1
|
do Carmo Rodrigues Virote B, da Silva KCD, Júnior REM, Carneiro WF, de Assis Valadares LP, de Souza SP, Guimarães IG, Cagnini DQ, Brunialti-Godard AL, da Cunha Barreto Vianna AR, Machado MRF, Murgas LDS. Induction of obesity by a high-carbohydrate diet in zebrafish modulates genes related to feeding behavior and inflammation. Life Sci 2025; 377:123807. [PMID: 40490243 DOI: 10.1016/j.lfs.2025.123807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/19/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Global increase in obesity is correlated with a high-carbohydrate diet. In this context, the present study aimed to investigate the effects of a high-carbohydrate diet on the induction of obesity in adult zebrafish. Animals of both sexes were used and divided into two groups over a 12-week period according to the provided diet. The control group received a nutritionally balanced diet formulated for the species, while the High-Carbohydrate Diet (HCD) group was fed a formulated diet enriched with corn starch as the carbohydrate source, designed as a low-cost and effective strategy to induce obesity.Weekly body weight was monitored to assess the impact of the diets. At the end of the experiment, behavioral testing, histological analysis of adipose tissues, and biochemical and enzymatic evaluations were conducted. Additionally, transcriptional regulation of genes associated with feeding behavior (leptin, orexin, and galanin) and inflammation (il-4, il-10, il-6, and tnf-α) was evaluated in the brain. A significant body weight increase was observed in the HCD group from the fifth week onward. At the end of the protocol, HCD-fed animals exhibited obesity-like phenotypes, including hypertrophy of visceral and subcutaneous adipocytes and elevated plasma glucose and triglyceride levels. Furthermore, animals showed anxiety-like behavior and altered gene expression related to feeding and inflammation. This study establishes a zebrafish model of obesity induced by high-carbohydrate diet consumption. Sex-specific differences were also identified, supporting the use of this model for investigating physiological mechanisms of obesity in both sexes and for the development of therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Renato Elias Moreira Júnior
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciiencias Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - William Franco Carneiro
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | | | | - Igo Gomes Guimarães
- Departamento de Biociência Animal, Universidade Federal de Jataí, Jataí, Goiás, Brazil
| | - Didier Quevedo Cagnini
- Departamento de Clínica Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista – UNESP, Botucatu, SP, Brazil
| | - Ana Lúcia Brunialti-Godard
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciiencias Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | - Luis David Solis Murgas
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Sah A, Singewald N. The (neuro)inflammatory system in anxiety disorders and PTSD: Potential treatment targets. Pharmacol Ther 2025; 269:108825. [PMID: 39983845 DOI: 10.1016/j.pharmthera.2025.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Targeting the immune system has recently garnered attention in the treatment of stress- associated psychiatric disorders resistant to existing pharmacotherapeutics. While such approaches have been studied in considerable detail in depression, the role of (neuro)inflammation in anxiety-related disorders, or in anxiety as an important transdiagnostic symptom, is much less clear. In this review we first critically review clinical and in part preclinical evidence of central and peripheral immune dysregulation in anxiety disorders and post-traumatic stress disorder (PTSD) and briefly discuss proposed mechanisms of how inflammation can affect anxiety-related symptoms. We then give an overview of existing and potential future targets in inflammation-associated signal transduction pathways and discuss effects of different immune-modulatory drugs in anxiety-related disorders. Finally, we discuss key gaps in current clinical trials such as the lack of prospective studies involving anxiety patient stratification strategies based on inflammatory biomarkers. Overall, although evidence is rather limited so far, there is data to indicate that increased (neuro)inflammation is present in subgroups of anxiety disorder patients. Although exact identification of such immune subtypes of anxiety disorders and PTSD is still challenging, these patients will likely particularly benefit from therapeutic targeting of aspects of the inflammatory system. Different anti-inflammatory treatment approaches (microglia-directed treatments, pro-inflammatory cytokine inhibitors, COX-inhibitors, phytochemicals and a number of novel anti-inflammatory agents) have indeed shown some efficacy even in non-stratified anxiety patient groups and appear promising as novel alternative or complimentary therapeutic options in specific ("inflammatory") subtypes of anxiety disorder and PTSD patients.
Collapse
Affiliation(s)
- Anupam Sah
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Wan B, Zhang L, Wang X, Zhang R, Li L, Zhang Y, Chen Z, Hu C. Fam172a Mediates the Stimulation of Hypothalamic Oxytocin Neurons to Suppress Obesity-Induced Anxiety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414723. [PMID: 39960327 PMCID: PMC11984834 DOI: 10.1002/advs.202414723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Indexed: 03/29/2025]
Abstract
Anxiety disorder is the most common mental disorder worldwide. Although human studies have demonstrated a positive association between obesity and anxiety disorder, the exact mechanism linking these conditions is unclear. Interestingly, oxytocin (Oxt) neurons, predominantly expressed in the hypothalamic paraventricular nucleus (PVN), play a crucial role in both obesity and anxiety. In this study, obesity can induce anxiety-like behavior in mice, which can be ameliorated by the activation of PVN Oxt neurons. Conversely, inhibiting PVN Oxt neurons accelerate the progression of anxiety. Moreover, the family with sequence similarity 172, member A (Fam172a), an anxiety susceptibility gene, is highly expressed in the hypothalamic PVN Oxt neuron but reduce in the PVN Oxt neuron of mice in the high-fat diet and acute restraint stress conditions. Significantly, overexpression of Fam172a in PVN Oxt neurons improve obesity-anxiety-like behavior in mice. In contrast, disruption of Fam172a in PVN Oxt neurons exacerbate obesity-anxiety-like behavior. Furthermore, this study demonstrates that Fam172a is involved in mRNA degradation in Oxt neurons by regulating the intranuclear transport of Argonaute 2, thereby influencing Oxt secretion and ultimately impacting obesity-anxiety-like behavior. These findings suggest that Fam172a serves as a key target of PVN Oxt neurons in the regulation of obesity-induced anxiety.
Collapse
Affiliation(s)
- Baocheng Wan
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lina Zhang
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xinyu Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Rong Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lianxi Li
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yi Zhang
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhuo Chen
- Shanghai Diabetes InstituteShanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cheng Hu
- Jinzhou Medical University Graduate Training BaseShanghai Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200233China
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghai201449China
| |
Collapse
|
4
|
Gomes Dutra LM, Ferreira Alves ME, Oliveira de Lima E Silva TD, Dantas de Araújo JM, Alves Silva MDC, Elias Pereira D, de Araújo Bidô RDC, Carlo Rufino Freitas J, Viera VB, Aquino de Souza J, Barbosa Soares JK. Maternal consumption of nut oil (Bertholletia excelsa): Evidence of anxiolytic-like behavior and reduction in brain lipid peroxidation on the progeny of rats. Brain Res 2025; 1851:149501. [PMID: 39922410 DOI: 10.1016/j.brainres.2025.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
INTRODUCTION Maternal nutrition plays a crucial role in the development of offspring, influencing both biochemical and behavioral parameters. Brazil nut oil, rich in essential fatty acids and antioxidant bioactive compounds, may provide metabolic, neuroprotective, and anxiolytic benefits to the offspring when offered during the critical period of development. OBJECTIVE Investigate the impact of maternal consumption of crude or refined Brazil nut oil during pregnancy and lactation on anxiety-like behavior and brain lipid peroxidation in rat offspring. METHODOLOGY Each group were compound by male (M) and female (F) puppies. The groups formed were: Controls (CG-M and CG-F) -treated with distilled water; Crude oil (CO-M and CO-F) receiving 3000 mg/kg of body weight of Brazil nut crude oil, and Refined oil (RO-M and RO-F) - treated with 3000 mg/kg of body weight of refined Brazil oil. The dams were treated during pregnancy and lactation. Anxiety-like behavior was observed in the offspring during adolescence using: elevated plus maze (EPM), open field (OF) and light-dark box (LDB). Malondialdehyde (MDA) levels were measured in the pups' brain tissue. RESULTS RO-M/RO-F entered and spent more into the open arms and realized more head dipping CO-M/CO-F and CO-F/RO-F presented increased locomotion and less grooming in the OF; RO-M and RO-F realized more rearing compared to controls groups and CO-M and CO-F compared to all groups. All groups treated with crude and refinated oil spent more time in the light area and realized more transitions in the LDB. Cerebral MDA were decreased in all experimental groups compared to controls groups. CONCLUSION Maternal comsuption of Brazil nut oil induced anxiolitic-like behavior and reduced brain lipid peroxidation of the male and female offspring in rats.
Collapse
Affiliation(s)
- Larissa Maria Gomes Dutra
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | | | | | - Januse Míllia Dantas de Araújo
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Maciel da Costa Alves Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Diego Elias Pereira
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Rita de Cássia de Araújo Bidô
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, CG, Brazil.
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil.
| | - Jailane Aquino de Souza
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil.
| | - Juliana Késsia Barbosa Soares
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| |
Collapse
|
5
|
Cao X, Wang Q, Zhang L, Sun H, Xu G, Chen X, Wu Z, Liu H, Yuan G, Wu J, Liu T. Oxytocin alleviates high-fat diet-induced anxiety by decreasing glutamatergic synaptic transmission in the ventral dentate gyrus in adolescent mice. Neuropharmacology 2025; 262:110201. [PMID: 39481751 DOI: 10.1016/j.neuropharm.2024.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
A high-fat diet (HFD)-induced obesity is associated with mental disorders in adolescence. However, the mechanisms underlying these associations remain unclear. In this study, we hypothesized that synaptic remodeling occurs in the ventral hippocampus (vHP) of obese mice. To investigate this, we established a postnatal model of HFD-induced obesity in mice and observed increased body weight, elevated plasma luteinizing hormone and testosterone levels, premature puberty, and enhanced anxiety-like behavior in male subjects. We also examined the effect of HFD on the c-Fos protein expression in the ventral dentate gyrus (vDG) and explored the influence of intracerebroventricular (i.c.v) oxytocin injections on HFD-induced anxiety. Our results indicated an increase in c-Fos-positive cells in the vDG following HFD consumption. Additionally, we recorded the spontaneous synaptic activity of miniature excitatory postsynaptic currents (mEPSCs) in the vDG. Notably, HFD resulted in an elevated mEPSC frequency without affecting mEPSC amplitude. Subsequently, investigations demonstrated that i.c.v oxytocin injections reversed anxiety-like behavior induced by HFD. Moreover, the application of oxytocin in a bath solution reduced the mEPSC frequency in the vDG. These findings suggest that postnatal HFD intake induces synaptic dysfunction in the vDG, associated with the hyperactivity of vDG neurons, potentially contributing to the anxiety-like behavior in juvenile obesity.
Collapse
Affiliation(s)
- Xi Cao
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qiyuan Wang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huichao Sun
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Gang Xu
- Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhihong Wu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Huibao Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Gaole Yuan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Solch-Ottaiano RJ, Engler-Chiurazzi EB, Harper C, Wasson S, Ogbonna S, Ouvrier B, Wang H, Prats M, McDonald K, Biose IJ, Rowe LA, Jones M, Steele C, Bix G, Maraganore DM. Comparison Between Two Divergent Diets, Mediterranean and Western, on Gut Microbiota and Cognitive Function in Young Sprague Dawley Rats. GUT MICROBES REPORTS 2024; 1:1-21. [PMID: 39916748 PMCID: PMC11800364 DOI: 10.1080/29933935.2024.2439490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025]
Abstract
Clinical studies strongly suggest the importance of diet quality on cognition in youth populations (15-24 years). The Mediterranean diet (MeDi) has been shown to improve cognition in contrast to the commonly consumed Western diet (WD). The gut microbiota may serve as a mechanism for diet-induced changes in cognition. Ten-week-old male Sprague Dawley rats were assigned a MeDi or WD (n=10/group) for 14 weeks. Prior to neurobehavior assessments, microbiota community composition was assessed. At the genus level, the relative abundance of four bacteria increased with the MeDi and five decreased compared to the WD. Rats in the MeDi group demonstrated cognitive flexibility and improvement in reference and working memory relative to the WD group. At the end of the study, serum cytokines were increased, and low-density lipoproteins were decreased in the MeDi group. Markers for neuroinflammation, blood-brain barrier, glial cells, and synaptic plasticity in brain regions did not differ between groups. Overall, the MeDi modulated gut microbiota, cognitive function, and serum lipid and cytokines but not gene expression in the brain compared to the WD. Further studies are needed to determine causality between diet-modulated gut microbiota, cognitive function, and immune function.
Collapse
Affiliation(s)
- Rebecca J. Solch-Ottaiano
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth B. Engler-Chiurazzi
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Colin Harper
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Savannah Wasson
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sharon Ogbonna
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Blake Ouvrier
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hanyun Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Madison Prats
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Katherine McDonald
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ifechukwude J. Biose
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Lori A. Rowe
- Virus Characterization, Isolation, Production and Sequencing Core, Department of Microbiology, Tulane National Primate Center, Covington, LA, USA
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Gregory Bix
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Demetrius M. Maraganore
- Clinical Neuroscience Research Center, Department of Neurology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
7
|
Wu C, Liu Y, Lai Y, Wang Q, Wu S, Fan H, Liu Y, Zhao X, Jiang X. Association of different types of milk with depression and anxiety: a prospective cohort study and Mendelian randomization analysis. Front Nutr 2024; 11:1435435. [PMID: 39703337 PMCID: PMC11656347 DOI: 10.3389/fnut.2024.1435435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Background The relationship between different types of milk and depression and anxiety remains unclear, with limited evidence from prospective cohort studies. This study aims to evaluate this relationship using data from the UK Biobank cohort and to explore its potential causality through Mendelian randomization (MR) analysis. Methods Cox proportional hazards models were used to assess the association between different milk types and the risk of depression and anxiety among 357,568 UK Biobank participants free of these conditions at baseline. To further explore causality, a 2-sample MR analysis was conducted using data from the FinnGen study. Results During a median follow-up period of 13.5 years (interquartile range, 12.6-14.2 years), among 357,568 participants (mean [SD] age, 56.83 [8.06] years, 171,246 male individuals [47.9%]), a total of 13,065 and 13,339 participants were diagnosed with depression and anxiety, respectively. In the fully adjusted model (adjusted for sociodemographics characteristics, lifestyle behaviors and health indicators), full cream milk was related to a lower risk of anxiety (HR = 0.84, 95% CI: 0.75-0.94). Semi-skimmed milk had a lower risk of depression (HR = 0.88, 95% CI: 0.80-0.96) and anxiety (HR = 0.90, 95% CI: 0.82-0.98). No significant relationships were found between skimmed milk and depression/anxiety. Other types were related to an increased risk of depression (HR = 1.14, 95% CI: 1.02-1.28). After Bonferroni correction, the 2-sample MR analysis revealed a potential protective causal relationship between semi-skimmed milk and depression (OR = 0.83, 95% CI: 0.73-0.95, p = 0.006) and anxiety (OR = 0.71, 95% CI: 0.59-0.85, p < 0.001). Conclusion These findings indicate that semi-skimmed milk consumption may be linked to a lower risk of depression and anxiety, potentially highlighting its role in dietary strategies to promote mental health.
Collapse
Affiliation(s)
- Chunying Wu
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Yusheng Liu
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Yigui Lai
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Qiang Wang
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Siqi Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Huijie Fan
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuefeng Jiang
- Department of Central Laboratory, People's Hospital of Yangjiang, Yangjiang, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Burns ME, Contini FM, Michaud JM, Waring CT, Price JC, McFarland AT, Burke SG, Murphy CA, Guindon GE, Krevosky MK, Seggio JA. Obesity alters circadian and behavioral responses to constant light in male mice. Physiol Behav 2024; 287:114711. [PMID: 39395627 DOI: 10.1016/j.physbeh.2024.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Exposure to artificial light during the night is known to promote disruption to the biological clock, which can lead to impaired mood and metabolism. Metabolic hormone secretion is modulated by the circadian pacemaker and recent research has shown that hormones such as insulin and leptin can also directly affect behavioral outcomes and the circadian clock. In turn, obesity itself is known to modulate the circadian rhythm and alter emotionality. This study investigated the behavioral and metabolic effects of constant light exposure in two models of obesity - a leptin null mutant (OB) and diet-induced obesity via high-fat diet. For both experiments, mice were placed into either a standard Light:Dark cycle (LD) or constant light (LL) and their circadian locomotor rhythms were continuously monitored. After 10 weeks of exposure to their respective lighting conditions, all mice were subjected to an open field assay to assess their explorative behaviors. Their metabolic hormone levels and inflammation levels were also measured. Behaviorally, exposure to constant light led to increased period lengthening and open field activity in the lean mice compared to both obesity models. Metabolically, LL led to increased cytokine levels and poorer metabolic outcomes in both lean and obese mice, sometimes exacerbating the metabolic issues in the obese mice, independent of weight gain. This study illustrates that LL can produce altered behavioral and physiological outcomes, even in lean mice. These results also indicate that obesity induced by different reasons can lead to shortened circadian rhythmicity and exploratory activity when exposed to chronic light.
Collapse
Affiliation(s)
- Meredith E Burns
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Fernanda Medeiros Contini
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Harvard University Medical School, Neurobiology Department
| | - Julie M Michaud
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Caitlin T Waring
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Colorado State University, College of Veterinary Medicine & Biomedical Sciences
| | - John C Price
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Alexander T McFarland
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Georgia Southern University, Department of Biology
| | - Samantha G Burke
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA; Now at Cummings School of Veterinary Medicine at Tufts University
| | - Cloey A Murphy
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Grace E Guindon
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Merideth K Krevosky
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
9
|
Jan A, Shah M, Shah SA, Habib SH, Ehtesham E, Ahmed N. Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy. Heliyon 2024; 10:e36921. [PMID: 39281480 PMCID: PMC11395765 DOI: 10.1016/j.heliyon.2024.e36921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models. This study aimed to assess the neurotherapeutic effects of melatonin on HFD-induced neuroinflammation and neurodegeneration mediated by OS in pregnant female mice and their offspring. Western blotting, immunohistochemistry and antioxidant enzyme assays were used for quantification of samples from the hippocampal region of the brain of pregnant albino mice and their offspring. Short- and long-term memory was assessed by Y-maze and Morris Water Maze tests. HFD significantly induced OS leading to AD like neuropathology in the pregnant mice and their offspring while melatonin administration simultaneously with the HFD significantly prevented this neuropathy. This study reports that melatonin exerts these effects through the stimulation of SIRT1/Nrf2/HO-1 pathway that in turn reduces the HFD-induced OS and its downstream signaling. In conclusion melatonin prevents HFD-induced multiple complications that ultimately leads to the memory dysfunction in pregnant female mice and their successive generation via activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Amin Jan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biochemistry, Haripur University, Haripur, Pakistan
| | - Syed Hamid Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
10
|
Zhang Y, Zhang P, Yin D. Association between a body shape index and cognitive impairment among us older adults from a cross-sectional survey of the NHANES 2011-2014. Lipids Health Dis 2024; 23:169. [PMID: 38840158 PMCID: PMC11151546 DOI: 10.1186/s12944-024-02165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE This study aimed to assess the relationship between A Body Shape Index (ABSI) and cognitive impairment among older adults in the United States. METHODS This cross-sectional study analyzed cognitive function in 2,752 individuals aged 60 and older using data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Cognitive assessments were conducted using the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). A Body Shape Index (ABSI) was calculated from waist circumference (WC), weight, and height. The relationship between ABSI and cognitive outcomes was examined through multifactorial linear regression, smooth curve fitting, and subgroup and interaction analyses. RESULTS With complete data, 2752 persons 60 and older participated in the study. After adjusting for covariables, these results showed statistically significant negative relationships between ABSI, IRT, and DSST scores. The negative correlation between DSST and ABSI is more substantial in males than females. There is less of a negative link between ABSI, AFT, and DSST among drinkers who consume 12 or more drinks annually compared to those who consume less. Furthermore, compared to individuals without high blood pressure(HBP), those who suffered HBP showed a more significant negative connection between ABSI and AFT. CONCLUSION Lower cognitive function was linked to higher ABSI.
Collapse
Affiliation(s)
- Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, Jiangsu province, China.
| |
Collapse
|
11
|
Wang H, Shen Z, Wu CS, Ji P, Noh JY, Geoffroy CG, Kim S, Threadgill D, Li J, Zhou Y, Xiao X, Zheng H, Sun Y. Neuronal ablation of GHSR mitigates diet-induced depression and memory impairment via AMPK-autophagy signaling-mediated inflammation. Front Immunol 2024; 15:1339937. [PMID: 38464534 PMCID: PMC10920242 DOI: 10.3389/fimmu.2024.1339937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024] Open
Abstract
Obesity is associated with chronic inflammation in the central nervous system (CNS), and neuroinflammation has been shown to have detrimental effects on mood and cognition. The growth hormone secretagogue receptor (GHSR), the biologically relevant receptor of the orexigenic hormone ghrelin, is primarily expressed in the brain. Our previous study showed that neuronal GHSR deletion prevents high-fat diet-induced obesity (DIO). Here, we investigated the effect of neuronal GHSR deletion on emotional and cognitive functions in DIO. The neuron-specific GHSR-deficient mice exhibited reduced depression and improved spatial memory compared to littermate controls under DIO. We further examined the cortex and hippocampus, the major regions regulating cognitive and emotional behaviors, and found that the neuronal deletion of GHSR reduced DIO-induced neuroinflammation by suppressing proinflammatory chemokines/cytokines and decreasing microglial activation. Furthermore, our data showed that neuronal GHSR deletion suppresses neuroinflammation by downregulating AMPK-autophagy signaling in neurons. In conclusion, our data reveal that neuronal GHSR inhibition protects against DIO-induced depressive-like behavior and spatial cognitive dysfunction, at least in part, through AMPK-autophagy signaling-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hongying Wang
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Endocrinology, Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Shen
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Chia-Shan Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Pengfei Ji
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Cédric G. Geoffroy
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, TX, United States
| | - Sunja Kim
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - David Threadgill
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Yu Zhou
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, United States
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Yu H, Yu B, Qin X, Shan W. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. J Affect Disord 2023; 339:180-193. [PMID: 37437725 DOI: 10.1016/j.jad.2023.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND High-fat diet (HFD) consumption is an important reason for promoting depression, but the mechanism is unclear. The present study aims to explore the relationship between metabolic disturbance and HFD-induced depression-like behaviors. METHODS Depression models were established by HFD consumption and chronic unpredictable mild stress (CUMS) in mice. Enzyme-linked immunosorbent assay, western blotting, real-time polymerase chain reaction, gas chromatography and metabolomic analysis were undertaken to investigate the 5-hydroxytryptamine (5-HT) system, neuroinflammation and to identify altered lipid metabolic pathways. RESULTS Depression-like behaviors, impaired 5-HT neurotransmission and disordered lipid metabolism were observed upon HFD consumption. Despite a similar reduction of high-density lipoprotein cholesterol in CUMS and HFD group, high levels of body low-density lipoprotein cholesterol in the HFD group could help distinguish HFD from CUMS. Levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammation-related metabolites were increased in HFD mice, so a link between depression and inflammation was postulated. Different metabolites were enriched in the two groups. The linoleic acid (LA) metabolic pathway and expression of fatty acid desaturase (FADS)1 and FADS2 (key enzymes in LA metabolic pathway) were enhanced significantly in HFD mice compared with the control group. LIMITATIONS Causality analyses for HFD and inflammation-related features were not undertaken. CONCLUSIONS HFD-induced depression-like behaviors was characterized by more severely disordered metabolism of lipids (especially in the LA metabolic pathway) and increased levels of inflammatory mediators, which might be the reasons for the disturbance of serotonergic system in hippocampus.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Bixian Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Xiuyuan Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| |
Collapse
|
14
|
Huerta-Canseco C, Caba M, Camacho-Morales A. Obesity-mediated Lipoinflammation Modulates Food Reward Responses. Neuroscience 2023; 529:37-53. [PMID: 37591331 DOI: 10.1016/j.neuroscience.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1β and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.
Collapse
Affiliation(s)
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico; Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico.
| |
Collapse
|
15
|
Ullah R, Shen Y, Zhou YD, Fu J. Perinatal metabolic inflammation in the hypothalamus impairs the development of homeostatic feeding circuitry. Metabolism 2023; 147:155677. [PMID: 37543245 DOI: 10.1016/j.metabol.2023.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Over the past few decades, there has been a global increase in childhood obesity. This rise in childhood obesity contributes to the susceptibility of impaired metabolism during both childhood and adulthood. The hypothalamus, specifically the arcuate nucleus (ARC), houses crucial neurons involved in regulating homeostatic feeding. These neurons include proopiomelanocortin (POMC) and agouti-related peptide (AGRP) secreting neurons. They play a vital role in sensing nutrients and metabolic hormones like insulin, leptin, and ghrelin. The neurogenesis of AGRP and POMC neurons completes at birth; however, axon development and synapse formation occur during the postnatal stages in rodents. Insulin, leptin, and ghrelin are the essential regulators of POMC and AGRP neurons. Maternal obesity and postnatal overfeeding or a high-fat diet (HFD) feeding cause metabolic inflammation, disrupted signaling of metabolic hormones, netrin-1, and neurogenic factors, neonatal obesity, and defective neuronal development in animal models; however, the mechanism is unclear. Within the hypothalamus and other brain areas, there exists a wide range of interconnected neuronal populations that regulate various aspects of feeding. However, this review aims to discuss how perinatal metabolic inflammation influences the development of POMC and AGRP neurons within the hypothalamus.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
16
|
de Castro Querino Dias C, Madruga MS, Almeida GHO, de Melo MFFT, Viera VB, de Menezes Santos Bertozzo CC, Dutra LMG, Alves APV, Dantas FA, Bezerra JKG, Soares JKB. Consumption of cashew nut induced anxiolytic-like behavior in dyslipidemic rats consuming a high fat diet. Behav Brain Res 2023; 453:114634. [PMID: 37597587 DOI: 10.1016/j.bbr.2023.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
This study aimed to evaluate the effect of cashew nut consumption on anxiety-like behavior in dyslipidemic rats. The groups formed were: Control (CONT), Dyslipidemic (DL) and Dyslipidemic cashew nuts (DLCN). Tests to assess anxiety parameters were performed after the treatment period. Brain fatty acid profiles were analyzed. The animals in the DLCN group showed more rearing than DL, without differing from the CONT and less grooming than either the DL and CONT in the Open Field. In the Elevated Plus Maze, DLCN spent more time on the open arms and in the central area compared to the other groups. As for brain fatty acids, there was a reduction in polyunsaturated fatty acids for the DLCN compared to the other groups. The cashew nut, rich in fatty acids, phenolic and flavonoid compounds, reduced the anxiogenic-like behavior caused by dyslipidemia in rats without altering brain fatty acids.
Collapse
Affiliation(s)
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | | | | | - Vanessa Bordin Viera
- Department of Nutrition, Center of Education and Health, Federal University of Campina Grande, Cuité, Paraíba, Brazil
| | | | - Larissa Maria Gomes Dutra
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Paraiba, Brazil.
| | - Ana Paula Vilar Alves
- Department of Nutrition, Center of Education and Health, Federal University of Campina Grande, Cuité, Paraíba, Brazil
| | - Francileide Amaro Dantas
- Department of Nutrition, Center of Education and Health, Federal University of Campina Grande, Cuité, Paraíba, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, João Pessoa, Paraiba, Brazil; Department of Nutrition, Center of Education and Health, Federal University of Campina Grande, Cuité, Paraíba, Brazil
| |
Collapse
|
17
|
Wencel PL, Blecharz-Klin K, Piechal A, Pyrzanowska J, Mirowska-Guzel D, Strosznajder RP. Fingolimod Modulates the Gene Expression of Proteins Engaged in Inflammation and Amyloid-Beta Metabolism and Improves Exploratory and Anxiety-Like Behavior in Obese Mice. Neurotherapeutics 2023; 20:1388-1404. [PMID: 37432552 PMCID: PMC10480137 DOI: 10.1007/s13311-023-01403-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity is considered a risk factor for type 2 diabetes mellitus, which has become one of the most important health problems, and is also linked with memory and executive function decline. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates cell death/survival and the inflammatory response via its specific receptors (S1PRs). Since the role of S1P and S1PRs in obesity is rather obscure, we examined the effect of fingolimod (an S1PR modulator) on the expression profile of genes encoding S1PRs, sphingosine kinase 1 (Sphk1), proteins engaged in amyloid-beta (Aβ) generation (ADAM10, BACE1, PSEN2), GSK3β, proapoptotic Bax, and proinflammatory cytokines in the cortex and hippocampus of obese/prediabetic mouse brains. In addition, we observed behavioral changes. Our results revealed significantly elevated mRNA levels of Bace1, Psen2, Gsk3b, Sphk1, Bax, and proinflammatory cytokines, which were accompanied by downregulation of S1pr1 and sirtuin 1 in obese mice. Moreover, locomotor activity, spatially guided exploratory behavior, and object recognition were impaired. Simultaneously, fingolimod reversed alterations in the expressions of the cytokines, Bace1, Psen2, and Gsk3b that occurred in the brain, elevated S1pr3 mRNA levels, restored normal cognition-related behavior patterns, and exerted anxiolytic effects. The improvement in episodic and recognition memory observed in this animal model of obesity may suggest a beneficial effect of fingolimod on central nervous system function.
Collapse
Affiliation(s)
- P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland.
| | - K Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - A Piechal
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - J Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 1B Banacha St., 02097, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02106, Warsaw, Poland
| |
Collapse
|
18
|
Yehuda H, Madrer N, Goldberg D, Soreq H, Meerson A. Inversely Regulated Inflammation-Related Processes Mediate Anxiety-Obesity Links in Zebrafish Larvae and Adults. Cells 2023; 12:1794. [PMID: 37443828 PMCID: PMC10341043 DOI: 10.3390/cells12131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.
Collapse
Affiliation(s)
- Hila Yehuda
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
| | - Nimrod Madrer
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Doron Goldberg
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| | - Hermona Soreq
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ari Meerson
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| |
Collapse
|
19
|
Mort EJ, Fordington S, Heritage S, Fowden AL, Jones S, Camm EJ. Age and an obesogenic diet affect mouse behaviour in a sex-dependent manner. Eur J Neurosci 2023; 58:2451-2468. [PMID: 37377042 PMCID: PMC10946847 DOI: 10.1111/ejn.16070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Obesity is rising globally and is associated with neurodevelopmental and psychiatric disorders among children, adolescents and young adults. Whether obesity is the cause or the consequence of these disorders remains unclear. To examine the behavioural effects of obesity systematically, locomotion, anxiety and social behaviour were assessed in male and female C57Bl/6J mice using the open field, elevated plus maze and social preference task. First, the effects of age and sex were examined in control mice, before investigating post-weaning consumption of a high fat-high sugar diet commonly consumed in human populations with high rates of obesity. In the open field and elevated plus maze, locomotor activity and anxiety-related behaviours reduced with aging in both sexes, but with different sex-specific profiles. The high fat-high sugar diet reduced food and calorie intake and increased body mass and fat deposition in both sexes. In the open field, both male and female mice on the obesogenic diet showed reduced locomotion; whereas, in the elevated plus maze, only females fed with the obesogenic diet displayed reduced anxiety-related behaviours. Both male and female mice on the obesogenic diet had a significantly higher social preference index than the control group. In conclusion, the findings demonstrate that the behavioural effects of age and diet-induced obesity all depend on the sex of the mouse. This emphasises the importance of considering the age of the animal and including both sexes when assessing behavioural phenotypes arising from dietary manipulations.
Collapse
Affiliation(s)
- Emily J. Mort
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Surina Fordington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sophie Heritage
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Abigail L. Fowden
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Susan Jones
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Emily J. Camm
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| |
Collapse
|
20
|
Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 2023; 13:1178399. [PMID: 37249983 PMCID: PMC10213414 DOI: 10.3389/fcimb.2023.1178399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is a complex metabolic disease, with cognitive impairment being an essential complication. Gut microbiota differs markedly between individuals with and without obesity. The microbial-gut-brain axis is an important pathway through which metabolic factors, such as obesity, affect the brain. Probiotics have been shown to alleviate symptoms associated with obesity and neurobehavioral disorders. In this review, we evaluated previously published studies on the effectiveness of probiotic interventions in reducing cognitive impairment, depression, and anxiety associated with obesity or a high-fat diet. Most of the probiotics studied have beneficial health effects on obesity-induced cognitive impairment and anxiety. They positively affect immune regulation, the hypothalamic-pituitary-adrenal axis, hippocampal function, intestinal mucosa protection, and glucolipid metabolism regulation. Probiotics can influence changes in the composition of the gut microbiota and the ratio between various flora. However, probiotics should be used with caution, particularly in healthy individuals. Future research should further explore the mechanisms underlying the gut-brain axis, obesity, and cognitive function while overcoming the significant variation in study design and high risk of bias in the current evidence.
Collapse
|
21
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023; 195:145-156. [PMID: 36870621 PMCID: PMC10257807 DOI: 10.1016/j.brainresbull.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Giovana Maciel Reis C, Rocha-Gomes A, Escobar Teixeira A, Gomes de Oliveira D, Mainy Oliveira Santiago C, Alves da Silva A, Regina Riul T, de Jesus Oliveira E. Short-term Cafeteria Diet Is Associated with Fat Mass Accumulation, Systemic and Amygdala Inflammation, and Anxiety-like Behavior in Adult Male Wistar Rats. Neuroscience 2023; 515:37-52. [PMID: 36773840 DOI: 10.1016/j.neuroscience.2023.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Obesity is linked to metabolic, hormonal and biochemical alterations, and is also a risk factor for behavioral disorders. Evidence suggests that these disorders may be related to the consumption of hypercaloric diets, fat mass accumulation and changes in inflammation and redox status. Although much is known about the chronic effects of hypercaloric diets on mental health, few studies have evaluated the consequences of short-term exposure of these diets on behavior. The aim of this study was to evaluate nutritional, behavioral (anxiety-like), inflammatory and redox status parameters in adult male Wistar rats exposed to short-term cafeteria diet. Adult Wistar male rats (90 days-old; n = 12/group) received, during 14 days, the diets: Control- standard diet; Simple Cafeteria Diet (SCD)- homogeneous cafeteria diet. Varied Cafeteria Diet (VCD)- cafeteria diet with rotation and variation. Nutritional analyzes and tests for anxiety-like behaviors were performed, in addition to inflammatory and redox status measurements in blood and amygdala. The SCD group showed higher fat energy intake, while the VCD group consumed more energy from carbohydrates. SCD and VCD showed higher fat mass accumulation, in addition to higher levels of TNFα, INFγ, TBARS and FRAP in the blood. Also, SCD and VCD groups reported high levels of TNFα in the amygdala. Regarding behavioral evaluations, SCD and VCD groups showed anxiogenesis in the elevated plus maze, light-dark box, and open field tests. Therefore, the two cafeteria diets induced obesity and systemic inflammation, which in turn, resulted in an increase in amygdala TNFα levels and anxiety-like behaviors in Wistar rats.
Collapse
Affiliation(s)
- Clarisse Giovana Maciel Reis
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Dalila Gomes de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil
| | - Eduardo de Jesus Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina-MG, Brazil.
| |
Collapse
|
23
|
Hamilton J, Nguyen C, McAvoy M, Roeder N, Richardson B, Quattrin T, Hajnal A, Thanos PK. Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [ 3 H] PK11195 binding in a rat model of obesity. Synapse 2023; 77:e22258. [PMID: 36352528 DOI: 10.1002/syn.22258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022]
Abstract
Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [3 H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [3 H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [3 H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.
Collapse
Affiliation(s)
- John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Cynthia Nguyen
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Margaret McAvoy
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| | - Teresa Quattrin
- Department of Pediatrics, University at Buffalo, UBMD Pediatrics, JR Oishei Children's Hospital, Buffalo, New York, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.,Department of Psychology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
24
|
Christensen A, Pike CJ. Effects of APOE Genotype and Western Diet on Metabolic Phenotypes in Female Mice. Metabolites 2023; 13:metabo13020287. [PMID: 36837905 PMCID: PMC9959618 DOI: 10.3390/metabo13020287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Western diets high in sugars and saturated fats have been reported to induce metabolic and inflammatory impairments that are associated with several age-related disorders, including Alzheimer's disease (AD) and type 2 diabetes (T2D). The apolipoprotein E (APOE) genotype is associated with metabolic and inflammatory outcomes that contribute to risks for AD and T2D, with the APOE4 genotype increasing risks relative to the more common APOE3 allele. In this study, we investigated the impacts of the APOE genotype on systemic and neural effects of the Western diet. Female mice with knock-in of human APOE3 or APOE4 were exposed to control or Western diet for 13 weeks. In the control diet, we observed that APOE4 mice presented with impaired metabolic phenotypes, exhibiting greater adiposity, higher plasma leptin and insulin levels, and poorer glucose clearance than APOE3 mice. Behaviorally, APOE4 mice exhibited worse performance in a hippocampal-dependent learning task. In visceral adipose tissue, APOE4 mice exhibited generally higher expression levels of macrophage- and inflammation-related genes. The cerebral cortex showed a similar pattern, with higher expression of macrophage- and inflammation-related genes in APOE4 than APOE3 mice. Exposure to the Western diet yielded modest, statistically non-significant effects on most metabolic, behavioral, and gene expression measures in both APOE genotypes. Interestingly, the Western diet resulted in reduced gene expression of a few macrophage markers, specifically in APOE4 mice. The observed relative resistance to the Western diet suggests protective roles of both female sex and young adult age. Further, the data demonstrate that APOE4 is associated with deleterious systemic and neural phenotypes and an altered response to a metabolic stressor, findings relevant to the understanding of interactions between the APOE genotype and risks for metabolic disorders.
Collapse
|
25
|
Marcos JL, Olivares-Barraza R, Ceballo K, Wastavino M, Ortiz V, Riquelme J, Martínez-Pinto J, Muñoz P, Cruz G, Sotomayor-Zárate R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int J Mol Sci 2023; 24:ijms24021468. [PMID: 36674982 PMCID: PMC9866213 DOI: 10.3390/ijms24021468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity-induced neuroinflammation is a chronic aseptic central nervous system inflammation that presents systemic characteristics associated with increased pro-inflammatory cytokines such as interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) and the presence of microglia and reactive astrogliosis as well as the activation of the NLRP3 inflammasome. The obesity pandemic is associated with lifestyle changes, including an excessive intake of obesogenic foods and decreased physical activity. Brain areas such as the lateral hypothalamus (LH), lateral septum (LS), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been implicated in the homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. In this context, a chronic lipid intake triggers neuroinflammation in several brain regions such as the hypothalamus, hippocampus, and amygdala. This review aims to present the background defining the significant impact of neuroinflammation and how this, when induced by an obesogenic diet, can affect feeding control, triggering metabolic and neurological alterations.
Collapse
Affiliation(s)
- José Luis Marcos
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar 2572007, Chile
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Rossy Olivares-Barraza
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Melisa Wastavino
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Víctor Ortiz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Julio Riquelme
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Muñoz
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: ; Tel.: +56-32-2508050
| |
Collapse
|
26
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Crocin, the main active saffron (Crocus sativus L.) constituent, as a potential candidate to prevent anxiety and depressive-like behaviors induced by unpredictable chronic mild stress. Neurosci Lett 2022; 791:136912. [DOI: 10.1016/j.neulet.2022.136912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
28
|
Chompre G, Sambolin L, Cruz ML, Sanchez R, Rodriguez Y, Rodríguez-Santiago RE, Yamamura Y, Appleyard CB. A one month high fat diet disrupts the gut microbiome and integrity of the colon inducing adiposity and behavioral despair in male Sprague Dawley rats. Heliyon 2022; 8:e11194. [PMID: 36387539 PMCID: PMC9663868 DOI: 10.1016/j.heliyon.2022.e11194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/17/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
High-fat diet (HFD) is associated with gut microbiome dysfunction and mental disorders. However, the time-dependence as to when this occurs is unclear. We hypothesized that a short-term HFD causes colonic tissue integrity changes resulting in behavioral changes. Rats were fed HFD or low-fat diet (LFD) for a month and gut microbiome, colon, and behavior were evaluated. Behavioral despair was found in the HFD group. Although obesity was absent, the HFD group showed increased percent weight gain, epididymal fat tissue, and leptin expression. Moreover, the HFD group had increased colonic damage, decreased expression of the tight junction proteins, and higher lipopolysaccharides (LPS) in serum. Metagenomic analysis revealed that the HFD group had more Bacteroides and less S24-7 which correlated with the decreased claudin-5. Finally, HFD group showed an increase of microglia percent area, increased astrocytic projections, and decreased phospho-mTOR. In conclusion, HFD consumption in a short period is still sufficient to disrupt gut integrity resulting in LPS infiltration, alterations in the brain, and behavioral despair even in the absence of obesity.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Lubriel Sambolin
- Basic Sciences Department, Division of Pharmacology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Myrella L. Cruz
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Rafael Sanchez
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yarelis Rodriguez
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Ronald E. Rodríguez-Santiago
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Yasuhiro Yamamura
- AIDS Research Infrastructure Program, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | - Caroline B. Appleyard
- Basic Sciences Department, Division of Physiology, Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
29
|
Sah A, Rooney S, Kharitonova M, Sartori SB, Wolf SA, Singewald N. Enriched Environment Attenuates Enhanced Trait Anxiety in Association with Normalization of Aberrant Neuro-Inflammatory Events. Int J Mol Sci 2022; 23:13052. [PMID: 36361832 PMCID: PMC9657487 DOI: 10.3390/ijms232113052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is discussed to play a role in specific subgroups of different psychiatric disorders, including anxiety disorders. We have previously shown that a mouse model of trait anxiety (HAB) displays enhanced microglial density and phagocytic activity in key regions of anxiety circuits compared to normal-anxiety controls (NAB). Using minocycline, we provided causal evidence that reducing microglial activation within the dentate gyrus (DG) attenuated enhanced anxiety in HABs. Besides pharmacological intervention, "positive environmental stimuli", which have the advantage of exerting no side-effects, have been shown to modulate inflammation-related markers in human beings. Therefore, we now investigated whether environmental enrichment (EE) would be sufficient to modulate upregulated neuroinflammation in high-anxiety HABs. We show for the first time that EE can indeed attenuate enhanced trait anxiety, even when presented as late as adulthood. We further found that EE-induced anxiolysis was associated with the attenuation of enhanced microglial density (using Iba-1 as the marker) in the DG and medial prefrontal cortex. Additionally, EE reduced Iba1 + CD68+ microglia density within the anterior DG. Hence, the successful attenuation of trait anxiety by EE was associated in part with the normalization of neuro-inflammatory imbalances. These results suggest that pharmacological and/or positive behavioral therapies triggering microglia-targeted anti-inflammatory effects could be promising as novel alternatives or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals predisposed to trait anxiety.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Sinead Rooney
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Simone B. Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Susanne A. Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Experimental Ophthalmology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Hu P, Lu Y, Pan BX, Zhang WH. New Insights into the Pivotal Role of the Amygdala in Inflammation-Related Depression and Anxiety Disorder. Int J Mol Sci 2022; 23:11076. [PMID: 36232376 PMCID: PMC9570160 DOI: 10.3390/ijms231911076] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Depression and anxiety disorders are the two most prevalent psychiatric diseases that affect hundreds of millions of individuals worldwide. Understanding the etiology and related mechanisms is of great importance and might yield new therapeutic strategies to treat these diseases effectively. During the past decades, a growing number of studies have pointed out the importance of the stress-induced inflammatory response in the amygdala, a kernel region for processing emotional stimuli, as a potentially critical contributor to the pathophysiology of depression and anxiety disorders. In this review, we first summarized the recent progress from both animal and human studies toward understanding the causal link between stress-induced inflammation and depression and anxiety disorders, with particular emphasis on findings showing the effect of inflammation on the functional changes in neurons in the amygdala, at levels ranging from molecular signaling, cellular function, synaptic plasticity, and the neural circuit to behavior, as well as their contributions to the pathology of inflammation-related depression and anxiety disorders. Finally, we concluded by discussing some of the difficulties surrounding the current research and propose some issues worth future study in this field.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Ying Lu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
31
|
Mezo-González CE, Daher Abdi A, Reyes-Castro LA, Olvera Hernández S, Almeida C, Croyal M, Aguesse A, Gavioli EC, Zambrano E, Bolaños-Jiménez F. Learning Deficits Induced by High-Calorie Feeding in the Rat are Associated With Impaired Brain Kynurenine Pathway Metabolism. Int J Tryptophan Res 2022; 15:11786469221111116. [PMID: 35846874 PMCID: PMC9277427 DOI: 10.1177/11786469221111116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to be a primary risk factor for type 2 diabetes and cardiovascular
disease, obesity is associated with learning disabilities. Here we examined
whether a dysregulation of the kynurenine pathway (KP) of tryptophan (Trp)
metabolism might underlie the learning deficits exhibited by obese individuals.
The KP is initiated by the enzymatic conversion of Trp into kynurenine (KYN) by
indoleamine 2,3-dioxygenase (IDO). KYN is further converted to several signaling
molecules including quinolinic acid (QA) which has a negative impact on
learning. Wistar rats were fed either standard chow or made obese by exposure to
a free choice high-fat high-sugar (fcHFHS) diet. Their learning capacities were
evaluated using a combination of the novel object recognition and the novel
object location tasks, and the concentrations of Trp and KYN-derived metabolites
in several brain regions determined by ultra-performance liquid
chromatography-tandem mass spectrometry. Male, but not female, obese rats
exhibited reduced learning capacity characterized by impaired encoding along
with increased hippocampal concentrations of QA, Xanthurenic acid (XA),
Nicotinamide (Nam), and oxidized Nicotinamide Adenine Dinucleotide (NAD+). In
contrast, no differences were detected in the serum levels of Trp or KP
metabolites. Moreover, obesity enhanced the expression in the hippocampus and
frontal cortex of kynurenine monooxygenase (KMO), an enzyme involved in the
production of QA from kynurenine. QA stimulates the glutamatergic system and its
increased production leads to cognitive impairment. These results suggest that
the deleterious effects of obesity on cognition are sex dependent and that
altered KP metabolism might contribute to obesity-associated learning
disabilities.
Collapse
Affiliation(s)
| | - Amran Daher Abdi
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France
| | - Luis Antonio Reyes-Castro
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Sandra Olvera Hernández
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Université de Nantes, Nantes France.,Medical and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Clarissa Almeida
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France.,Université de Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | |
Collapse
|
32
|
Jayarathne HSM, Debarba LK, Jaboro JJ, Ginsburg BC, Miller RA, Sadagurski M. Neuroprotective effects of Canagliflozin: Lessons from aged genetically diverse UM-HET3 mice. Aging Cell 2022; 21:e13653. [PMID: 35707855 PMCID: PMC9282842 DOI: 10.1111/acel.13653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/24/2023] Open
Abstract
The aging brain is characterized by progressive increases in neuroinflammation and central insulin resistance, which contribute to neurodegenerative diseases and cognitive impairment. Recently, the Interventions Testing Program demonstrated that the anti-diabetes drug, Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, led to lower fasting glucose and improved glucose tolerance in both sexes, but extended median lifespan by 14% in male mice only. Here, we show that Cana treatment significantly improved central insulin sensitivity in the hypothalamus and the hippocampus of 30-month-old male mice. Aged males produce more robust neuroimmune responses than aged females. Remarkably, Cana-treated male and female mice showed significant reductions in age-associated hypothalamic gliosis with a decrease in inflammatory cytokine production by microglia. However, in the hippocampus, Cana reduced microgliosis and astrogliosis in males, but not in female mice. The decrease in microgliosis was partially correlated with reduced phosphorylation of S6 kinase in microglia of Cana-treated aged male, but not female mice. Thus, Cana treatment improved insulin responsiveness in aged male mice. Furthermore, Cana treatment improved exploratory and locomotor activity of 30-month-old male but not female mice. Taken together, we demonstrate the sex-specific neuroprotective effects of Cana treatment, suggesting its application for the potential treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hashan S. M. Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Lucas K. Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Jacob J. Jaboro
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| | - Brett C. Ginsburg
- Department of Psychiatry and Behavioral SciencesUniversity of Texas Health Science CenterSan AntonioTexasUSA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMichiganUSA
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center)Wayne State UniversityDetroitMichiganUSA
| |
Collapse
|
33
|
Near-infrared light reduces glia activation and modulates neuroinflammation in the brains of diet-induced obese mice. Sci Rep 2022; 12:10848. [PMID: 35761012 PMCID: PMC9237037 DOI: 10.1038/s41598-022-14812-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/13/2022] [Indexed: 12/06/2022] Open
Abstract
Neuroinflammation is a key event in neurodegenerative conditions such as Alzheimer's disease (AD) and characterizes metabolic pathologies like obesity and type 2 diabetes (T2D). Growing evidence in humans shows that obesity increases the risk of developing AD by threefold. Hippocampal neuroinflammation in rodents correlates with poor memory performance, suggesting that it contributes to cognitive decline. Here we propose that reducing obesity/T2D-driven neuroinflammation may prevent the progression of cognitive decline associated with AD-like neurodegenerative states. Near-infrared light (NIR) has attracted increasing attention as it was shown to improve learning and memory in both humans and animal models. We previously reported that transcranial NIR delivery reduced amyloid beta and Tau pathology and improved memory function in mouse models of AD. Here, we report the effects of NIR in preventing obesity-induced neuroinflammation in a diet-induced obese mouse model. Five-week-old wild-type mice were fed a high-fat diet (HFD) for 13 weeks to induce obesity prior to transcranial delivery of NIR for 4 weeks during 90-s sessions given 5 days a week. After sacrifice, brain slices were subjected to free-floating immunofluorescence for microglia and astrocyte markers to evaluate glial activation and quantitative real-time polymerase chain reaction (PCR) to evaluate expression levels of inflammatory cytokines and brain-derived neurotrophic factor (BDNF). The hippocampal and cortical regions of the HFD group had increased expression of the activated microglial marker CD68 and the astrocytic marker glial fibrillary acidic protein. NIR-treated HFD groups showed decreased levels of these markers. PCR revealed that hippocampal tissue from the HFD group had increased levels of pro-inflammatory interleukin (IL)-1β and tumor necrosis factor-α. Interestingly, the same samples showed increased levels of the anti-inflammatory IL-10. All these changes were attenuated by NIR treatment. Lastly, hippocampal levels of the neurotrophic factor BDNF were increased in NIR-treated HFD mice, compared to untreated HFD mice. The marked reductions in glial activation and pro-inflammatory cytokines along with elevated BDNF provide insights into how NIR could reduce neuroinflammation. These results support the use of NIR as a potential non-invasive and preventive therapeutic approach against chronic obesity-induced deficits that are known to occur with AD neuropathology.
Collapse
|
34
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
35
|
Sambolín-Escobales L, Tirado-Castro L, Suarez C, Pacheco-Cruz D, Fonseca-Ferrer W, Deme P, Haughey N, Chompre G, Porter JT. High-Fat Diet and Short-Term Unpredictable Stress Increase Long-Chain Ceramides Without Enhancing Behavioral Despair. Front Mol Biosci 2022; 9:859760. [PMID: 35601829 PMCID: PMC9114865 DOI: 10.3389/fmolb.2022.859760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Clinical and preclinical studies suggest that increases in long-chain ceramides in blood may contribute to the development of depressive-like behavior. However, which factors contribute to these increases and whether the increases are sufficient to induce depressive-like behaviors is unclear. To begin to address this issue, we examined the effects of high fat diet (HFD) and short-term unpredictable (STU) stress on long-chain ceramides in the serum of male and female rats. We found that brief exposure to HFD or unpredictable stress was sufficient to induce selective increases in the serum concentrations of long-chain ceramides, associated with depression in people. Furthermore, combined exposure to HFD and unpredictable stress caused a synergistic increase in C16:0, C16:1, and C18:0 ceramides in both sexes and C18:1 and C24:1 in males. However, the increased peripheral long-chain ceramides were not associated with increases in depressive-like behaviors suggesting that increases in serum long-chain ceramides may not be associated with the development of depressive-like behaviors in rodents.
Collapse
Affiliation(s)
- Lubriel Sambolín-Escobales
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lizmarie Tirado-Castro
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Cristina Suarez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Dariangelly Pacheco-Cruz
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | | | - Pragney Deme
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Norman Haughey
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gladys Chompre
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - James T. Porter
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- *Correspondence: James T. Porter,
| |
Collapse
|
36
|
Lof J, Smits K, Melotte V, Kuil LE. The health effect of probiotics on high-fat diet-induced cognitive impairment, depression and anxiety: A cross-species systematic review. Neurosci Biobehav Rev 2022; 136:104634. [PMID: 35339484 DOI: 10.1016/j.neubiorev.2022.104634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
Obesity is a complex disease with many co-morbidities, including impaired cognitive functions. Obese individuals often contain an aberrant microbiota. Via the microbiota-gut-brain axis, the altered microbiota composition can affect cognition or induce anxiety- or depressive-like behavior. Probiotics have been shown to alleviate both obesity- and neurobehavioral disorder-related symptoms. Here, we evaluated previously published results on the effectiveness of probiotic intervention in alleviating obesity- or high-fat diet (HFD)-related cognitive impairment, depression and anxiety. A systematic search was performed in PubMed, Embase, and Google Scholar until June 2021 to identify relevant articles. Seventeen studies were included: one human and sixteen animal studies. Overall, the findings support the beneficial health effect of probiotics on HFD-induced cognitive impairment and anxiety. However, the results suggest that multi-strain probiotic treatments should be used with caution, especially in the absence of HFD-induced impairment. Future studies should overcome the large variation in study design and high risk of bias found in the current evidence. Nevertheless, probiotic treatment, in particular using the Lactobacillus genus, seems promising.
Collapse
Affiliation(s)
- J Lof
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Smits
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - V Melotte
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L E Kuil
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Guo P, Benito Ballesteros A, Yeung SP, Liu R, Saha A, Curtis L, Kaser M, Haggard MP, Cheke LG. COVCOG 1: Factors Predicting Physical, Neurological and Cognitive Symptoms in Long COVID in a Community Sample. A First Publication From the COVID and Cognition Study. Front Aging Neurosci 2022; 14:804922. [PMID: 35370617 PMCID: PMC8968323 DOI: 10.3389/fnagi.2022.804922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Since its first emergence in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic. Whilst often considered a respiratory disease, a large proportion of COVID-19 patients report neurological symptoms, and there is accumulating evidence for neural damage in some individuals, with recent studies suggesting loss of gray matter in multiple regions, particularly in the left hemisphere. There are a number of mechanisms by which COVID-19 infection may lead to neurological symptoms and structural and functional changes in the brain, and it is reasonable to expect that many of these may translate into cognitive problems. Indeed, cognitive problems are one of the most commonly reported symptoms in those experiencing "Long COVID"-the chronic illness following COVID-19 infection that affects between 10 and 25% of patients. The COVID and Cognition Study is a part cross-sectional, part longitudinal, study documenting and aiming to understand the cognitive problems in Long COVID. In this first paper from the study, we document the characteristics of our sample of 181 individuals who had experienced COVID-19 infection, and 185 who had not. We explore which factors may be predictive of ongoing symptoms and their severity, as well as conducting an in-depth analysis of symptom profiles. Finally, we explore which factors predict the presence and severity of cognitive symptoms, both throughout the ongoing illness and at the time of testing. The main finding from this first analysis is that that severity of initial illness is a significant predictor of the presence and severity of ongoing symptoms, and that some symptoms during the initial illness-particularly limb weakness-may be more common in those that have more severe ongoing symptoms. Symptom profiles can be well described in terms of 5 or 6 factors, reflecting the variety of this highly heterogenous condition experienced by the individual. Specifically, we found that neurological/psychiatric and fatigue/mixed symptoms during the initial illness, and that neurological, gastrointestinal, and cardiopulmonary/fatigue symptoms during the ongoing illness, predicted experience of cognitive symptoms.
Collapse
Affiliation(s)
- Panyuan Guo
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | - Sabine P. Yeung
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Ruby Liu
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Arka Saha
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lyn Curtis
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Muzaffer Kaser
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Mark P. Haggard
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy G. Cheke
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Wenzel TJ, Haskey N, Kwong E, Greuel BK, Gates EJ, Gibson DL, Klegeris A. Dietary fats modulate neuroinflammation in mucin 2 knock out mice model of spontaneous colitis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166336. [PMID: 34973372 DOI: 10.1016/j.bbadis.2021.166336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Specific diets regulate neuroimmune responses and modify risk of inflammatory bowel diseases, including ulcerative colitis. A link between gut and brain inflammation is also emerging. We hypothesized that adjusting dietary fatty acid composition modulates the neuroimmune responses in the mucin 2 knock out mice model of spontaneous colitis. Mice were randomly divided into three groups and fed isocaloric diets that only differed in their fatty acid composition. Diets enriched with anhydrous milk fat, corn oil, or Mediterranean diet fats were used. After nine weeks, brain and serum concentrations of ten inflammatory cytokines were measured. Three of these cytokines, including interleukin (IL)-2, IL-12 p70 and interferon-γ, were differentially expressed in the brains of animals from the three diet groups while there were no differences in the serum concentrations of these cytokines. Since only limited information is available about the functions of IL-2 in the central nervous system, in vitro experiments were performed to assess its effects on microglia. IL-2 had no effect on the secretion of neurotoxins and nitric oxide by microglia-like cells, but it selectively regulated phagocytic activity and reactive oxygen species production by stimulated microglia-like cells. Modulation of microglial reactive oxygen species through altered brain IL-2 concentrations could be one of the mechanisms linking diets with modified risk of neuroimmune disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Natasha Haskey
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Evan Kwong
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Bridget K Greuel
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ellen J Gates
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada; Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada.
| |
Collapse
|
39
|
Church JS, Renzelman ML, Schwartzer JJ. Ten-week high fat and high sugar diets in mice alter gut-brain axis cytokines in a sex-dependent manner. J Nutr Biochem 2022; 100:108903. [PMID: 34748922 PMCID: PMC8761169 DOI: 10.1016/j.jnutbio.2021.108903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 02/03/2023]
Abstract
Diets high in fat and sugar induce inflammation throughout the body, particularly along the gut-brain axis; however, the way these changes in immune signaling mediate one another remains unknown. We investigated cytokine changes in the brain and colon following prolonged high fat or sugar diet in female and male adult C57BL/6 mice. Ten weeks of high fat diet increased levels of TNFα, IL-1β, IL-6, IFNγ, and IL-10 in the female hippocampus and altered cytokines in the frontal cortex of both sexes. High sugar diet increased hippocampal cytokines and decreased cytokines in the diencephalon and frontal cortex. In the colon, high fat diet changed cytokine expression in both sexes, while high sugar diet only increased TNFα in males. Causal mediation analysis confirmed that colon IL-10 and IL-6 mediate high fat diet-induced neuroimmune changes in the female hippocampus and male frontal cortex. Additionally, high fat diet increased food consumption and weight gain in both sexes, while high sugar diet decreased male weight gain. These findings reveal a novel causal link between gut and brain inflammation specific to prolonged consumption of high fat, not high sugar, diet. Importantly, this work includes females which have been under-represented in diet research, and demonstrates that diet-induced neuroinflammation varies by brain region between sexes. Furthermore, our data suggest female brains are more vulnerable than males to inflammatory changes following excessive fat and sugar consumption, which may help explain the increased risk of inflammation-associated psychiatric conditions in women who eat a Western Diet rich in both dietary components.
Collapse
Affiliation(s)
- Jamie S. Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Margaret L. Renzelman
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jared J. Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
40
|
Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 2022; 100:155-171. [PMID: 34848340 DOI: 10.1016/j.bbi.2021.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
High-fat diet (HFD) consumption is generally associated with an increased risk of cognitive and emotional dysfunctions that constitute a sizeable worldwide health burden with profound social and economic consequences. Middle age is a critical time period that affects one's health later in life; pertinently, the prevalence of HFD consumption is increasing among mature adults. Given the growing health-related economic burden imposed globally by increasing rates of noncommunicable diseases in rapidly aging populations, along with the pervasive but insidious health impairments associated with HFD consumption, it is critically important to understand the effects of long-term HFD consumption on brain function and to gain insights into their potential underlying mechanisms. In the present study, adult male C57BL/6J mice were randomly assigned a control diet (CD, 10 kJ% from fat) or an HFD (60 kJ% from fat) for 6 months (6 M) or 9 months (9 M) followed by behavioral tests, serum biochemical analysis, and histological examinations of both the dorsal and ventral regions of the hippocampus. In both the 6 M and 9 M cohorts, mice that consumed an HFD exhibited poorer memory performance in the Morris water maze test (MWM) and greater depression- and anxiety-like behavior during the open field test (OFT), sucrose preference test (SPT) and forced swim test (FST) than control mice. Compared with age-matched mice in the CD group, mice in the HFD group showed abnormal hippocampal neuronal morphology, which was particularly evident in the ventral hippocampus. Hippocampal microglia in mice in the HFD group generally had a more activated phenotype evidenced by a smaller microglial territory area and increased cluster of differentiation 68 (CD68, a marker of phagocytic activity) immunoreactivity, while the microglial density in the dentate gyrus (DG) was decreased, indicating microglial decline. The engulfment of postsynaptic density 95 (PSD95, a general postsynaptic marker) puncta by microglia was increased in the HFD groups. Histological analysis of neutral lipids using a fluorescent probe (BODIPY) revealed that the total neutral lipid content in regions of interests (ROIs) and the lipid load in microglia were increased in the HFD group relative to the age-matched CD group. In summary, our results demonstrated that chronic HFD consumption from young adulthood to middle age induced anxiety- and depression-like behavior as well as memory impairment. The negative influence of chronic HFD consumption on behavioral and hippocampal neuroplasticity appears to be linked to a change in microglial phenotype that is accompanied by a remarkable increase in cellular lipid accumulation. These observations highlighting the potential to target lipid metabolism deficits to reduce the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Hong Zhuang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qian Li
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenxi Yang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009
| | - Yu Xiao
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China
| | - Yuan Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Jiayi Gao
- Medical College, Southeast University, Nanjing 210009, China
| | - Mingze Bi
- Medical College, Southeast University, Nanjing 210009, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing 210009, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing 210009, China.
| |
Collapse
|
41
|
Doust YV, Sumargo N, Ziebell JM, Premilovac D. Insulin Resistance in the Brain: Evidence Supporting a Role for Inflammation, Reactive Microglia, and the Impact of Biological Sex. Neuroendocrinology 2022; 112:1027-1038. [PMID: 35279657 DOI: 10.1159/000524059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
Abstract
Increased intake of highly processed, energy-dense foods combined with a sedentary lifestyle are helping fuel the current overweight and obesity crisis, which is more prevalent in women than in men. Although peripheral organs such as adipose tissue contribute to the physiological development of obesity, emerging work aims to understand the role of the central nervous system to whole-body energy homeostasis and development of weight gain and obesity. The present review discusses the impact of insulin, insulin resistance, free fatty acids, and inflammation on brain function and how these differ between the males and females in the context of obesity. We highlight the potential of microglia, the resident immune cells in the brain, as mediators of neuronal insulin resistance that drive reduced satiety, increased food intake, and thus, obesity.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Sumargo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
42
|
Santos SS, Moreira JB, Costa M, Rodrigues RS, Sebastião AM, Xapelli S, Solá S. The Mitochondrial Antioxidant Sirtuin3 Cooperates with Lipid Metabolism to Safeguard Neurogenesis in Aging and Depression. Cells 2021; 11:90. [PMID: 35011652 PMCID: PMC8750385 DOI: 10.3390/cells11010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs), crucial for memory in the adult brain, are also pivotal to buffer depressive behavior. However, the mechanisms underlying the boost in NSC activity throughout life are still largely undiscovered. Here, we aimed to explore the role of deacetylase Sirtuin 3 (SIRT3), a central player in mitochondrial metabolism and oxidative protection, in the fate of NSC under aging and depression-like contexts. We showed that chronic treatment with tert-butyl hydroperoxide induces NSC aging, markedly reducing SIRT3 protein. SIRT3 overexpression, in turn, restored mitochondrial oxidative stress and the differentiation potential of aged NSCs. Notably, SIRT3 was also shown to physically interact with the long chain acyl-CoA dehydrogenase (LCAD) in NSCs and to require its activation to prevent age-impaired neurogenesis. Finally, the SIRT3 regulatory network was investigated in vivo using the unpredictable chronic mild stress (uCMS) paradigm to mimic depressive-like behavior in mice. Interestingly, uCMS mice presented lower levels of neurogenesis and LCAD expression in the same neurogenic niches, being significantly rescued by physical exercise, a well-known upregulator of SIRT3 and lipid metabolism. Our results suggest that targeting NSC metabolism, namely through SIRT3, might be a suitable promising strategy to delay NSC aging and confer stress resilience.
Collapse
Affiliation(s)
- Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.B.M.); (M.C.)
| | - João B. Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.B.M.); (M.C.)
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (R.S.R.); (A.M.S.); (S.X.)
| | - Márcia Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.B.M.); (M.C.)
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Rui S. Rodrigues
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (R.S.R.); (A.M.S.); (S.X.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (R.S.R.); (A.M.S.); (S.X.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Medicina Molecular (iMM) João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (R.S.R.); (A.M.S.); (S.X.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (J.B.M.); (M.C.)
| |
Collapse
|
43
|
Li Q, Li H, Yao X, Wang C, Liu H, Xu D, Yang C, Zhuang H, Xiao Y, Liu R, Shen S, Zhou S, Fu C, Wang Y, Teng G, Liu L. Stress Response and Hearing Loss Differentially Contribute to Dynamic Alterations in Hippocampal Neurogenesis and Microglial Reactivity in Mice Exposed to Acute Noise Exposure. Front Neurosci 2021; 15:749925. [PMID: 34955715 PMCID: PMC8692372 DOI: 10.3389/fnins.2021.749925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent forms of acquired hearing loss, and it is associated with aberrant microglial status and reduced hippocampal neurogenesis; however, the nature of these associations is far from being elucidated. Beyond its direct effects on the auditory system, exposure to intense noise has previously been shown to acutely activate the stress response, which has increasingly been linked to both microglial activity and adult hippocampal neurogenesis in recent years. Given the pervasiveness of noise pollution in modern society and the important implications of either microglial activity or hippocampal neurogenesis for cognitive and emotional function, this study was designed to investigate how microglial status and hippocampal neurogenesis change over time following acoustic exposure and to analyze the possible roles of the noise exposure-induced stress response and hearing loss in these changes. To accomplish this, adult male C57BL/6J mice were randomly assigned to either a control or noise exposure (NE) group. Auditory function was assessed by measuring ABR thresholds at 20 days post noise exposure. The time-course profile of serum corticosterone levels, microglial status, and hippocampal neurogenesis during the 28 days following noise exposure were quantified by ELISA or immunofluorescence staining. Our results illustrated a permanent moderate-to-severe degree of hearing loss, an early but transient increase in serum corticosterone levels, and time-dependent dynamic alterations in microglial activation status and hippocampal neurogenesis, which both present an early but transient change and a late but enduring change. These findings provide evidence that both the stress response and hearing loss contribute to the dynamic alterations of microglia and hippocampal neurogenesis following noise exposure; moreover, noise-induced permanent hearing loss rather than noise-induced transient stress is more likely to be responsible for perpetuating the neurodegenerative process associated with many neurological diseases.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing, China
| | - Sinuo Shen
- Medical College, Southeast University, Nanjing, China
| | - Shaoyang Zhou
- Medical College, Southeast University, Nanjing, China
| | - Chenge Fu
- Medical College, Southeast University, Nanjing, China
| | - Yifan Wang
- Medical College, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lijie Liu
- Medical College, Southeast University, Nanjing, China
| |
Collapse
|
44
|
Olsthoorn L, Vreeken D, Kiliaan AJ. Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Front Neurosci 2021; 15:761456. [PMID: 34938153 PMCID: PMC8685335 DOI: 10.3389/fnins.2021.761456] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity affects 13% of the adult population worldwide and this number is only expected to increase. Obesity is known to have a negative impact on cardiovascular and metabolic health, but it also impacts brain structure and function; it is associated with both gray and white matter integrity loss, as well as decreased cognitive function, including the domains of executive function, memory, inhibition, and language. Especially midlife obesity is associated with both cognitive impairment and an increased risk of developing dementia at later age. However, underlying mechanisms are not yet fully revealed. Here, we review recent literature (published between 2010 and March 2021) and discuss the effects of obesity on brain structure and cognition, with a main focus on the contributions of the gut microbiome, white adipose tissue (WAT), inflammation, and cerebrovascular function. Obesity-associated changes in gut microbiota composition may cause increased gut permeability and inflammation, therewith affecting cognitive function. Moreover, excess of WAT in obesity produces pro-inflammatory adipokines, leading to a low grade systemic peripheral inflammation, which is associated with decreased cognition. The blood-brain barrier also shows increased permeability, allowing among others, peripheral pro-inflammatory markers to access the brain, leading to neuroinflammation, especially in the hypothalamus, hippocampus and amygdala. Altogether, the interaction between the gut microbiota, WAT inflammation, and cerebrovascular integrity plays a significant role in the link between obesity and cognition. Future research should focus more on the interplay between gut microbiota, WAT, inflammation and cerebrovascular function to obtain a better understanding about the complex link between obesity and cognitive function in order to develop preventatives and personalized treatments.
Collapse
Affiliation(s)
- Lisette Olsthoorn
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Debby Vreeken
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands.,Department of Bariatric Surgery, Vitalys, Rijnstate Hospital, Arnhem, Netherlands
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| |
Collapse
|
45
|
Totten MS, Wallace CW, Pierce DM, Fordahl SC, Erikson KM. The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice. Nutr Neurosci 2021; 25:2601-2615. [PMID: 34693894 DOI: 10.1080/1028415x.2021.1992082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity has been linked to behavioral and biochemical changes, such as reduced physical activity, dysregulated dopamine metabolism, and gene expression alterations in the brain. The impact of a continuous high-fat diet and resulting state of obesity may vary depending on sex and genetics. OBJECTIVE The aim of this study was to investigate the impact of a high-fat diet on physical activity, gene expression in the striatum, and dopamine neurochemistry using male and female mice from different strains as a model to examine sex and strain influences on dopamine-mediated behavior and neurobiology. METHODS Male and female mice from the C57BL/6J (B6J) and DBA/2J (D2J) strains were randomly assigned a control low-fat diet with 10% kcal fat or a high-fat diet with 60% kcal fat for 16 weeks. We assessed ambulation and habituation using the open field test; dopamine release and reuptake using ex-vivo fast scan cyclic voltammetry; and striatal mRNA expression of dopamine receptor D2, alpha synuclein, and tyrosine hydroxylase. RESULTS Mice fed a high-fat diet exhibited reduced motor activity, but only obese B6J male mice displayed reduced habituation. Dopamine clearance in the dorsal striatum was reduced only in obese D2J mice, while dopamine clearance in the nucleus accumbens core was reduced only in male obese D2J mice. Striatal dopamine receptor D2 gene expression was upregulated exclusively in obese male B6J mice. CONCLUSION Our study provides evidence for important sex and strain influences on the impact of a high-fat diet and obesity-induced behavior alterations and neurobiology dysregulation in the striatum.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Conner W Wallace
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Derek M Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Steve C Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
46
|
Rats bred for low intrinsic aerobic exercise capacity link obesity with brain inflammation and reduced structural plasticity of the hippocampus. Brain Behav Immun 2021; 97:250-259. [PMID: 34224822 DOI: 10.1016/j.bbi.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Increasing evidence shows obesity and poor metabolic health are associated with cognitive deficits, but the mechanistic connections have yet to be resolved. We studied rats selectively bred for low and high intrinsic aerobic capacity in order to test the association between low physical fitness, a genetic predisposition for obesity, and brain health. We hypothesized that low-capacity runner (LCR) rats with concurrently greater levels of adiposity would have increased hippocampal inflammation and reduced plasticity compared to the more physically fit high-capacity runner (HCR) rats. METHODS We examined markers for inflammation and brain plasticity in the hippocampi of LCR rats and compared them to HCR rats. The effect of age was determined by studying the rats at a young age (8 weeks) and later in life (40 weeks). We used western blots and immunohistochemistry to quantify the expression of target proteins. RESULTS Our study showed that the number of adult-born new neurons in the hippocampus was significantly lower in LCR rats than it was in HCR rats already at a young age and that the difference became more pronounced with age. The expression of synaptic proteins was higher in young animals relative to older ones. Brain inflammation tended to be higher in LCR rats than it was in the HCR rats, and more prominent in older rats than in young ones. CONCLUSION Our study is the first to demonstrate that low intrinsic aerobic fitness that is associated with obesity and poor metabolic health is also linked with reduced hippocampal structural plasticity at a young age. Our results also suggest that inflammation of the brain could be one factor mediating the link between obesity and poor cognitive performance.
Collapse
|
47
|
Yanguas-Casás N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, Chowen JA, Garcia-Segura LM, Arevalo MA, Cryan JF, de Ceballos ML. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis 2021; 159:105495. [PMID: 34478848 DOI: 10.1016/j.nbd.2021.105495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1β, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12β, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain; Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Madrid, Spain
| | - Cristina Torres
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, 43007 Tarragona, Spain
| | | | | | - Kiera Healy
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain; Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; The Madrid Institute for the advanced study of Food (IMDEA de Alimentación), Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - John F Cryan
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
48
|
Bian Y, Ma Y, Ma Q, Yang L, Zhu Q, Li W, Meng L. Prolonged Maternal Separation Induces the Depression-Like Behavior Susceptibility to Chronic Unpredictable Mild Stress Exposure in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6681397. [PMID: 34368355 PMCID: PMC8342142 DOI: 10.1155/2021/6681397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Early life stress is an important determinant for developing depression later in life. It is reported that maternal separation (MS) could trigger stress sensitivity in adulthood when exposed to stress again. However, it could also result in resilience to stress-induced depression. The conclusions are contradictory. To address this issue, C57BL/6N newborn pups were exposed to either daily short MS (MS for 15 min per day; MS15) or prolonged MS (MS for 180 min per day; MS180) from the first day postpartum (PD1) to PD21. Adult mice were then subjected to chronic unpredictable mild stress (CUMS) exposure from PD64 to PD105. The behavior tests such as the forced swimming test (FST), tail suspension test (TST), and open-field test were performed once a week during this time. Besides, the hippocampal neurosteroids, serum stress hormones, and hippocampal monoamine neurotransmitters were measured at PD106. We found that mice in the MS180 group displayed the reduced struggling time and the increased latency to immobility in both FST and TST. However, there was no significant difference in the MS15 group. The levels of hippocampal neurosteroids (progesterone and allopregnanolone) were decreased, and the serum levels of corticosterone, corticotropin-releasing hormone, and adrenocorticotropic hormone were overexpressed in the MS180 group. Besides, the expressions of monoamine neurotransmitters such as 5-hydroxytryptamine and 5-hydroxy indole acetic acid significantly decreased in the MS180 group, but not in the MS15 group. All findings revealed that prolonged MS, rather than short MS, could increase the susceptibility to depression-like behavior when reexposed to stress in adulthood. However, future studies are warranted to identify the underlying neuromolecular mechanism of the MS experience on the susceptibility to adult stress reexposure.
Collapse
Affiliation(s)
- Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- TCM Nursing Intervention Laboratory of Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanting Ma
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Ma
- Department of Nursing, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215009, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinmei Zhu
- School of Medicine, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Wenlin Li
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lingdong Meng
- Department of Nephrology, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225002, China
| |
Collapse
|
49
|
Bi J, Li Q, Yang Z, Cai L, Lv T, Yang X, Yan L, Liu X, Wang Q, Fu X, Xiao R. CXCL2 Impairs Functions of Bone Marrow Mesenchymal Stem Cells and Can Serve as a Serum Marker in High-Fat Diet-Fed Rats. Front Cell Dev Biol 2021; 9:687942. [PMID: 34327200 PMCID: PMC8315099 DOI: 10.3389/fcell.2021.687942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.
Collapse
Affiliation(s)
- Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cai
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Huq SN, Warner AK, Buckhaults K, Sachs BD. The Effects of Brain Serotonin Deficiency on Responses to High Fat Diet in Female Mice. Front Neurosci 2021; 15:683103. [PMID: 34276291 PMCID: PMC8282998 DOI: 10.3389/fnins.2021.683103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have reported an increased risk of depression and anxiety disorders among individuals who are obese, and women are more likely than men to suffer from depression, anxiety, and obesity. However, the effects of obesity-promoting diets on depression- and anxiety-like behavior remain controversial. A recent study from our group used the tryptophan hydroxylase 2 (R439H) knock-in mouse line to evaluate the impact of genetic brain serotonin (5-HT) deficiency on behavioral responses to high fat diet (HFD) in male mice. That study indicated that chronic exposure to HFD induced pro-anxiety-like effects in the open field test and antidepressant-like effects in the forced swim test in wild-type males. Interestingly, the antidepressant-like effect of HFD, but not the anxiogenic effect, was blocked by brain 5-HT deficiency in males. The current work sought to repeat these studies in females. Our new data suggest that females are less susceptible than males to HFD-induced weight gain and HFD-induced alterations in behavior. In addition, the effects of chronic HFD on the expression of inflammation-related genes in the hippocampus were markedly different in females than we had previously reported in males, and HFD was shown to impact the expression of several inflammation-related genes in a genotype-dependent manner. Together, our findings highlight the importance of brain 5-HT and sex in regulating behavioral and molecular responses to HFD. Our results may have important implications for our understanding of the clinically observed sex differences in the consequences of obesity.
Collapse
Affiliation(s)
- Shama N Huq
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Allison K Warner
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Kerry Buckhaults
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, Villanova University, Villanova, PA, United States.,Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, United States
| |
Collapse
|