1
|
Pirri F, McCormick CM. Oxytocin receptors within the caudal lateral septum regulate social approach-avoidance, long-term social discrimination, and anxiety-like behaviors in adult male and female rats. Neuropharmacology 2025; 271:110409. [PMID: 40074168 DOI: 10.1016/j.neuropharm.2025.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OTR signaling promotes social approach or facilitates social avoidance, depending on the brain region involved. The lateral septum plays a critical role in regulating social interactions and memory. We investigated the role of OTR signaling in the caudodorsal lateral septum (LSc.d) in modulating social approach-avoidance behavior, long-term social discrimination memory, and anxiety-like behaviors in adult rats. Local infusion of the selective OTR antagonist L-368,899 (1 μg/0.5 μl) into the LSc.d decreased social approach, increased social vigilance, and reduced long-term social discrimination memory in both sexes. Administration of the biased OTR/Gq agonist carbetocin (0.5 μg/0.5 μl) reduced social approach and long-term social discrimination memory in both sexes, and had anxiogenic effects (increased latency to consume palatable food in test arena) only in males. In contrast, the full OTR agonist TGOT (50 ng/0.5 μl) had no effect on social approach or long-term social discrimination memory, and decreased latency to consume palatable food (anxiolytic effect). The results indicate that the oxytocin system can both promote and inhibit social behaviors depending on the differential activation of G-protein subunits and β-arrestins, as well as the pivotal role of the LS in modulating social and anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Fardad Pirri
- Biological Sciences Department, Brock University, Canada
| | - Cheryl M McCormick
- Biological Sciences Department, Brock University, Canada; Psychology Department, Brock University, Canada.
| |
Collapse
|
2
|
Senserrich J, Castro E, Florensa-Zanuy E, Díaz Á, Pazos Á, Adell A, Tzinia A, Pilar-Cuéllar F. Sex differences in the modulation of anxiety- and depression-like behaviors by matrix metalloproteinase-9 expression levels in mice. Biol Sex Differ 2025; 16:34. [PMID: 40405318 PMCID: PMC12096558 DOI: 10.1186/s13293-025-00716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Major depressive disorder is one of the main causes of disability worldwide, but its etiopathology remains largely unknown, although several hypotheses have been proposed. Recent studies suggest a potential role for matrix metalloproteinase 9 (MMP-9) in depression, as it is overexpressed in the plasma of depressed patients and normalizes following chronic antidepressant treatment. This study aimed to characterize anxiety and depression-like behaviors in transgenic MMP-9 mice, as well as the expression of different neuroplasticity markers associated with depression, in both sexes. METHODS In this study, we characterized the behavioral phenotypes of both MMP-9 knockout and MMP-9-overexpressing male and female mice. Here, we used a battery of tests to assess anxiety (open field, light‒dark box, elevated plus maze, and novelty‒suppressed feeding tests), depressive-like (tail suspension and social interaction tests), and cognitive (T-maze) behaviors. RESULTS MMP-9 knockout female mice displayed increased innate anxiety (open field test), decreased behavioral despair (tail suspension test). Compared with control mice, female MMP-9 knockout mice presented increased levels of different neuroplasticity markers in the hippocampus. With respect to MMP-9-overexpressing mice, females presented decreased innate anxiety (elevated plus maze). Male MMP-9-overexpressing mice presented greater conflict-based anxiety (novelty-suppressed feeding test) than control mice did. CONCLUSIONS MMP-9 activity modifies anxiety- and depression-like behaviors, as well as neuroplasticity markers, in female but not in male mice. These findings reinforce the sex differences in the etiopathology of depression.
Collapse
Affiliation(s)
- Júlia Senserrich
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Elena Castro
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Eva Florensa-Zanuy
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Álvaro Díaz
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Ángel Pazos
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Albert Adell
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Athina Tzinia
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Fuencisla Pilar-Cuéllar
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Avda. Albert Einstein, 22, Santander, 39011, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain.
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
3
|
Riggs LM, Aronson S, Mou TCM, Pereira EFR, Thompson SM, Gould TD. Bioactive ketamine metabolite exerts in vivo neuroplastogenic effects to improve hippocampal function in a treatment-resistant depression model. Cell Rep 2025; 44:115743. [PMID: 40408248 DOI: 10.1016/j.celrep.2025.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/04/2025] [Accepted: 05/05/2025] [Indexed: 05/25/2025] Open
Abstract
An acute increase in excitatory synaptic transmission contributes to the rapid antidepressant actions of neuroplastogens, including ketamine and its bioactive metabolite, (2R,6R)-hydroxynorketamine (HNK). It is hypothesized that drug-induced metaplastic changes in synaptic strength account for therapeutically relevant behavioral adaptations in vivo. Using the plasticity-deficient Wistar Kyoto model of treatment-resistant depression, we demonstrate that (2R,6R)-HNK potentiates glutamatergic transmission, promotes synaptic strength, restores long-term potentiation (LTP), and reverses deficits in hippocampal-dependent synaptic activity and behavior. (2R,6R)-HNK selectively potentiated CA1 pyramidal neuron activity during novelty exploration and restored Schaffer collateral-dependent spatial recognition memory. Prior experience with spatial learning partially occluded LTP in control rats, an effect mimicked in LTP-impaired rats in which spatial learning deficits were reversed by (2R,6R)-HNK. These findings demonstrate that (2R,6R)-HNK exerts rapid neuroplastogenic effects in vivo, which improve cognitive function and promote adaptive changes in synaptic strength at functionally impaired synapses.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Ta-Chung M Mou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Edna F R Pereira
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Clunas H, Walpole S, Babic I, Nair M, May N, Huang XF, Solowij N, Newell KA, Weston-Green K. Improved recognition memory and reduced inflammation following β-caryophyllene treatment in the Wistar-Kyoto rodent model of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111312. [PMID: 40049345 DOI: 10.1016/j.pnpbp.2025.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
Persistent low mood, anxiety and cognitive deficits are common symptoms of depression and highly efficacious treatments that address symptoms including cognitive dysfunction are still required. β-caryophyllene (BCP) is a terpene with anti-inflammatory and pro-cognitive properties; however, its efficacy on cognition in depression remains unclear. This study aimed to investigate acute and chronic BCP treatment effects on cognitive, depressive- and anxiety-like behaviours, and inflammation in male and female Wistar-Kyoto (WKY) rats, a rodent model of treatment-resistant depression. Rats were administered either BCP (50 mg/kg) or vehicle (control). Open field (OFT), social interaction, sucrose preference, novel object recognition (NOR) and elevated plus maze (EPM) tests were conducted after acute (1 h) and chronic (2 weeks) treatment. Peripheral plasma inflammatory cytokine levels were examined. BCP acutely increased locomotor activity in the OFT but did not improve social interaction, whereas chronic BCP prevented increased latency to first interaction in females (not males). BCP did not improve sucrose preference or prevent anxiety-like behaviours in the EPM. BCP significantly increased novel object discrimination in the NOR test in male and female WKY rats and reduced cytokine levels after chronic treatment. This study shows for the first time that chronic BCP treatment improved recognition memory and exerted anti-inflammatory properties in a rodent model of depressive-like behaviours. BCP did not significantly improve anxiety-like behaviours, social interaction or anhedonia in WKY rats of either sex. These findings demonstrate the pro-cognitive effects of BCP in a rodent model of treatment-resistant depression worthy of further investigation.
Collapse
Affiliation(s)
- Helen Clunas
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Samara Walpole
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia
| | - Ilijana Babic
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia
| | - Mayank Nair
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia
| | - Naomi May
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia
| | - Nadia Solowij
- Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia; School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, NSW 2522, Australia
| | - Kelly A Newell
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia
| | - Katrina Weston-Green
- Molecular Horizons and the School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
5
|
Moraes MA, Arabe LB, Resende BL, Codo BC, Reis ALAL, Souza BR. The gold standard control groups in physiological and pharmacological research are not that shiny: Intraperitoneal saline injection and needle pricking affect prepubescent mice's behavior in a sex-specific manner. Horm Behav 2025; 169:105707. [PMID: 39965530 DOI: 10.1016/j.yhbeh.2025.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Study design and experimental tools are crucial for good quality science, and an essential part of it is the choice of control groups to best test the hypothesis. Two of the standard control groups in physiological and pharmacological research are needle pricking without substance injection (Sham) and/or vehicle injection (Saline). However, both needle pricking and saline injection can act as stressors, potentially influencing the analyzed outcome. This raises the question of whether the dependent variable remains unaffected by the stress induced by these procedures. Despite the significance of this issue, very few studies have investigated the behavioral effects of a single intraperitoneal (I.P.) Sham and/or single I.P. Saline injection in mice, and those that have used mostly adult males. In this study, we investigated if a single I.P. Sham and/or I.P. Saline injection affects female and male prepubertal (4-weeks-old) mice behavior. After Sham or Saline injection, we examined exploratory/motor behavior (open field test - OFT), anxiety-like behavior (elevated plus-maze - EPM), and behavioral despair/depressive-like behavior (forced swimming test - FST). We observed that both Sham prepubertal females and males showed behavioral alterations in OFT and EPM, and Saline males showed behavioral alterations in OFT and FST. On the other hand, prepubertal Saline females showed an increase in exploratory behavior, risk assessment/anxiety-like behavior, and behavioral despair/depressive-like behavior. Thus, our findings indicate that control procedures commonly used in physiological and pharmacological experimental designs affect the behavior of prepubescent mice, with more pronounced effects in females than in males. This study suggests considering Naïve animals together with Sham and/or Vehicle for a better and more honest interpretation of the data.
Collapse
Affiliation(s)
- Muiara Aparecida Moraes
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Laila Blanc Arabe
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruna Lopes Resende
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Beatriz Campos Codo
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Luiza Araújo Lima Reis
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno Rezende Souza
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
6
|
Valadez-Lemus RE, Góngora-Alfaro JL, Jiménez-Vargas JM, Alamilla J, Mendoza-Muñoz N. Nanoencapsulation of amitriptyline enhances the potency of antidepressant-like effects and exhibits anxiolytic-like effects in Wistar rats. PLoS One 2025; 20:e0316389. [PMID: 40019891 PMCID: PMC11870345 DOI: 10.1371/journal.pone.0316389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/10/2024] [Indexed: 03/03/2025] Open
Abstract
Depression poses a significant global health challenge, affecting an estimated 300 million people worldwide. While amitriptyline (Ami) remains one of the most effective antidepressants, its numerous side-effects contribute to a high dropout rate among patients. Addressing this issue requires exploring methods to enhance its bioavailability and reduce dosage. In this study, we describe a technique for producing amitriptyline nanoparticles (Ami-NPs) to improve the drug's efficiency. The effectiveness was assessed by comparing the dose-response curves of Ami-NPs and non-encapsulated Ami in male and female Wistar rats subjected to the forced swimming test (FST). Ami-NPs were fabricated using nanoprecipitation, with a copolymer of poly (methyl vinyl ether/maleic acid) as the encapsulant, and a 3% solution of poloxamer F-127 as surfactant stabilizer. A Box-Behnken design was used to optimize the production of Ami-NPs, resulting in nanoparticles with the following optimal characteristics: a size of 198.6 ± 38.1 nm, a polydispersity index of 0.005 ± 0.03 nm, a zeta potential of -32 ± 6 mV, and encapsulation efficiency of 79.1 ± 7.4%. Ami-NPs showed higher potency and efficacy in reducing immobility during the FST (ED50 = 7.06 mg/kg, Emax = 41.1%), compared to amitriptyline in solution (Ami-S) (ED50 = 11.89 mg/kg, Emax = 33.2%). The Emax of Ami-NPs occurred at 12 mg/kg, while Ami-S peaked at 15.8 mg/kg. In the open field test, only treatment with Ami-NPs (12 mg/kg) and the empty nanoparticles increased immobility. In the elevated plus-maze, treatment with Ami-NPs (12 mg/kg) significantly reduced closed-arm entries (2.1 ± 0.6), compared to control solution (9.5 ± 1.8), control nanoparticles (8 ± 1.0) and Ami-S (11.5 ± 2). In the marble burying test, Ami-NPs (12 mg/kg) significantly reduced buried marbles (2.4 ± 0.4) compared to control nanoparticles (8.7 ± 1.2). These findings suggest that Ami-NPs could be a promising approach to enhance Ami bioavailability, thereby increasing its potency and antidepressant efficacy, while improving anxiolytic-like effects.
Collapse
Affiliation(s)
| | - José L. Góngora-Alfaro
- Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Yucatán, México
| | - Juana María Jiménez-Vargas
- Facultad de Ciencias Químicas, Universidad de Colima, Colima, México
- Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT), México City, México
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
- Investigador por México-CONAHCYT-Universidad de Colima, Colima, México
| | | |
Collapse
|
7
|
Zhang AY, Elias E, Manners MT. Sex-dependent astrocyte reactivity: Unveiling chronic stress-induced morphological changes across multiple brain regions. Neurobiol Dis 2024; 200:106610. [PMID: 39032799 PMCID: PMC11500746 DOI: 10.1016/j.nbd.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation. In this study, we evaluated the sex-specific astrocyte response to chronic stress or systemic inflammation in key brain regions associated with mood disorders. We conducted the unpredictable chronic mild stress (UCMS) paradigm to model chronic stress, or lipopolysaccharide (LPS) injection to model systemic inflammation. To evaluate stress-induced morphological changes in astrocyte complexity, we measured GFAP fluorescent intensity for astrocyte expression, branch bifurcation by quantifying branch points and terminal points, branch arborization by conducting Sholl analysis, and calculated the ramification index. Our analysis indicated that chronic stress-induced morphological changes in astrocytes in all brain regions investigated. The effects of chronic stress were region and sex specific. Notably, females had greater stress or inflammation-induced astrocyte activation in the hypothalamus (HYPO), CA1, CA3, and amygdala (AMY) than males. These findings indicate that chronic stress induces astrocyte activation that may drive sex and region-specific effects in females, potentially contributing to sex-dependent mechanisms of disease.
Collapse
Affiliation(s)
- Ariel Y Zhang
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Melissa T Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
8
|
Farinha-Ferreira M, Magalhães DM, Neuparth-Sottomayor M, Rafael H, Miranda-Lourenço C, Sebastião AM. Unmoving and uninflamed: Characterizing neuroinflammatory dysfunction in the Wistar-Kyoto rat model of depression. J Neurochem 2024; 168:2443-2460. [PMID: 38430009 DOI: 10.1111/jnc.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Reductionistic research on depressive disorders has been hampered by the limitations of animal models. Recently, it has been hypothesized that neuroinflammation is a key player in depressive disorders. The Wistar-Kyoto (WKY) rat is an often-used animal model of depression, but no information so far exists on its neuroinflammatory profile. As such, we compared male young adult WKY rats to Wistar (WS) controls, with regard to both behavioral performance and brain levels of key neuroinflammatory markers. We first assessed anxiety- and depression-like behaviors in a battery consisting of the Elevated Plus Maze (EPM), the Novelty Suppressed Feeding (NSFT), Open Field (OFT), Social Interaction (SIT), Forced Swim (FST), Sucrose Preference (SPT), and Splash tests (ST). We found that WKY rats displayed increased NSFT feeding latency, decreased OFT center zone permanence, decreased EPM open arm permanence, decreased SIT interaction time, and increased immobility in the FST. However, WKY rats also evidenced marked hypolocomotion, which is likely to confound performance in such tests. Interestingly, WKY rats performed similarly, or even above, to WS levels in the SPT and ST, in which altered locomotion is not a significant confound. In a separate cohort, we assessed prefrontal cortex (PFC), hippocampus and amygdala levels of markers of astrocytic (GFAP, S100A10) and microglial (Iba1, CD86, Ym1) activation status, as well as of three key proinflammatory cytokines (IL-1β, IL-6, TNF-α). There were no significant differences between strains in any of these markers, in any of the regions assessed. Overall, results highlight that behavioral data obtained with WKY rats as a model of depression must be carefully interpreted, considering the marked locomotor activity deficits displayed. Furthermore, our data suggest that, despite WKY rats replicating many depression-associated neurobiological alterations, as shown by others, this is not the case for neuroinflammation-related alterations, thus representing a novel limitation of this model.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Neuparth-Sottomayor
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Rafael
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Vavřínová A, Behuliak M, Vodička M, Bencze M, Ergang P, Vaněčková I, Zicha J. More efficient adaptation of cardiovascular response to repeated restraint in spontaneously hypertensive rats: the role of autonomic nervous system. Hypertens Res 2024; 47:2377-2392. [PMID: 38956283 PMCID: PMC11374672 DOI: 10.1038/s41440-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
We hypothesized that sympathetic hyperactivity and parasympathetic insuficiency in spontaneously hypertensive rats (SHR) underlie their exaggerated cardiovascular response to acute stress and impaired adaptation to repeated restraint stress exposure compared to Wistar-Kyoto rats (WKY). Cardiovascular responses to single (120 min) or repeated (daily 120 min for 1 week) restraint were measured by radiotelemetry and autonomic balance was evaluated by power spectral analysis of systolic blood pressure variability (SBPV) and heart rate variability (HRV). Baroreflex sensitivity (BRS) was measured by the pharmacological Oxford technique. Stress-induced pressor response and vascular sympathetic activity (low-frequency component of SBPV) were enhanced in SHR subjected to single restraint compared to WKY, whereas stress-induced tachycardia was similar in both strains. SHR exhibited attenuated cardiac parasympathetic activity (high-frequency component of HRV) and blunted BRS compared to WKY. Repeated restraint did not affect the stress-induced increase in blood pressure. However, cardiovascular response during the post-stress recovery period of the 7th restraint was reduced in both strains. The repeatedly restrained SHR showed lower basal heart rate during the dark (active) phase and slightly decreased basal blood pressure during the light phase compared to stress-naive SHR. SHR subjected to repeated restraint also exhibited attenuated stress-induced tachycardia, augmented cardiac parasympathetic activity, attenuated vascular sympathetic activity and improved BRS during the last seventh restraint compared to single-stressed SHR. Thus, SHR exhibited enhanced cardiovascular and sympathetic responsiveness to novel stressor exposure (single restraint) compared to WKY. Unexpectedly, the adaptation of cardiovascular and autonomic responses to repeated restraint was more effective in SHR.
Collapse
Affiliation(s)
- Anna Vavřínová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Michal Bencze
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
10
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
11
|
Hen-Shoval D, Indig-Naimer T, Moshe L, Kogan NM, Zaidan H, Gaisler-Salomon I, Okun E, Mechoulam R, Shoval G, Zalsman G, Weller A. Unraveling the molecular basis of cannabidiolic acid methyl Ester's anti-depressive effects in a rat model of treatment-resistant depression. J Psychiatr Res 2024; 175:50-59. [PMID: 38704981 DOI: 10.1016/j.jpsychires.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Major depressive disorder (MDD) stands as a significant cause of disability globally. Cannabidiolic Acid-Methyl Ester (CBDA-ME) (EPM-301, HU-580), a derivative of Cannabidiol, demonstrates immediate antidepressant-like effects, yet it has undergone only minimal evaluation in psychopharmacology. Our goal was to investigate the behavioral and potential molecular mechanisms associated with the chronic oral administration of this compound in the Wistar Kyoto (WKY) genetic model of treatment-resistant depression. Male WKY rats were subjected to behavioral assessments before and after receiving chronic (14-day) oral doses of CBDA-ME (0.5 mg/kg), 15 mg/kg of imipramine or vehicle. At the end of the study, plasma corticosterone levels and mRNA expression of various genes in the medial Prefrontal Cortex and Hippocampus were measured. Behavioral outcomes from CBDA-ME treatment indicated an antidepressant-like effect similar to imipramine, as oral ingestion reduced immobility and increased swimming duration in the Forced Swim Test. Neither treatment influenced locomotion in the Open Field Test nor preference in the Saccharin Preference Test. The behavioral impact in WKY rats coincided with reduced corticosterone serum levels, upregulated mRNA expression of Cannabinoid receptor 1, Fatty Acid Amide Hydrolase, and Corticotropin-Releasing Hormone Receptor 1, alongside downregulation of the Serotonin Transporter in the hippocampus. Additionally, there was an upregulation of CB1 mRNA expression and downregulation of Brain-Derived Neurotrophic Factor in the mPFC. These findings contribute to our limited understanding of the antidepressant effects of CBDA-ME and shed light on its potential psychopharmacological mechanisms. This discovery opens up possibilities for utilizing cannabinoids in the treatment of major depressive disorder and related conditions.
Collapse
Affiliation(s)
- D Hen-Shoval
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | - T Indig-Naimer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - L Moshe
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - N M Kogan
- Institute of Personalized and Translational Medicine, Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - H Zaidan
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - I Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - E Okun
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder laboratory for Alzheimer disease research, Bar-Ilan University, Ramat Gan, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - R Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - G Shoval
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - G Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, United States
| | - A Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Bastos CR, Bevilacqua LM, Mendes LFB, Xavier J, Gruhn K, Kaster MP, Ghisleni G. Amygdala-specific changes in Cacna1c, Nfat5, and Bdnf expression are associated with stress responsivity in mice: A possible mechanism for psychiatric disorders. J Psychiatr Res 2024; 175:259-270. [PMID: 38754148 DOI: 10.1016/j.jpsychires.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The CACNA1C gene encodes the alpha-1c subunit of the Cav1.2 calcium channel, a regulator of neuronal calcium influx involved in neurotransmitter release and synaptic plasticity. Genetic data show a role for CACNA1C in depressive symptoms underlying different psychiatric diagnoses. However, the mechanisms involved still require further exploration. This study aimed to investigate sex and region-specific changes in the Cacna1c gene and behavioral outcomes in mice exposed to chronic stress. Moreover, we evaluated the Nuclear factor of activated T-cells 5 (Nfat5) and the Brain-derived neurotrophic factor (Bdnf) as potential upstream and downstream Cacna1c targets and their correlation in stressed mice and humans with depression. Male and female Swiss mice were exposed to chronic unpredictable stress (CUS) for 21 days. Animal-integrated emotionality was assessed using the sucrose splash test, the tail suspension, the open-field test, and the elevated-plus-maze. Gene expression analysis was performed in the amygdala, prefrontal cortex, and hippocampus. Human data for in silico analysis was obtained from the Gene Expression Omnibus. CUS-induced impairment in integrated emotional regulation was observed in males. Gene expression analysis showed decreased levels of Cacna1c and Nfat5 and increased levels of Bdnf transcripts in the amygdala of stressed male mice. In contrast, there were no major changes in behavioral responses or gene expression in female mice after stress. The expression of the three genes was significantly correlated in the amygdala of mice and humans. The strong and positive correlation between Canac1c and Nfat5 suggests a potential role for this transcription factor in Canac1c expression. These changes could impact amygdala reactivity and emotional responses, making them a potential target for psychiatric intervention.
Collapse
Affiliation(s)
- Clarissa Ribeiro Bastos
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil; Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Laura Menegatti Bevilacqua
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Luiz Filipe Bastos Mendes
- Center of Oxidative Stress Research, Department of Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Janaina Xavier
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Karen Gruhn
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil
| | - Manuella Pinto Kaster
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| | - Gabriele Ghisleni
- Department of Life and Health Sciences, Catholic University of Pelotas (UCPel), Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
14
|
Xu XY, Wang JX, Chen JL, Dai M, Wang YM, Chen Q, Li YH, Zhu GQ, Chen AD. GLP-1 in the Hypothalamic Paraventricular Nucleus Promotes Sympathetic Activation and Hypertension. J Neurosci 2024; 44:e2032232024. [PMID: 38565292 PMCID: PMC11112640 DOI: 10.1523/jneurosci.2032-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Ming Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
15
|
Shupe EA, Kerman IA, Clinton SM. Premotor projections from the locus coeruleus and periaqueductal grey are altered in two rat models with inborn differences in emotional behavior. Exp Brain Res 2024; 242:857-867. [PMID: 38358538 PMCID: PMC10972925 DOI: 10.1007/s00221-024-06786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Emotionally motivated behaviors rely on the coordinated activity of descending neural circuits involved in motor and autonomic functions. Using a pseudorabies (PRV) tract-tracing approach in typically behaving rats, our group previously identified descending premotor, presympathetic, and dual-labeled premotor-presympathetic populations throughout the central rostral-caudal axis. The premotor-presympathetic populations are thought to integrate somatomotor and sympathetic activity. To determine whether these circuits are dysregulated in subjects with altered emotional regulation, subsequent neuroanatomical analyses were performed in male subjects of two distinct genetic models relevant to clinical depression and anxiety: the Wistar Kyoto (WKY) rat and selectively bred Low Novelty Responder (bLR) rat. The present study explored alterations in premotor efferents from locus coeruleus (LC) and subdivisions of the periaqueductal grey (PAG), two areas involved in emotionally motivated behaviors. Compared to Sprague Dawley rats, WKY rats had significantly fewer premotor projections to hindlimb skeletal muscle from the LC and from the dorsomedial (DMPAG), lateral (LPAG), and ventrolateral (VLPAG) subdivisions of PAG. Relative to selectively bred High Novelty Responder (bHR) rats, bLR rats had significantly fewer premotor efferents from LC and dorsolateral PAG (DLPAG). Cumulatively, these results demonstrate that somatomotor circuitry in several brain areas involved in responses to stress and emotional stimuli are altered in rat models with depression-relevant phenotypes. These somatomotor circuit differences could be implicated in motor-related impairments in clinically depressed patients.
Collapse
Affiliation(s)
| | - Ilan A Kerman
- Behavioral Service Line, Veterans Affairs Minneapolis Health Care, Minneapolis, MN, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
16
|
Magalhães DM, Mampay M, Sebastião AM, Sheridan GK, Valente CA. Age-related impact of social isolation in mice: Young vs middle-aged. Neurochem Int 2024; 174:105678. [PMID: 38266657 DOI: 10.1016/j.neuint.2024.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; School of Applied Sciences, University of Brighton, Brighton, UK
| | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
17
|
Cashen NA, Kloc ML, Pressman D, Liebman SA, Holmes GL. CBD treatment following early life seizures alters orbitofrontal-striatal signaling during adulthood. Epilepsy Behav 2024; 152:109638. [PMID: 38325075 DOI: 10.1016/j.yebeh.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Obsessive compulsive disorder (OCD) is a comorbid condition of epilepsy and often adds to the burden of epilepsy. Both OCD and epilepsy are disorders of hyperexcitable circuits. Fronto-striatal circuit dysfunction is implicated in OCD. Prior work in our laboratory has shown that in rat pups following a series of flurothyl-induced early life seizures (ELS) exhibit frontal-lobe dysfunction along with alterations in electrographic temporal coordination between the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS), circuits implicated in OCD. Here, we studied the effects of ELS in male and female rat pups on OCD-like behaviors as adults using the marble burying test (MBT). Because cannabidiol (CBD) is an effective antiseizure medication and has shown efficacy in the treatment of individuals with OCD, we also randomized rats to CBD or vehicle treatment following ELS to determine if CBD had any effect on OCD-like behaviors. While the flurothyl model of ELS did not induce OCD-like behaviors, as measured in the MBT, ELS did alter neural signaling in structures implicated in OCD and CBD had sex-dependent effects of temporal coordination in a way which suggests it may have a beneficial effect on epilepsy-related OCD.
Collapse
Affiliation(s)
- Natalie A Cashen
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Michelle L Kloc
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Davi Pressman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Samuel A Liebman
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
18
|
Yoshii T, Oishi N, Sotozono Y, Watanabe A, Sakai Y, Yamada S, Matsuda KI, Kido M, Ikoma K, Tanaka M, Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci Rep 2024; 14:3601. [PMID: 38351316 PMCID: PMC10864298 DOI: 10.1038/s41598-024-53103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.
Collapse
Affiliation(s)
- Takanobu Yoshii
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Johyo, Kyoto, 610-0113, Japan.
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Sakai
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
19
|
Loizeau V, Durieux L, Mendoza J, Wiborg O, Barbelivien A, Lecourtier L. Behavioural characteristics and sex differences of a treatment-resistant depression model: Chronic mild stress in the Wistar-Kyoto rat. Behav Brain Res 2024; 457:114712. [PMID: 37838247 DOI: 10.1016/j.bbr.2023.114712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Depression affects 20% of the general population and is a leading cause of disability worldwide, with a strong female prevalence. Current pharmacotherapies have significant limitations, and one third of patients are unresponsive. Male Wistar-Kyoto rats exposed to chronic mild stress (CMS) were recently proposed as a model to study antidepressant resistance. However, sex differences and interindividual vulnerability to stress are yet unexplored in this model. We aimed to investigate these in the context of the behavioural impact of CMS in the sucrose preference test, elevated plus maze (EPM), forced swim test (FST), open field test and daily locomotor activity rhythms, in male and female WKY rats exposed or not to a 4-week CMS protocol. CMS-exposed animals were clustered through K-means into subgroups based on the EPM and FST results. In both sexes, one subgroup behaved similarly to non-stressed animals and was labelled stress-non vulnerable; the second exhibited less open arms exploration in the EPM and higher immobility in the FST and was named stress-vulnerable. Vulnerable males presented phase delay in daily locomotor activity following CMS, but no significant rhythm could be determined in females. CMS-exposed males of both groups showed hyperlocomotion in reaction to novelty and slower weight gain through the course of CMS, while CMS-exposed females showed smaller sucrose intake. Unexpectedly, CMS did not affect sucrose preference. Our findings strengthen the view that in models of psychiatric pathologies based on stress exposure it is important to consider the effect of sex and to differentiate the non vulnerable and vulnerable subpopulations.
Collapse
Affiliation(s)
- Vincent Loizeau
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Laura Durieux
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Jorge Mendoza
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, UPR 3212, Strasbourg, France
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Alexandra Barbelivien
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
| | - Lucas Lecourtier
- Université de Strasbourg, CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France.
| |
Collapse
|
20
|
Copenhaver AE, LeGates TA. Sex-specific mechanisms underlie long-term potentiation at hippocampus-nucleus accumbens synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575709. [PMID: 38293132 PMCID: PMC10827060 DOI: 10.1101/2024.01.15.575709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca 2+ channels (VGCC) for postsynaptic Ca 2+ influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders. SIGNIFICANCE STATEMENT Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Collapse
|
21
|
Primo MJ, Fonseca-Rodrigues D, Almeida A, Teixeira PM, Pinto-Ribeiro F. Sucrose preference test: A systematic review of protocols for the assessment of anhedonia in rodents. Eur Neuropsychopharmacol 2023; 77:80-92. [PMID: 37741164 DOI: 10.1016/j.euroneuro.2023.08.496] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/25/2023]
Abstract
Anhedonia is described as a decreased ability to experience rewarding and enjoyable activities, a core symptom of major depressive disorder. The sucrose preference test (SPT) is a widely used and reliable behavioural test to assess anhedonia in rodents, based on a two-bottle choice paradigm. To date, different protocols are in use, inducing variability between researchers and hampering comparisons between studies. We performed a systematic review of the SPT protocols used in 2021 to identify the parameters in which they differ and their potential impact. We searched a total of four databases (PubMed, Scopus, Web of Science and Science Direct), from 1st January 2021 to 31st December 2021, and screened a total of 1066 articles. After screening by title and abstract, a total of 415 articles were included in this review. We extracted and analysed the different procedures used, the type of sweet solution and the habituation, deprivation, and testing protocols. The overall quality of the studies was considered very good, however, SPT protocols were extremely variable between studies with a total of 65 different habituation protocols and 104 combinations of food/water deprivation and preference testing duration. As the SPT is one of the most used tests to assess anhedonia in rodents, this work raises awareness of the great variability in SPT protocols being currently used. Furthermore, we call for standardization in the protocol used, and overall improvement of data reporting of methodologies and results, to increase the consistency between studies and allow a better comparison of results between different labs.
Collapse
Affiliation(s)
- Maria João Primo
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Fonseca-Rodrigues
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M Teixeira
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
22
|
Bratzu J, Ciscato M, Pisanu A, Talani G, Frau R, Porcu P, Diana M, Fumagalli F, Romualdi P, Rullo L, Trezza V, Ciccocioppo R, Sanna F, Fattore L. Communal nesting differentially attenuates the impact of pre-weaning social isolation on behavior in male and female rats during adolescence and adulthood. Front Behav Neurosci 2023; 17:1257417. [PMID: 37915532 PMCID: PMC10616881 DOI: 10.3389/fnbeh.2023.1257417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.
Collapse
Affiliation(s)
- Jessica Bratzu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Maria Ciscato
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Augusta Pisanu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Marco Diana
- G.Minardi’ Cognitive Neuroscience Laboratory, CPMB Science Department, University of Sassari, Sassari, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Liana Fattore
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
23
|
Woo T, King C, Ahmed NI, Cordes M, Nistala S, Will MJ, Bloomer C, Kibiryeva N, Rivera RM, Talebizadeh Z, Beversdorf DQ. microRNA as a Maternal Marker for Prenatal Stress-Associated ASD, Evidence from a Murine Model. J Pers Med 2023; 13:1412. [PMID: 37763179 PMCID: PMC10533003 DOI: 10.3390/jpm13091412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been linked to stress reactivity, and the presence of the SERT short (S)-allele has been shown to mediate the association between maternal stress exposure and ASD. In a mouse model, we investigated the effects of prenatal stress exposure and maternal SERT genotype on offspring behavior and explored its association with maternal microRNA (miRNA) expression during pregnancy. Pregnant female mice were divided into four groups based on genotype (wildtype or SERT heterozygous knockout (Sert-het)) and the presence or absence of chronic variable stress (CVS) during pregnancy. Offspring behavior was assessed at 60 days old (PD60) using the three-chamber test, open field test, elevated plus-maze test, and marble-burying test. We found that the social preference index (SPI) of SERT-het/stress offspring was significantly lower than that of wildtype control offspring, indicating a reduced preference for social interaction on social approach, specifically for males. SERT-het/stress offspring also showed significantly more frequent grooming behavior compared to wildtype controls, specifically for males, suggesting elevated repetitive behavior. We profiled miRNA expression in maternal blood samples collected at embryonic day 21 (E21) and identified three miRNAs (mmu-miR-7684-3p, mmu-miR-5622-3p, mmu-miR-6900-3p) that were differentially expressed in the SERT-het/stress group compared to all other groups. These findings suggest that maternal SERT genotype and prenatal stress exposure interact to influence offspring behavior, and that maternal miRNA expression late in pregnancy may serve as a potential marker of a particular subtype of ASD pathogenesis.
Collapse
Affiliation(s)
- Taeseon Woo
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
| | - Candice King
- Department of Biological Science, University of Missouri, Columbia, MO 65211, USA; (C.K.); (M.C.)
| | - Nick I. Ahmed
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; (N.I.A.); (M.J.W.)
| | - Madison Cordes
- Department of Biological Science, University of Missouri, Columbia, MO 65211, USA; (C.K.); (M.C.)
| | | | - Matthew J. Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; (N.I.A.); (M.J.W.)
| | - Clark Bloomer
- Genomics Core, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nataliya Kibiryeva
- College of Bioscience, Kansas City University, Kansas City, MO 64106, USA;
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Zohreh Talebizadeh
- American College of Medical Genetics and Genomics, Bethesda, MD 20814, USA;
| | - David Q. Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
- Department of Radiology, Neurology, and Psychological Science, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
24
|
Tchekalarova J, Krushovlieva D, Ivanova P, Kortenska L. Spontaneously hypertensive rats vs. Wistar Kyoto and Wistar rats: an assessment of anxiety, motor activity, memory performance, and seizure susceptibility. Physiol Behav 2023:114268. [PMID: 37308045 DOI: 10.1016/j.physbeh.2023.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Spontaneously hypertensive rats (SHRs) are widely accepted for modeling essential hypertension and Attention deficit hyperactivity disorder (ADHD). However, data concerning central nervous system changes associated with behavioral responses of this strain and usage of Wistar Kyoto (WKY) rats as controls are confounding. The objective of the present study was to assess the impact of anxiety and motor activity on the cognitive responses of SHRs compared to Wistar and WKY rats. In addition, the role of brain-derived neurotrophic factor (BDNF) in the hippocampus on cognitive behavior and seizure susceptibility in the three strains was evaluated. In Experiment#1, SHR demonstrated impulsive responses in the novelty suppression feeding test accompanied by impaired spatial working and associative memory in the Y maze and object recognition test compared with the Wistar rat but not WKY rats. In addition, the WKY rats exhibited diminished activity compared to Wistar rats in an actimeter. In Experiment#2, the seizure susceptibility was assessed by 3-min electroencephalographic (EEG) recording after two consecutive injections of pentylenetetrazol (PTZ) (20+40 mg/kg). The WKY rats were more vulnerable to rhythmic metrazol activity (RMA) than the Wistar rats. In contrast, Wistar rats were more prone to generalized tonic-clonic seizures (GTCS) than WKY rats and SHRs. Control SHR had lower BDNF expression in the hippocampus compared to Wistar rats. However, while the BDNF levels were elevated in the Wistar and WKY rats after PTZ injection, no change in this signaling molecule was observed in the SHR in the seizure condition. The results suggest Wistar rats as a more appropriate control of SHR than WKY rats for studying memory responses mediated by BDNF in the hippocampus. The higher vulnerability to seizures in Wistar and WKY rats compared to SHR might be linked to PTZ-induced decreased expression of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | | | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
25
|
Reorganization of Brain Networks as a Substrate of Resilience: An Analysis of Cytochrome c Oxidase Activity in Rats. Neuroscience 2023; 516:75-90. [PMID: 36805003 DOI: 10.1016/j.neuroscience.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/18/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model has been used to induce depressive-like symptoms in animal models, showing adequate predictive validity. Our work aims to evaluate the effects of environmental enrichment (EE) on resilience in this experimental model of depression. We also aim to assess changes in brain connectivity using cytochrome c oxidase histochemistry in cerebral regions related to cognitive-affective processes associated with depressive disorder: dorsal hippocampus, prefrontal cortex, amygdala, accumbens, and habenula nuclei. Five groups of rats were used: UCMS, EE, EE + UCMS (enrichment + stress), BG (basal level of brain activity), and CONT (behavioral tests only). We assessed the hedonic responses elicited by sucrose solution using a consumption test; the anxiety level was evaluated using the elevated zero maze test, and the unconditioned fear responses were assessed by the cat odor test. The behavioral results showed that the UCMS protocol induces elevated anhedonia and anxiety. But these responses are attenuated previous exposure to EE. Regarding brain activity, the UCMS group showed greater activity in the habenula compared to the EE + UCMS group. EE induced a functional reorganization of brain activity. The EE + UCMS and UCMS groups showed different patterns of connections between brain regions. Our results showed that EE favors greater resilience and could reduce vulnerability to disorders such as depression and anxiety, modifying metabolic brain activity.
Collapse
|
26
|
Souto NS, Dassi M, Braga ACM, Rosa ÉVF, Fighera MR, Royes LFF, Oliveira MS, Sari MHM, Furian AF. Repeated co-exposure to aflatoxin B 1 and aspartame disrupts the central nervous system homeostasis: Behavioral, biochemical, and molecular insights. J Food Sci 2023; 88:1731-1742. [PMID: 36789859 DOI: 10.1111/1750-3841.16476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/01/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Several studies demonstrated the toxicity of aspartame (ASP) and aflatoxin B1 (AFB1 ) in preclinical models. Although the majority of these reports assessed the toxic effects of each substance separately, their concomitant exposure and hazardous consequences are scarce. Importantly, the deleterious effects at the central nervous system caused by ASP and AFB1 co-exposure are rarely addressed. We evaluated if concomitant exposure to AFB1 and ASP would cause behavioral impairment and alteration in oxidative status of the brain in male rats. Animals received once a day for 14 days AFB1 (250 µg/kg, intragastric gavage [i.g.]), ASP (75 mg/kg, i.g.), or both substances (association). On day 14, they were subjected to behavioral evaluation, and biochemical and molecular parameters of oxidative status were measured in the cerebral cortex and hippocampus. In the open field test, AFB1 and combination treatments modified the motor, exploratory, and grooming behavior. In the splash test, all treatments caused a reduction in grooming time compared to the control group. An increase in thiobarbituric acid-reactive substances content induced by AFB1 and combination treatments was observed. The antioxidant defenses (vitamin C, nonprotein sulfhydryl, and ferric reducing antioxidant power) were impaired in all groups compared to control. Regarding molecular evaluation, mitochondrial superoxide dismutase-2 immunoreactivity decreased after AFB1 or ASP exposition in the hippocampus. Thus, co-exposure to ASP and AFB1 was potentially more toxic because it aggravated behavioral impairments and oxidative status disbalance in comparison to the groups that received only ASP or AFB1 . Therefore, our data suggest that those substances caused a disruption in brain homeostasis.
Collapse
Affiliation(s)
- Naieli Schiefelbein Souto
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Micheli Dassi
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Ana Flávia Furian
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
27
|
Yao D, Lu Y, Li L, Wang S, Mu Y, Ding C, Zhao J, Liu M, Xu M, Wu H, Dou C, Zhu Z, Li H. Prolactin and glucocorticoid receptors in the prefrontal cortex are associated with anxiety-like behavior in prenatally stressed adolescent offspring rats. J Neuroendocrinol 2023; 35:e13231. [PMID: 36683309 DOI: 10.1111/jne.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Prenatal stress (PS) causes anxiety in mothers and their offspring and chewing is a commonly observed behavior during maternal stress. Prolactin (PRL) is an anti-anxiety factor that suppresses the hypothalamic-pituitary-adrenal axis. Here, we studied the roles of PRL, corticosterone (CORT), and their receptors in PS-induced anxiety-like behavior in dams and their offspring. We further investigated whether chewing during maternal stress could prevent PS-induced harmful consequences. Pregnant rats were randomly divided into PS, PS + chewing, and control groups. Anxiety-like behaviors of dams and their adolescent offspring were assessed using the open field test and elevated plus maze. Serum levels of PRL and CORT were measured by ELISA. Expression of mRNA and protein of PRLR and glucocorticoid receptor (GR) in the prefrontal cortex (PFC) were evaluated by qRT-PCR and western blotting, respectively. Compared to the control rats, dams and their female offspring, but not male offspring, in the PS group showed increased anxiety-like behaviors. The PS-affected rats had a lower serum PRL level and increased PRLR expression in the PFC. In contrast, these rats had a higher serum CORT level and decreased GR expression in the PFC. Chewing ameliorated anxiety-like behaviors and counteracted stress-induced changes in serum PRL and CORT, as well as the expression of their receptors in the PFC. Conclusion: PS-induced anxiety-like behavior is associated with changes in the serum levels of PRL and CORT and expression of their receptors in the PFC. Moreover, chewing blunts the hormonal and receptor changes and may serve as an effective stress-coping method for preventing PS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Li Li
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Shan Wang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Chenxi Ding
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Jing Zhao
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Mingzhe Liu
- Central Laboratory, Heze Medical College, Heze, Shandong, China
| | - Meina Xu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Haoyue Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Chengyin Dou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Shaanxi, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
28
|
Almeida AS, Nunes F, Marques DM, Machado ACL, Oliveira CB, Porciuncula LO. Sex differences in maternal odor preferences and brain levels of GAP-43 and sonic hedgehog proteins in infant SHR and Wistar Kyoto rats. Behav Brain Res 2023; 436:114102. [DOI: 10.1016/j.bbr.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
29
|
Ferdousi MI, Calcagno P, Sanchez C, Smith KL, Kelly JP, Roche M, Finn DP. Characterization of pain-, anxiety-, and cognition-related behaviors in the complete Freund's adjuvant model of chronic inflammatory pain in Wistar-Kyoto rats. FRONTIERS IN PAIN RESEARCH 2023; 4:1131069. [PMID: 37113211 PMCID: PMC10126329 DOI: 10.3389/fpain.2023.1131069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic pain is often associated with comorbid anxiety and cognitive dysfunction, negatively affecting therapeutic outcomes. The influence of genetic background on such interactions is poorly understood. The stress-hyperresponsive Wistar-Kyoto (WKY) rat strain, which models aspects of anxiety and depression, displays enhanced sensitivity to noxious stimuli and impaired cognitive function, compared with Sprague-Dawley (SD) counterparts. However, pain- and anxiety-related behaviors and cognitive impairment following induction of a persistent inflammatory state have not been investigated simultaneously in the WKY rats. Here we compared the effects of complete Freund's adjuvant (CFA)-induced persistent inflammation on pain-, negative affect- and cognition-related behaviors in WKY vs. SD rats. Methods Male WKY and SD rats received intra-plantar injection of CFA or needle insertion (control) and, over the subsequent 4 weeks, underwent behavioral tests to assess mechanical and heat hypersensitivity, the aversive component of pain, and anxiety- and cognition-related behaviors. Results The CFA-injected WKY rats exhibited greater mechanical but similar heat hypersensitivity compared to SD counterparts. Neither strain displayed CFA-induced pain avoidance or anxiety-related behavior. No CFA-induced impairment was observed in social interaction or spatial memory in WKY or SD rats in the three-chamber sociability and T-maze tests, respectively, although strain differences were apparent. Reduced novel object exploration time was observed in CFA-injected SD, but not WKY, rats. However, CFA injection did not affect object recognition memory in either strain. Conclusions These data indicate exacerbated baseline and CFA-induced mechanical hypersensitivity, and impairments in novel object exploration, and social and spatial memory in WKY vs. SD rats.
Collapse
Affiliation(s)
- Mehnaz I. Ferdousi
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Patricia Calcagno
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | | | | | - John P. Kelly
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Michelle Roche
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Physiology, School of Medicine, University of Galway, Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
- Centre for Pain Research, University of Galway, Galway, Ireland
- Galway Neuroscience Centre, University of Galway, Galway, Ireland
- Correspondence: David P. Finn
| |
Collapse
|
30
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
31
|
Touchant M, Labonté B. Sex-Specific Brain Transcriptional Signatures in Human MDD and Their Correlates in Mouse Models of Depression. Front Behav Neurosci 2022; 16:845491. [PMID: 35592639 PMCID: PMC9110970 DOI: 10.3389/fnbeh.2022.845491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
Major depressive disorder (MDD) is amongst the most devastating psychiatric conditions affecting several millions of people worldwide every year. Despite the importance of this disease and its impact on modern societies, still very little is known about the etiological mechanisms. Treatment strategies have stagnated over the last decades and very little progress has been made to improve the efficiency of current therapeutic approaches. In order to better understand the disease, it is necessary for researchers to use appropriate animal models that reproduce specific aspects of the complex clinical manifestations at the behavioral and molecular levels. Here, we review the current literature describing the use of mouse models to reproduce specific aspects of MDD and anxiety in males and females. We first describe some of the most commonly used mouse models and their capacity to display unique but also shared features relevant to MDD. We then transition toward an integral description, combined with genome-wide transcriptional strategies. The use of these models reveals crucial insights into the molecular programs underlying the expression of stress susceptibility and resilience in a sex-specific fashion. These studies performed on human and mouse tissues establish correlates into the mechanisms mediating the impact of stress and the extent to which different mouse models of chronic stress recapitulate the molecular changes observed in depressed humans. The focus of this review is specifically to highlight the sex differences revealed from different stress paradigms and transcriptional analyses both in human and animal models.
Collapse
Affiliation(s)
- Maureen Touchant
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
- *Correspondence: Benoit Labonté
| |
Collapse
|
32
|
Song W, Li Q, Wang T, Li Y, Fan T, Zhang J, Wang Q, Pan J, Dong Q, Sun ZS, Wang Y. Putative complement control protein CSMD3 dysfunction impairs synaptogenesis and induces neurodevelopmental disorders. Brain Behav Immun 2022; 102:237-250. [PMID: 35245678 DOI: 10.1016/j.bbi.2022.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.
Collapse
Affiliation(s)
- Wei Song
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Li
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Tao Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianghong Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinrong Pan
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiwen Dong
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Sucrose intake and preference by Wistar Han rats are not influenced by sex or food/water deprivation. Pharmacol Biochem Behav 2022; 216:173387. [DOI: 10.1016/j.pbb.2022.173387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/11/2023]
|
34
|
Pitzer C, Kurpiers B, Eltokhi A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 2022; 16:838122. [PMID: 35368297 PMCID: PMC8969904 DOI: 10.3389/fnbeh.2022.838122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- *Correspondence: Claudia Pitzer,
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Ahmed Eltokhi,
| |
Collapse
|
35
|
Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? SEXES 2022. [DOI: 10.3390/sexes3010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, the gender perspective in scientific research and sex differences in biological studies on emotional disorders have become increasingly important. However, sex bias in basic research on anxiety and depression is still far from being covered. This review addresses the study of sex differences in the field of anxiety and depression using animal models that consider this issue so far. What can preclinical studies tell us and what are their main limitations? First, we describe the behavioral tests most frequently used in preclinical research to assess depressive-like and anxiety-like behaviors in rodents. Then, we analyze the main findings, strengths, and weaknesses of rodent models of anxiety and depression, dividing them into three main categories: sex chromosome complement-biased sex differences; gonadal hormone-biased sex differences; environmental-biased sex differences. Regardless of the animal model used, none can reproduce all the characteristics of such complex and multifactorial pathologies as anxiety and depressive disorders; however, each animal model contributes to elucidating the bases that underlie these disorders. The importance is highlighted of considering sex differences in the responses that emerge from each model.
Collapse
|
36
|
Martins T, Domingues K, Suman PR, Lino de Oliveira C. Climbing task in rats: Females were more intrinsically motivated than males. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2021.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Healey KL, Kibble SA, Bell A, Kramer G, Maldonado-Devincci A, Swartzwelder HS. Sex differences in the effects of adolescent intermittent ethanol exposure on exploratory and anxiety-like behavior in adult rats. Alcohol 2022; 98:43-50. [PMID: 34808302 PMCID: PMC8714675 DOI: 10.1016/j.alcohol.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Adolescent intermittent ethanol (AIE) exposure in rodents has been shown to alter adult behavior in several domains, including learning and memory, social interaction, affective behavior, and ethanol self-administration. AIE has also been shown to produce non-specific behavioral changes that compromise behavioral efficiency. Many studies of these types rely on measuring behavior in mazes and other enclosures that can be influenced by animals' activity levels and exploratory behavior, and relatively few such studies have assessed sex as a biological variable. To address the effects of AIE and its interaction with sex on these types of behavioral assays, male and female adolescent rats (Sprague Dawley) were exposed to 10 doses of AIE (5 g/kg, intra-gastrically [i.g.]), or control vehicle, over 16 days (postnatal day [PND] 30-46), and then tested for exploratory and anxiety-like behaviors on the novelty-induced hypophagia (NIH) task in an open field, the elevated plus (EPM) maze, and the Figure 8 maze. AIE reduced activity/exploratory behaviors in males on the anxiety-producing NIH and EPM tasks, but reduced activity in both males and females in the Figure 8 maze, a task designed to create a safe environment and reduce anxiety. Independent of AIE, females engaged in more rearing behavior than males during the NIH task but less in the EPM, in which they were also less active than males. AIE also increased EPM open arm time in females but not in males. These findings demonstrate previously unrecognized sex differences in the effects of AIE on activity, exploratory behavior, and anxiety-like behavior; additionally, they underscore the need to design future behavioral studies of AIE using sex as a variable and with rigorous attention to how AIE alters these behaviors.
Collapse
Affiliation(s)
- Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Sandra A Kibble
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Amelia Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - George Kramer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette Maldonado-Devincci
- Department of Psychology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - H S Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States.
| |
Collapse
|
38
|
Presto P, Ji G, Junell R, Griffin Z, Neugebauer V. Fear Extinction-Based Inter-Individual and Sex Differences in Pain-Related Vocalizations and Anxiety-like Behaviors but Not Nocifensive Reflexes. Brain Sci 2021; 11:brainsci11101339. [PMID: 34679403 PMCID: PMC8533751 DOI: 10.3390/brainsci11101339] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inter-individual and sex differences in pain responses are recognized but their mechanisms are not well understood. This study was intended to provide the behavioral framework for analyses of pain mechanisms using fear extinction learning as a predictor of phenotypic and sex differences in sensory (mechanical withdrawal thresholds) and emotional-affective aspects (open field tests for anxiety-like behaviors and audible and ultrasonic components of vocalizations) of acute and chronic pain. In acute arthritis and chronic neuropathic pain models, greater increases in vocalizations were found in females than males and in females with poor fear extinction abilities than females with strong fear extinction, particularly in the neuropathic pain model. Female rats showed higher anxiety-like behavior than males under baseline conditions but no inter-individual or sex differences were seen in the pain models. No inter-individual and sex differences in mechanosensitivity were observed. The data suggest that vocalizations are uniquely suited to detect inter-individual and sex differences in pain models, particularly in chronic neuropathic pain, whereas no such differences were found for mechanosensitivity, and baseline differences in anxiety-like behaviors disappeared in the pain models.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
| | - Riley Junell
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Zach Griffin
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430-6592, USA; (P.P.); (G.J.); (R.J.); (Z.G.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA
- Correspondence: ; Tel.: +1-806-743-3880; Fax: +1-806-732-2744
| |
Collapse
|
39
|
Millard SJ, Lum JS, Fernandez F, Weston-Green K, Newell KA. The effects of perinatal fluoxetine exposure on emotionality behaviours and cortical and hippocampal glutamatergic receptors in female Sprague-Dawley and Wistar-Kyoto rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110174. [PMID: 33189859 DOI: 10.1016/j.pnpbp.2020.110174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE There is increasing concern regarding the use of selective serotonin reuptake inhibitors (SSRIs) in pregnancy. Animal studies repeatedly show increased anxiety- and depressive-like behaviours in offspring exposed perinatally to SSRIs, however much of this research is in male offspring. OBJECTIVES The primary aim of this study was to investigate the effects of perinatal SSRI exposure on emotionality-related behaviours in female offspring and associated glutamatergic markers, in Sprague-Dawley (SD) rats and in the Wistar-Kyoto (WKY) rat model of depression. Secondly, we sought to investigate the glutamatergic profile of female WKY rats that may underlie their depressive- and anxiety-like phenotype. METHODS WKY and SD rat dams were treated with the SSRI, fluoxetine (FLX; 10 mg/kg/day), or vehicle, throughout gestation and lactation (5 weeks total). Female adolescent offspring underwent behaviour testing followed by quantitative immunoblot of glutamatergic markers in the prefrontal cortex and ventral hippocampus. RESULTS Naïve female WKY offspring displayed an anxiety-like and depressive-like phenotype as well as reductions in NMDA and AMPA receptor subunits and PSD-95 in both ventral hippocampus and prefrontal cortex, compared to SD controls. Perinatal FLX treatment increased anxiety-like and forced swim immobility behaviours in SD offspring but did not influence behaviour in female WKY offspring using these tests. Perinatal FLX exposure did not influence NMDA or AMPA receptor subunit expression in female WKY or SD offspring; it did however have restricted effects on group I mGluR expression in SD and WKY offspring and reduce the glutamatergic synaptic scaffold, PSD-95. CONCLUSION These findings suggest female offspring of the WKY strain display deficits in glutamatergic markers which may be related to their depressive- and anxiety-like phenotype. While FLX exposed SD offspring displayed increases in anxiety-like and depressive-like behaviours, further studies are needed to assess the potential impact of developmental FLX exposure on the behavioural phenotype of female WKY rats.
Collapse
Affiliation(s)
- Samuel J Millard
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Jeremy S Lum
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia; School of Health and Behavioural Science, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD 4014, Australia.
| | - Katrina Weston-Green
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
40
|
Acero-Castillo MC, Ardila-Figueroa MC, Botelho de Oliveira S. Anhedonic Type Behavior and Anxiety Profile of Wistar-UIS Rats Subjected to Chronic Social Isolation. Front Behav Neurosci 2021; 15:663761. [PMID: 34122025 PMCID: PMC8192826 DOI: 10.3389/fnbeh.2021.663761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic Social Isolation (CSI) is a model of prolonged stress employed in a variety of studies to induce depression and anxious behavior in rats. The present study aims to evaluate the effect of CSI on male Wistar rats in terms of "anhedonic-type" behavior in the Sucrose Preference Test (SPT) and anxiogenic profile in the elevated-plus-maze (EPM) test, as well as evaluating the effect of resocialization upon sucrose consumption. A total of 24 adolescent male Wistar rats were evaluated. The animals were housed either together (communally) or socially isolated for 21 days, and then exposed for four consecutive days to the SPT test [water vs. a 32% sucrose solution (SS)]. Four days later, they were again subjected to the SPT test (32% vs. 0.7% SS), and then tested on the EPM apparatus 3 days later. Following the completion of the anxiogenic profile of the model, the animals were resocialized for 72 h and then re-tested once again using the SPT (32% vs. 0.7% SS). Twenty-four hours after this final consumption, the animals were euthanized to record the weight of their adrenal glands (AG). It was found that exposure to CSI produces anhedonic-type behavior and an anxiogenic profile in adolescent male rats, as evidenced in both the SPT and EPM tests, as well as in the animals' physiological stress response. It was also demonstrated that resocialization does not reverse the anhedonic-type behavior, nor the physiological response to stress.
Collapse
Affiliation(s)
- María Camila Acero-Castillo
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Health Sciences, Universidade de Brasilia, Brasilia, Brazil
| | - María Camila Ardila-Figueroa
- Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| | - Silvia Botelho de Oliveira
- Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Psychology, Universidade Estadual Paulista, São Paulo, Brazil.,Psychobiology, Universidade de São Paulo, São Paulo, Brazil.,Faculty of Psychology, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia.,Laboratory of Neurosciences and Behavior, Universidad Pontificia Bolivariana Sectional Bucaramanga, Santander, Colombia
| |
Collapse
|
41
|
Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav 2021; 204:173168. [PMID: 33684454 DOI: 10.1016/j.pbb.2021.173168] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
There is a growing need for a better understanding of sex differences in animal models of psychiatric disorders. The elevated plus-maze (EPM) test and large open field (LOF) test are widely used to study anxiety-like behavior in rodents. Our studies explored sex differences in anxiety and activity parameters in the LOF and EPM and determined whether these parameters correlate within and between tests. Drug naïve adult male and female Wistar rats (n = 47/sex) were used for the studies, and the rats were tested for 5 min in the EPM and 10 min in the LOF. The females spent more time on the open arms of the EPM and made more open arms entries than the males. The females also spent more time in the center zone of the LOF and made more center zone entries. The females traveled a greater distance in the LOF and EPM. There was a moderate positive correlation between time on the open arms of the EPM and time in the center zone of the LOF. There was also a moderate positive correlation between open arms entries in the EPM and center zone entries in the LOF. A hierarchical cluster analysis revealed one cluster with LOF parameters, one cluster with EPM parameters, and one cluster with parameters related to the avoidance of open spaces. In conclusion, these findings indicate that female rats display less anxiety-like behavior in the EPM and LOF. Furthermore, there are sex differences for almost all behavioral parameters in these anxiety tests.
Collapse
|
42
|
Snyder CN, Brown AR, Buffalari D. Similar tests of anxiety-like behavior yield different results: comparison of the open field and free exploratory rodent procedures. Physiol Behav 2021; 230:113246. [DOI: 10.1016/j.physbeh.2020.113246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022]
|
43
|
Foot shock stress generates persistent widespread hypersensitivity and anhedonic behavior in an anxiety-prone strain of mice. Pain 2021; 161:211-219. [PMID: 31568043 DOI: 10.1097/j.pain.0000000000001703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A significant subset of patients with urologic chronic pelvic pain syndrome suffer from widespread, as well as pelvic, pain and experience mood-related disorders, including anxiety, depression, and panic disorder. Stress is a commonly reported trigger for symptom onset and exacerbation within these patients. The link between stress and pain is believed to arise, in part, from the hypothalamic-pituitary-adrenal axis, which regulates the response to stress and can influence the perception of pain. Previous studies have shown that stress exposure in anxiety-prone rats can induce both pelvic and widespread hypersensitivity. Here, we exposed female A/J mice, an anxiety-prone inbred murine strain, to 10 days of foot shock stress to determine stress-induced effects on sensitivity, anhedonia, and hypothalamic-pituitary-adrenal axis regulation and output. At 1 and 28 days after foot shock, A/J mice displayed significantly increased bladder sensitivity and hind paw mechanical allodynia. They also displayed anhedonic behavior, measured as reduced nest building scores and a decrease in sucrose preference during the 10-day foot shock exposure. Serum corticosterone was significantly increased at 1 day after foot shock, and bladder mast cell degranulation rates were similarly high in both sham- and shock-exposed mice. Bladder cytokine and growth factor mRNA levels indicated a persistent shift toward a proinflammatory environment after foot shock exposure. Together, these data suggest that chronic stress exposure in an anxiety-prone mouse strain may provide a useful translational model for understanding mechanisms that contribute to widespreadness of pain and increased comorbidity in a subset of patients with urologic chronic pelvic pain syndrome.
Collapse
|
44
|
Improved 3D tracking and automated classification of rodents' behavioral activity using depth-sensing cameras. Behav Res Methods 2021; 52:2156-2167. [PMID: 32232737 DOI: 10.3758/s13428-020-01381-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Analysis of rodents' behavior/activity is of fundamental importance in many research fields. However, many behavioral experiments still rely on manual scoring, with obvious problems in reproducibility. Despite important advances in video-analysis systems and computational ethology, automated behavior quantification is still a challenge. The need for large training datasets, background stability requirements, and reduction to two-dimensional analysis (impairing full posture characterization), limit their use. Here we present a novel integrated solution for behavioral analysis of individual rats, combining video segmentation, tracking of body parts, and automated classification of behaviors, using machine learning and computer vision methods. Low-cost depth cameras (RGB-D) are used to enable three-dimensional tracking and classification in dark conditions and absence of color contrast. Our solution automatically tracks five anatomical landmarks in dynamic environments and recognizes seven distinct behaviors, within the accuracy range of human annotations. The developed free software was validated in experiments where behavioral differences between Wistar Kyoto and Wistar rats were automatically quantified. The results reveal the capability for effective automated phenotyping. An extended annotated RGB-D dataset is also made publicly available. The proposed solution is an easy-to-use tool, with low-cost setup and powerful 3D segmentation methods (in static/dynamic environments). The ability to work in dark conditions means that natural animal behavior is not affected by recording lights. Furthermore, automated classification is possible with only ~30 minutes of annotated videos. By creating conditions for high-throughput analysis and reproducible quantitative measurements of animal behavior experiments, we believe this contribution can greatly improve behavioral analysis research.
Collapse
|
45
|
Shupe EA, Glover ME, Unroe KA, Kerman IA, Clinton SM. Inborn differences in emotional behavior coincide with alterations in hypothalamic paraventricular motor projections. Eur J Neurosci 2020; 53:814-826. [PMID: 33249622 DOI: 10.1111/ejn.15065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Integrated behavioral responses to emotionally salient stimuli require the concomitant activation of descending neural circuits that integrate physiological, affective, and motor responses to stress. Our previous work interrogated descending circuits in the brainstem and spinal cord that project to motor and sympathetic targets. The hypothalamic paraventricular nucleus (PVN), a key node of this circuitry, integrates multiple motor and sympathetic responses activated by stress. The present study sought to determine whether descending projections from the PVN to targets in muscle and adrenal gland are differentially organized in rats with inborn differences in emotionality and stress responsivity. We utilized retrograde transsynaptic tract-tracing with unique pseudorabies virus (PRV) recombinants that were injected into sympathectomized gastrocnemius muscle and adrenal gland in two rat models featuring inborn differences in emotional behavior. Our tract-tracing results revealed a significant decrease in the number of PVN neurons with poly-synaptic projections to the gastrocnemius in male Wistar Kyoto [WKY] rats (versus Sprague Dawley rats) and selectively bred Low Novelty Responder [bLR] rats (versus selectively bred High Novelty Responder [bHR] rats). These neuroanatomical differences mirrored behavioral observations showing that both WKY and bLR rats display marked inhibition of emotional motor responses in a variety of settings relative to their respective controls. Our findings suggest that, in male rodents, PVN poly-synaptic projections to skeletal muscle may regulate emotional motor and coping responses to stress. More broadly, perturbations in PVN motor circuitry may play a role in mediating psychomotor disturbances observed in depression or anxiety-related disorders.
Collapse
Affiliation(s)
- Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Translational Biology, Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Behavioral Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
46
|
Witchey SK, Al Samara L, Horman BM, Stapleton HM, Patisaul HB. Perinatal exposure to FireMaster® 550 (FM550), brominated or organophosphate flame retardants produces sex and compound specific effects on adult Wistar rat socioemotional behavior. Horm Behav 2020; 126:104853. [PMID: 32949556 PMCID: PMC7726037 DOI: 10.1016/j.yhbeh.2020.104853] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Firemaster 550 (FM550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in household items such as foam-based furniture and baby products. Because this mixture readily leaches from products, contamination of the environment and human tissues is widespread. Prior work by us and others has reported sex-specific behavioral deficits in rodents and zebrafish following early life exposure. In an effort to understand the mechanisms by which these behavioral effects occur, here we explored the effects of its constituents on behavioral outcomes previously shown to be altered by developmental FM550 exposure. The FM550 commercial mixture is composed of two brominated compounds (BFR) and two organophosphate compounds (OPFRs) at almost equivalent proportions. Both the BFR and the OPFR components are differentially metabolized and structurally distinct, but similar to known neurotoxicants. Here we examined adult Wistar rat offspring socioemotional behaviors following perinatal exposure (oral, to the dam) to vehicle, 2000 μg/day FM550, 1000 μg/day BFR or 1000 μg/day OPFR from gestation day 0 to weaning. Beginning on postnatal day 65 offspring from all groups were subjected to a series of behavioral tasks including open field, elevated plus maze, marble burying, social interaction tests, and running wheel. Effects were exposure-, sex- and task-specific, with BFR exposure resulting in the most consistent behavioral deficits. Overall, exposed females showed more deficits compared to males across all dose groups and tasks. These findings help elucidate how different classes of flame retardants, independently and as a mixture, contribute to sex-specific behavioral effects of exposure.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, United States of America
| | - Loujain Al Samara
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America
| | - Heather M Stapleton
- Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC 27710, United States of America
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, United States of America; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
47
|
Increased Notch2/NF-κB Signaling May Mediate the Depression Susceptibility: Evidence from Chronic Social Defeat Stress Mice and WKY Rats. Physiol Behav 2020; 228:113197. [PMID: 33017602 DOI: 10.1016/j.physbeh.2020.113197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
The susceptibility to depression has been attributed to the chronic stress and genetic factors but still fails to identify definite biomarkers. The present study aimed to investigate the role of disrupted Notch signaling in the medial prefrontal cortex of the chronic social defeat stress (CSDS) mice and Wistar Kyoto (WKY) rats. RNA-sequencing and quantitative real-time PCR analyses evidenced the involvement of Notch signaling pathway in depression. Western blotting reported an increased level of Notch2 and NF-κB and a decreased level of Hes1 and Bcl2/Bax ratio both in the susceptible mice when compared with the control or resilient ones and in the depression WKY rats when compared with the Wistar or non-depression WKY groups. Further analysis showed that the above-mentioned changes were significantly correlated with the depression-like behaviors and that the elicited Notch2 strongly correlated with the upregulated NF-κB, not with the downregulated Hes1 or Bcl2/Bax ratio. In conclusion, the increased Notch2/NF-κB signaling in the medial prefrontal cortex may mediate depression susceptibility, providing a potential diagnostic biomarker or therapeutic target for treating major depressive disorder.
Collapse
|
48
|
Exacerbated LPS/GalN-Induced Liver Injury in the Stress-Sensitive Wistar Kyoto Rat Is Associated with Changes in the Endocannabinoid System. Molecules 2020; 25:molecules25173834. [PMID: 32842550 PMCID: PMC7504576 DOI: 10.3390/molecules25173834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury (ALI) is a highly destructive and potentially life-threatening condition, exacerbated by physical and psychological stress. The endocannabinoid system plays a key role in modulating stress and hepatic function. The aim of this study was to examine the development of acute liver injury in the genetically susceptible stress-sensitive Wistar-Kyoto (WKY) rat compared with normo-stress-sensitive Sprague Dawley (SD) rats, and associated changes in the endocannabinoid system. Administration of the hepatotoxin lipopolysaccharide/D-Galactosamine (LPS/GalN) resulted in marked liver injury in WKY, but not SD rats, with increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) plasma levels, significant histopathological changes, increased hepatic pro-inflammatory cytokine expression and caspase-3 activity and expression and reduced Glutathione (GSH) activity. Furthermore, compared to SD controls, WKY rats display increased anandamide and 2-Arachidonoylglycerol levels concurrent with decreased expression of their metabolic enzymes and a decrease in cannabinoid (CB)1 receptor expression following LPS/GalN. CB1 antagonism with AM6545 or CB2 agonism with JWH133 did not alter LPS/GalN-induced liver injury in SD or WKY rats. These findings demonstrate exacerbation of acute liver injury induced by LPS/GalN in a stress-sensitive rat strain, with effects associated with alterations in the hepatic endocannabinoid system. Further studies are required to determine if the endocannabinoid system mediates or modulates the exacerbation of liver injury in this stress-sensitive rat strain.
Collapse
|
49
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
50
|
Millard SJ, Weston-Green K, Newell KA. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109908. [PMID: 32145362 DOI: 10.1016/j.pnpbp.2020.109908] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) is one of the leading causes of years lived with disability and contributor to the burden of disease worldwide. The incidence of MDD has increased by ~20% in the last decade. Currently antidepressant drugs such as the popular selective serotonin reuptake inhibitors (SSRIs) are the leading form of pharmaceutical intervention for the treatment of MDD. SSRIs however, are inefficient in ameliorating depressive symptoms in ~50% of patients and exhibit a prolonged latency of efficacy. Due to the burden of disease, there is an increasing need to understand the neurobiology underpinning MDD and to discover effective treatment strategies. Endogenous models of MDD, such as the Wistar-Kyoto (WKY) rat provide a valuable tool for investigating the pathophysiology of MDD. The WKY rat displays behavioural and neurobiological phenotypes similar to that observed in clinical cases of MDD, as well as resistance to common antidepressants. Specifically, the WKY strain exhibits increased anxiety- and depressive-like behaviours, as well as alterations in Hypothalamic Pituitary Adrenal (HPA) axis, serotonergic, dopaminergic and neurotrophic systems with emerging studies suggesting an involvement of neuroinflammation. More recent investigations have shown evidence for reduced cortical and hippocampal volumes and altered glutamatergic signalling in the WKY strain. Given the growing interest in therapeutics targeting the glutamatergic system, the WKY strain presents itself as a potentially useful tool for screening novel antidepressant drugs and their efficacy against treatment resistant depression. However, despite the sexual dimorphism present in the pathophysiology and aetiology of MDD, sex differences in the WKY model are rarely investigated, with most studies focusing on males. Accordingly, this review highlights what is known regarding sex differences and where further research is needed. Whilst acknowledging that investigation into a range of depression models is required to fully elucidate the underlying mechanisms of MDD, here we review the WKY strain, and its relevance to the clinic.
Collapse
Affiliation(s)
- Samuel J Millard
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Katrina Weston-Green
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- School of Medicine and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|