigated the role of the cerebellum in patients with Parkinson's disease and cognitive impairment, as determined by functional neuroimaging. Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Yang X, Wu Z, Yang Y, Zhang C, Lin X, Zhou L, Wang F, Dong L, Zhu Z. Sevoflurane inhalation has a cognitive impairing effect of aging rats involving the regulation of AChE and ChAT. IBRAIN 2021; 7:192-199. [PMID: 37786796 PMCID: PMC10529151 DOI: 10.1002/j.2769-2795.2021.tb00083.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 10/04/2023]
Abstract
Background Acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) are closely related to the regulation of learning and memory. Nevertheless, whether sevoflurane has influence on cognition through regulating the expression of AChE and ChAT remains unclear. Methods Aging rat model was established by subcutaneously injection of D-galactose for 6 consecutive weeks. To determine the role of AChE and ChAT in sevoflurane-induced cognitive impairment, the Morris water maze (MWM) was used to assess the cognitive and memory function after sevoflurane exposure. Then, the variations of AChE and ChAT was detected by western blotting analysis and quantitative real-time polymerase chain reaction (qRT-PCR) respectively. Results Our result indicated that aging model rats had showed cognition decline at 2 hours and 1week after exposure to sevoflurane. Moreover, the expression of AChE and ChAT enhanced in rats that had inhaled sevoflurane. Interestingly, our study also found that the increase of oxygen concentration had a positive impact on the gene expression of ChAT. Conclusion We have identified that the overexpression of AChE and ChAT improved significantly cognitive function after sevoflurane exposure.
Collapse
Affiliation(s)
- Xin‐Xin Yang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhen‐Yu Wu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yang Yang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Xia‐Fei Lin
- Department of AnesthesiologyHainan General HospitalHaikouHainanChina
| | - Lin Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Feng‐Lin Wang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | | | - Zhao‐Qiong Zhu
- Liuzhou People's Hospital Affliated to Guangxi Medical UniversityLiuzhouGuangxiChina
| |
Collapse
|
6
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
7
|
Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020; 17:233. [PMID: 32778106 PMCID: PMC7418199 DOI: 10.1186/s12974-020-01904-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Patrick Eldin
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Laurence Briant
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Annie Lannuzel
- Neurology Unit, INSERM CIC 1424, Guadeloupe University Hospital, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Sorbonne University Medical School, Paris, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - André Cabié
- INSERM CIC 1424, Infectious Disease and Tropical Medicine Unit, Martinique University Hospital, Université des Antilles EA4537, Martinique, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.
| |
Collapse
|
8
|
Chronic treatment with galantamine rescues reversal learning in an attentional set-shifting test after experimental brain trauma. Exp Neurol 2019; 315:32-41. [PMID: 30711647 DOI: 10.1016/j.expneurol.2019.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Abstract
Approximately 10 million new cases of traumatic brain injury (TBI) are reported each year worldwide with many of these injuries resulting in higher order cognitive impairments. Galantamine (GAL), an acetylcholine esterase inhibitor (AChEI) and positive allosteric modulator of nicotinic acetylcholine receptors (nAChRs), has been reported to ameliorate cognitive deficits after clinical TBI. Previously, we demonstrated that controlled cortical impact (CCI) injury to rats resulted in significant executive function impairments as measured by the attentional set-shifting test (AST), a complex cognitive task analogous to the Wisconsin Card Sorting Test (WCST). We hypothesized that chronic administration of GAL would normalize performance on the AST post-TBI. Isoflurane-anesthetized adult male rats were subjected to moderate CCI (2.8 mm tissue deformation at 4 m/s) or sham injury. Rats were then randomized into one of three treatment groups (i.e., 1 mg/kg GAL, 2 mg/kg GAL, or 1 mL/kg saline vehicle; VEH) or their respective sham controls. GAL or VEH was administered intraperitoneally daily commencing 24 hours post-surgery and until AST testing at 4 weeks post-injury. The AST data revealed significant impairments in the first reversal stage after TBI, seen as increased trials to reach criterion and elevated total errors (p < 0.05). These behavioral flexibility deficits were equally normalized by the administration of both doses of GAL (p < 0.05). Additionally, the higher dose of GAL (2 mg/kg) also significantly reduced cortical lesion volume compared to TBI + VEH controls (p < 0.05). In summary, daily GAL administration provides an efficacious treatment for cognitive deficits and histological recovery after experimental brain trauma. Clinically, these findings are promising considering robust results were attained using a pharmacotherapy already used in the clinic to treat mild dementia.
Collapse
|
9
|
Atypical Auditory Brainstem Response and Protein Expression Aberrations Related to ASD and Hearing Loss in the Adnp Haploinsufficient Mouse Brain. Neurochem Res 2019; 44:1494-1507. [PMID: 30659505 DOI: 10.1007/s11064-019-02723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022]
Abstract
Autism is a wide spread neurodevelopmental disorder with growing morbidity rates, affecting more boys than girls worldwide. Activity-dependent neuroprotective protein (ADNP) was recently recognized as a leading gene accounted for 0.17% of autism spectrum disorder (ASD) cases globally. Respectively, mutations in the human ADNP gene (ADNP syndrome), cause multi-system body dysfunctions with apparent ASD-related traits, commencing as early as childhood. The Adnp haploinsufficient (Adnp+/-) mouse model was researched before in relations to Alzheimer's disease and autism. Adnp+/- mice suffer from deficient social memory, vocal and motor impediments, irregular tooth eruption and short stature, all of which corresponds with reported phenotypes in patients with the ADNP syndrome. Recently, a more elaborated description of the ADNP syndrome was published, presenting impediments such as hearing disabilities in > 10% of the studied children. Irregular auditory brainstem response (ABR) has been connected to ASD-related cases and has been suggested as a potential hallmark for autism, allowing diagnosis of ASD risk and early intervention. Herein, we present detriment hearing in the Adnp+/- mice with atypical ABR and significant protein expression irregularities that coincides with ASD and hearing loss studies in the brain.
Collapse
|
10
|
Kant Misra U, Kalita J, Singh Chauhan P. Evaluation of cholinergic functions in patients with Japanese encephalitis and Herpes simplex encephalitis. Brain Res 2018; 1707:227-232. [PMID: 30468725 DOI: 10.1016/j.brainres.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/23/2022]
Abstract
Cognitive and memory impairment are related to cholinergic dysfunction and are important complications of viral encephalitis, In view of paucity of studies on cholinergic dysfunction in encephalitis, this study has been undertaken. We report acetyl choline esterase (AChE) and muscurinic 2 (M2) receptor levels in herpes simplex encephalitis (HSE) and Japanese encephalitis (JE) patients, and correlate these with cognitive functions and MRI findings. Patients with JE and HSE were evaluated for consciousness, neurological and MRI findings, plasma AChE and M2 receptor levels on admission and after one year. Twenty-nine patients with JE and 23 with HSE were included. Admission AChE levels in JE (48.32 ± 5.36 nmol/min/ml) and HSE (41.92 ± 5.12 nmol/min/ml) were significantly lower compared with controls (70.50 ± 8.30 nmol/min/ml). M2 receptor levels were also low in JE (4.52 ± 0.56 ng/ml) and HSE (4.35 ± 0.57 ng/ml) compared with controls (7.95 ± 0.41 ng/ml). In JE, AChE activity (r = 0.43, p = 0.02) and M2 receptor levels (r = 0.43, p = 0.02) correlated with caudate involvement, and AChE activity (r = 0.76, p = 0.03) with Mini Mental State Examination ( MMSE) score. In HSE, M2 receptor levels (r = 0.53, p = 0.03) correlated with MMSE. The levels of AChE and M2 receptors increased at one year compared to the baseline, which was greater in JE than in HSE. Both AChE and M2 receptors were reduced in JE and HSE and correlated with cognition at one year. Recovery of these biomarkers was more in JE than HSE.
Collapse
Affiliation(s)
- Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Prashant Singh Chauhan
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
11
|
Baghel MS, Singh B, Dhuriya YK, Shukla RK, Patro N, Khanna VK, Patro IK, Thakur MK. Postnatal exposure to poly (I:C) impairs learning and memory through changes in synaptic plasticity gene expression in developing rat brain. Neurobiol Learn Mem 2018; 155:379-389. [PMID: 30195050 DOI: 10.1016/j.nlm.2018.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
Viral infection during early stage of life influences brain development and results in several neurodevelopmental disorders such as schizophrenia, autism and behavioral abnormalities. However, the mechanism through which infection causes long-term behavioral defects is not well known. To elucidate this, we have used synthetic polyinosinic-polycytidylic acid [poly (I:C)] which acts as a dsRNA molecule and interacts with toll-like receptor-3 (TLR-3) of microglia cells to evoke the immune system, thus mimicking the viral infection. Rat pups of postnatal day (PND) 7 were infused with a single dose of poly (I:C) (5 mg/kg BW) and vehicle alone to controls. When these pups grew to 3, 6 and 12 weeks, their spatial and fear conditioning memory were impaired as assessed by Morris water maze and passive avoidance test, respectively. We checked the immune activation by staining of TNF-α in the hippocampus and observed that poly (I:C) exposure elevated the number of TNF-α positive cells immediately after 12 h of infusion in one week rat and it persisted up to postnatal age of 3 and 12 weeks. Moreover, poly (I:C) significantly decreased the binding of 3H-QNB to the cholinergic receptors in the frontal cortex and hippocampus of 3 and 6 weeks rats as compared to control but did not change significantly in 12 weeks rats. RT-PCR and immunoblotting results showed that poly (I:C) exposure upregulated the expression of memory associated genes (BDNF, Arc, EGR1) at mRNA and protein level in frontal cortex and hippocampus of 3 weeks rats as compared to control. However, long-time persistence of poly (I:C) effects significantly decreased the expression of these genes in both brain regions of 12 weeks rats. Taken together, it is evident that early life exposure to poly (I:C) has a long-term effect and impairs learning and memory, probably through TNF-α mediated neuroinflammation and alteration in the expression of memory associated genes in frontal cortex and hippocampus of rats.
Collapse
Affiliation(s)
| | - Brijendra Singh
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Yogesh Kumar Dhuriya
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Rajendra Kumar Shukla
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | - Vinay Kumar Khanna
- CSIR - Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474 011, India
| | | |
Collapse
|
12
|
Chauhan PS, Misra UK, Kalita J. A study of glutamate levels, NR1, NR2A, NR2B receptors and oxidative stress in rat model of Japanese encephalitis. Physiol Behav 2017; 171:256-267. [PMID: 28108334 DOI: 10.1016/j.physbeh.2017.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/15/2022]
Abstract
There is paucity of studies on the role of glutamate excitotoxicity in cell damage in Japanese encephalitis. In this study the glutamate levels and its NMDA receptors, and oxidative stress markers in different brain regions have been evaluated and correlated with neurobehavioral changes at different time points. Twelve day old Wistar rats were inoculated with 3×106pfu/ml intracerebrally. The neurobehavioral effects were evaluated by spontaneous locomotor activity (SLA), grip strength and rota rod test on 10, 33 and 48days post inoculation (dpi). Glutamate level was evaluated by enzyme linked immunosorbent assay, mRNA gene expression of ionotropic glutamate receptors N-methyl d-aspartate (NMDA) receptor 1, 2A and 2B (NR1, NR2A and NR2B) were evaluated by real time PCR. Malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase (GPx) levels were measured by spectrophotometer in different brain regions of JEV infected rats on 10, 33 and 48dpi. There was significant increase in motor deficit, grip strength and decreased locomotor activity on 10 and 33dpi. Glutamate levels were increased in thalamus, midbrain, frontal cortex, striatum and cerebellum on 10 and 33dpi and were followed by a recovery on 48dpi. Glutamate NMDR receptors NR1, NR2A and NR2B were reduced in thalamus, midbrain, frontal cortex, striatum and cerebellum on 10dpi which was followed by recovery after 33dpi. A significant increase in MDA level in thalamus, midbrain, frontal cortex, striatum and cerebellum was noted on 10 and 33dpi. The antioxidant GSH and GPx were significantly reduced in these brain regions on 10 and 33dpi. Glutamate, MDA, GSH and GPx correlated in different brain regions as the disease progress. Increased Glutamate level may be related to oxidative stress and may be responsible for behavioral alterations in rat model of Japanese encephalitis.
Collapse
Affiliation(s)
- Prashant Singh Chauhan
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India
| | - Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India.
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Science, Raebareily Road, Lucknow, India
| |
Collapse
|
13
|
Zhang C, Zhou P, Yuan T. The cholinergic system in the cerebellum: from structure to function. Rev Neurosci 2016; 27:769-776. [DOI: 10.1515/revneuro-2016-0008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe cerebellar cholinergic system belongs to the third type of afferent nerve fiber system (after the climbing and mossy fibers), and has important modulatory effects on cerebellar circuits and cerebellar-mediated functions. In this report, we review the cerebellar cholinergic system, including cholinergic origins and innervations, acetylcholine receptor expression and distributions, cholinergic modulations of neuronal firing and synaptic plasticity, the cholinergic role in cerebellar-mediated integral functions, and cholinergic changes during development and aging. Because some motor and mental disorders, such as cerebellar ataxia and autism, are accompanied with cerebellar cholinergic disorders, we also discuss the correlations between cerebellar cholinergic dysfunctions and these disorders. The cerebellar cholinergic input plays an important role in the modulation of cerebellar functions; therefore, cholinergic abnormalities could induce physiological dysfunctions.
Collapse
Affiliation(s)
- Changzheng Zhang
- 1School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
- 2School of Life Sciences, Anqing Normal University, Anqing, Anhui 246133, China
| | - Peiling Zhou
- 3School of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tifei Yuan
- 1School of Psychology, Nanjing Normal University, Nanjing, Jiangsu 210097, China
| |
Collapse
|
14
|
Tabrizian K, Azami K, Belaran M, Soodi M, Abdi K, Fanoudi S, Sanati M, Mottaghi Dastjerdi N, Soltany Rezaee-Rad M, Sharifzadeh M. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression. Biol Trace Elem Res 2016; 173:443-451. [PMID: 27025719 DOI: 10.1007/s12011-016-0679-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.
Collapse
Affiliation(s)
- Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Kian Azami
- Family Health Research Center, Iranian Petroleum Industry Health Research Institute, Tehran, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosrou Abdi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Negar Mottaghi Dastjerdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Mohammad Soltany Rezaee-Rad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran.
| |
Collapse
|
15
|
Ronca SE, Dineley KT, Paessler S. Neurological Sequelae Resulting from Encephalitic Alphavirus Infection. Front Microbiol 2016; 7:959. [PMID: 27379085 PMCID: PMC4913092 DOI: 10.3389/fmicb.2016.00959] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.
Collapse
Affiliation(s)
- Shannon E Ronca
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TXUSA
| | - Kelly T Dineley
- Department of Neurology, Center for Addiction Research, Rodent In Vivo Assessment Core, Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, TX USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TXUSA
| |
Collapse
|