1
|
Santos AMDOD, Rodrigues Silva DG, Pereira MG, Costa AR, Rohde C, Lopes Arruda CC, Duarte AE, Ferraz da Silva L, Freitas DV, Navarro M, Deprá M, Navarro DMDAF, Valente VLDS. Evaluation of the toxic and genotoxic effects of exposure of Drosophila melanogaster to the glutathione-capped AgIn 5Se 8@ZnS nanocrystals. CHEMOSPHERE 2025; 381:144482. [PMID: 40373646 DOI: 10.1016/j.chemosphere.2025.144482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/21/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
Silver indium selenide - AgIn5Se8 (AISe) quantum dots (QDs) are emerging as a safe alternative to cadmium-containing QDs, particularly for biomedical applications such as imaging, probing individual molecules, and photodynamic therapy cancer. However, research on the toxicity and health risks of AISe QDs remains limited. This study aimed to evaluate the safety of AISe QDs, synthesized through green aqueous electrosynthesis, coated with zinc sulphide (ZnS), and stabilized with l-glutathione (GSH). To assess potential nanotoxicity, third-instar Drosophila melanogaster larvae were fed a standard diet supplemented with AISe@ZnS QDs at concentrations of 10, 50, 150 and 300 μg/mL for 24 h. Parameters evaluated included toxicity (survival, negative geotaxis, phenotypic analysis), oxidative stress (lipid peroxidation (MDA), total (PSH) and non-total (NPSH) protein content, free iron (Fe2+) levels), and genotoxicity (Comet assay). No evidence of toxicity, induction of oxidative stress and primary DNA damage (Comet assay) was observed in D. melanogaster larvae exposed to these QDs. This study demonstrates the biocompatibility of AISe@ZnS QDs and indicates that they do not present toxicity or genotoxicity to D. melanogaster, reinforcing the importance of further studies into their safety and applications.
Collapse
Affiliation(s)
| | | | - Maria Gislaine Pereira
- Genetics Laboratory, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | | | - Claudia Rohde
- Genetics Laboratory, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | | | | | | | - Denilson Vasconcelos Freitas
- Nanotechnology Research Laboratory, Center for Strategic Technologies of the Northeast (CETENE), Recife, PE, Brazil
| | - Marcelo Navarro
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | - Maríndia Deprá
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
2
|
Sahu S, Dash K, Mishra M. Common salt (NaCl) causes developmental, behavioral, and physiological defects in Drosophila melanogaster. Nutr Neurosci 2025:1-19. [PMID: 39760749 DOI: 10.1080/1028415x.2024.2441677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption. This study aims to check the toxicity of salt at different concentrations using an invertebrate model organism Drosophila melanogaster. METHODS Drosophila food was mixed with different salt concentrations (50, 200, 400, 800 µM). The toxicity of salt in third instar larvae was checked via different experiments such as trypan blue assay, crawling assay, and other histological staining was done to check the deposition of lipid droplets and amount of reactive oxygen species. Food intake analysis was performed to check the feeding rate, and body weight was also calculated to check the obesity index. Several behavioral assays are also performed in adult flies. RESULTS Most significant abnormalities were seen at 50 and 200 µM concentrations. Feeding rate increased up to 60%, body weight was increased up to 12% in larvae, and 27% in adult at 200 µM concentration. Approximately 60% larvae and 58% adult flies had defective response to extreme heat. 28% larvae and 38% adult flies were not responding to cold temperature. 55% flies had a defective phototaxis behavior and 40% of them showed positive geotaxis at those range. Salt stress leads to the buildup of free radicals, resulting in DNA damage in both the gut and hemolymph. FINDINGS Most toxic consequences are observed at the lower concentration range as the feeding rate was higher. Flies show aversive response to feed on the higher concentration of salt.
Collapse
Affiliation(s)
- Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Kalpanarani Dash
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
3
|
Farodoye OM, Otenaike TA, Loreto JS, Adedara AO, Silva MM, Barbosa NV, Rocha JBTD, Abolaji AO, Loreto ELS. Evidence of acrylamide-induced behavioral deficit, mitochondrial dysfunction and cell death in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109971. [PMID: 38972620 DOI: 10.1016/j.cbpc.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Acrylamide (ACR), a ubiquitous compound with diverse route of exposure, has been demonstrated to have detrimental effects on human and animal health. The mechanisms underlying its toxicity is multifaceted and not fully elucidated. This study aims to provide further insight into novel pathways underlying ACR toxicity by leveraging on Drosophila melanogaster as a model organism. The concentrations of acrylamide (25, 50 and 100 mg/kg) and period of exposure (7-days) used in this study was established through a concentration response curve. ACR exposure demonstrably reduced organismal viability, evidenced by decline in survival rate, offspring emergence and deficits in activity, sleep and locomotory behaviors. Using a high-resolution respirometry assay, the role of mitochondria respiratory system in ACR-mediated toxicity in the flies was investigated. Acrylamide caused dysregulation in mitochondrial bioenergetics and respiratory capacity leading to an impaired OXPHOS activity and electron transport, ultimately contributing to the pathological process of ACR-toxicity. Furthermore, ACR exacerbated apoptosis and induced oxidative stress in D. melanogaster. The up-regulation of mRNA transcription of Reaper, Debcl and Dark genes and down-regulation of DIAP1, an ubiquitylation catalyzing enzyme, suggests that ACR promotes apoptosis through disruption of caspase and pro-apoptotic protein ubiquitination and a mitochondria-dependent pathway in Drosophila melanogaster. Conclusively, this study provides valuable insights into the cellular mechanism underlying ACR-mediated toxicity. Additionally, our study reinforces the utility of D. melanogaster as a translational tool for elucidating the complex mechanisms of ACR toxicity.
Collapse
Affiliation(s)
- Oluwabukola Mary Farodoye
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@Bukolarita
| | - Titilayomi Ayomide Otenaike
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. https://twitter.com/@TITILAYOMIADE
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Adeola Oluwatosin Adedara
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Monica Medeiros Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Joao Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Amos Olalekan Abolaji
- Drosophila Laboratory, Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria. https://twitter.com/@amosabolaji
| | - Elgion Lucio Silva Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Turna Demir F, Demir E. In vivo evaluation of the neurogenotoxic effects of exposure to validamycin A in neuroblasts of Drosophila melanogaster larval brain. J Appl Toxicol 2024; 44:355-370. [PMID: 37735745 DOI: 10.1002/jat.4547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Agriculture commonly utilizes crop protection products to tackle infestations from fungi, parasites, insects, and weeds. Validamycin A, an inhibitor of trehalase, possesses antibiotic and antifungal attributes. Epidemiological evidence has led to concerns regarding a potential link between pesticide usage and neurodegenerative diseases. The fruit fly, Drosophila melanogaster, has been recognized as a reliable model for genetic research due to its significant genetic similarities with mammals. Here, we propose to use D. melanogaster as an effective in vivo model system to investigate the genotoxic risks associated with exposure to validamycin A. In this study, we performed a neurotoxic evaluation of validamycin A in D. melanogaster larvae. Several endpoints were evaluated, including toxicity, intracellular oxidative stress (reactive oxygen species), intestinal damage, larval behavior (crawling behavior, light/dark sensitivity assay, and temperature sensitivity assay), locomotor (climbing) behavior, and neurogenotoxic effects (impaired DNA via Comet assay, enhanced by Endo III and formamidopyrimidine DNA glycosylase [FPG]). The results showed that exposure to validamycin A, especially at higher doses (1 and 2.5 mM), induced DNA impairment in neuroblasts as observed by Comet assay. Both larvae and adults exhibited behavioral changes and produced reactive oxygen species. Most importantly, this research represents a pioneering effort to report neurogenotoxicity data specifically in Drosophila larval neuroblasts, thus underscoring the importance of this species as a testing model in exploring the biological impacts of validamycin A. The in vivo findings from the experiments are a valuable and novel addition to the existing validamycin A neurogenotoxicity database.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| | - Eşref Demir
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, Antalya, Turkey
| |
Collapse
|
5
|
Chauhan S, Naik S, Kumar R, Ruokolainen J, Kesari KK, Mishra M, Gupta PK. In Vivo Toxicological Analysis of the ZnFe 2O 4@poly( tBGE- alt-PA) Nanocomposite: A Study on Fruit Fly. ACS OMEGA 2024; 9:6549-6555. [PMID: 38371810 PMCID: PMC10870305 DOI: 10.1021/acsomega.3c07111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 02/20/2024]
Abstract
Recently, the use of hybrid nanomaterials (NMs)/nanocomposites has widely increased for the health, energy, and environment sectors due to their improved physicochemical properties and reduced aggregation behavior. However, prior to their use in such sectors, it is mandatory to study their toxicological behavior in detail. In the present study, a ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is tested to study its toxicological effects on a fruit fly model. This nanocomposite was synthesized earlier by our group and physicochemically characterized using different techniques. In this study, various neurological, developmental, genotoxic, and morphological tests were carried out to investigate the toxic effects of nanocomposite on Drosophila melanogaster. As a result, an abnormal crawling speed of third instar larvae and a change in the climbing behavior of treated flies were observed, suggesting a neurological disorder in the fruit flies. DAPI and DCFH-DA dyes analyzed the abnormalities in the larva's gut of fruit flies. Furthermore, the deformities were also seen in the wings and eyes of the treated flies. These obtained results suggested that the ZnFe2O4@poly(tBGE-alt-PA) nanocomposite is toxic to fruit flies. Moreover, this is essential to analyze the toxicity of this hybrid NM again in a rodent model in the future.
Collapse
Affiliation(s)
- Shaily Chauhan
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Seekha Naik
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 02150, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara 144411, Punjab , India
| | - Monalisa Mishra
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha , India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh , India
- Centre
for Development of Biomaterials, Sharda
University, Greater
Noida 201310, Uttar Pradesh , India
- Department
of Biotechnology, Graphic Era (Deemed to
Be University), Dehradun 248002, Uttarakhand, India
| |
Collapse
|
6
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
7
|
Rieder GS, Zamberlan DC, Silva LFO, Borin BC, Schuch AP, da Rocha JBT. Toxicological and behavioral analyses indicates the safety of a biofertilizer in the non-target D. melanogaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162150. [PMID: 36773916 DOI: 10.1016/j.scitotenv.2023.162150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The demand for food to feed the growing world population has been promoting the indiscriminate use of chemical fertilizers, which can be detrimental to the environment. In order to maintain high crop productivity without damaging the ecosystem, biofertilizers have emerged as alternative to reduce the use of chemical fertilizers. So, environmentally safer biofertilizer can replace the exploitation of more toxic chemical fertilizer. Here, the fly Drosophila melanogaster was used to study the potential toxicity of the biofertilizer Beifort®. Flies were exposed to high concentrations of Beifort® in the diet (1.8 mL/L, 9.0 mL/L and 18 mL/L), and morphological and behavioral endpoints of toxicity were analyzed (development from egg to adult age, flies longevity, climbing performance, memory and learning of an associative learning, larvae digestive tract damage and plasmid DNA break). Beifort® did not modify flies development, survival, digestive track cell damage, locomotor activity or memory. Beifort® did not induce DNA breakage in vitro and had no toxicity to the non-target D. melanogaster after in vivo exposure. Thus, in addition of promoting the sustainable use of agricultural wastes, the exploitation of Beifort® can contribute to decrease the use of chemical fertilizers.
Collapse
Affiliation(s)
- G S Rieder
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - D C Zamberlan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002 Barranquilla, Atlantico, Colombia
| | - B C Borin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A P Schuch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - J B T da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Kumar R, Bauri S, Sahu S, Chauhan S, Dholpuria S, Ruokolainen J, Kesari KK, Mishra M, Gupta PK. In Vivo Toxicological Analysis of MnFe 2O 4@poly( tBGE-alt-PA) Composite as a Hybrid Nanomaterial for Possible Biomedical Use. ACS APPLIED BIO MATERIALS 2023; 6:1122-1132. [PMID: 36757355 PMCID: PMC10031559 DOI: 10.1021/acsabm.2c00983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
Nanocomposites have significantly contributed to biomedical science due to less aggregation behavior and enhanced physicochemical properties. This study synthesized a MnFe2O4@poly(tBGE-alt-PA) nanocomposite for the first time and physicochemically characterized it. The obtained hybrid nanomaterial was tested in vivo for its toxicological properties before use in drug delivery, tissue engineering fields, and environmental applications. The composite was biocompatible with mouse fibroblast cells and hemocompatible with 2% RBC suspension. This nanocomposite was tested on Drosophila melanogaster due to its small size, well-sequenced genome, and low cost of testing. The larvae's crawling speed and direction were measured after feeding. No abnormal path and altered crawling pattern indicated the nonappearance of abnormal neurological disorder in the larva. The gut organ toxicity was further analyzed using DAPI and DCFH-DA dye to examine the structural anomalies. No apoptosis and necrosis were observed in the gut of the fruit fly. Next, adult flies were examined for phenotypic anomalies after their pupal phases emerged. No defects in the phenotypes, including the eye, wings, abdomen, and bristles, were found in our study. Based on these observations, the MnFe2O4@poly(tBGE-alt-PA) composite may be used for various biomedical and environmental applications.
Collapse
Affiliation(s)
- Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310 Uttar Pradesh, India
| | - Samir Bauri
- Department
of Life Science, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Soumyamitra Sahu
- Department
of Life Science, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Shaily Chauhan
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310 Uttar Pradesh, India
| | - Sunny Dholpuria
- Department
of Life Sciences, J.C. Bose University of
Science and Technology, YMCA, Faridabad 121006 Haryana, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Monalisa Mishra
- Department
of Life Science, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310 Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002 Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
9
|
Mohanty P, Dash PP, Naik S, Behura R, Mishra M, Sahoo H, Sahoo SK, Barick AK, Jali BR. A thiourea-based fluorescent turn-on chemosensor for detecting Hg2+, Ag+ and Au3+ in aqueous medium. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Han S, Xiu M, Li S, Shi Y, Wang X, Lin X, Cai H, Liu Y, He J. Exposure to cytarabine causes side effects on adult development and physiology and induces intestinal damage via apoptosis in Drosophila. Biomed Pharmacother 2023; 159:114265. [PMID: 36652735 DOI: 10.1016/j.biopha.2023.114265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Cytarabine (Ara-C) is a widely used drug in acute myeloid leukemia (AML). However, it faces serious challenges in clinical application due to serious side effects such as gastrointestinal disorders and neurologic toxicities. Until now, the mechanism of Ara-C-induced damage is not clear. Here, we used Drosophila melanogaster (fruit fly) as the in vivo model to explore the side effects and mechanism of Ara-C. Our results showed that Ara-C supplementation delayed larval development, reduced lifespan, impaired locomotor capacity, and increased susceptibility to stress response in adult flies. In addition, Ara-C led to the intestinal morphological damage and ROS accumulation in the guts. Moreover, administration of Ara-C promoted gene expressions of Toll pathway, IMD pathway, and apoptotic pathway in the guts. These findings raise the prospects of using Drosophila as in vivo model to rapidly assess chemotherapy-mediated toxicity and efficiently screen the protective drugs.
Collapse
Affiliation(s)
- Shuzhen Han
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Minghui Xiu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuang Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaoqian Wang
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xingyao Lin
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
11
|
Jean‐Guillaume CB, Kumar JP. Development of the ocellar visual system in Drosophila melanogaster. FEBS J 2022; 289:7411-7427. [PMID: 35490409 PMCID: PMC9805374 DOI: 10.1111/febs.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
The adult visual system of the fruit fly, Drosophila melanogaster, contains seven eyes-two compound eyes, a pair of Hofbauer-Buchner eyelets, and three ocelli. Each of these eye types has a specialized and essential role to play in visual and/or circadian behavior. As such, understanding how each is specified, patterned, and wired is of primary importance to vision biologists. Since the fruit fly is amenable to manipulation by an enormous array of genetic and molecular tools, its development is one of the best and most studied model systems. After more than a century of experimental investigations, our understanding of how each eye type is specified and patterned is grossly uneven. The compound eye has been the subject of several thousand studies; thus, our knowledge of its development is the deepest. By comparison, very little is known about the specification and patterning of the other two visual systems. In this Viewpoint article, we will describe what is known about the function and development of the Drosophila ocelli.
Collapse
|
12
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
13
|
Turna Demir F, Akkoyunlu G, Demir E. Interactions of Ingested Polystyrene Microplastics with Heavy Metals (Cadmium or Silver) as Environmental Pollutants: A Comprehensive In Vivo Study Using Drosophila melanogaster. BIOLOGY 2022; 11:1470. [PMID: 36290374 PMCID: PMC9598744 DOI: 10.3390/biology11101470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
Abstract
Living organisms are now constantly exposed to microplastics and nanoplastics (MNPLs), and besides their toxic potential, they can also act as carriers of various hazardous elements such as heavy metals. Therefore, this study explored possible interactions between polystyrene microplastics (PSMPLs) and two metal pollutants: cadmium chloride (CdCl2) and silver nitrate (AgNO3). To better understand the extent of biological effects caused by different sizes of PSMPLs, we conducted in vivo experiments with five doses (from 0.01 to 10 mM) that contained polystyrene particles measuring 4, 10, and 20 µm in size on Drosophila larvae. Additional experiments were performed by exposing larvae to two individual metals, CdCl2 (0.5 mM) and AgNO3 (0.5 mM), as well as combined exposure to PSMPLs (0.01 and 10 mM) and these metals, in an attempt to gain new insight into health risks of such co-exposure. Using transmission electron microscopy imaging, we managed to visualize the biodistribution of ingested PSMPLs throughout the fly's body, observing the interactions of such plastics with Drosophila intestinal lumen, cellular uptake by gut enterocytes, the passage of plastic particles through the intestinal barrier to leak into the hemolymph, and cellular uptake by hemocytes. Observations detected size and shape changes in the ingested PSMPLs. Egg-to-adult viability screening revealed no significant toxicity upon exposure to individual doses of tested materials; however, the combined exposure to plastic and metal particles induced aggravated genotoxic effects, including intestinal damage, genetic damage, and intracellular oxidative stress (ROS generation), with smaller sized plastic particles + metals (cadmium and silver) causing greater damage.
Collapse
Affiliation(s)
- Fatma Turna Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| | - Gökhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey
| | - Eşref Demir
- Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| |
Collapse
|
14
|
Kostenko VV, Mouzykantov AA, Baranova NB, Boulygina EA, Markelova MI, Khusnutdinova DR, Trushin MV, Chernova OA, Chernov VM. Development of Resistance to Clarithromycin and Amoxicillin-Clavulanic Acid in Lactiplantibacillus plantarum In Vitro Is Followed by Genomic Rearrangements and Evolution of Virulence. Microbiol Spectr 2022; 10:e0236021. [PMID: 35579444 PMCID: PMC9241834 DOI: 10.1128/spectrum.02360-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Ensuring the safety of the use of probiotics is a top priority. Obviously, in addition to studying the beneficial properties of lactic acid bacteria, considerable attention should be directed to assessing the virulence of microorganisms as well as investigating the possibility of its evolution under conditions of selective pressure. To assess the virulence of probiotics, it is now recommended to analyze the genomes of bacteria in relation to the profiles of the virulome, resistome, and mobilome as well as the analysis of phenotypic resistance and virulence in vitro. However, the corresponding procedure has not yet been standardized, and virulence analysis of strains in vivo using model organisms has not been performed. Our study is devoted to testing the assumption that the development of antibiotic resistance in probiotic bacteria under conditions of selective pressure of antimicrobial drugs may be accompanied by the evolution of virulence. In this regard, special attention is required for the widespread in nature commensals and probiotic bacteria actively used in pharmacology and the food industry. As a result of step-by-step selection from the Lactiplantibacillus plantarum 8p-a3 strain isolated from the "Lactobacterin" probiotic (Biomed, Russia), the L. plantarum 8p-a3-Clr-Amx strain was obtained, showing increased resistance simultaneously to amoxicillin-clavulanic acid and clarithromycin (antibiotics, the combined use of which is widely used for Helicobacter pylori eradication) compared to the parent strain (MIC8p-a3-Clr-Amx of 20 μg/mL and 10 μg/mL, and MIC8p-a3 of 0.5 μg/mL and 0.05 μg/mL, respectively). The results of a comparative analysis of antibiotic-resistant and parental strains indicate that the development of resistance to the corresponding antimicrobial drugs in L. plantarum in vitro is accompanied by the following: (i) significant changes in the genomic profile (point mutations as well as deletions, insertions, duplications, and displacement of DNA sequences) associated in part with the resistome and mobilome; (ii) changes in phenotypic sensitivity to a number of antimicrobial drugs; and (iii) an increase in the level of virulence against Drosophila melanogaster, a model organism for which L. plantarum is considered to be a symbiont. The data obtained by us indicate that the mechanisms of adaptation to antimicrobial drugs in L. plantarum are not limited to those described earlier and determine the need for comprehensive studies of antibiotic resistance scenarios as well as the trajectories of virulence evolution in probiotic bacteria in vivo and in vitro to develop a standardized system for detecting virulent strains of the corresponding microorganisms. IMPORTANCE Ensuring the safety of the use of probiotics is a top priority. We found that increased resistance to popular antimicrobial drugs in Lactiplantibacillus plantarum is accompanied by significant changes in the genomic profile and phenotypic sensitivity to a number of antimicrobial drugs as well as in the level of virulence of this bacterium against Drosophila. The data obtained in our work indicate that the mechanisms of antibiotic resistance in this bacterium are not limited to those described earlier and determine the need for comprehensive studies of the potential for the evolution of virulence in lactic acid bacteria in vivo and in vitro and to develop a reliable control system to detect virulent strains among probiotics.
Collapse
Affiliation(s)
- V. V. Kostenko
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - A. A. Mouzykantov
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - N. B. Baranova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - E. A. Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - M. I. Markelova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - D. R. Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - M. V. Trushin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - O. A. Chernova
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - V. M. Chernov
- Laboratory of Molecular Bases of Pathogenesis, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
15
|
Dhar G, Paikra SK, Mishra M. Aminoglycoside treatment alters hearing-related genes and depicts behavioral defects in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21871. [PMID: 35150449 DOI: 10.1002/arch.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 μg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.
Collapse
Affiliation(s)
- Gyanaseni Dhar
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Sanjeev K Paikra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
- Centre for Nanomaterials, National Institute of technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
16
|
Budiyanti DS, Moeller ME, Thit A. Influence of copper treatment on bioaccumulation, survival, behavior, and fecundity in the fruit fly Drosophila melanogaster: Toxicity of copper oxide nanoparticles differ from dissolved copper. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103852. [PMID: 35307570 DOI: 10.1016/j.etap.2022.103852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Copper oxide (CuO) NPs are widely used and subsequently released into terrestrial ecosystems. In the present study, bioaccumulation and effects of CuO NPs and dissolved Cu was examined in the fruit fly Drosophila melanogaster after 7 and 10 days dietary exposure at concentrations ranging between 0.09 and 1.2 mg Cu ml-1 for dissolved Cu and between 0.2 and 11 mg Cu ml-1 for CuO NPs. Both Cu forms were bioaccumulated and affected survival and climbing in flies, but not egg-to-adult development. Dissolved Cu caused higher mortality than CuO NPs (CuO NPs 10-days LC50 was 2 times higher), whereas NPs affected climbing and decreased the number of eggs laid per female, potentially affecting fruit fly population size in terrestrial environments. Thus, the study indicates that CuO NPs might cause effects that are different from dissolved Cu due to differences in the mechanism of uptake or toxicity. Therefore, we need to consider relevant sublethal endpoints when assessing these CuO NPs to ensure that we do not overlook long-term effects.
Collapse
Affiliation(s)
- Dwi Sari Budiyanti
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Morten Erik Moeller
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
17
|
Effects of cadmium on oxidative stress and cell apoptosis in Drosophila melanogaster larvae. Sci Rep 2022; 12:4762. [PMID: 35307728 PMCID: PMC8934349 DOI: 10.1038/s41598-022-08758-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractWith the increase of human activities, cadmium (Cd) pollution has become a global environmental problem affecting biological metabolism in ecosystem. Cd has a very long half-life in humans and is excreted slowly in organs, which poses a serious threat to human health. In order to better understand the toxicity effects of cadmium, third instar larvae of Drosophila melanogaster (Canton-S strain) were exposed to different concentrations (1.125 mg/kg, 2.25 mg/kg, 4.5 mg/kg, and 9 mg/kg) of cadmium. Trypan blue staining showed that intestinal cell damage of Drosophila larvae increased and the comet assay indicated significantly more DNA damage in larvae exposed to high Cd concentrations. The nitroblue tetrazolium (NBT) experiments proved that content of reactive oxygen species (ROS) increased, which indicated Cd exposure could induce oxidative stress. In addition, the expression of mitochondrial adenine nucleotide transferase coding gene (sesB and Ant2) and apoptosis related genes (Debcl, hid, rpr, p53, Sce and Diap1) changed, which may lead to increased apoptosis. These findings confirmed the toxicity effects on oxidative stress and cell apoptosis in Drosophila larvae after early cadmium exposure, providing insights into understanding the effects of heavy metal stress in animal development.
Collapse
|
18
|
Mukherjee S, Rananaware P, Brahmkhatri V, Mishra M. Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-toxic Material for Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Toxicological Profiling of Onion-Peel-Derived Mesoporous Carbon Nanospheres Using In Vivo Drosophila melanogaster Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Toxicological profiling of the novel carbon materials has become imperative, owing to their wide applicability and potential health risks on exposure. In the current study, the toxicity of mesoporous carbon nanospheres synthesized from waste onion peel was investigated using the genetic animal model Drosophila melanogaster. The survival assays at different doses of carbon nanoparticles suggested their non-toxic effect for exposure for 25 days. Developmental and behavioral defects were not observed. The biochemical and metabolic parameters, such as total antioxidant capacity (TAC), protein level, triglyceride level, and glucose, were not significantly altered. The neurological toxicity as analyzed using acetylcholinesterase activity was also not altered significantly. Survival, behavior, and biochemical assays suggested that oral feeding of mesoporous carbon nanoparticles for 25 days did not elicit any significant toxicity effect in Drosophila melanogaster. Thus, mesoporous carbon nanoparticles synthesized from waste onion peel can be used as beneficial drug carriers in different disease models.
Collapse
|
20
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Agrawal N, Verma K, Baghel D, Chauhan A, Prasad DN, Sharma SK, Kohli E. Effects of extremely low-frequency electromagnetic field on different developmental stages of Drosophila melanogaster. Int J Radiat Biol 2021; 97:1606-1616. [PMID: 34402374 DOI: 10.1080/09553002.2021.1969465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The model biological organism Drosophila melanogaster has been utilized to assess the effect of extremely low-frequency electromagnetic field (ELF-EMF) on locomotion, longevity, developmental dynamics, cell viability and oxidative stress. MATERIALS AND METHOD Developmental stages of Drosophila melanogaster (Oregon R strain) individually exposed to ELF-EMF (75 Hz, 550 µT) for 6 h once for acute exposure. For chronic exposure, complete life cycle of fly, that is, egg to adult fly was exposed to ELF-EMF for 6 h daily. The effect of exposure on their crawling and climbing ability, longevity, development dynamics, cellular damage and oxidative stress (generation of reactive oxygen species (ROS)) was evaluated. RESULTS The crawling ability of larvae was significantly (p < .05) reduced on acute (third stage instar larvae) as well as chronic exposure (F0 and F1 larvae). When locomotion of flies was tested using climbing assay, no alteration was observed in their climbing ability under both acute and chronic exposure; however, when their speed of climbing was compared, a significant decrease in speed of F1 flies was observed (p = .0027) on chronic exposure. The survivability of flies was significantly affected under chronic and acute exposure (at third stage instar larvae). In case of acute exposure of the third stage instar larvae, although all the flies were eclosed by the 17th day, there was a significant decline in the number of flies (p = .007) in comparison to control. While in case of chronic exposure apart from low number of flies eclosed in comparison to control, there was delay in eclosion by one day (p = .0004). Using trypan blue assay, the internal gut damage of third stage instar larvae was observed. Under acute exposure condition at third stage instar larvae, 30% larvae has taken up trypan blue, while only 10% larvae from acute exposure at adult stage. On chronic exposure, 50% larvae of the F1 generation have taken up trypan blue. On evaluation of oxidative stress, there is a significant rise in ROS in case of acute exposure at third stage instar larvae (p = .0004), adult fly stage (p = .0004) and chronic exposure (p = .0001). CONCLUSION ELF-EMF has maximum effects on acute exposure of third stage instar larvae and chronic exposure (egg to adult fly stage). These results suggest that electromagnetic radiations, though, have become indispensible part of our lives but they plausibly affect our health.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Kalyani Verma
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Doli Baghel
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Amitabh Chauhan
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Dipti N Prasad
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Sanjeev K Sharma
- Department of Biomedical Instrumentation, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Ekta Kohli
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
22
|
High fat diet induced abnormalities in metabolism, growth, behavior, and circadian clock in Drosophila melanogaster. Life Sci 2021; 281:119758. [PMID: 34175317 DOI: 10.1016/j.lfs.2021.119758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/15/2023]
Abstract
AIMS The current lifestyle trend has made people vulnerable to diabetes and related diseases. Years of scientific research have not been able to yield a cure to the disease completely. The current study aims to investigate a link between high-fat diet mediated diabesity and circadian rhythm in the Drosophila model and inferences that might help in establishing a cure to the dreaded disease. MAIN METHODS Several experimental methods including phenotypical, histological, biochemical, molecular, and behavioral assays were used in the study to detect obesity, diabetes, and changes in the circadian clock in the fly model. KEY FINDINGS The larva and adults of Drosophila melanogaster exposed to high-fat diet (HFD) displayed excess deposition of fat as lipid droplets and micronuclei formation in the gut, fat body, and crop. Larva and adults of HFD showed behavioral defects. The higher amount of triglyceride, glucose, trehalose in the whole body of larva and adult fly confirmed obesity-induced hyperglycemia. The overexpression of insulin gene (Dilp2) and tribble (trbl) gene expression confirmed insulin resistance in HFD adults. We also observed elevated ROS level, developmental delay, altered metal level, growth defects, locomotory rhythms, sleep fragmentation, and expression of circadian genes (per, tim, and clock) in HFD larva and adults. Thus, HFD impairs the metabolism to produce obesity, insulin resistance, disruption of clock, and circadian clock related co-mordities in D. melanogaster. SIGNIFICANCE The circadian gene expression provides an innovative perspective to understand and find a new treatment for type-II diabetes and circadian anomalies.
Collapse
|
23
|
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res 2021; 55:671-687. [PMID: 33877010 DOI: 10.1080/10715762.2021.1914335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is a rapidly developing technology in the twenty-first century. Nanomaterials are extensively used in numerous industries including cosmetics, food, medicines, industries, agriculture, etc. Along with its wide application toxicity is also reported from studies of various model organisms including Drosophila. The toxicity reflects cytotoxicity, genotoxicity, and teratogenicity. The current study correlates the toxicity as a consequence of reactive oxygen species (ROS) generated owing to the presence of nanoparticles with the living cell. ROS mainly includes hydroxyl ions, peroxide ions, superoxide anions, singlet oxygen, and hypochlorous acids. An elevated level of ROS can damage the cells by various means. To protect the body from excess ROS, living cells possess a set of antioxidant enzymes which includes peroxidase, glutathione peroxidase, and catalase. If the antioxidant enzymes cannot nullify the elevated ROS level than DNA damage, cell damage, cytotoxicity, apoptosis, and uncontrolled cell regulations occur resulting in abnormal physiological and genotoxic conditions. Herewith, we are reporting various morphological and physiological defects caused after nanoparticle treatment as a function of redox imbalance.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Mrutyunjaya Panda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
24
|
Ahuja A, Tyagi PK, Tyagi S, Kumar A, Kumar M, Sharifi-Rad J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimer's disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int J Biol Macromol 2021; 179:586-600. [PMID: 33705837 DOI: 10.1016/j.ijbiomac.2021.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023]
Abstract
The indispensable role of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) in Amyloid beta (Aβ) plaques generation and Aβ-mediated synaptic dysfunctions makes it a crucial target for therapeutic intervention in Alzheimer's disease (AD). In order to find out the potential inhibitors of BACE1, the present study focused on five phytochemicals from Pueraria tuberosa, namely, daidzin, genistin, mangiferin, puerarin, and tuberosin. A molecular docking study showed that all five phytochemicals presented the strongest BACE1 inhibition. Integrated molecular dynamics simulations and free energy calculations demonstrated that all five natural compounds have stable and favorable energies causing strong binding with the pocket site of BACE1 on 50 ns. All these molecules also passed Lipinski's rule of five. To validate the molecular modeling based findings, we primarily targeted the cognitive decline associated with BACE1 expression in AD flies with P. tuberosa. Significant improvement in cognitive decline was observed in AD flies in different behavioral assays such as Larval crawling assay (16.38%), Larval light preference assay (26.39%), Climbing assay (32.97%), Cold sensitivity assay (43.6%), and Thermal sensitivity assay (44.42%). The present findings suggest that P. tuberosa may be considered as a promising dietary supplement that can significantly ameliorate cognitive decline caused by BACE1 in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Anami Ahuja
- Research Scholar, Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, Uttar Pradesh, India; Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, Uttar Pradesh, India.
| | - Pankaj Kumar Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India.
| | - Shruti Tyagi
- Department of Biotechnology Engineering, Noida Institute of Engineering & Technology, Greater Noida 201306, Uttar Pradesh, India
| | - Anuj Kumar
- Advanced Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun 248007, Uttarakhand, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| |
Collapse
|
25
|
Bag J, Mukherjee S, Ghosh SK, Das A, Mukherjee A, Sahoo JK, Tung KS, Sahoo H, Mishra M. Fe 3O 4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int J Biol Macromol 2020; 165:333-345. [PMID: 32980413 DOI: 10.1016/j.ijbiomac.2020.09.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The current study aims to check various behavioural, developmental, cytotoxic, and genotoxic effects of Fe3O4-GG nanocomposite (GGNCs) on Drosophila melanogaster. Fe3O4 nanoparticles were prepared by the chemical co-precipitation method and cross-linked with guargum nanoparticles to prepare the nanocomposites. The nanocomposites were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and FTIR techniques. To investigate the biomolecular interaction, GGNCs was further tagged with Fluorescein isothiocyanate. Various concentrations of nanocomposites were mixed with the food and flies were allowed to complete the life cycle. The life cycle of the flies was studied as a function of various concentrations of GGNCs. The 1st instar larvae after hatching from the egg start eating the food mixed with GGNCs. The 3rd instar larvae were investigated for various behavioural and morphological abnormalities within the gut. The 3rd instar larva has defective crawling speed, crawling path, and more number of micronuclei within the gut. Similarly, in adult flies thermal sensitivity, climbing behaviour was found to be altered. In adult flies, a significant reduction in body weight was found which is further correlated with variation of protein, carbohydrate, triglyceride, and antioxidant enzymes. Altogether, the current study suggests GGNCs as a non-genotoxic nanoparticle for various biological applications.
Collapse
Affiliation(s)
- Janmejaya Bag
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumanta Kumar Ghosh
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India; Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, West Bengal 741249, India.
| | - Jitendra Kumar Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Department of Basic Science and Humanities, GIET University, Gunupur, Odisha 765022, India
| | - Kshyama Subhadarsini Tung
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
26
|
Cvetković VJ, Jovanović B, Lazarević M, Jovanović N, Savić-Zdravković D, Mitrović T, Žikić V. Changes in the wing shape and size in Drosophila melanogaster treated with food grade titanium dioxide nanoparticles (E171) - A multigenerational study. CHEMOSPHERE 2020; 261:127787. [PMID: 32750623 DOI: 10.1016/j.chemosphere.2020.127787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Drosophila is among the most commonly used models for toxicity assessment of different types of nanoparticles. This study aims to examine the effects of a constant exposure to the low concentration of human food grade titanium dioxide nanoparticles (TiO2 E171) on Drosophila melanogaster wing morphology over multiple generations. Subsequently, the Geometric Morphometrics Analysis was employed to examine possible changes in the wing shape and size of the treated flies. The treatment resulted in the diminishment but not a disruption in the sexual dimorphism in wings. Consequently, the female flies were clearly separated from the male flies by the differences in wing morphology as in the control group. A splitting by generations was overly similar within the control and the treatment, but it was slightly more pronounced in the treatment. However, the observed generational differences seemed mostly random between generations, irrespective of the treatment. Specifically, the treated groups displayed slightly higher splitting by generations in females than in males. Regardless of the generation, the results show a clear splitting by the differences in the wing shape between the treated flies and the flies from control. The mean value of centroid size, which refers to the wing size, of both female and male wings was smaller in the treatment when compared to the control. The overall effect of TiO2 was to induce significant difference in Drosophila wing morphology but it did not alter the general wing morphology pattern. Therefore, the change in the wings occurred only within the normally allowed wing variation.
Collapse
Affiliation(s)
- Vladimir J Cvetković
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| | - Boris Jovanović
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA.
| | - Maja Lazarević
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| | - Nikola Jovanović
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| | - Dimitrija Savić-Zdravković
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| | - Tatjana Mitrović
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| | - Vladimir Žikić
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000, Niš, Serbia.
| |
Collapse
|
27
|
Zhang Y, Wolosker MB, Zhao Y, Ren H, Lemos B. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140979. [PMID: 32721682 PMCID: PMC8491431 DOI: 10.1016/j.scitotenv.2020.140979] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 04/13/2023]
Abstract
The interactions of microplastics (MPs) with other chemicals and the range of outcomes are of great importance to enhance understanding of their environmental impacts and health risks. Cadmium (Cd) and cadmium compounds are widely used as pigments and stabilizers in plastics, but they readily leach out. Here we addressed the impacts of MPs, Cd, and their joint exposure in a tractable Drosophila melanogaster model. We show that exposure to MPs lead to extensive particle size depended gut damage early in life and an enhancement of Cd-induced inhibition of locomotor-behavioral function in adult flies. In addition, we show that Cd exposure induces epigenetic gene silencing via position-effect variegation (PEV) in somatic tissues that was dramatically enhanced by co-exposure with MPs. The results indicate that MPs can aggravate the toxicity of other environmental contaminants and induce adverse effects across a range of diverse outcomes in a tractable and widely used model organism. These observations raise the prospects of using Drosophila as a tool for the rapid assessment of MP-mediated toxicity.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Marina B Wolosker
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Dhar G, Bag J, Mishra M. Environmental cue affects the hearing-related behaviors of Drosophila melanogaster by targeting the redox pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32899-32912. [PMID: 32524398 DOI: 10.1007/s11356-020-09141-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Environmental cues like noise, pressure, and circadian rhythm can affect the hearing ability of human beings. Nevertheless, the complex physiology of the human being does not allow us to understand how these factors can affect hearing and hearing-related behaviors. Conversely, these effects can be easily checked using the hearing organ of Drosophila melanogaster, the Johnston organ. In the current study, the Drosophila was exposed to challenging environments like noise, low pressure, and altered circadian rhythm. The hearing organ of larvae, as well as adults, was analyzed for hearing-related defects. In the third instar larva, the cell deaths were detected in the antenna imaginal disc, the precursor of Johnston's organ. Elevated levels of reactive oxygen species and antioxidant enzymes were also detected in the adult antennae of environmentally challenged flies. The ultrastructure of the antennae suggests the presence of abundant mitochondria in the scolopidia of control. Fewer amounts of mitochondria are found in the environmentally challenged adult antennae. In adults, various hearing-related behaviors were analyzed as a readout of functionality of the hearing organ. Analysis of climbing, aggressive, and courtship behaviors suggests abnormal behavior in environmentally challenged flies than the control. The current study suggests that the environmental cues can alter hearing-related behaviors in Drosophila. The methods used in this study can be used to monitor the environmental pollution or to study the effect of alteration of noise, pressure, and circadian rhythm on hearing-related behaviors taking Drosophila melanogaster as a model organism. Graphical abstract.
Collapse
Affiliation(s)
- Gyanaseni Dhar
- Department of Life Science, Neural Developmental Biology Lab, NIT Rourkela, Rourkela, Odisha, India
| | - Janmejaya Bag
- Department of Life Science, Neural Developmental Biology Lab, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
29
|
Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int J Biol Macromol 2020; 152:786-802. [DOI: 10.1016/j.ijbiomac.2020.02.311] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
|
30
|
Kini S, Badekila AK, Barh D, Sharma A. Cellular and Organismal Toxicity of Nanoparticles and Its Associated Health Concerns. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
31
|
Synthesis and Characterization of a Novel Titanium Nanoparticals using Banana Peel Extract and Investigate its Antibacterial and Insecticidal Activity. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.38] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Gautam A, Gautam C, Mishra M, Mishra VK, Hussain A, Sahu S, Nanda R, Kisan B, Biradar S, Gautam RK. Enhanced mechanical properties of hBN-ZrO 2 composites and their biological activities on Drosophila melanogaster: synthesis and characterization. RSC Adv 2019; 9:40977-40996. [PMID: 35540076 PMCID: PMC9076398 DOI: 10.1039/c9ra07835e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 01/30/2023] Open
Abstract
In this study, six compositions in the system [x(h-BN)-(100 - x)ZrO2] (10 ≤ x ≤ 90) were synthesized by a bottom up approach, i.e., the solid-state reaction technique. XRD results showed the formation of a novel and main phase of zirconium oxynitrate ZrO(NO3)2 and SEM exhibited mixed morphology of layered and stacked h-BN nanosheets with ZrO2 grains. The composite sample 10 wt% h-BN + 90 wt% ZrO2 (10B90Z) showed outstanding mechanical properties for different parameters, i.e., density (3.12 g cm-3), Young's modulus (10.10 GPa), toughness (2.56 MJ m-3), and maximum mechanical strength (227.33 MPa). The current study further checked the in vivo toxicity of composite 10B90Z and composite 90B10Z using Drosophila melanogaster. The composite 10B90Z showed less cytotoxicity in this model, while the composite 90B10Z showed higher toxicity in terms of organ development as well as internal damage of the gut mostly at the lower concentrations of 1, 10, and 25 μg mL-1. Altogether, the current study proposes the composite 10B90Z as an ideal compound for applications in biomedical research. This composite 10B90Z displays remarkable mechanical and biological performances, due to which we recommend this composition for various biomedical applications.
Collapse
Affiliation(s)
- Amarendra Gautam
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow Lucknow-226007 India +918840389015
| | - Chandkiram Gautam
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow Lucknow-226007 India +918840389015
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology Rourkela Odisha-769008 India
| | - Vijay Kumar Mishra
- Department of Physics, Faculty of Science, Banaras Hindu University Varanasi - 221005 UP India
| | - Ajaz Hussain
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow Lucknow-226007 India +918840389015
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology Rourkela Odisha-769008 India
| | - Reetuparna Nanda
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology Rourkela Odisha-769008 India
| | - Bikash Kisan
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology Rourkela Odisha-769008 India
| | - Santoshkumar Biradar
- Department of Materials Science & Nano Engineering, Rice University Houston Texas USA
| | - Rakesh Kumar Gautam
- Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University Varanasi - 221005 UP India
| |
Collapse
|
33
|
An infection of Enterobacter ludwigii affects development and causes age-dependent neurodegeneration in Drosophila melanogaster. INVERTEBRATE NEUROSCIENCE 2019; 19:13. [PMID: 31641932 DOI: 10.1007/s10158-019-0233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023]
Abstract
The effects of teeth-blackening bacteria Enterobacter ludwigii on the physiological system were investigated using the model organism Drosophila melanogaster. The bacteria were mixed with the fly food, and its effect was checked on the growth, development and behaviour of Drosophila. Microbes generate reactive oxygen species (ROS) within the haemolymph of the larvae once it enters into the body. The increased amount of ROS was evidenced by the NBT assay and using 2',7'-dichlorofluorescin diacetate dye, which indicates the mitochondrial ROS. The increased amount of ROS resulted in a number of abnormal nuclei within the gut. Besides that larvae walking became sluggish in comparison with wild type although the larvae crawling path did not change much. Flies hatched from the infectious larvae have the posterior scutellar bristle absent from the thorax and abnormal mechanosensory hairs in the eye, and they undergo time-dependent neurodegeneration as evidenced by the geotrophic and phototrophic assays. To decipher the mechanism of neurodegeneration, flies were checked for the presence of four important bioamines: tyramine, cadaverine, putrescine and histamine. Out of these four, histamine was found to be absent in infected flies. Histamine is a key molecule required for the functioning of the photoreceptor as well as mechanoreceptors. The mechanism via which mouth infectious bacteria E. ludwigii can affect the development and cause age-dependent neurodegeneration is explained in this paper.
Collapse
|
34
|
Mishra PK, Ekielski A, Mukherjee S, Sahu S, Chowdhury S, Mishra M, Talegaonkar S, Siddiqui L, Mishra H. Wood-Based Cellulose Nanofibrils: Haemocompatibility and Impact on the Development and Behaviour of Drosophila melanogaster. Biomolecules 2019; 9:biom9080363. [PMID: 31412664 PMCID: PMC6722666 DOI: 10.3390/biom9080363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Wood-based cellulose nanofibrils (CNF) offer an excellent scaffold for drug-delivery formulation development. However, toxicity and haemocompatibility of the drug carrier is always an important issue. In this study, toxicity-related issues of CNF were addressed. Different doses of CNF were orally administered to Drosophila and different tests like the developmental cycle, trypan blue exclusion assay, larva crawling assay, thermal sensitivity assay, cold sensitivity assay, larval light preference test, climbing behaviour, nitroblue tetrazolium (NBT) reduction assay, adult phenotype, and adult weight were conducted to observe the impact on its development and behaviour. A haemocompatibility assay was done on the blood taken from healthy Wistar rats. In Drosophila, the abnormalities in larval development and behaviour were observed in the behavioural assays. However, the cytotoxic effect could not be confirmed by the gut staining and level of reactive oxygen species. The larvae developed into an adult without any abnormality in the phenotype. The CNF did cause loss of weight in the adult flies and did not cause much toxicity within the body since there was no phenotypic defect. Hemolysis data also suggested that CNF was safe at lower doses, as the data was well within acceptable limits. All these results suggest that cellulose nanofibres have no significant cytotoxic effects on Drosophila. However, the developmental and behavioural abnormalities suggest that CNF may act as a behavioural teratogen.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Department of Wood Processing Technology, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Saptarshi Chowdhury
- Biotechnology Department, Heritage Institute of Technology, Kolkata 700107, West Bengal, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha 76908, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| | - Harshita Mishra
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi 110017, New Delhi, India
| |
Collapse
|
35
|
Priyadarsini S, Sahoo SK, Sahu S, Mukherjee S, Hota G, Mishra M. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19560-19574. [PMID: 31079296 DOI: 10.1007/s11356-019-05357-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
The current study checks the effect of various concentrations of dietary graphene oxide (GO) nano-sheets on the development of Drosophila melanogaster. GO was synthesized and characterized by XRD, FTIR, FESEM, and TEM analytical techniques. Various concentrations of GO were mixed with the fly food and flies were transferred to the vial. Various behavioral and morphological as well as genetic defects were checked on the different developmental stages of the offspring. In the larval stage of development, the crawling speed and trailing path change significantly than the control. GO induces the generation of oxygen radicals within the larval hemolymph as evidenced by nitroblue tetrazolium assay. GO induces DNA damage within the gut cell, which was detected by Hoechst staining and within hemolymph by comet assay. Adult flies hatched after GO treatment show defective phototaxis and geotaxis behavior. Besides behavior, phenotypic defects were observed in the wing, eye, thorax bristles, and mouth parts. At 300 mg/L concentration, wing spots were observed. Altogether, the current study finds oral administration of GO which acts as a mutagen and causes various behavioral and developmental defects in the offspring. Here for the first time, we are reporting GO, which acts as a teratogen in Drosophila, besides its extensive medical applications.
Collapse
Affiliation(s)
- Subhashree Priyadarsini
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | | | - Swetapadma Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Garudadhwaj Hota
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
36
|
Anand AS, Gahlot U, Prasad DN, Amitabh, Kohli E. Aluminum oxide nanoparticles mediated toxicity, loss of appendages in progeny of Drosophila melanogaster on chronic exposure. Nanotoxicology 2019; 13:977-989. [DOI: 10.1080/17435390.2019.1602680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Avnika Singh Anand
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Urmila Gahlot
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Dipti N. Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Amitabh
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Ekta Kohli
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
37
|
Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101079] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, Wang X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China) 2019; 75:40-53. [PMID: 30473306 DOI: 10.1016/j.jes.2018.06.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 05/26/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most widely used nanomaterials in the consumer products, agriculture, and energy sectors. Their large demand and widespread applications will inevitably cause damage to organisms and ecosystems. A better understanding of TiO2 NP toxicity in living organisms may promote risk assessment and safe use practices of these nanomaterials. This review summarizes the toxic effects of TiO2 NPs on multiple taxa of microorganisms, algae, plants, invertebrates, and vertebrates. The mechanism of TiO2 NP toxicity to organisms can be outlined in three aspects: The Reactive Oxygen Species (ROS) produced by TiO2 NPs following the induction of electron-hole pairs; cell wall damage and lipid peroxidation of the cell membrane caused by NP-cell attachment by electrostatic force owing to the large surface area of TiO2 NPs; and TiO2 NP attachment to intracellular organelles and biological macromolecules following damage to the cell membranes.
Collapse
Affiliation(s)
- Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Luyao Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chunjie Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Songlin Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haiqiang Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
39
|
Barik BK, Mishra M. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly. Nanotoxicology 2018; 13:258-284. [DOI: 10.1080/17435390.2018.1530393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
40
|
Jovanović B, Jovanović N, Cvetković VJ, Matić S, Stanić S, Whitley EM, Mitrović TL. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment. Sci Rep 2018; 8:17922. [PMID: 30560898 PMCID: PMC6298969 DOI: 10.1038/s41598-018-36174-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 01/03/2023] Open
Abstract
In this study, fruit flies (Drosophila melanogaster) were exposed to an estimated daily human E171 consumption concentration for 20 generations. Exposure to E171 resulted in: a change in normal developmental and reproductive dynamics, reduced fecundity after repetitive breeding, increased genotoxicity, the appearance of aberrant phenotypes and morphologic changes to the adult fat body. Marks of adaptive evolution and directional selection were also exhibited. The larval stages were at a higher risk of sustaining damage from E171 as they had a slower elimination rate of TiO2 compared to the adults. This is particularly worrisome, since among the human population, children tend to consume higher daily concentrations of E171 than do adults. The genotoxic effect of E171 was statistically higher in each subsequent generation compared to the previous one. Aberrant phenotypes were likely caused by developmental defects induced by E171, and were not mutations, since the phenotypic features were not transferred to any progeny even after 5 generations of consecutive crossbreeding. Therefore, exposure to E171 during the early developmental period carries a higher risk of toxicity. The fact that the daily human consumption concentration of E171 interferes with and influences fruit fly physiological, ontogenetic, genotoxic, and adaptive processes certainly raises safety concerns.
Collapse
Affiliation(s)
- Boris Jovanović
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA.
| | - Nikola Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | | | - Tatjana Lj Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| |
Collapse
|
41
|
Sario S, Silva AM, Gaivão I. Titanium dioxide nanoparticles: Toxicity and genotoxicity in Drosophila melanogaster (SMART eye-spot test and comet assay in neuroblasts). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:19-23. [PMID: 29875073 DOI: 10.1016/j.mrgentox.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NP) are used in the food, drug, and cosmetics industries and evaluation of their human and environmental toxicity is required. We have tested the toxicity of TiO2NP (anatase) with respect to developmental effects and DNA damage in Drosophila melanogaster strain Ok, using the eye-spot Somatic Mutation and Recombination Test (SMART) and the comet assay (neuroblasts). For the survival assay, TiO2NP were supplied to adult flies for 72 h and no adverse effects were seen. TiO2NP were supplied chronically for the prolificacy, SMART, and comet assays. TiO2NP increased fly prolificacy. With regard to genotoxicity, an increase was observed in the eye-spot SMART assay at 8 μg/mL dose, but not in the neuroblast comet assay for DNA damage.
Collapse
Affiliation(s)
- Sara Sario
- Department of Genetics and Biotechnology (DGB - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Department of Biology and Environment (DeBA - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Amélia M Silva
- Department of Biology and Environment (DeBA - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), P-5001-801 Vila Real, Portugal
| | - Isabel Gaivão
- Department of Genetics and Biotechnology (DGB - ECVA), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real, Portugal.
| |
Collapse
|
42
|
Pappus SA, Mishra M. A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:311-322. [DOI: 10.1007/978-3-319-72041-8_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Abdel-Halim BR, Helmy NA. Effect of nano-selenium and nano-zinc particles during in vitro maturation on the developmental competence of bovine oocytes. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The objectives of the current study were to evaluate the effects of supplemental nano-selenium (NSe) and nano-zinc oxide (NZn-O) particles during in vitro maturation (IVM) on DNA damage of cumulus cells, glutathione (GSH) concentration in bovine oocytes, subsequent embryo development and re-expansion rate of vitrified warmed blastocysts. The current study was conducted on bovine ovaries obtained from a local abattoir and transported to the laboratory in sterile phosphate buffer saline with antibiotics at 37°C, within 1 h after slaughter. Ovaries were pooled, regardless of stage of the oestrous cycle of the donor. Only cumulus-intact complexes with evenly granulated cytoplasm were selected for IVM. Experimental design included the following: Experiment 1 studied the effect of addition of 1.0 µg/mL NSe or NZn-O to IVM medium on DNA damage of cumulus cells; Experiment 2 evaluated the effects of NSe or NZn-O on intracellular glutathione in oocytes and cumulus cells; in Experiment 3, the development of oocytes matured in IVM medium supplemented with 1.0 µg/mL NSe or NZn-O was investigated; and in Experiment 4, the effects of adding 1.0 µg/mL NSe and NZn-O to in vitro fertilisation media on vitrified oocytes and embryos were investigated. The DNA damage in cumulus cells decreased with supplemental NSe and NZn-O at concentration of 1 µg/mL in the IVM medium (180.2 ± 21.4, 55.8 ± 4.3 and 56.6 ± 3.9 for the control and NSe and NZn-O groups respectively). Total GSH concentrations increased following supplementation with 1 µg/mL NSe and 1 µg/mL NZn-O, compared with the control group. Re-expansion rate of vitrified warmed blastocysts in experimental media containing NSe and NZn-O with ethylene glycol was higher than that of the control. In conclusion, providing NSe and NZn-O during oocyte maturation significantly increased both intracellular GSH concentration and DNA integrity of cumulus cells. Optimal embryo development was partially dependent on the presence of NSe and NZn-O during IVM. NSe and NZn-O during oocyte maturation act as a good cryoprotective agents of vitrified, warmed blastocysts.
Collapse
|
44
|
Abstract
Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.
Collapse
Affiliation(s)
- Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| | - Bedanta Kumar Barik
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
45
|
Figueira FH, de Quadros Oliveira N, de Aguiar LM, Escarrone AL, Primel EG, Barros DM, da Rosa CE. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:94-102. [PMID: 28847529 DOI: 10.1016/j.cbpc.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10μM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100μM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Natália de Quadros Oliveira
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Ana Laura Escarrone
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|