1
|
Yakai F, Dawe A, Manshuk I, Taira V, Wangso A, Fanta A, Doudja C, Loura B. Antioxidant and antibacterial effects of a new macrocyclic bis(bibenzyl) ether from Combretum molle (Combretaceae). Z NATURFORSCH C 2024; 79:377-385. [PMID: 38934447 DOI: 10.1515/znc-2023-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
A new compound, combrebisbibenzyl (1) as well as two sterols including stigmasterol (2) and 3-O-β-D-glucopyranoside of β-sitosterol (3) and seven triterpenoids namely mollic acid (4), oleanolic acid (5), ursolic acid (6), arjunglucoside I (7), arjungenin (8), bellericagenin B (9) and combregenin (10) were isolated from the root of Combretum molle. Compounds 1, 7 and 9, AcOEt and MeOH extracts exhibited moderate antioxidant activity with an IC50 value of 179.32, 185.21, 195.11 197.41 and 170.21 μg/mL, respectively, for reactive oxygen species inhibition and, inhibition percent value of 57.23, 64.52, 53.55, 67.42 and 65.04, respectively, for DPPH free-radical scavenging. The E. MeOH presented a moderate antibacterial activity against Staphylococcus aureus with DIZs value of 10.1 ± 0.2 from 800 μg/mL while the others tested strains were not sensitive. However, most of the tested bacteria, (S. aureus, Escherichia coli and Salmonella typhimurium) were moderately sensitive to E. AcOEt from 800 μg/mL with DIZs value of 8.2 ± 0.1. From the E. AcOEt, five of the isolated compounds were tested against four bacteria strains using the disc-dilusion method. The results showed that compound 1 and 2 exhibited very good antibacterial activity against all the tested bacteria at the concentration of 30 μg/mL with respective DIZ value of 22.2 and 25.4 for E. coli, 20.2 and 30.2 for S. typhimurium, 22.3 and 23.1 for S. aureus and, 22.1 and 24.1 for Streptococcus faecalis. This antibacterial activity significantly depends on the concentration.
Collapse
Affiliation(s)
- Fawai Yakai
- Department of Chemistry, Faculty of Science, 310136 University of Maroua , P.O. Box 814, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Amadou Dawe
- Department of Chemistry, Higher Teachers Training College, 310136 University of Maroua , P.O. Box 55, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Ibrayeva Manshuk
- Department of Natural Sciences, Faculty of Science and Technology, Caspian University of Technology and Engineering, P.O. Box 130000, Aktau, Kazakhstan
| | - Vincent Taira
- Department of Chemistry, Faculty of Science, 310136 University of Maroua , P.O. Box 814, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Albert Wangso
- Department of Chemistry, Faculty of Science, 310136 University of Maroua , P.O. Box 814, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Angele Fanta
- Department of Chemistry, Faculty of Science, 310136 University of Maroua , P.O. Box 814, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Chantal Doudja
- Department of Chemistry, Faculty of Science, 310136 University of Maroua , P.O. Box 814, Maroua, Cameroon
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| | - Benoit Loura
- Department of Natural Sciences, Faculty of Science and Technology, Caspian University of Technology and Engineering, P.O. Box 130000, Aktau, Kazakhstan
- Department of Refining and Petrochemistry, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08, Kaélé, Cameroon
| |
Collapse
|
2
|
Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics (Basel) 2023; 12:264. [PMID: 36830175 PMCID: PMC9951921 DOI: 10.3390/antibiotics12020264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.
Collapse
Affiliation(s)
| | | | | | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Ye S, Zhao L, Qi Y, Yang H, Hu Z, Hao N, Li Y, Tian X. Identification of azukisapogenol triterpenoid saponins from Oxytropis hirta Bunge and their aphicidal activities against pea aphid Acyrthosiphon pisum Harris. PEST MANAGEMENT SCIENCE 2023; 79:55-67. [PMID: 36067067 DOI: 10.1002/ps.7172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acyrthosiphon pisum Harris is the most destructive pest worldwide because of its ability to feed on plants directly and transmit plant viruses as a vector. This study aims to identify triterpenoid saponins from Oxytropis hirta Bunge as biopesticides to control aphids. RESULTS Three new azukisapogenol triterpenoid saponins (1-3), a new pinoresinol lignan glycoside (8), and four known saponins (4-7) were identified from the root of O. hirta. Compounds 4-7 displayed significant aphicidal activities against A. pisum with oral toxicities (LC50 = 51.10-147.43 μg/mL, 72 h), deterrent effects (deterrence index = 1.00, 100-200 μg/mL, 24 h), and aphid reproduction inhibitory effects (inhibition rates = 75.91-86.73%, 400 μg/mL, 24 h), respectively. The carboxyl groups at C-3 GlcA and C-30 were functional groups for their aphicidal activities. The toxic symptoms caused by the optimal 5 involved insect body-color changes from light green to dark or gray-green, and then brown until death. The intestinal cavity, apical microvilli, nuclei, mitochondria, and electron dense granules in the midgut tissues of A. pisum were the target sites showing aphicidal activity. The suppression of pepsin and α-amylase, and the activation of lipase and trypsin could be the signs of organelle damage in the midgut tissues. CONCLUSION Azukisapogenol triterpenoid saponins from O. hirta could be used as biopesticides to control aphids for their multiple efficacies, including oral toxicity, deterrent activity, and reproduction inhibitory activity. The toxic symptoms involved insect body-color changes. Midgut tissues and their related enzymes were the targets for saponins showing aphicidal activities. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengwei Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Long Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Yinyin Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Han Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Zilong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Nan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Yantao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Xiangrong Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Forestry, Northwest A&F University, Yangling, PR China
- College of Plant Protection, Northwest A&F University, Yangling, PR China
| |
Collapse
|
4
|
A new approach against Helicobacter pylori using plants and its constituents: A review study. Microb Pathog 2022; 168:105594. [PMID: 35605740 DOI: 10.1016/j.micpath.2022.105594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 02/07/2023]
|
5
|
Wang Y, Zhang H, Ri HC, An Z, Wang X, Zhou JN, Zheng D, Wu H, Wang P, Yang J, Liu DK, Zhang D, Tsai WC, Xue Z, Xu Z, Zhang P, Liu ZJ, Shen H, Li Y. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat Commun 2022; 13:2224. [PMID: 35468919 PMCID: PMC9038795 DOI: 10.1038/s41467-022-29908-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Araliaceae species produce various classes of triterpene and triterpenoid saponins, such as the oleanane-type triterpenoids in Aralia species and dammarane-type saponins in Panax, valued for their medicinal properties. The lack of genome sequences of Panax relatives has hindered mechanistic insight into the divergence of triterpene saponins in Araliaceae. Here, we report a chromosome-level genome of Aralia elata with a total length of 1.05 Gb. The loss of 12 exons in the dammarenediol synthase (DDS)-encoding gene in A. elata after divergence from Panax might have caused the lack of dammarane-type saponin production, and a complementation assay shows that overexpression of the PgDDS gene from Panax ginseng in callus of A. elata recovers the accumulation of dammarane-type saponins. Tandem duplication events of triterpene biosynthetic genes are common in the A. elata genome, especially for AeCYP72As, AeCSLMs, and AeUGT73s, which function as tailoring enzymes of oleanane-type saponins and aralosides. More than 13 aralosides are de novo synthesized in Saccharomyces cerevisiae by overexpression of these genes in combination. This study sheds light on the diversity of saponins biosynthetic pathway in Araliaceae and will facilitate heterologous bioproduction of aralosides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - He Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Hyok Chol Ri
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Biochemistry Institute, University of Science, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyu An
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Nan Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Dongran Zheng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Pengchao Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianfei Yang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan, China
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, China
| | - Zheyong Xue
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
6
|
Xu M, Zhou J, Heng D, Su X, Onakpa MM, Bai Y, Duan JA, Che CT, Bi H, Zhao M. Quinone Derivatives as Promising Anti- Helicobacter pylori Agents from Aerial Parts of Mitracarpus hirtus. JOURNAL OF NATURAL PRODUCTS 2022; 85:1029-1038. [PMID: 35412828 DOI: 10.1021/acs.jnatprod.1c01163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seven new naphthoquinone diglycosides (1-7), three new anthraquinones (8-10), and eight known analogues were obtained from the aerial parts of Mitracarpus hirtus collected from West Africa in a bioassay-guided phytochemical investigation. All isolated compounds were elucidated by comparison with the literature and interpretation of spectroscopic data, and the absolute configurations of the new naphthoquinone diglycosides (1-10) were confirmed by chemical methods and ECD calculations. Notably, compound 1 was found to be the first naphthoquinone diglycoside containing carboxylic acid and isopentenyl side chains isolated from a species in the genus Mitracarpus. Compounds 6-18 showed antibacterial activity against multiple Helicobacter pylori strains with MIC values ranging from 0.0625 to 64 μg/mL. Particularly, 1-hydroxybenzoisochromanquinone (17) and benzo[g]isoquinoline-5,10-dione (18), with MIC values of 0.0625 and 0.125 μg/mL, displayed 32-512-fold higher potencies than a positive control, metronidazole. Compound 18 also demonstrated high antibiofilm activity and killed biofilm-encased Helicobacter pylori cells more effectively than metronidazole.
Collapse
Affiliation(s)
- Mingming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ding Heng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaorong Su
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China
| | - Monday M Onakpa
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja 920001, Nigeria
| | - Yuefan Bai
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Baldé MA, Tuenter E, Traoré MS, Peeters L, Matheeussen A, Cos P, Caljon G, Vermeyen T, Herrebout W, Balde AM, Foubert K, Pieters L. Antiplasmodial Oleanane Triterpenoids from Terminalia albida Root Bark. JOURNAL OF NATURAL PRODUCTS 2021; 84:666-675. [PMID: 33667089 DOI: 10.1021/acs.jnatprod.0c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytochemical investigation of the n-BuOH extract of the roots of Terminalia albida Sc. Elliot (Combretaceae) led to the isolation and identification of 10 oleanane triterpenoids (1-10), among which six new compounds, i.e., albidanoside A (2), albidic acid A (4), albidinolic acid (5), albidienic acid (8), albidolic acid (9), and albidiolic acid (10), and two triterpenoid aglycones, i.e., albidic acid B (6) and albidic acid C (7), were isolated here for the first time from a natural source, along with two known compounds. The structures of these constituents were established by means of 1D and 2D NMR spectroscopy and ESI mass spectrometry. The isolated compounds were evaluated for their antiplasmodial and antimicrobial activity against the chloroquine-resistant strain Plasmodium falciparum K1, Candida albicans, and Staphylococcus aureus. Compounds 1-4, 6, 7, and 8 showed moderate antiplasmodial activity with IC50 values between 5 and 15 μM. None of the tested compounds were active against C. albicans or S. aureus. These findings emphasize the potential of T. albida as a source for discovery of new antiplasmodial compounds.
Collapse
Affiliation(s)
- Mamadou A Baldé
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Mohamed S Traoré
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, BP 1017, Conakry, Guinea
- Research and Valorization Center on Medicinal Plants Dubreka, BP 6411, Conakry, Guinea
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Tom Vermeyen
- MolSpec Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wouter Herrebout
- MolSpec Research Group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Aliou M Balde
- Department of Pharmacy, University Gamal Abdel Nasser of Conakry, BP 1017, Conakry, Guinea
- Research and Valorization Center on Medicinal Plants Dubreka, BP 6411, Conakry, Guinea
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
8
|
Xu MM, Zhou J, Zeng L, Xu J, Onakpa MM, Duan JA, Che CT, Bi H, Zhao M. Pimarane-derived diterpenoids with anti- Helicobacter pylori activity from the tuber of Icacina trichantha. Org Chem Front 2021. [DOI: 10.1039/d1qo00374g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two novel diterpenoids and ten known analogs were obtained from the tuber of Icacina trichantha. All compounds exhibited antibacterial activity against Helicobacter pylori strains with MIC values ranging from 8 to 64 μg mL−1.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Liping Zeng
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jingchen Xu
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Monday M. Onakpa
- Department of Veterinary Pharmacology and Toxicology
- University of Abuja
- Abuja 920001
- Nigeria
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Hongkai Bi
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| |
Collapse
|
9
|
Baker DA. Plants against Helicobacter pylori to combat resistance: An ethnopharmacological review. ACTA ACUST UNITED AC 2020; 26:e00470. [PMID: 32477900 PMCID: PMC7248673 DOI: 10.1016/j.btre.2020.e00470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
Worldwide, Helicobacter pylori (H. pylori) is regarded as the major etiological agent of peptic ulcer and gastric carcinoma. Claiming about 50 percent of the world population is infected with H. pylori while therapies for its eradication have failed because of many reasons including the acquired resistance against its antibiotics. Hence, the need to find new anti-H.pylori medications has become a hotspot with the urge of searching for alternative, more potent and safer inhibitors. In the recent drug technology scenario, medicinal plants are suggested as repositories for novel synthetic substances. Hitherto, is considered as ecofriendly, simple, more secure, easy, quick, and less toxic traditional treatment technique. This review is to highlight the anti-H. pylori medicinal plants, secondary metabolites and their mode of action with the aim of documenting such plants before they are effected by cultures and traditions that is expected as necessity.
Collapse
Affiliation(s)
- Doha Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Spósito L, Oda FB, Vieira JH, Carvalho FA, Dos Santos Ramos MA, de Castro RC, Crevelin EJ, Crotti AEM, Santos AG, da Silva PB, Chorilli M, Bauab TM. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:1-12. [PMID: 30594606 DOI: 10.1016/j.jep.2018.12.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The number of bacterial strains that are resistant to multiple conventional antimicrobial agents is increasing. In this context, natural products have been widely used as a strategy to treat diseases caused by bacteria. Infections by Helicobacter pylori have attracted attention because they are directly related to severe gastric medical conditions. Casearia sylvestris Swartz, popularly known as guaçatonga, is largely employed to treat gastric disorders in Brazilian folk medicine. This plant species has aroused much interest mainly because it displays anti-inflammatory activity and can act as an antiulcer agent. AIM OF THE STUDY To evaluate the in vitro and in vivo anti-H. pylori action of C. sylvestris leaf derivatives incorporated or not in a nanostructured drug delivery system. MATERIALS AND METHODS The essential oil (obtained by hydrodistillation) and ethanolic extract (obtained by maceration) were obtained from C. sylvestris leaves. The ethanolic extract was submitted to fractionation through solid phase extraction and column chromatography, to yield the ethanolic fractions. Hydrolyzed casearin J was achieved by submitting isolated casearin J to acid hydrolysis. The derivatives were chemically characterized by nuclear magnetic resonance (NMR), gas chromatography (GC), and gas chromatography-mass spectrometry (GC-MS) analyses. A nanostructured lipid system was used as drug delivery system. To assess the in vitro antibacterial activity of C. sylvestris leaf essential oil, ethanolic extract, and derivatives, microdilution, biofilm, and time-kill assays were performed against H. pylori ATCC 43504. Finally, the in vivo action was investigated by employing male Wistar rats experimentally infected with H. pylori. RESULTS Many C. sylvestris leaf derivatives presented significant in vitro activity against H. pylori. Among the derivatives, fraction 2 (F2) was the most effective. In vivo tests showed that both the ethanolic extract and F2 decreased the ulcerative lesion size, but only the ethanolic extract eradicated H. pylori from the gastric lesions. Incorporation of plant derivatives in nanostructured lipid system blunted the in vitro action, as demonstrated by the microdilution assay. However, this incorporation improved the ethanolic extract activity against biofilms. CONCLUSION C. sylvestris leaf derivatives are effective against H. pylori both in vitro and in vivo. According to phytochemical analyses, these derivatives are rich in terpenoids, which could be related to the anti-H. pylori action. Synergism could also underlie C. sylvestris efficacy judging from the fact that the sub-fractions and isolated compounds had lower activity than the extract. Incorporation in a nanostructured lipid system did not improve the activity of the compounds in our in vivo protocol.
Collapse
Affiliation(s)
- Larissa Spósito
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Bombarda Oda
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Júlia Hunger Vieira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Flávio Alexandre Carvalho
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | - Rogério Cardoso de Castro
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo José Crevelin
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters, USP, Ribeirão Preto, SP, Brazil
| | | | - André Gonzaga Santos
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
11
|
Pertuit D, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Lacaille-Dubois MA. A New Aromatic Compound from the Stem Bark of Terminalia catappa. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new aromatic compound 3,4,5-trimethoxyphenyl-1- O-(4-sulfo)-β-D-glucopyranoside (1), in addition to two triterpenoid saponins (chebuloside II, arjunoglucoside II), two triterpenes (arjunolic acid and 3-betulinic acid) and sitosterol-3- O-β-D-glucopyranoside have been isolated from the barks of Terminalia catappa. Their structures have been established on the basis of spectroscopic techniques (1D/2D NMR) and MS. Their cytotoxicity and anti-inflammatory activity, together with the antioxidant capacity of compound 1 were also evaluated.
Collapse
Affiliation(s)
- David Pertuit
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812–8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812–8582, Japan
| | - Stéphanie Delemasure
- Cohiro, UFR des Sciences de Santé, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Patrick Dutartre
- Cohiro, UFR des Sciences de Santé, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| |
Collapse
|
12
|
Nasrollahi V, Mirzaie-Asl A, Piri K, Nazeri S, Mehrabi R. The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra). PHYTOCHEMISTRY 2014; 103:32-37. [PMID: 24768283 PMCID: PMC7111703 DOI: 10.1016/j.phytochem.2014.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/17/2014] [Accepted: 03/06/2014] [Indexed: 05/04/2023]
Abstract
Glycyrrhiza glabra is an important medicinal plant throughout the world. Glycyrrhizin is a triterpenoid that is among the most important secondary metabolites produced by liquorice. Drought stress is proposed to enhance the levels of secondary metabolites. In this study, the effect of drought stress on the expression of important genes involved in the glycyrrhizin biosynthetic pathway was examined. Drought stress at the seedling stage was applied to 8-day-old plants using polyethylene glycol. Subsequently, the samples were collected 0, 4, 8 or 24 h post-treatment. At the adult plant stage, 10-month-old plants were subjected to drought stress by discontinuing irrigation. Subsequently, samples were collected at 2, 16 and 28 days after drought imposition (S(2d), S(16d) and S(28d), respectively). We performed semi-quantitative RT-PCR assays to evaluate the gene expression levels of sequalene synthase (SQS), β-amyrin synthase (bAS), lupeol synthase (LUS) and cycloartenol synthase (CAS) during stress. Finally, the glycyrrhizin content of stolons was determined via HPLC. The results revealed that due to osmotic stress, the gene expression levels of SQS and bAS were increased, whereas those of CAS were relatively unchanged at the seedling stage. At the adult plant stage, the expression levels of SQS and bAS were increased under drought stress conditions, whereas the gene expression level of CAS remained relatively constant. The glycyrrhizin content in stolons was increased only under severe drought stress conditions (S(28d)). Our results indicate that application of controlled drought stress up-regulates the expression of key genes involved in the biosynthesis of triterpenoid saponins and directly enhances the production of secondary metabolites, including glycyrrhizin, in liquorice plants.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Asghar Mirzaie-Asl
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran.
| | - Khosro Piri
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Sonbol Nazeri
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Rahim Mehrabi
- Cereal Research Dept., Seed and Plant Improvement Institute, Karaj, Islamic Republic of Iran
| |
Collapse
|
13
|
Lee HK, Song HE, Lee HB, Kim CS, Koketsu M, Thi My Ngan L, Ahn YJ. Growth inhibitory, bactericidal, and morphostructural effects of dehydrocostus lactone from Magnolia sieboldii Leaves on antibiotic-susceptible and -resistant strains of Helicobacter pylori. PLoS One 2014; 9:e95530. [PMID: 24747984 PMCID: PMC3991664 DOI: 10.1371/journal.pone.0095530] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/21/2014] [Indexed: 01/25/2023] Open
Abstract
Helicobacter pylori is associated with various diseases of the upper gastrointestinal tract, such as gastric inflammation and duodenal and gastric ulcers. The aim of the study was to assess anti-H. pylori effects of the sesquiterpene lactone dehydrocostus lactone (DCL) from Magnolia sieboldii leaves, compared to commercial pure DCL, two previously known sesquiterpene lactones (costunolide and parthenolide), (-)-epigallocatechin gallate, and four antibiotics. The antibacterial activity of natural DCL toward antibiotic-susceptible H. pylori ATCC 700392 and H. pylori ATCC 700824 strains (MIC, 4.9 and 4.4 mg/L) was similar to that of commercial DCL and was more effective than costunolide, parthenolide, and EGCG. The activity of DCL was slightly lower than that of metronidazole (MIC, 1.10 and 1.07 mg/L). The antibacterial activity of DCL was virtually identical toward susceptible and resistant strains, even though resistance to amoxicillin (MIC, 11.1 mg/L for PED 503G strain), clarithromycin (49.8 mg/L for PED 3582GA strain), metronidazole (21.6 mg/L for H. pylori ATCC 43504 strain; 71.1 mg/L for 221 strain), or tetracycline (14.2 mg/L for B strain) was observed. This finding indicates that DCL and the antibiotics do not share a common mode of action. The bactericidal activity of DCL toward H. pylori ATCC 43504 was not affected by pH values examined (4.0-7.0). DCL caused considerable conversion to coccoid form (94 versus 49% at 8 and 4 mg/L of DCL for 48 h). The Western blot analysis revealed that urease subunits (UreA and UreB) of H. pylori ATCC 43504 were not affected by 10 mM of DCL, whereas UreA monomer band completely disappeared at 0.1 mM of (-)-epigallocatechin gallate. Global efforts to reduce the level of antibiotics justify further studies on M. sieboldii leaf-derived materials containing DCL as potential antibacterial products or a lead molecule for the prevention or eradication of drug-resistant H. pylori.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ha Eun Song
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Haeng-Byung Lee
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Cheol-Soo Kim
- Halla Botanical Garden, Jeju City, Jeju, South Korea
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Gifu University, Gifu, Japan
| | - Luong Thi My Ngan
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
- * E-mail: (Y-JA); (LTMN)
| | - Young-Joon Ahn
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- * E-mail: (Y-JA); (LTMN)
| |
Collapse
|
14
|
Nontraditional therapies to treat Helicobacter pylori infection. J Microbiol 2014; 52:259-72. [PMID: 24682990 DOI: 10.1007/s12275-014-3603-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022]
Abstract
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.
Collapse
|
15
|
Ntie-Kang F, Lifongo LL, Simoben CV, Babiaka SB, Sippl W, Mbaze LM. The uniqueness and therapeutic value of natural products from West African medicinal plants, part II: terpenoids, geographical distribution and drug discovery. RSC Adv 2014. [DOI: 10.1039/c4ra04543b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review series, an attempt has been made to give indepth coverage of natural products derived from West African medicinal plants with diverse biological activities.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Lydia L. Lifongo
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Conrad V. Simoben
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Smith B. Babiaka
- Chemical and Bioactivity Information Centre
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea, Cameroon
| | - Wolfgang Sippl
- Department of Pharmaceutical Sciences
- Martin-Luther University of Halle-Wittenberg
- Halle, Germany
| | - Luc Meva'a Mbaze
- Department of Chemistry
- Faculty of Science
- University of Douala
- Douala, Cameroon
| |
Collapse
|
16
|
Zhao Y, Wang X, Wang H, Liu T, Xin Z. Two new noroleanane-type triterpene saponins from the methanol extract of Salicornia herbacea. Food Chem 2013; 151:101-9. [PMID: 24423508 DOI: 10.1016/j.foodchem.2013.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/23/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
Abstract
Two new noroleanane-type triterpene saponins, Salbige A (1) and Salbige B (2), have been isolated from the aerial parts of Salicornia herbacea together with five other known compounds, including echinocystic acid (3), gypsogenin (4), pheophorbide a (5), (13(2)S)-hydroxy-pheophorbide a (6) and (13(2)S)-hydro-pheophorbide-lactone a (7). The chemical structures of these compounds were elucidated by extensive spectroscopic analysis and on the basis of their chemical reactivity. This work represents the first recorded example of the isolation of these compounds from S. herbacea. Compounds 1 and 2 exhibited potent antiproliferative activities and high levels of selectivity towards A549 cancer cells, with IC50 values of 52.35 and 79.39 μM, respectively, whereas compound 5 showed high levels of inhibitory activity against A549 and HepG2 cancer cells with IC50 values of 6.15 and 17.56 μM, respectively. None of these compounds exhibited antioxidant activities except for compound 7, which showed weak antioxidant activity.
Collapse
Affiliation(s)
- Yuhui Zhao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomin Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianxing Liu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
17
|
Zhu L, Li B, Liu X, Meng X. Purification of Two Triterpenoids from Schisandra chinensis by Macroporous Resin Combined with High-Speed Counter-Current Chromatography. J Chromatogr Sci 2013; 52:1082-8. [DOI: 10.1093/chromsci/bmt168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Wang XY, Gao H, Zhang W, Li Y, Cheng G, Sun XL, Tang HF. Bioactive oleanane-type saponins from the rhizomes of Anemone taipaiensis. Bioorg Med Chem Lett 2013; 23:5714-20. [PMID: 23992864 DOI: 10.1016/j.bmcl.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/18/2013] [Accepted: 08/03/2013] [Indexed: 11/30/2022]
Abstract
Investigation of the n-BuOH extract of the rhizomes of Anemone taipaiensis led to the isolation of five new oleanane-type triterpenoid saponins (1-5), together with seven known saponins (6-12). Their structures were determined by the extensive use of (1)D and (2)D NMR experiments along with ESIMS analyses and acid hydrolysis. The aglycone of 1, 2 and 4 was determined as siaresinolic acid, which was reported in this genus for the first time. The cytotoxicities of the saponins 1-12, prosapogenins 4a, 5a, 10a-12a and sapogenins siaresinolic acid (SA), oleanolic acid (OA), hederagenin (HE) were evaluated against five human cancer cell lines, including HepG2, HL-60, A549, HeLa and U87MG. The monodesmosidic saponins 6-8, 5a, 10a-12a and sapogenins SA, OA, HE exhibited cytotoxic activity toward all cancer cell lines, with IC50 values ranging from 2.25 to 57.28 μM. Remarkably, the bisdesmosidic saponins 1-4 and 9 showed selective cytotoxicity against the U87MG cells.
Collapse
Affiliation(s)
- Xiao-Yang Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Oleanane-type saponins from Anemone taipaiensis and their cytotoxic activities. Fitoterapia 2013; 89:224-30. [PMID: 23774664 DOI: 10.1016/j.fitote.2013.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Phytochemical investigation of the n-BuOH extract of the rhizomes of Anemone taipaiensis led to the isolation of three new oleanane-type triterpenoid saponins (1-3), together with four known saponins (4-7). Their structures were elucidated on the basis of spectroscopic analysis and chemical derivatization. All the compounds were isolated for the first time from A. taipaiensis. The cytotoxicity of these compounds was evaluated in five human cancer cell lines including A549 (lung carcinoma), HeLa (cervical carcinoma), HepG2 (hepatocellular carcinoma), HL-60 (promyelocytic leukemia), and U87MG (glioblastoma). The monodesmosidic saponin 4 exhibited cytotoxic activity toward all cancer cell lines, with IC50 values ranging from 6.42 to 18.16 μM. In addition, the bisdesmosidic saponins 1 and 7 showed selective cytotoxicity against the U87MG cells.
Collapse
|
20
|
Augustin JM, Drok S, Shinoda T, Sanmiya K, Nielsen JK, Khakimov B, Olsen CE, Hansen EH, Kuzina V, Ekstrøm CT, Hauser T, Bak S. UDP-glycosyltransferases from the UGT73C subfamily in Barbarea vulgaris catalyze sapogenin 3-O-glucosylation in saponin-mediated insect resistance. PLANT PHYSIOLOGY 2012; 160:1881-95. [PMID: 23027665 PMCID: PMC3510118 DOI: 10.1104/pp.112.202747] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/30/2012] [Indexed: 05/18/2023]
Abstract
Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-β-d-Glc hederagenin strongly deterred feeding, while 3-O-β-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.
Collapse
|
21
|
Manguro LOA, Lemmen P, Hao P, Wong KC. Triterpene saponins of Maesa lanceolata stem wood. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 14:987-1001. [PMID: 23098176 DOI: 10.1080/10286020.2012.674302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phytochemical analysis of aqueous MeOH extract of Maesa lanceolata stem wood has led to the isolation of four new triterpene saponins characterized as 16α,21β-diacetoxy-22α-angeloyl-28-hydroxyolean-12-ene 3-O-[α-rhamnopyranosyl-(1″″ → 6‴)-β-glucopyranosyl-(1‴ → 3')][β-glucopyranosyl-(1″ → 2')]-β-glucuronopyranoside (1), 16α-acetoxy-21β-hydroxy-22α-angeloyl-13β,28-oxydoolean-28α-ol 3-O-[α-rhamnopyranosyl-(1″″ → 6‴)-β-glucopyranosyl-(1‴ → 4')][β-glucopyranosyl-(1″ → 2')]-α-arabinopyranoside (2), 16α-acetoxy-21β,22α-diangeloyl-13β,28-epoxyoleanane 3-O-[α-rhamnopyranosyl-(1″″ → 6‴)-β-glucopyranosyl-(1‴ → 4')][β-glucopyranosyl-(1″ → 2')]-β-xylopyranoside (3), and 16α,22α-diacetoxy-13β,28-oxydoolean-28α-ol 3-O-[β-glucopyranosyl-(1″ → 2')][β-glucopyranosyl-(1‴ → 3')]-β-glucuronopyranoside (4), together with the known compounds β-acetylamyrin, physcion, emodin, chrysophanol, ursolic acid, 16α-hydroxy-12-oleanene 3-O-glucoside, β-amyrin, sitosterol 3-O-β-glucoside, stigmasterol, and 3β,28-dihydroxyolean-12-ene. Their structural elucidation was accomplished by homo- and heteronuclear 2D NMR technique as well as comparison with data from known compounds. The in vitro antibacterial activity of the aqueous MeOH extract was also investigated and zones of inhibition ranging from 32 ± 1.1 to 14 ± 0.2 mm were observed. Among the isolates, compound 1 was the most active with an minimum inhibitory concentration value of 25 μg/ml against Staphylococcus aureus.
Collapse
|
22
|
QUISPE-FUENTES ISSIS, VEGA-GÁLVEZ ANTONIO, MIRANDA MARGARITA, LEMUS-MONDACA ROBERTO, LOZANO MARIBEL, AH-HEN KONG. A KINETIC APPROACH TO SAPONIN EXTRACTION DURING WASHING OF QUINOA (CHENOPODIUM QUINOAWILLD.) SEEDS. J FOOD PROCESS ENG 2012. [DOI: 10.1111/j.1745-4530.2012.00673.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. PHYTOCHEMISTRY 2011; 72:435-57. [PMID: 21333312 DOI: 10.1016/j.phytochem.2011.01.015] [Citation(s) in RCA: 433] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 05/19/2023]
Abstract
Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny. This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery.
Collapse
Affiliation(s)
- Jörg M Augustin
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Center for Synthetic Biology, VKR Research Centre Pro-Active Plants, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
24
|
Wang YC, Li WY, Wu DC, Wang JJ, Wu CH, Liao JJ, Lin CK. In Vitro Activity of 2-methoxy-1,4-naphthoquinone and Stigmasta-7,22-diene-3β-ol from Impatiens balsamina L. against Multiple Antibiotic-Resistant Helicobacter pylori. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:704721. [PMID: 19773391 PMCID: PMC3137247 DOI: 10.1093/ecam/nep147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Infection with Helicobacter pylori is strongly associated with gastric cancer and gastric adenocarcinoma. WHO classified H. pylori as a group 1 carcinogen in 1994. Impatiens balsamina L. has been used as indigenous medicine in Asia for the treatment of rheumatism, fractures and fingernail inflammation. In this study, we isolated anti-H. pylori compounds from this plant and investigated their anti- and bactericidal activity. Compounds of 2-methoxy-1,4-naphthoquinone (MeONQ) and stigmasta-7,22-diene-3β-ol (spinasterol) were isolated from the pods and roots/stems/leaves of I. balsamina L., respectively. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for MeONQ were in the ranges of 0.156–0.625 and 0.313–0.625 μg mL−1, respectively, and in the ranges of 20–80 μg mL−1 both of MICs and MBCs for spinasterol against antibiotic (clarithromycin, metronidazole and levofloxacin) resistant H. pylori. Notably, the activity of MeONQ was equivalent to that of amoxicillin (AMX). The bactericidal H. pylori action of MeONQ was dose-dependent. Furthermore, the activity of MeONQ was not influenced by the environmental pH values (4–8) and demonstrated good thermal (121°C for 15 min) stability. MeONQ abounds in the I. balsamina L. pod at the level of 4.39% (w/w db). In conclusion, MeONQ exhibits strong potential to be developed as a candidate agent for the eradication of H. pylori infection.
Collapse
Affiliation(s)
- Yuan-Chuen Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Ponou BK, Teponno RB, Ricciutelli M, Quassinti L, Bramucci M, Lupidi G, Barboni L, Tapondjou LA. Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorensis A. Chev. PHYTOCHEMISTRY 2010; 71:2108-2115. [PMID: 20850160 DOI: 10.1016/j.phytochem.2010.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
Three saponins, including two dimeric triterpenoid glucosides possessing an unusual skeleton, ivorenosides A and B, and a monomeric triterpenoid saponin (ivorenoside C), together with the known sericoside, were isolated from the bark of Terminalia ivorensis. Their structures were established on the basis of 1D and 2D NMR data, chemical methods and tandem MS-MS spectrometry as a dimer of β-D-glucopyranosyl-18,19-seco-2α,3β,19,19,24-pentahydroxyolean-12-en-28-oate and β-D-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside A, 1), a dimer of β-D-glucopyranosyl-18,19-seco-24-carboxyl-2α,3β,19,19-tetrahydroxyolean-12-en-28-oate and β-D-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside B, 2) and β-D-glucopyranosyl-2α,3β,19β,24-tetrahydroxyolean-11-oxo-olean-12-en-28-oate (ivorenoside C, 3). Ivorenosides A and B are the first examples in nature of dimeric triterpenoid saponins with a 18,19-seco E ring of one of the two units. These isolated compounds were evaluated for their antioxidant properties and further for their cytotoxic activity against four human cancer cell lines. Ivorenoside B and C exhibited scavenging activity against DPPH and ABTS(+) radicals with IC(50) values comparable with that of the standard drug Trolox and ivorenoside A showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC(50) values of 3.96 and 3.43 μM, respectively.
Collapse
|
26
|
Dinda B, Debnath S, Mohanta BC, Harigaya Y. Naturally Occurring Triterpenoid Saponins. Chem Biodivers 2010; 7:2327-580. [DOI: 10.1002/cbdv.200800070] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wu XP, Han CR, Chen GY, Yuan Y, Xie JY. Cytotoxic Pentacyclic Triterpenoids from Combretum oliviforme. Nat Prod Commun 2010. [DOI: 10.1177/1934578x1000500708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four pentacyclic triterpenoids were obtained from the leaves of Combretum oliviforme Chao, 3β–hydroxyolean–12–en–28–oic acid (1), 23– O–[α-L-(4′-acetylrhamnopyranosyl)]–imberbic acid (2), 23–acetoxy–3β–acetylimberbic acid–29–methyl ester (3), and 23– O–[α-L-rhamnopyranosyl]-1,3β-diacetylimberbic acid (4). Hydrolysis of 2 and 4 gave 23–hydroxyimberbic acid (5). The structures were elucidated by NMR, electrospray ionization mass spectrometry (ESIMS) and comparison with literature data. Compounds 1, 2, 3 and 4 were isolated from C. oliviforme Chao leaves for the first time and 3 for the first time from any natural source. All compounds were tested in vitro for their activity against human lung cancer cell line SPC-A-1, human erythroleukaemic line K562 and human gastric cancer SGC-7901 cells. Compounds 1, 3, 4 and 5 had cytotoxic activity for the three cell lines with IC50 0.69-69.68 μM. These results suggest that the presence of acetyl group in the triterpene aglycone structure plays an essential role for cytotoxic activity.
Collapse
Affiliation(s)
- Xiao-Peng Wu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, China 571158
| | - Chang-Ri Han
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, China 571158
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, China 571158
| | - Yuan Yuan
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, China 571158
| | - Jian-Ying Xie
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, China 571158
| |
Collapse
|
28
|
Chichioco-Hernandez CL, Paguigan ND. Phytochemical profile of selected Philippine plants used to treat asthma. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0975-3575(10)80092-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Shimoda K, Ishimoto H, Kamiue T, Kobayashi T, Hamada H, Hamada H. Glycosylation of sesamol by cultured plant cells. PHYTOCHEMISTRY 2009; 70:207-10. [PMID: 19152951 DOI: 10.1016/j.phytochem.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/01/2008] [Indexed: 05/27/2023]
Abstract
The glycosylation of sesamol was investigated using cultured cells of Nicotiana tabacum and Eucalyptus perriniana. The cultured suspension cells of N. tabacum converted sesamol into its beta-glucoside (7%) as well as the disaccharide, sesamyl 6-O-(beta-D-glucopyranosyl)-beta-D-glucopyranoside (beta-gentiobioside, 30%). On the other hand, sesamyl 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside (beta-rutinoside, 56%), together with the beta-glucoside (3%), was produced when sesamol was incubated with suspension cells of E. perriniana.
Collapse
Affiliation(s)
- Kei Shimoda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Lannang AM, Louh GN, Lontsi D, Specht S, Sarite SR, Flörke U, Hussain H, Hoerauf A, Krohn K. Antimalarial compounds from the root bark of Garcinia polyantha Olv. J Antibiot (Tokyo) 2008; 61:518-23. [PMID: 18997392 DOI: 10.1038/ja.2008.70] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eight compounds were isolated from the roots of Garcinia polyantha, and identified. Two of them, the xanthone garciniaxanthone I (1), and the triterpene, named garcinane (2), are reported as new natural products. The structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectroscopic studies. The structure of compound 1 was confirmed by X-ray crystallography. Among the remaining six known compounds, three were known xanthones [smeathxanthone A (3), smeathxanthone B (4), and chefouxanthone (5)], one benzophenone [isoxanthochymol (6)], one triterpene [magnificol], and one sterol [beta-sitosterol]. The in vitro antimalarial activity of isoxanthochymol (6) against Plasmodium falciparum shows strong chemosuppression of parasitic growth.
Collapse
|
31
|
Abstract
This review covers the isolation and structure determination of triterpenoids including squalene derivatives, protostanes, lanostanes, holostanes, cycloartanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, isomalabaricanes and saponins. The literature from January 2005 to December 2006 is reviewed and 478 references are cited.
Collapse
|
32
|
Shimoda K, Hamada H, Hamada H. Glycosylation of hesperetin by plant cell cultures. PHYTOCHEMISTRY 2008; 69:1135-1140. [PMID: 18160083 DOI: 10.1016/j.phytochem.2007.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/21/2007] [Accepted: 11/14/2007] [Indexed: 05/25/2023]
Abstract
The biotransformation of hesperetin by cultured cells of Ipomoea batatas and Eucalyptus perriniana was investigated. Three glycosides, hesperetin 3'-O-beta-D-glucopyranoside (33 microg/g fr. wt of cells), hesperetin 3',7-O-beta-D-diglucopyranoside (217 microg/g fr. wt of cells), and hesperetin 7-O-[6-O-(beta-D-glucopyranosyl)]-beta-d-glucopyranoside (beta-gentiobioside, 22 microg/g fr. wt of cells), together with three hitherto known glycosides, hesperetin 5-O-beta-d-glucopyranoside (23 microg/g fr. wt of cells), hesperetin 7-O-beta-D-glucopyranoside (57 microg/g fr. wt of cells), and hesperetin 7-O-[6-O-(alpha-L-rhamnopyranosyl)]-beta-D-glucopyranoside (beta-rutinoside, hesperidin, 13 microg/g fr. wt of cells), were isolated from cultured suspension cells of E. perriniana that had been treated with hesperetin. Oligosaccharide chains were regioselectively formed at the C-7 position of hesperetin to afford beta-gentiobioside and beta-rutinoside. On the other hand, cultured I. batatas cells converted hesperetin into hesperetin 3'-O-beta-D-glucopyranoside (60 microg/g fr. wt of cells), hesperetin 5-O-beta-D-glucopyranoside (23 microg/g fr. wt of cells), and hesperetin 7-O-beta-D-glucopyranoside (110 microg/g fr. wt of cells).
Collapse
Affiliation(s)
- Kei Shimoda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Hasama-machi, Oita 879-5593, Japan
| | | | | |
Collapse
|
33
|
Germanò MP, D'Angelo V, Biasini T, Miano TC, Braca A, De Leo M, De Pasquale R, Sanogo R. Anti-ulcer, anti-inflammatory and antioxidant activities of the n-butanol fraction from Pteleopsis suberosa stem bark. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:271-275. [PMID: 18023308 DOI: 10.1016/j.jep.2007.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 09/25/2007] [Accepted: 10/01/2007] [Indexed: 05/25/2023]
Abstract
Pteleopsis suberosa Engl. et Diels (Combretaceae) is a tree distributed in many African countries. The decoction from the stem bark is orally administered for the treatment of gastric ulcers in traditional medicine. Previous pharmacological studies reported the anti-ulcer activity of extracts from P. suberosa stem bark. In the present study, the anti-ulcer and anti-inflammatory effects of the n-butanol fraction (RBuOH) obtained from a methanol extract of P. suberosa bark were investigated on ethanol-induced gastric ulcers in rats and carrageenan-induced paw oedema in mice. Misoprostol (0.50 mg/kg, p.o.) and indomethacin (8.00 mg/kg, p.o.) were used as positive controls for anti-ulcer and anti-inflammatory activities, respectively. Results showed that RBuOH treatment significantly reduced the incidence of gastric lesions (50 mg/kg, P<0.05; 100 and 200 mg/kg, P<0.01) and restored the decreased levels of total sulfhydryl groups (T-SH) and non-protein sulfhydryl groups (NP-SH) (50, 100 mg/kg, P<0.05; 200 mg/kg, P<0.01) in the stomach homogenate. Moreover, RBuOH treatment attenuated MDA levels as index of lipid peroxidation in gastric mucosa. Administration of RBuOH at the same dosage (50, 100 and 200 mg/kg) reduced significantly (P<0.01) carrageenan-induced paw oedema in dose-dependent manner (from 42.81% to 87.81% inhibition, 5h after carrageenan injection). The anti-inflammatory effect of RBuOH at 200 mg/kg was comparable with that of indomethacin. Finally, RBuOH proved to possess elevated free radical scavenger capacity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (IC(50) 23.48 microg/ml) which may contribute to the observed anti-ulcer and anti-inflammatory activities.
Collapse
Affiliation(s)
- M P Germanò
- Pharmaco-Biological Department, School of Pharmacy, University of Messina, Vill. SS. Annunziata, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|