1
|
Zimmerman RM, Hernandez EJ, Yandell M, Tristani-Firouzi M, Silver RM, Grobman W, Haas D, Saade G, Steller J, Blue NR. AI-based analysis of fetal growth restriction in a prospective obstetric cohort quantifies compound risks for perinatal morbidity and mortality and identifies previously unrecognized high risk clinical scenarios. BMC Pregnancy Childbirth 2025; 25:80. [PMID: 39881241 PMCID: PMC11780823 DOI: 10.1186/s12884-024-07095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR. METHODS Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not. We also sought to identify context-specific risk relationships among inter-related variables in FGR. Performance was assessed as area under the receiver-operating characteristics curve (AUC). RESULTS Feature selection identified the 16 most informative variables, which yielded a PGM with good overall performance in the validation cohort (AUC 0.83, 95% CI 0.79-0.87), including among "N of 1" unique scenarios (AUC 0.81, 0.72-0.90). Using the PGM, we identified FGR scenarios with a risk of perinatal morbidity no different from that of the cohort background (e.g. female fetus, estimated fetal weight (EFW) 3-9th percentile, no preexisting diabetes, no progesterone use; RR 0.9, 95% CI 0.7-1.1) alongside others that conferred a nearly 10-fold higher risk (female fetus, EFW 3-9th percentile, maternal preexisting diabetes, progesterone use; RR 9.8, 7.5-11.6). This led to the recognition of a PGM-identified latent interaction of fetal sex with preexisting diabetes, wherein the typical protective effect of female fetal sex was reversed in the presence of maternal diabetes. CONCLUSIONS PGMs are able to capture and quantify context-specific risk relationships in FGR and identify latent variable interactions that are associated with large differences in risk. FGR scenarios that are separated by nearly 10-fold perinatal morbidity risk would be managed similarly under current FGR clinical guidelines, highlighting the need for more precise approaches to risk estimation in FGR.
Collapse
Affiliation(s)
- Raquel M Zimmerman
- Department of Biomedical Informatics, University of Utah Health, Salt Lake City, UT, USA
| | - Edgar J Hernandez
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah Health, Salt Lake City, UT, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah Health, Salt Lake City, UT, USA
| | - Martin Tristani-Firouzi
- Department of Pediatrics, Division of Pediatric Cardiology, University of Utah Health, Salt Lake City, UT, USA
| | - Robert M Silver
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Utah Health, 30 N. Mario Capecchi Dr., Level 5 South, Salt Lake City, UT, 84132, USA
| | - William Grobman
- Department of Obstetrics and Gynecology, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - David Haas
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jonathan Steller
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, University of California, Irvine, Orange, CA, USA
| | - Nathan R Blue
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Utah Health, 30 N. Mario Capecchi Dr., Level 5 South, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
2
|
Zimmerman RM, Hernandez EJ, Yandell M, Tristani-Firouzi M, Silver RM, Grobman W, Haas D, Saade G, Steller J, Blue NR. AI-based analysis of fetal growth restriction in a prospective obstetric cohort quantifies compound risks for perinatal morbidity and mortality and identifies previously unrecognized high risk clinical scenarios. RESEARCH SQUARE 2024:rs.3.rs-5126218. [PMID: 39764132 PMCID: PMC11702817 DOI: 10.21203/rs.3.rs-5126218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Background Fetal growth restriction (FGR) is a leading risk factor for stillbirth, yet the diagnosis of FGR confers considerable prognostic uncertainty, as most infants with FGR do not experience any morbidity. Our objective was to use data from a large, deeply phenotyped observational obstetric cohort to develop a probabilistic graphical model (PGM), a type of "explainable artificial intelligence (AI)", as a potential framework to better understand how interrelated variables contribute to perinatal morbidity risk in FGR. Methods Using data from 9,558 pregnancies delivered at ≥ 20 weeks with available outcome data, we derived and validated a PGM using randomly selected sub-cohorts of 80% (n = 7645) and 20% (n = 1,912), respectively, to discriminate cases of FGR resulting in composite perinatal morbidity from those that did not. We also sought to identify context-specific risk relationships among inter-related variables in FGR. Performance was assessed as area under the receiver-operating characteristics curve (AUC). Results Feature selection identified the 16 most informative variables, which yielded a PGM with good overall performance in the validation cohort (AUC 0.83, 95% CI 0.79-0.87), including among "N of 1" unique scenarios (AUC 0.81, 0.72-0.90). Using the PGM, we identified FGR scenarios with a risk of perinatal morbidity no different from that of the cohort background (e.g. female fetus, estimated fetal weight (EFW) 3-9th percentile, no preexisting diabetes, no progesterone use; RR 0.9, 95% CI 0.7-1.1) alongside others that conferred a nearly 10-fold higher risk (female fetus, EFW 3-9th percentile, maternal preexisting diabetes, progesterone use; RR 9.8, 7.5-11.6). This led to the recognition of a PGM-identified latent interaction of fetal sex with preexisting diabetes, wherein the typical protective effect of female fetal sex was reversed in the presence of maternal diabetes. Conclusions PGMs are able to capture and quantify context-specific risk relationships in FGR and identify latent variable interactions that are associated with large differences in risk. FGR scenarios that are separated by nearly 10-fold perinatal morbidity risk would be managed similarly under current FGR clinical guidelines, highlighting the need for more precise approaches to risk estimation in FGR.
Collapse
|
3
|
Zhou J, Teng Y, Ouyang J, Wu P, Tong J, Gao G, Yan S, Tao F, Huang K. Associations of Placental Inflammation and Oxidative Stress Biomarkers with Glucolipid Metabolism in Children: A Birth Cohort Study in China. J Am Heart Assoc 2024; 13:e035754. [PMID: 39206740 PMCID: PMC11646502 DOI: 10.1161/jaha.124.035754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The maternal intrauterine immune environment may affect offspring long-term health. We aimed to investigate the association between the intrauterine placental immunological milieu and glycolipid metabolic health in children. METHODS AND RESULTS This study enrolled 1803 mother-child pairs from the Ma'anshan birth cohort (2013-2014). Placental mRNA expression of inflammatory cytokines (interleukin-1β [IL-1β], IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-α, IL-4, IL-6, IL-8, C-reactive protein, and interferon-γ) and oxidative stress biomarkers (heme oxygenase-1, hypoxia-inducible factor-1alpha, and glucose-related protein 78) was quantified using real-time quantitative polymerase chain reaction. Fasting blood glucose, insulin, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol were assessed at 5 to 6 years old. Statistical analyses included multiple linear regression, binary logistic regression, restricted cubic spline model, and the Bayesian kernel machine regression model. Placental inflammatory cytokines (IL-1β, monocyte chemoattractant protein-1, C-reactive protein, IL-6, IL-8, IL-10) and oxidative stress biomarkers (heme oxygenase-1, hypoxia-inducible factor-1alpha, glucose-related protein 78) showed positive associations with children's fasting blood glucose levels. Heme oxygenase-1 and glucose-related protein 78 exhibited negative correlations with children's fasting insulin levels. Elevated IL-6, heme oxygenase-1, hypoxia-inducible factor-1alpha, and glucose-related protein 78 were associated with increased risk of prediabetes in children. Overall upregulation of placental proinflammatory cytokines and oxidative stress factors mRNA expression correlated with higher prediabetes risk in children. Bayesian kernel machine regression analysis indicated a joint positive effect of the 12 placental inflammation and oxidative stress mixtures on children's risk of high fasting blood glucose. CONCLUSIONS This exploratory study underscores significant correlations between maternal intrauterine placental inflammation, oxidative stress markers, and offspring fasting blood glucose and insulin levels. These findings highlight the potential role of intrauterine holistic immunity in shaping offspring glucose metabolism health.
Collapse
Affiliation(s)
- Jixing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Yuzhu Teng
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Jiajun Ouyang
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Penggui Wu
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Guopeng Gao
- Maternal and Child Health Care Center of Ma’anshanAnhuiChina
| | - Shuangqin Yan
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Maternal and Child Health Care Center of Ma’anshanAnhuiChina
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
- Key Laboratory of Population Health Across Life Cycle (AHMU), MOEHefeiChina
- NHC Key Laboratory of study on abnormal gametes and reproductive tractHefeiChina
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life CourseHefeiChina
| |
Collapse
|
4
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
5
|
Ma D, Ma J, Zhao C, Tai W. Reasons why women are more likely to develop primary biliary cholangitis. Heliyon 2024; 10:e25634. [PMID: 38384574 PMCID: PMC10878884 DOI: 10.1016/j.heliyon.2024.e25634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease of biliary stasis in which immune factors cause the gradual destruction of small bile ducts, biliary stasis, and eventually the development of liver fibrosis, cirrhosis, and even liver failure. One of the main characteristics of PBC is that it primarily affects middle-aged women, but the precise cause is still unknown. This article analyzes the unique causes and mechanisms of the female predominance of PBC and summarizes the potential causes.The female domination of PBC is reported to be primarily caused by sex hormones, environmental circumstances, and epigenetic changes, each of which has a different subtle impact on patients' gender disparities.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunmei Zhao
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Cissé YM, Montgomery KR, Zierden HC, Hill EM, Kane PJ, Huang W, Kane MA, Bale TL. Maternal preconception stress produces sex-specific effects at the maternal:fetal interface to impact offspring development and phenotypic outcomes†. Biol Reprod 2024; 110:339-354. [PMID: 37971364 PMCID: PMC10873277 DOI: 10.1093/biolre/ioad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen R Montgomery
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah C Zierden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Hill
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Paula TDMDE, Cardoso LC, Felicioni F, Caldeira-Brant AL, Santos TG, Castro-Oliveira H, Menezes GB, Bloise E, Chiarini-Garcia H, de Almeida FRCL. Maternal chronic caffeine intake impairs fertility, placental vascularization and fetal development in mice. Reprod Toxicol 2023; 121:108471. [PMID: 37717671 DOI: 10.1016/j.reprotox.2023.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Caffeine is commonly consumed by pregnant women to avoid fatigue or as a habit. However, it is not clearly determined its side effects to the conceptuses. This study evaluated placental morphofunctional alterations after maternal chronic caffeine intake and the effects on fetal growth. Female Swiss mice received, via gavage, caffeine doses (either 60, 120 or 240 mg/kg/day) seven days before mating until gestational days-(GD) 11.5 or 17.5. Fetal biometrical parameters were assessed, and placentae were either submitted to histomorphometrical or molecular evaluation of angiogenesis (placental growth factor-1[PlGF-1]), apoptosis (Caspase-3) and proliferation (Ki-67) markers (evaluated in Swiss dams) and to intravital microscopy (evaluated in C57BL/6 dams). Caffeine exposed fetuses exhibited intrauterine growth restriction in a sex-dependent manner, with greater commitment of female fetuses (P < 0.05). In addition, placentae from dams that received 120 mg/kg/day showed less irrigation by maternal blood and greater development of fetal vasculature, characterized by higher number of larger vessels (P < 0.05). Although no effects on apoptosis (Caspase-3) and angiogenesis (PlGF-1) were observed, dams treated with 60 mg/kg/day showed greater placental cell proliferation (Ki-67 staining) at GD 11.5 (P < 0.05). The group treated with 240 mg/kg/day exhibited only one pregnant dam for each gestational age, suggesting that this high caffeine consumption may compromise fertility. Taken together, even in the doses currently ingested by many pregnant women, caffeine has detrimental effects on placental vasculature and fetal development in mice. Therefore, our results strongly suggest that caffeine consumption in human pregnancies greater than the recommended doses should be avoided.
Collapse
Affiliation(s)
- Thais de Merici Domingues E Paula
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Carvalho Cardoso
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Felicioni
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andre Lucas Caldeira-Brant
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thais Garcia Santos
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hortencia Castro-Oliveira
- Center of Gastrointestinal Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Batista Menezes
- Center of Gastrointestinal Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enrrico Bloise
- Laboratory of Molecular Pathogenesis, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Helio Chiarini-Garcia
- Laboratory of Structural Biology and Reproduction, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
8
|
Baines KJ, West RC. Sex differences in innate and adaptive immunity impact fetal, placental, and maternal health†. Biol Reprod 2023; 109:256-270. [PMID: 37418168 DOI: 10.1093/biolre/ioad072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
The differences between males and females begin shortly after birth, continue throughout prenatal development, and eventually extend into childhood and adult life. Male embryos and fetuses prioritize proliferation and growth, often at the expense of the fetoplacental energy reserves. This singular focus on growth over adaptability leaves male fetuses and neonates vulnerable to adverse outcomes during pregnancy and birth and can have lasting impacts throughout life. Beyond this prioritization of growth, male placentas and fetuses also respond to infection and inflammation differently than female counterparts. Pregnancies carrying female fetuses have a more regulatory immune response, whereas pregnancies carrying male fetuses have a stronger inflammatory response. These differences can be seen as early as the innate immune response with differences in cytokine and chemokine signaling. The sexual dimorphism in immunity then continues into the adaptive immune response with differences in T-cell biology and antibody production and transfer. As it appears that these sex-specific differences are amplified in pathologic pregnancies, it stands to reason that differences in the placental, fetal, and maternal immune responses in pregnancy contribute to increased male perinatal morbidity and mortality. In this review, we will describe the genetic and hormonal contributions to the sexual dimorphism of fetal and placental immunity. We will also discuss current research efforts to describe the sex-specific differences of the maternal-fetal interface and how it impacts fetal and maternal health.
Collapse
Affiliation(s)
- Kelly J Baines
- Anatomy, Physiology, Pharmacology Department, Auburn University, Auburn, AL 36849, USA
| | - Rachel C West
- Anatomy, Physiology, Pharmacology Department, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol 2023; 601:1287-1306. [PMID: 36849131 DOI: 10.1113/jp284139] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are associated with insulin resistance and health risks for mother and offspring. Obesity is also characterized by low-grade inflammation, which in turn, impacts insulin sensitivity. The placenta secretes inflammatory cytokines and hormones that influence maternal glucose and insulin handling. However, little is known about the effect of maternal obesity, GDM and their interaction, on placental morphology, hormones and inflammatory cytokines. In a South African cohort of non-obese and obese pregnant women with and without GDM, this study examined placental morphology using stereology, placental hormone and cytokine expression using real-time PCR, western blotting and immunohistochemistry, and circulating TNFα and IL-6 concentrations using ELISA. Placental expression of endocrine and growth factor genes was not altered by obesity or GDM. However, LEPTIN gene expression was diminished, syncytiotrophoblast TNFα immunostaining elevated and stromal and fetal vessel IL-6 staining reduced in the placenta of obese women in a manner that was partly influenced by GDM status. Placental TNFα protein abundance and maternal circulating TNFα concentrations were reduced in GDM. Both maternal obesity and, to a lesser extent, GDM were accompanied by specific changes in placental morphometry. Maternal blood pressure and weight gain and infant ponderal index were also modified by obesity and/or GDM. Thus, obesity and GDM have specific impacts on placental morphology and endocrine and inflammatory states that may relate to pregnancy outcomes. These findings may contribute to developing placenta-targeted treatments that improve mother and offspring outcomes, which is particularly relevant given increasing rates of obesity and GDM worldwide. KEY POINTS: Rates of maternal obesity and gestational diabetes (GDM) are increasing worldwide, including in low-middle income countries (LMIC). Despite this, much of the work in the field is conducted in higher-income countries. In a well-characterised cohort of South African women, this study shows that obesity and GDM have specific impacts on placental structure, hormone production and inflammatory profile. Moreover, such placental changes were associated with pregnancy and neonatal outcomes in women who were obese and/or with GDM. The identification of specific changes in the placenta may help in the design of diagnostic and therapeutic approaches to improve pregnancy and neonatal outcomes with particular significant benefit in LMICs.
Collapse
Affiliation(s)
- Ezekiel Musa
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, Kaduna State University, Kaduna, Nigeria
| | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Naomi Levitt
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mushi Matjila
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Ferraz T, Benton SJ, Zareef I, Aribaloye O, Bloise E, Connor KL. Impact of Co-Occurrence of Obesity and SARS-CoV-2 Infection during Pregnancy on Placental Pathologies and Adverse Birth Outcomes: A Systematic Review and Narrative Synthesis. Pathogens 2023; 12:pathogens12040524. [PMID: 37111410 PMCID: PMC10140965 DOI: 10.3390/pathogens12040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Obesity is a risk factor for severe COVID-19 disease during pregnancy. We hypothesized that the co-occurrence of high maternal body mass index (BMI) and gestational SARS-CoV-2 infection are detrimental to fetoplacental development. We conducted a systematic review following PRISMA/SWiM guidelines and 13 studies were eligible. In the case series studies (n = 7), the most frequent placental lesions reported in SARS-CoV-2(+) pregnancies with high maternal BMI were chronic inflammation (71.4%, 5/7 studies), fetal vascular malperfusion (FVM) (71.4%, 5/7 studies), maternal vascular malperfusion (MVM) (85.7%, 6/7 studies) and fibrinoids (100%, 7/7 studies). In the cohort studies (n = 4), three studies reported higher rates of chronic inflammation, MVM, FVM and fibrinoids in SARS-CoV-2(+) pregnancies with high maternal BMI (72%, n = 107/149; mean BMI of 30 kg/m2) compared to SARS-CoV-2(−) pregnancies with high BMI (7.4%, n = 10/135). In the fourth cohort study, common lesions observed in placentae from SARS-CoV-2(+) pregnancies with high BMI (n = 187 pregnancies; mean BMI of 30 kg/m2) were chronic inflammation (99%, 186/187), MVM (40%, n = 74/187) and FVM (26%, n = 48/187). BMI and SARS-CoV-2 infection had no effect on birth anthropometry. SARS-CoV-2 infection during pregnancy associates with increased prevalence of placental pathologies, and high BMI in these pregnancies could further affect fetoplacental trajectories.
Collapse
Affiliation(s)
- Thaina Ferraz
- Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Israa Zareef
- Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Enrrico Bloise
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Kristin L. Connor
- Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: ; Tel.: +1-613-520-2600 (ext. 4202)
| |
Collapse
|
12
|
Sferruzzi‐Perri AN, Lopez‐Tello J, Salazar‐Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp Physiol 2023; 108:371-397. [PMID: 36484327 PMCID: PMC10103877 DOI: 10.1113/ep090442] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes. ABSTRACT The placenta is vital for mammalian development and a key determinant of life-long health. It is the interface between the mother and fetus and is responsible for transporting the nutrients and oxygen a fetus needs to develop and grow. Alterations in placental formation and function, therefore, have consequences for fetal growth and birthweight, which in turn determine perinatal survival and risk of non-communicable diseases for the offspring in later postnatal life. However, the placenta is not a static organ. As this review summarizes, research from multiple species has demonstrated that placental formation and function alter developmentally to the needs of the fetus for substrates for growth during normal gestation, as well as when there is greater competition for substrates in polytocous species and monotocous species with multiple gestations. The placenta also adapts in response to the gestational environment, integrating information about the ability of the mother to provide nutrients and oxygen with the needs of the fetus in that prevailing environment. In particular, placental structure (e.g. vascularity, surface area, blood flow, diffusion distance) and transport capacity (e.g. nutrient transporter levels and activity) respond to suboptimal gestational environments, namely malnutrition, obesity, hypoxia and maternal ageing. Mechanisms mediating developmentally and environmentally induced homeostatic responses of the placenta that help support normal fetal growth include imprinted genes, signalling pathways, subcellular constituents and fetal sexomes. Identification of these placental strategies may inform the development of therapies for complicated human pregnancies and advance understanding of the pathways underlying poor fetal outcomes and their consequences for health and disease risk.
Collapse
Affiliation(s)
- Amanda Nancy Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jorge Lopez‐Tello
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Esteban Salazar‐Petres
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Facultad de CienciasDepartamento de Ciencias Básicas, Universidad Santo TomásValdiviaChile
| |
Collapse
|
13
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
14
|
Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int J Mol Sci 2022; 23:ijms232314574. [PMID: 36498901 PMCID: PMC9738067 DOI: 10.3390/ijms232314574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-6 (IL-6) is an acknowledged inflammatory cytokine with a pleiotropic action, mediating innate and adaptive immunity and multiple physiological processes, including protective and regenerative ones. IL-8 is a pro-inflammatory CXC chemokine with a primary function in attracting and activating neutrophils, but also implicated in a variety of other cellular processes. These two ILs are abundantly expressed at the feto-maternal interface over the course of a pregnancy and have been shown to participate in numerous pregnancy-related events. In this review, we summarize the literature data regarding their role in healthy and pathological pregnancies. The general information related to IL-6 and IL-8 functions is followed by an overview of their overall expression in cycling endometrium and at the feto-maternal interface. Further, we provide an overview of their involvement in pregnancy establishment and parturition. Finally, the implication of IL-6 and IL-8 in pregnancy-associated pathological conditions, such as pregnancy loss, preeclampsia, gestational diabetes mellitus and infection/inflammation is discussed.
Collapse
|
15
|
Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders—Considering placenta as a model. Birth Defects Res 2022; 114:1324-1342. [DOI: 10.1002/bdr2.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Srividhya Durbagula
- St. John's Medical College Bangalore India
- St. John's Research Institute Bangalore India
| | - Aruna Korlimarla
- St. John's Research Institute Bangalore India
- Department of Research Sri Shankara Cancer Hospital and Research Center Bangalore India
| | | | - Snijesh Valiya Parambath
- St. John's Medical College Bangalore India
- Department of Molecular Medicine St. John's Research Institute Bangalore India
| | - Sowmyashree Mayur Kaku
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| | - Ashok Mysore Visweswariah
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| |
Collapse
|
16
|
Pereira-Carvalho D, Salazar-Petres E, Lopez-Tello J, Sferruzzi-Perri AN. Maternal and Fetal PI3K-p110α Deficiency Induces Sex-Specific Changes in Conceptus Growth and Placental Mitochondrial Bioenergetic Reserve in Mice. Vet Sci 2022; 9:vetsci9090501. [PMID: 36136716 PMCID: PMC9506205 DOI: 10.3390/vetsci9090501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal growth is reliant on placental formation and function, which, in turn, requires the energy produced by the mitochondria. Prior work has shown that both mother and fetus operate via the phosphoinositol 3-kinase (PI3K)-p110α signalling pathway to modify placental development, function, and fetal growth outcomes. This study in mice used genetic inactivation of PI3K-p110α (α/+) in mothers and fetuses and high resolution respirometry to investigate the influence of maternal and fetal PI3K-p110α deficiency on fetal and placental growth, in relation to placental mitochondrial bioenergetics, for each fetal sex. The effect of PI3K-p110α deficiency on maternal body composition was also determined to understand more about the maternal-driven changes in feto-placental development. These data show that male fetuses were more sensitive than females to fetal PI3K-p110α deficiency, as they had greater reductions in fetal and placental weight, when compared to their WT littermates. Placental weight was also altered in males only of α/+ dams. In addition, α/+ male, but not female, fetuses showed an increase in mitochondrial reserve capacity, when compared to their WT littermates in α/+ dams. Finally, α/+ dams exhibited reduced adipose depot masses, compared to wild-type dams. These findings, thus, demonstrate that maternal nutrient reserves and ability to apportion nutrients to the fetus are reduced in α/+ dams. Moreover, maternal and fetal PI3K-p110α deficiency impacts conceptus growth and placental mitochondrial bioenergetic function, in a manner dependent on fetal sex.
Collapse
|
17
|
Maternal immune activation in rats induces dysfunction of placental leucine transport and alters fetal brain growth. Clin Sci (Lond) 2022; 136:1117-1137. [PMID: 35852150 PMCID: PMC9366863 DOI: 10.1042/cs20220245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Maternal infection during pregnancy increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. While the mechanisms remain unclear, dysregulation of placental function is implicated. We hypothesised that maternal infection, leading to maternal immune activation and stimulated cytokine production, alters placental and yolk sac amino acid transport, affecting fetal brain development and thus NDD risk. Using a rat model of maternal immune activation induced by the viral mimetic polyinosinic:polycytidylic acid (poly(I:C)), we investigated placental and yolk sac expression of system L amino acid transporter subtypes which transport several essential amino acids including branched-chain amino acids (BCAA), maternal and fetal BCAA concentration, placental 14C-leucine transport activity and associated impacts on fetal growth and development. Poly(I:C) treatment increased acutely maternal IL-6 and TNFα concentration, contrasting with IL-1β. Transcriptional responses for these pro-inflammatory cytokines were found in placenta and yolk sac following poly(I:C) treatment. Placental and yolk sac weights were reduced by poly(I:C) treatment, yet fetal body weight was unaffected, while fetal brain weight was increased. Maternal plasma BCAA concentration was reduced 24 h post-poly(I:C) treatment, yet placental, but not yolk sac, BCAA concentration was increased. Placental and yolk sac gene expression of Slc7a5, Slc7a8 and Slc43a2 encoding LAT1, LAT2 and LAT4 transporter subtypes respectively, was altered by poly(I:C) treatment. Placental 14C-leucine transport was significantly reduced 24 h post-treatment, contrasting with a significant increase six days following poly(I:C) treatment. Maternal immune activation induces dysregulated placental transport of amino acids affecting fetal brain development, and NDD risk potential in offspring.
Collapse
|
18
|
Salazar-Petres E, Pereira-Carvalho D, Lopez-Tello J, Sferruzzi-Perri AN. Placental structure, function, and mitochondrial phenotype relate to fetal size in each fetal sex in mice†. Biol Reprod 2022; 106:1292-1311. [PMID: 35293971 PMCID: PMC9327737 DOI: 10.1093/biolre/ioac056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/28/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Fetal growth depends on placental function, which requires energy from mitochondria. Here we investigated whether mitochondrial function in the placenta relates to the growth of the lightest and heaviest fetuses of each sex within the litter of mice. Placentas from the lightest and heaviest fetuses were taken to evaluate placenta morphology (stereology), mitochondrial energetics (high-resolution respirometry), mitochondrial regulators, nutrient transporters, hormone handling, and signaling pathways (qPCR and Western blotting). We found that mitochondrial complex I and II oxygen consumption rate was greater for placentas supporting the lightest female fetuses, although placental complex I abundance of the lightest females and complexes III and V of the lightest males were decreased compared to their heaviest counterparts. Expression of mitochondrial biogenesis (Nrf1) and fission (Drp1 and Fis1) genes was lower in the placenta from the lightest females, whilst biogenesis-related gene Tfam was greater in the placenta of the lightest male fetuses. In addition, placental morphology and steroidogenic gene (Cyp17a1 and Cyp11a1) expression were aberrant for the lightest females, but glucose transporter (Slc2a1) expression was lower in only the lightest males versus their heaviest counterparts. Differences in intra-litter placental phenotype were related to changes in the expression of hormone-responsive (androgen receptor) and metabolic signaling (AMPK, AKT, and PPARγ) pathways. Thus, in normal mouse pregnancy, placental structure, function, and mitochondrial phenotype are differentially responsive to the growth of the female and male fetus. This study may inform the design of sex-specific therapies for placental insufficiency and fetal growth abnormalities with life-long benefits for the offspring.
Collapse
Affiliation(s)
- Esteban Salazar-Petres
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Daniela Pereira-Carvalho
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Amanda Nancy Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Seghieri G, Di Cianni G, Gualdani E, De Bellis A, Franconi F, Francesconi P. The impact of fetal sex on risk factors for gestational diabetes and related adverse pregnancy outcomes. Acta Diabetol 2022; 59:633-639. [PMID: 35037136 DOI: 10.1007/s00592-021-01836-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
AIMS To investigate whether fetal sex affects the impact of classical GDM risk factors on the diagnosis of gestational diabetes (GDM) as well as on related adverse pregnancy outcomes. METHODS This retrospective observational study concerned 206,917 singleton live births born to 170,126 women aged 15-45 over the years 2010-2018 in Tuscany, Italy. GDM was identified by administrative data-sources in 21,613 pregnancies (10.5%) by assessing, through multiple logistic models, whether fetal sex modified the risk of GDM driven by maternal risk factors, and whether it modified the risk of adverse outcomes such as prematurity (birth ≤ 37th gestational week), large for gestational age (LGA), unplanned caesarean sections, or 5-min-Apgar-index ≤ 7 in pregnancies with GDM. RESULTS GDM was diagnosed in 21,613 pregnancies (10.5%). Male fetal sex predicted a higher adjusted risk of GDM: OR = 1.05(95% CI: 1.01-1.07); p < 0.0009. In pregnancies with female sex, pre-pregnancy obesity amplified the risk of GDM: OR = 1.09(95% CI: 1.01-1.19); p = 0.04. In pregnancies with GDM, carrying a female fetus increased the risk of LGA associated with pregestational obesity OR = 1.45(95% CI: 1.15-1.81); p = 0.001, and in primiparous pregnancies, it protected mothers from the risk of unplanned caesarean sections OR = 0.80(95%CI: 0.67-0.92); p = 0.001. CONCLUSIONS While male fetal sex is associated with rise in the risk of GDM, giving birth to a girl amplifies the excess GDM risk driven by pregestational obesity, thus increasing the risk of LGA in pregnancies with GDM. Additionally, female fetal sex in pregnancies with GDM seems to protect from the risk of unplanned caesarean sections in primiparous pregnancies.
Collapse
Affiliation(s)
- Giuseppe Seghieri
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50141, Florence, Italy.
| | - Graziano Di Cianni
- Diabetes and Metabolic Diseases Unit, Health Local Unit North-West Tuscany, Livorno, Italy
| | - Elisa Gualdani
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50141, Florence, Italy
| | - Alessandra De Bellis
- Diabetes and Metabolic Diseases Unit, "San Giovanni di Dio Hospital", Florence, Italy
| | - Flavia Franconi
- Laboratorio Nazionale di Farmacologia e Medicina di Genere, Istituto Nazionale Biostrutture Biosistemi, University of Sassari, Sassari, Italy
| | - Paolo Francesconi
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, 50141, Florence, Italy
| |
Collapse
|
20
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
21
|
Bao M, Hofsink N, Plösch T. LPS vs. Poly I:C Model: Comparison of Long-Term Effects of Bacterial and Viral Maternal Immune Activation (MIA) on the Offspring. Am J Physiol Regul Integr Comp Physiol 2021; 322:R99-R111. [PMID: 34874190 PMCID: PMC8782664 DOI: 10.1152/ajpregu.00087.2021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A prominent health issue nowadays is the COVID-19 pandemic, which poses acute risks to human health. However, the long-term health consequences are largely unknown and cannot be neglected. An especially vulnerable period for infection is pregnancy, when infections could have long-term health effect on the child. Evidence suggests that maternal immune activation (MIA) induced by either bacteria or viruses presents various effects on the offspring, leading to adverse phenotypes in many organ systems. This review compares the mechanisms of bacterial and viral MIA and the possible long-term outcomes for the offspring by summarizing the outcome in animal LPS and Poly I:C models. Both models are activated immune responses mediated by Toll-like receptors. The outcomes for MIA offspring include neurodevelopment, immune response, circulation, metabolism, and reproduction. Some of these changes continue to exist until later life. Besides different doses and batches of LPS and Poly I:C, the injection day, administration route, and also different animal species influence the outcomes. Here, we specifically aim to support colleagues when choosing their animal models for future studies.
Collapse
Affiliation(s)
- Mian Bao
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Naomi Hofsink
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
22
|
Bordt EA, Shook LL, Atyeo C, Pullen KM, De Guzman RM, Meinsohn MC, Chauvin M, Fischinger S, Yockey LJ, James K, Lima R, Yonker LM, Fasano A, Brigida S, Bebell LM, Roberts DJ, Pépin D, Huh JR, Bilbo SD, Li JZ, Kaimal A, Schust DJ, Gray KJ, Lauffenburger D, Alter G, Edlow AG. Maternal SARS-CoV-2 infection elicits sexually dimorphic placental immune responses. Sci Transl Med 2021; 13:eabi7428. [PMID: 34664987 PMCID: PMC8784281 DOI: 10.1126/scitranslmed.abi7428] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2–specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Evan A. Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Lydia L. Shook
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Krista M. Pullen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rose M. De Guzman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maeva Chauvin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Laura J. Yockey
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlyn James
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Lael M. Yonker
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02129, USA
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sara Brigida
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lisa M. Bebell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jun R. Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Staci D. Bilbo
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Anjali Kaimal
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Danny J. Schust
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, MO 65201, USA
| | - Kathryn J. Gray
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Andrea G. Edlow
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
23
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Yu P, Chen Y, Ge C, Wang H. Sexual dimorphism in placental development and its contribution to health and diseases. Crit Rev Toxicol 2021; 51:555-570. [PMID: 34666604 DOI: 10.1080/10408444.2021.1977237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
According to the Developmental Origin of Health and Disease (DOHaD), intrauterine exposure to adverse environments can affect fetus and birth outcomes and lead to long-term disease susceptibility. Evidence has shown that neonatal outcomes and the timing and severity of adult diseases are sexually dimorphic. As the link between mother and fetus, the placenta is an essential regulator of fetal development programming. It is found that the physiological development trajectory of the placenta has sexual dimorphism. Furthermore, under pathological conditions, the placental function undergoes sex-specific adaptation to ensure fetal survival. Therefore, the placenta may be an important mediator of sexual dimorphism in neonatal outcomes and adult disease susceptibility. Few systematic reviews have been conducted on sexual dimorphism in placental development and its underlying mechanisms. In this review, sex chromosomes and sex hormones, as the main reasons for sexual differentiation of the placenta, will be discussed. Besides, in the etiology of fetal-originated adult diseases, overexposure to glucocorticoids is closely related to adverse neonatal outcomes and long-term disease susceptibility. Studies have found that prenatal glucocorticoid overexposure leads to sexually dimorphic expression of placental glucocorticoid receptor isoforms, resulting in different sensitivity of the placenta to glucocorticoids, and may further affect fetal development. The present review examines what is currently known about sex differences in placental development and the underlying regulatory mechanisms of this sex bias. This review highlights the importance of placental contributions to the origins of sexual dimorphism in health and diseases. It may help develop personalized diagnosis and treatment strategies for fetal development in pathological pregnancies.
Collapse
Affiliation(s)
- Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yawen Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
25
|
Roeca C, Silva E, Barentsen C, Powell TL, Jansson T. Effects of vitrification and the superovulated environment on placental function and fetal growth in an IVF mouse model. Mol Hum Reprod 2021; 26:624-635. [PMID: 32618997 DOI: 10.1093/molehr/gaaa047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
In studies of human IVF, as compared to frozen embryo transfer (ET), fresh ET is associated with smaller infants and higher risk of small for gestational age infants. Recent observations suggest that ET using vitrified embryos is associated with higher pregnancy and live birth rates compared to fresh ET, but increased rates of large for gestational age infants. The mechanisms underlying these associations are largely unknown, and available evidence suggests that the influence of IVF, vitrification and the superovulated (SO) uterine environment on placental function and fetal growth is complex. This warrants further investigation given the prevalent practice in human IVF of both fresh ET into a SO uterine environment, and vitrification with ET into a more physiologic uterine environment. Using a mouse model that closely resembles human IVF, we investigated if vitrification of IVF embryos better preserves placental function and results in better pregnancy outcomes as compared to fresh ET because of transfer into a more physiologic endometrium. We found that the SO environment, independent of vitrification status, reduced implantation rates, inhibited placental mechanistic target of rapamycin signaling and induced placental stress signaling, resulting in fetal growth restriction (1.080 ± 0.05 g estrous fresh (n = 17 litters), 1.176 ± 0.05 g estrous vitrified (n = 12), 0.771 ± 0.06 g SO fresh (n = 15), 0.895 ± 0.08 g SO vitrified (n = 10), P < 0.0001). In addition, our study suggests that vitrification impairs the developmental potential of IVF blastocysts that resulted in a significantly smaller litter size (2.6 ± 2.3 fresh estrous vs 2.5 ± 2.4 fresh SO vs 1.6 ± 1.7 estrous vitrified vs 1.7 ± 1.8 SO vitrified, P = 0.019), with no effect on fetal growth or placental function at term. Our findings suggest that vitrification may negatively impact early embryonic viability, while the SO maternal uterine environment impairs both placental development and fetal growth in IVF.
Collapse
Affiliation(s)
- C Roeca
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - E Silva
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Barentsen
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T Jansson
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
TLR4-Endothelin Axis Controls Syncytiotrophoblast Motility and Confers Fetal Protection in Placental Malaria. Infect Immun 2021; 89:e0080920. [PMID: 34061587 DOI: 10.1128/iai.00809-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnancy-associated malaria is often associated with adverse pregnancy outcomes. Placental circulatory impairments are an intriguing and unsolved component of malaria pathophysiology. Here, we uncovered a Toll-like receptor 4 (TLR4)-TRIF-endothelin axis that controls trophoblast motility and is linked to fetal protection during Plasmodium infection. In a cohort of 401 pregnancies from northern Brazil, we found that infection during pregnancy reduced expression of endothelin receptor B in syncytiotrophoblasts, while endothelin expression was only affected during acute infection. We further show that quantitative expression of placental endothelin and endothelin receptor B proteins are differentially controlled by maternal and fetal TLR4 alleles. Using murine malaria models, we identified placental autonomous responses to malaria infection mediated by fetally encoded TLR4 that not only controlled placental endothelin gene expression but also correlated with fetal viability protection. In vitro assays showed that control of endothelin expression in fetal syncytiotrophoblasts exposed to Plasmodium-infected erythrocytes was dependent on TLR4 via the TRIF pathway but not MyD88 signaling. Time-lapse microscopy in syncytiotrophoblast primary cultures and cell invasion assays demonstrated that ablation of TLR4 or endothelin receptor blockade abrogates trophoblast collective motility and cell migration responses to infected erythrocytes. These results cohesively substantiate the hypothesis that fetal innate immune sensing, namely, the TRL4-TRIF pathway, exerts a fetal protective role during malaria infection by mediating syncytiotrophoblast vasoregulatory responses that counteract placental insufficiency.
Collapse
|
27
|
Bordt EA, Shook LL, Atyeo C, Pullen KM, De Guzman RM, Meinsohn MC, Chauvin M, Fischinger S, Yockey LJ, James K, Lima R, Yonker LM, Fasano A, Brigida S, Bebell LM, Roberts DJ, Pépin D, Huh JR, Bilbo SD, Li JZ, Kaimal A, Schust D, Gray KJ, Lauffenburger D, Alter G, Edlow AG. Sexually dimorphic placental responses to maternal SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.29.437516. [PMID: 33821279 PMCID: PMC8020979 DOI: 10.1101/2021.03.29.437516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a persistent male bias in the prevalence and severity of COVID-19 disease. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of disease in adults, and play a key role in the placental anti-viral response. Moreover, the interferon response has been shown to alter Fc-receptor expression, and therefore may impact placental antibody transfer. Here we examined the intersection of viral-induced placental interferon responses, maternal-fetal antibody transfer, and fetal sex. Placental interferon stimulated genes (ISGs), Fc-receptor expression, and SARS-CoV-2 antibody transfer were interrogated in 68 pregnancies. Sexually dimorphic placental expression of ISGs, interleukin-10, and Fc receptors was observed following maternal SARS-CoV-2 infection, with upregulation in males. Reduced maternal SARS-CoV-2-specific antibody titers and impaired placental antibody transfer were noted in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.
Collapse
|
28
|
Li T, Hu D, Gong Y. Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing. J Matern Fetal Neonatal Med 2021; 35:5125-5139. [PMID: 33618585 DOI: 10.1080/14767058.2021.1875432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM Gestational diabetes mellitus is common during pregnancy, impacting maternal health and fetal development. The aim of this study was to identify potential long non-coding RNAs (lncRNAs) and mRNAs in gestational diabetes mellitus. METHODS The placenta tissues from four women patients with gestational diabetes mellitus and three healthy pregnant women were used for RNA sequencing. Differentially expressed lncRNAs and mRNAs were obtained. Then, interaction networks of lncRNA-nearby targeted mRNA and lncRNA-co-expressed mRNA were constructed, followed by functional annotation of co-expressed mRNAs. Third, GSE51546 dataset was utilized to validate the expression of selected co-expressed mRNAs. In addition, in vitro experiment was applied to expression validation of lncRNAs and mRNAs. Finally, GSE70493 dataset was utilized for diagnostic analysis of selected co-expressed mRNAs. RESULTS A total of 78 differentially expressed lncRNAs and 647 differentially expressed mRNAs in gestational diabetes mellitus were obtained. Several interaction pairs of lncRNA-co-expressed mRNA including LINC01504-CASP8, FUT8-AS1-TLR5/GDF15, GATA2-AS1-PQLC3/KIAA2026, and EGFR-AS1-HLA-G were identified. Endocytosis (involved HLA-G) and toll-like receptor signaling pathway (involved TLR5 and CASP8) were remarkably enriched signaling pathways of co-expressed mRNAs. It is noted that CASP8, TLR5, and PQLC3 had a significant prognosis value for gestational diabetes mellitus. CONCLUSIONS Our study identified several differentially expressed lncRNAs and mRNAs, and their interactions, especially co-expression, may be associated with gestational diabetes mellitus.
Collapse
Affiliation(s)
- Tao Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| | - Die Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.,Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, P. R. China
| | - Yunhui Gong
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
29
|
Interaction of maternal immune activation and genetic interneuronal inhibition. Brain Res 2021; 1759:147370. [PMID: 33600830 DOI: 10.1016/j.brainres.2021.147370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Genes and environment interact during intrauterine life, and potentially alter the developmental trajectory of the brain. This can result in life-long consequences on brain function. We have previously developed two transgenic mouse lines that suppress Gad1 expression in parvalbumin (PVALB) and neuropeptide Y (NPY) expressing interneuron populations using a bacterial artificial chromosome (BAC)-driven miRNA-based silencing technology. We were interested to assess if maternal immune activation (MIA), genetic interneuronal inhibition, and the combination of these two factors disrupt and result in long-term changes in neuroinflammatory gene expression, sterol biosynthesis, and acylcarnitine levels in the brain of maternally exposed offspring. Pregnant female WT mice were given a single intraperitoneal injection of saline or polyinosinic-polycytidilic acid [poly(I:C)] at E12.5. Brains of offspring were analyzed at postnatal day 90. We identified complex and persistent neuroinflammatory gene expression changes in the hippocampi of MIA-exposed offspring, as well in the hippocampi of Npy/Gad1 and Pvalb/Gad1 mice. In addition, both MIA and genetic inhibition altered the post-lanosterol sterol biosynthesis in the neocortex and disrupted the typical acylcarnitine profile. In conclusion, our findings suggest that both MIA and inhibition of interneuronal function have long-term consequences on critical homeostatic mechanisms of the brain, including immune function, sterol levels, and energy metabolism.
Collapse
|
30
|
Parisi F, Milazzo R, Savasi VM, Cetin I. Maternal Low-Grade Chronic Inflammation and Intrauterine Programming of Health and Disease. Int J Mol Sci 2021; 22:ijms22041732. [PMID: 33572203 PMCID: PMC7914818 DOI: 10.3390/ijms22041732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Overweight and obesity during pregnancy have been associated with increased birth weight, childhood obesity, and noncommunicable diseases in the offspring, leading to a vicious transgenerational perpetuating of metabolic derangements. Key components in intrauterine developmental programming still remain to be identified. Obesity involves chronic low-grade systemic inflammation that, in addition to physiological adaptations to pregnancy, may potentially expand to the placental interface and lead to intrauterine derangements with a threshold effect. Animal models, where maternal inflammation is mimicked by single injections with lipopolysaccharide (LPS) resembling the obesity-induced immune profile, showed increased adiposity and impaired metabolic homeostasis in the offspring, similar to the phenotype observed after exposure to maternal obesity. Cytokine levels might be specifically important for the metabolic imprinting, as cytokines are transferable from maternal to fetal circulation and have the capability to modulate placental nutrient transfer. Maternal inflammation may induce metabolic reprogramming at several levels, starting from the periconceptional period with effects on the oocyte going through early stages of embryonic and placental development. Given the potential to reduce inflammation through inexpensive, widely available therapies, examinations of the impact of chronic inflammation on reproductive and pregnancy outcomes, as well as preventive interventions, are now needed.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Correspondence:
| | - Roberta Milazzo
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| | - Valeria M. Savasi
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
- Department of Woman, Mother and Neonate, ‘L. Sacco’ Hospital, ASST Fatebenefratelli Sacco, 20157 Milan, Italy
| | - Irene Cetin
- Department of Woman, Mother and Neonate, ‘V. Buzzi’ Children Hospital, ASST Fatebenefratelli Sacco, 20141 Milan, Italy; (R.M.); (I.C.)
- Department of Biomedical and Clinical Sciences, “Luigi Sacco”, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
31
|
Owaydhah WH, Ashton N, Verrey F, Glazier JD. Differential expression of system L amino acid transporter subtypes in rat placenta and yolk sac. Placenta 2020; 103:188-198. [PMID: 33160252 DOI: 10.1016/j.placenta.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Amino acid transport across the placenta is crucial for fetal growth. In rodent models, the visceral yolk sac (referred to as yolk sac hereafter) is also likely to contribute to fetal amino acid provision. System L amino acid transporters mediate the transport of essential amino acids. System L activity is mediated by light chains LAT1 (Slc7a5) and LAT2 (Slc7a8) which form functional complexes by heterodimeric linkage to CD98 (Slc3a2). LAT4 (Slc43a2) is monomeric, possessing overlapping amino acid substrate specificity with LAT1 and LAT2. METHODS This study investigates the expression of these LAT subtypes in fetus-matched rat placenta and yolk sac. RESULTS Slc7a5, Slc7a8 and Slc43a2 transcripts were expressed in placenta and yolk sac with similar expression patterns between sexes. LAT1 expression was significantly higher in placenta than yolk sac. Conversely, LAT2 and LAT4 expression was significantly higher in yolk sac than placenta; CD98 expression was comparable. LAT1, LAT2, LAT4 and CD98 were distributed to rat placental labyrinth zone (LZ) and junctional zone (JZ). LAT1 and LAT4 demonstrated higher expression in LZ, whilst LAT2 was more intensely distributed to JZ. LAT1, LAT2, LAT4 and CD98 were expressed in yolk sac, with punctate LAT1 staining to endodermal cell cytoplasm, contrasting with the intense LAT2, LAT4 and CD98 endodermal cell basolateral distribution, accounting for greater LAT2 and LAT4 expression in yolk sac compared to placenta. CONCLUSION LAT1, LAT2 and LAT4 are expressed in rat placenta and yolk sac implicating a combined role for these LAT subtypes in supporting fetal growth and development.
Collapse
Affiliation(s)
- Wejdan H Owaydhah
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, St Mary's Hospital, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich, CH-8057, Switzerland
| | - Jocelyn D Glazier
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
32
|
Sex Specific Expression of Interleukin 7, 8 and 15 in Placentas of Women with Gestational Diabetes. Int J Mol Sci 2020; 21:ijms21218026. [PMID: 33126577 PMCID: PMC7663521 DOI: 10.3390/ijms21218026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is known to increase the risk for feto-maternal complications during pregnancy. A state of low-grade inflammation, with elevated levels of proinflammatory molecules, similar to patients with obesity or diabetes mellitus type 2 has also been partly described in GDM. The placenta, as unique interface between mother and fetus, is not only passively affected by changes in one of these organisms, but also acts as a modulator by expressing hormones and cytokines. This study aimed to investigate the expression of the proinflammatory cytokines Interleukin (IL) 7, 8 and 15 in GDM in placental tissue. A total number of 80 placentas were included (40 GDM/40 control group). The expression of IL-7, 8 and 15 was investigated in extravillous trophoblast (EVT) and syncytiotrophoblast (SCT) by immunohistochemistry and immunofluorescence double staining. The immunohistochemical staining was evaluated with the semiquanitfied immunoreactive score (IRS). While the expression IL-15 was significantly upregulated in EVTs of women with GDM. The expression of IL-8 was significantly decreased in EVT of the GDM group. Furthermore, significant fetal sex specific differences were detectable in all three cytokines. Our findings suggest an involvement of the investigated cytokines in the maintenance of a state of chronic low-grade inflammation on placental level in patients suffering from GDM.
Collapse
|
33
|
Prenatal pregnancy-related anxiety predicts boys' ADHD symptoms via placental C-reactive protein. Psychoneuroendocrinology 2020; 120:104797. [PMID: 32682173 DOI: 10.1016/j.psyneuen.2020.104797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
Many modes of stress (i.e. life events, catastrophic events) during pregnancy have been found to increase the risk of externalizing behaviors, and probably in a sex-specific way. Maternal immune activation may be the sex-difference mechanism, but direct evidence that assess three factors in conjunction -- maternal stress, maternal immune activation, and offspring neurodevelopment --from human beings is lacking. This prospective study followed 2926 pregnant women from early pregnancy to 36 months after delivery. Pregnancy-related anxiety symptoms assessment was completed three times using the Pregnancy-Related Anxiety Questionnaire; child attention deficit hyperactivity disorder (ADHD) symptoms were assessed by the parent version of the Conners' Hyperactivity Index. More importantly, nine inflammatory cytokines were detected in placental tissues for the sex-difference mechanism investigation. Our results showed that after controlling for confounding factors, pregnancy-related anxiety during at least two trimesters of pregnancy increased the risk of ADHD for boys (adjusted odds ratio (aOR) = 3.37, 95 % confidence interval (95 % CI) = 1.78-6.38), but not for girls (aOR = 1.02, 95 %CI = 0.44-2.38), which confirmed previous findings. Besides, the structural equation models revealed that placental C-reactive protein (CRP) mRNA expression significantly mediated the association between pregnancy-related anxiety and ADHD for boys (indirect effect: β = 0.025, P = 0.022), but not for girls (indirect effect: β = 0.005, P = 0.589). This prospective study suggested that frequent pregnancy-related anxiety during pregnancy and its induced-placental inflammation partially contributed to the sex-bias of ADHD symptoms.
Collapse
|
34
|
Kulhanek D, Weigel R, Paulsen ME. Maternal High-Fat-High-Carbohydrate Diet-Induced Obesity Is Associated with Increased Appetite in Peripubertal Male but Not Female C57Bl/6J Mice. Nutrients 2020; 12:E2919. [PMID: 32987812 PMCID: PMC7598591 DOI: 10.3390/nu12102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-induced maternal obesity might play a critical role in altering hypothalamic development, predisposing the offspring to obesity and metabolic disease later in life. The objective of this study was to describe both phenotypic and molecular sex differences in peripubertal offspring energy homeostasis, using a mouse model of maternal obesity induced by a high-fat-high-carbohydrate (HFHC) diet. We report that males, not females, exposed to a maternal HFHC diet had increased energy intake. Males exposed to a maternal HFHC diet had a 15% increased meal size and a 46% increased frequency, compared to the control (CON) males, without a change in energy expenditure. CON and HFHC offspring did not differ in body weight, composition, or plasma metabolic profile. HFHC diet caused decreased hypothalamic glucocorticoid expression, which was further decreased in males compared to females. Maternal weight, maternal caloric intake, and male offspring meal frequency were inversely correlated with offspring hypothalamic insulin receptor (IR) expression. There was a significant interaction between maternal-diet exposure and sex in hypothalamic IR. Based on our preclinical data, we suggest that interventions focusing on normalizing maternal nutrition might be considered to attenuate nutritional influences on obesity programming and curb the continuing rise in obesity rates.
Collapse
Affiliation(s)
| | | | - Megan E. Paulsen
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.K.); (R.W.)
| |
Collapse
|
35
|
Association of an Increased Risk of Pre-eclampsia and Fetal Growth Restriction in Singleton and Twin Pregnancies with Female Fetuses. MATERNAL-FETAL MEDICINE 2020. [DOI: 10.1097/fm9.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes (Basel) 2020; 11:genes11080869. [PMID: 32752005 PMCID: PMC7463995 DOI: 10.3390/genes11080869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
Anxiety, chronical stress, and depression during pregnancy are considered to affect the offspring, presumably through placental dysregulation. We have studied the term placentae of pregnancies clinically monitored with the Beck’s Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 classed patients into an Index group (>10, n = 23) and a Control group (<10, n = 23). Cortisol concentrations in hair (HCC) were periodically monitored throughout pregnancy and delivery. Expression differences of main glucocorticoid pathway genes, i.e., corticotropin-releasing hormone (CRH), 11β-hydroxysteroid dehydrogenase (HSD11B2), glucocorticoid receptor (NR3C1), as well as other key stress biomarkers (Arginine Vasopressin, AVP and O-GlcNAc transferase, OGT) were explored in medial placentae using real-time qPCR and Western blotting. Moreover, gene expression changes were considered for their association with HCC, offspring, gender, and birthweight. A significant dysregulation of gene expression for CRH, AVP, and HSD11B2 genes was seen in the Index group, compared to controls, while OGT and NR3C1 expression remained similar between groups. Placental gene expression of the stress-modulating enzyme 11β-hydroxysteroid dehydrogenase (HSD11B2) was related to both hair cortisol levels (Rho = 0.54; p < 0.01) and the sex of the newborn in pregnancies perceived as stressful (Index, p < 0.05). Gene expression of CRH correlated with both AVP (Rho = 0.79; p < 0.001) and HSD11B2 (Rho = 0.45; p < 0.03), and also between AVP with both HSD11B2 (Rho = 0.6; p < 0.005) and NR3C1 (Rho = 0.56; p < 0.03) in the Control group but not in the Index group; suggesting a possible loss of interaction in the mechanisms of action of these genes under stress circumstances during pregnancy.
Collapse
|
37
|
An interaction between fetal sex and placental weight and efficiency predicts intrauterine growth in response to maternal protein insufficiency and gestational exposure window in a mouse model of FASD. Biol Sex Differ 2020; 11:40. [PMID: 32690098 PMCID: PMC7372829 DOI: 10.1186/s13293-020-00320-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Individuals exposed to gestational stressors such as alcohol exhibit a spectrum of growth patterns, suggesting individualized responses to the stressors. We hypothesized that intrauterine growth responses to gestational alcohol are modified not only by the stressor's severity but by fetal sex and the placenta's adaptive capacity. METHODS Pregnant C57BL/6J mice were assigned to one of three groups. Group 1 consumed a normal protein diet (18% protein by weight) and received 4.5 g alcohol/kg body weight (NP-Alc-8) or isocaloric maltodextrin (NP-MD-8) daily from embryonic day (E) 8.5-E17.5. Group 2 consumed the same diet but received alcohol (NP-Alc-13) or maltodextrin (NP-MD-13) daily from E13.5-E17.5. Group 3 consumed the same diet but containing a lower protein content (12% protein by weight) from E0.5 and also received alcohol (LP-Alc-8) or maltodextrin (LP-MD-8) daily from E8.5-E17.5. Maternal, placental, and fetal outcomes were assessed on E17.5 using 2-way ANOVA or mixed linear model. RESULTS We found that intrauterine growth differed in the alcohol-exposed fetuses depending on sex and insult severity. Both NP-Alc-8 (vs. NP-MD-8) males and females had lower body weight and asymmetrical growth, but only NP-Alc-8 females had lower placental weight (P < 0.05). NP-Alc-13 (vs. NP-MD-13) females, but not their male littermates, had lower body weight (P = 0.019). Alcohol exposure beginning from E8.5 (vs. E13.5) decreased the ratio of fetal liver-to-body weight and increased the ratio of fetal brain-to-liver weight in both sexes (P < 0.05). LP-Alc-8 (vs. NP-MD-8) group had smaller litter size (P = 0.048), but the survivors had normal placental and body weight at E17.5. Nevertheless, LP-Alc-8 fetuses still showed asymmetrical growth. Correlation analyses reveal a relationship between litter size and placental outcomes, which were related to fetal outcomes in a sex-dependent manner, suggesting that the placenta may mediate the consequence of LP-Alc-altered litter size on fetal development. CONCLUSIONS Our data indicate that the placenta is strongly involved in the fetal stress response and adapts in a sex-dependent fashion to support fetal development under the alcohol stressor. These variables may further influence the spectrum of intrauterine growth outcomes observed in those diagnosed with fetal alcohol spectrum disorder.
Collapse
|
38
|
Cell Type- and Sex-Specific Dysregulation of Thyroid Hormone Receptors in Placentas in Gestational Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21114056. [PMID: 32517091 PMCID: PMC7313460 DOI: 10.3390/ijms21114056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormones are essential for development of trophoblasts and the fetus. They also regulate a wide range of metabolic processes. We investigated the influence of maternal gestational diabetes mellitus (GDM) on thyroid hormone receptor (THR) isoforms THRα1, THRα2, THRβ1 and THRβ2 of the human placenta in a sex- and cell-type specific manner. Term placental tissue was obtained from women with (n = 40) or without GDM (control; n = 40). THRs levels were measured by semi-quantitative immunohistochemistry and real-time qRT-PCR. We localized THR immunostaining in syncytiotrophoblast (SCT), which was the tissue with the strongest signal. Double immunofluorescence identified THR in decidual cells in the stroma and in extravillous cytotrophoblasts. GDM did not change THRα1 immunolabelling intensity in decidua, but was associated with a stronger immunolabelling in SCT compared to GDM (p < 0.05). The SCT difference of GDM vs. control was strongest (p < 0.01) in female placentas. THRα2 was only weakly present and immunolabelling was weaker (p < 0.05) in SCT of only male GDM placentas in comparison to male controls. THRβ1/β2 immunostaining was weak in all cell types without changes in GDM. However, more THRβ1/2 protein was present (p < 0.001) in male than female placentas. All these protein changes were paralleled by changes of THR transcript levels. The data show that THR are expressed in term trophoblast in relation to fetal sex. Maternal GDM influences predominantly THRα1 in SCT, with the strongest GDM effect in SCT of female placentas.
Collapse
|
39
|
Bauman MD, Van de Water J. Translational opportunities in the prenatal immune environment: Promises and limitations of the maternal immune activation model. Neurobiol Dis 2020; 141:104864. [PMID: 32278881 DOI: 10.1016/j.nbd.2020.104864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
The prenatal environment, and in particular, the maternal-fetal immune environment, has emerged as a targeted area of research for central nervous system (CNS) diseases with neurodevelopmental origins. Converging evidence from both clinical and preclinical research indicates that changes in the maternal gestational immune environment can alter fetal brain development and increase the risk for certain neurodevelopmental disorders. Here we focus on the translational potential of one prenatal animal model - the maternal immune activation (MIA) model. This model stems from the observation that a subset of pregnant women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder, such as autism spectrum disorder (ASD) or schizophrenia (SZ). The preclinical MIA model provides a system in which to explore causal relationships, identify underlying neurobiological mechanisms, and, ultimately, develop novel therapeutic interventions and preventative strategies. In this review, we will highlight converging evidence from clinical and preclinical research that links changes in the maternal-fetal immune environment with lasting changes in offspring brain and behavioral development. We will then explore the promises and limitations of the MIA model as a translational tool to develop novel therapeutic interventions. As the translational potential of the MIA model has been the focus of several excellent review articles, here we will focus on what is perhaps the least well developed area of MIA model research - novel preventative strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, United States of America; California National Primate Research Center, University of California, Davis, United States of America; The MIND Institute, University of California, Davis, United States of America.
| | - Judy Van de Water
- The MIND Institute, University of California, Davis, United States of America; Rheumatology/Allergy and Clinical Immunology, University of California, Davis, United States of America
| |
Collapse
|
40
|
Tamayev L, Schreiber L, Marciano A, Bar J, Kovo M. Are there gender-specific differences in pregnancy outcome and placental abnormalities of pregnancies complicated with small for gestational age? Arch Gynecol Obstet 2020; 301:1147-1151. [PMID: 32239281 DOI: 10.1007/s00404-020-05514-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Adaptations to pathological intrauterine environment might differ in relation to fetal gender. We aimed to study sex-specific differences in placental pathology of pregnancies complicated by small for gestational age (SGA). METHODS The medical records and placental histology reports of all neonates with a birth-weight ≤ 10th percentile, born between 24 and 42 weeks of gestation, during 2010-2018, were reviewed. Composite neonatal outcome was defined as one or more of early following complications: neonatal sepsis, blood transfusion, phototherapy, respiratory morbidity, cerebral morbidity, necrotizing enterocolitis, or death. Results were compared between the male and female groups of neonates. Placental lesions were classified into maternal and fetal vascular malperfusion (MVM and FVM) lesions, maternal and fetal inflammatory responses (MIR and FIR), and villitis of unknown etiology (VUE). RESULTS The male SGA group (n = 380) and the female SGA group (n = 363) did not differ in regard to maternal age, BMI, smoking, associated pregnancy complications, gestational age, and mode of delivery. Neonates in the SGA male group had increased birth-weight and increased respiratory morbidity as compared to the female SGA group (p = 0.007, p = 0.005, respectively). There was no between-group differences in the rate of placental lesions. By multivariate logistic regression analysis, male gender (aOR 1.55, 95% CI 1.05-2.30, p = 0.025), FIR (aOR 4.83, 95% CI 1.07-13.66, p = 0.003), and VUE (aOR 1.89, 95% CI 1.03-3.47, p = 0.04), were found to be independently associated with adverse composite neonatal outcome. DISCUSSION Male gender as well as placental FIR and VUE are independently associated with adverse neonatal outcome in SGA neonates.
Collapse
Affiliation(s)
- Liliya Tamayev
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel.
| | - Letizia Schreiber
- Departments of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Adi Marciano
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| | - Jacob Bar
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| | - Michal Kovo
- Departments of Obstetrics and Gynecology, The Edith Wolfson Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 5, 58100, Holon, Israel
| |
Collapse
|
41
|
Rogers LM, Serezani CH, Eastman AJ, Hasty AH, Englund-Ögge L, Jacobsson B, Vickers KC, Aronoff DM. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta 2020; 90:45-51. [PMID: 32056551 PMCID: PMC7034939 DOI: 10.1016/j.placenta.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an increasing prevalence of non-communicable diseases worldwide. Metabolic diseases such as obesity and gestational diabetes mellitus (GDM) increasingly affect women during pregnancy, which can harm pregnancy outcomes and the long-term health and wellbeing of exposed offspring. Both obesity and GDM have been associated with proinflammatory effects within the placenta, the critical organ governing fetal development. METHODS The purpose of these studies was to model, in vitro, the effects of metabolic stress (high levels of glucose, insulin and saturated lipids) on placental macrophage biology, since these cells are the primary innate immune phagocyte within the placenta with roles in governing maternofetal immune tolerance and antimicrobial host defense. Macrophages were isolated from the villous core of term, human placentae delivered through nonlaboring, elective Cesarean sections and exposed to combinations of elevated glucose (30 mM), insulin (10 nM) and the saturated lipid palmitic acid (palmitate, 0.4 mM). RESULTS We found that palmitate alone induced the activation of the nucleotide-binding oligomerization domain-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in placental macrophages, which was associated with increased interleukin 1 beta release and an increase in apoptotic cell death. Glucose and insulin neither provoked these effects nor augmented the impact of palmitate itself. DISCUSSION Our findings confirm an impact of saturated fat on placental macrophage immune activation and could be relevant to the impact of metabolic stress in vivo.
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Carlos H Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alison J Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Linda Englund-Ögge
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kasey C Vickers
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|