1
|
Poinsignon L, Lefrère B, Ben Azzouz A, Chissey A, Colombel J, Djelidi R, Ferecatu I, Fournier T, Beaudeux JL, Lespes G, Zerrad-Saadi A. Exposure of the human placental primary cells to nanoplastics induces cytotoxic effects, an inflammatory response and endocrine disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137713. [PMID: 40037196 DOI: 10.1016/j.jhazmat.2025.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Humans are inevitably exposed to micro- and nanoplastics (MP/NP). These particles are able to cross the biological barriers and enter the bloodstream with levels close to 1.6 µg mL-1; MP/NP have been detected in placentas and meconium of newborns. However, the consequences of this exposure on the integrity, development and functions of the human placenta are not documented. In this study, trophoblasts purified from human placentas at term were exposed for 48 h, to two different sizes of polystyrene nanoparticles (PS-NP) of 20 nm (PS-NP20) and 100 nm (PS-NP100), at environmental and supra-environmental concentrations (0.01-100 µg mL-1). Cell viability, oxidative stress, mitochondrial dynamics, lysosomal degradation processes, autophagy, inflammation/oxidative responses and consequences for placental endocrine and angiogenic functions were assessed. PS-NP size determines their internalization rate and their behavior in trophoblasts. Indeed, PS-NP20 are more rapidly translocated, and accumulated in lysosomes as shown by confocal and TEM imaging. They induce higher cytotoxicity than PS-NP100, as early as 1 µg mL-1 (p < 0.05). In addition, they induce a pro-inflammatory cytokines response: IL-1ß is induced from 0.01 µg mL-1 for the both nanoparticle sizes; IL-6, and TNF-α are overexpressed at 100 µg mL-1 only for PS-NP20 (p < 0.05). For the first time, we report that PS-NP disrupt endocrine function, as observed by a decreased hCG release at concentrations found in human blood. This work, provides an in-depth in vitro assessment of the effects of PS-NP on the human placenta.
Collapse
Affiliation(s)
- Léa Poinsignon
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Bertrand Lefrère
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Amani Ben Azzouz
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Audrey Chissey
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Juliette Colombel
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Raja Djelidi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Ioana Ferecatu
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Thierry Fournier
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Jean-Louis Beaudeux
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Gaëtane Lespes
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Amal Zerrad-Saadi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France.
| |
Collapse
|
2
|
Chen Z, Cai X, Wei Y, Zhao X, Dang Q, Zhu Y, Gao M, Zhang Y, Zhang Y, Yu H. 27-hydroxycholesterol impairs placental development via p53/p21/Cdk6 pathway: Implications for nutrient transport and cellular senescence. Biochim Biophys Acta Gen Subj 2025; 1869:130806. [PMID: 40268063 DOI: 10.1016/j.bbagen.2025.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Aberrant placental development and function contribute to various pregnancy complications. 27-hydroxycholesterol (27-OHC), a recognized mediator linking hypercholesterolemia and metabolic diseases, has an undefined role in placental development. This study investigates the impact of 27-OHC on placental development and its underlying mechanisms, particularly in relation to cellular senescence. Pregnant mice were subcutaneously administered either 27-OHC (27-OHC group) or normal saline (control group) during gestation. Subsequently, placentas underwent spatial transcriptome (ST) sequencing. The levels of genes and proteins related to nutrient transport, cell cycle and senescence associated secretory phenotype were validated. Additionally, BeWo cells were treated with 27-OHC at concentrations of 2.5, 5 and 10 μM during its differentiation and fusion to observe the effects and mechanisms of trophoblast cell senescence. In the 27-OHC group, the labyrinth zone area and combined fetal-placental weight were significantly reduced compared to the control group. ST analysis revealed alterations in placental cell composition and downregulation of nutrient transport processes, alongside pathways linked to senescence, including the p53/p21/Cdk6 pathway, specifically in Syncytiotrophoblast Type I (SynT I) cells. In both mouse placentas and BeWo cells, mRNA and protein levels of p53 and p21 were reduced in the 27-OHC group compared to controls. During late pregnancy, 27-OHC inhibits the physiological senescence of placental syncytiotrophoblasts and may affect nutrient transport within the placenta. The inhibition of the p53/p21/Cdk6 pathway may represent one of the key mechanisms involved.
Collapse
Affiliation(s)
- Zhaoyang Chen
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaxia Cai
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yuchen Wei
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Xiaoyan Zhao
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Qinyu Dang
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yandi Zhu
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Min Gao
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yulu Zhang
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Yadi Zhang
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China
| | - Huanling Yu
- School of Public Health, Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Barak O, Bauer AD, Parks WT, Lovelace TC, Benos PV, Chu T, Sadovsky Y. Characterization of senescence-associated transcripts in the human placenta. Placenta 2025; 161:31-38. [PMID: 39862734 PMCID: PMC11867845 DOI: 10.1016/j.placenta.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Fusion of mononucleated cytotrophoblasts into syncytium leads to trophoblast senescence. Yet, premature senescence is associated with preeclampsia, fetal growth restriction (FGR), and related obstetrical syndromes. A set of 28 transcripts that comprise senescence-associated secretory phenotype (SASP) was recently described in placentas from women with preeclampsia. We posited that this transcript set is uniquely regulated in late-term placentas or in placentas derived from participants with major obstetrical syndromes. METHODS Using our large placental RNAseq bank, we analyzed data from healthy participants (n = 33) with histologically normal placentas, representing delivery at 37-41 weeks. To represent diseases, we included RNAseq data from participants (n = 220) with severe preeclampsia, FGR, FGR with a hypertensive disorder (FGR + HDP), or spontaneous preterm delivery, and healthy controls (n = 129). We also assessed the expression of several SASPs in primary human trophoblasts that were exposed in vitro to hypoxia, reduced differentiation, or ferroptotic or apoptotic signals. RESULTS Among the 28 SASP transcripts analyzed, eight had a significant change between deliveries at <37 weeks vs ≥ 41 weeks, including upregulation of FSTL3, IL1RL1, INHBA, and VEGFA and downregulation of STC1, RARRES2, MRC2, and SELP. The expression of SASP mRNAs was enriched in the placentas from the assessed syndromes, with most expression changes in placentas from FGR/HDP. Our in vitro analysis associated hypoxia or apoptosis with altered expression of FSTL3, VEGFA, and DKK1. DISCUSSION A set of placental SASPs defines late-term placentas, placental dysfunction-related clinical syndromes, and in vitro-defined trophoblast injury. Trophoblastic SASP signatures may assist in characterizing placental senescence in health and disease.
Collapse
Affiliation(s)
- Oren Barak
- Magee-Women's Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexander D Bauer
- Magee-Women's Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - W Tony Parks
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tyler C Lovelace
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA; Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tianjiao Chu
- Magee-Women's Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yoel Sadovsky
- Magee-Women's Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Kadam L, Chan K, Ahuna K, Marshall N, Myatt L. Differential activation of p53-Lamin A/C and p16-RB mediated senescence pathways in trophoblast from pregnancies complicated by type A2 Gestational Diabetes Mellitus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641461. [PMID: 40093078 PMCID: PMC11908226 DOI: 10.1101/2025.03.04.641461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Gestational diabetes mellitus (GDM) increases maternal risks such as hypertension and future type 2 diabetes while also contributing to fetal complications such as large-for-gestational-age infants and stillbirth. The placenta which is crucial for fetal development, exhibits structural and functional changes in GDM, but the impact of these alterations on placental trophoblast function remains unclear. During their differentiation villous cytotrophoblast display several characteristics of senescent cells however the role of senescence pathways in placental function remains unexplored in GDM. Here we investigate whether placental senescence pathways are altered in GDM, utilizing term villous tissue and primary trophoblasts to assess molecular changes, and determined fetal sex-based differences. Our data suggest that both p21 and p16 mediated senescence pathways are activated during trophoblast differentiation and are dysregulated in GDM placenta in a sexually dimorphic manner. We also provide evidence for increased activation of p53-Lamin A/C and p16-RB pathways in trophoblast from GDM placentas. Reduced expression of p21 and its downstream effects on GCM1 expression and βhCG secretion outline how altered physiological senescence can affect trophoblast differentiation and function. This is a seminal study highlighting how placental senescence pathways are altered in pregnancies complicated by GDM.
Collapse
|
5
|
Chen Z, Zheng M, Wan T, Li J, Yuan X, Qin L, Zhang L, Hou T, Liu C, Li R. Gestational exposure to nanoplastics disrupts fetal development by promoting the placental aging via ferroptosis of syncytiotrophoblast. ENVIRONMENT INTERNATIONAL 2025; 197:109361. [PMID: 40080956 DOI: 10.1016/j.envint.2025.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Micro(nano)plastics (MNPs), are emerging environmental pollutants that have garnered widespread attention. Epidemiological and animal studies have shown that MNPs exposure during pregnancy is associated with adverse pregnancy outcomes, such as intrauterine growth restriction (IUGR) and miscarriage. However, the underlying mechanisms remain poorly understood. In this study, we found that exposure to a high dose (1 μg·mL-1) of 100 nm polystyrene nanoparticles (NPs) from gestational day (GD) 0 to GD17 significantly decreased fetal weight and increased the number of resorptions compared to the control group. Moreover, fetal weight was significantly lower in the high-dose group than in the low-dose (0.1 μg·mL-1) group. Meanwhile, ferroptosis and senescence were observed in placentas from mice exposed to high dose of NPs. In vitro experiments using human syncytiotrophoblast (STB) cells differentiated from BeWo cells, we found that NPs caused ferroptosis and senescence in STB cells. Subsequent investigations revealed that the inhibition of the ferroptosis signaling by ferrostain-1 (Fer-1) or deferiprone (DFP) ameliorated senescence induced by NPs in human STB cells. Furthermore, alleviating placental senescence using Fer-1 significantly improves fetal weight loss caused by NPs exposure during pregnancy in mice. Taken together, our results demonstrated that NPs exposure during pregnancy activated the ferroptosis pathway in placental STB, resulting in senescence of STB, which may attribute to the NPs-induced IUGR. This study not only elucidated the mechanistic link between NPs exposure and adverse pregnancy outcomes but also highlighted the necessity for targeted interventions to protect fetal health, underscoring the broader implications for environmental and public health policy.
Collapse
Affiliation(s)
- Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingmeng Zheng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyi Yuan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Schreiber H, Cohen G, Markovitch O, Weitzner O, Farladansky-Gershnabel S, Biron-Shental T, Kovo M. Is there an association between lateral uterine localization of the placenta and pregnancy outcomes? Arch Gynecol Obstet 2025:10.1007/s00404-024-07910-7. [PMID: 39838156 DOI: 10.1007/s00404-024-07910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE To evaluate the association between lateral placentation and adverse perinatal outcomes, including rates of small for gestational age (SGA) neonates, hypertensive (HTN) disorders, and preterm delivery, as well as postpartum hemorrhage and retained placenta. METHODS This retrospective cohort study included all women with singleton pregnancies who underwent a trial of labor after reaching 24 weeks of gestation, at a single tertiary medical center, over a period of 6 years. The study group included women with lateral placentation. Controls were women with anterior, posterior, or fundal placentation. Power analysis indicated that 882 women in each group would be sufficient to detect an increased rate of the primary outcomes: preterm delivery, hypertensive disorders or SGA in the lateral placenta group. Secondary outcomes were Apgar score, cord pH and retained placenta. RESULTS Overall, 1,817 (7.6%) women had lateral placenta and 21,991 (92.4%) anterior, posterior, or fundal placentation. No significant differences were observed between groups in the rates of hypertensive disorders, SGA or preterm birth. Lateral placentation was associated with a longer third stage of labor (11.1 ± 8.6 min vs. 10.4 ± 7.2 min, p = 0.001) and higher rate of retained placenta (5.7% vs. 4.2%, p = 0.002). Multivariate regression found that lateral placentation was independently associated with longer third stage of labor. CONCLUSION Lateral placentation was not associated with increased rates of hypertensive disorders, preterm birth or SGA infants. It was linked to a longer third stage of labor but without a significant impact on maternal or perinatal complications.
Collapse
Affiliation(s)
- Hanoch Schreiber
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel.
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Gal Cohen
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Markovitch
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Weitzner
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Farladansky-Gershnabel
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Kovo
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Research, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
7
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Yan J, Chen S, Yi Z, Zhao R, Zhu J, Ding S, Wu J. The role of p21 in cellular senescence and aging-related diseases. Mol Cells 2024; 47:100113. [PMID: 39304134 PMCID: PMC11564947 DOI: 10.1016/j.mocell.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
During the aging process or disease progression, normal cells and tissues in the body undergo various stresses, leading to cell damage and the need for repair, adaptation, apoptosis, or defense responses. Cellular senescence is a key player in this process, influencing the rate of aging and disease progression. It can be triggered by different stress factors, resulting in irreversible cell cycle arrest and functional decline. Senescent cells often show high expression of cell cycle factors such as p21 and p16, which are involved in cell cycle arrest. p16 has long been recognized as a significant marker of aging. Recent evidence suggests that p21high cells and p16high cells represent distinct cell populations in terms of cell type, tissue location, accumulation kinetics, and physiological functions. This article focuses on recent advancements in understanding p21-dependent cellular senescence. It starts by providing an overview of the role of p21 in 3 primary cellular senescence phenotypes where it plays a crucial role. It then delves into the pathogenesis of diseases closely linked to p21-dependent cellular senescence, particularly metabolic disorders and cardiovascular diseases. The article also discusses progress in p21-related animal models and outlines strategies for utilizing p21 to intervene in cellular senescence by delaying aging, eliminating senescent cells, and rejuvenating senescent cells. This review systematically examines the pathogenesis of p21-dependent cellular senescence, emphasizing its importance in studying aging heterogeneity and developing new senolytic therapies. It aims to stimulate future research on leveraging p21 to enhance the characteristics of senescent cells, allowing more precise methods for eliminating harmful senescent cells at the right time, thereby delaying aging and potentially achieving rejuvenation.
Collapse
Affiliation(s)
- Jiayu Yan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Siyi Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Zimei Yi
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Ruowen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiayu Zhu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Shuwen Ding
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Junhua Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
| |
Collapse
|
9
|
Liu Q, Jing D, Li Y, Yao B, Zhang H, Wang L, Wu C, Wang X, Li L. Hsa-miR-3928-3p targets the CCL3/CCR5 axis to induce amniotic epithelial cell senescence involved in labor initiation. Placenta 2024; 156:98-107. [PMID: 39299215 DOI: 10.1016/j.placenta.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Senescence in human amniotic epithelial cells (hAECs) and increased sterile inflammation in the amniotic cavity can lead to the initiation of term labor (TL). We investigated the possible roles of hsa-miR-3928-3p and chemokine ligand 3 (CCL3) in labor initiation and the underlying molecular mechanisms. METHODS Microarray chip screening was used to analyse the differential expression of miRNAs in amniotic fluid exosomes from women in TL and term not-in-labor. The GEO and miRWalk databases were used to identify differential genes, and a dual luciferase assay was used to verify the relationship. Reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence were used to determine the expression and localization of CCL3/CCR5 in fetal membranes. RT-qPCR and western blotting were used to detect the expression of CCL3/CCR5 in hAECs with hsa-miR-3928-3p knockdown/overexpression. Cell counting kit 8, flow cytometry, EdU proliferation, senescence-associated β-galactosidase, and enzyme-linked immunosorbent assays were performed to detect the impact of hsa-miR-3928-3p on hAEC function. RESULTS hsa-miR-3928-3p expression was downregulated in TL. CCL3 (macrophage inflammatory protein-1α) was identified as a differentially expressed target gene. hsa-miR-3928-3p targeted the 3' UTR of CCL3. Downregulation of hsa-miR-3928-3p expression increased CCL3 expression. CCL3, via its CCR5 receptor, decreased the proliferation, but increased the senescence, apoptosis rate, secretion of inflammatory factors (IL-8, TNF-α, and IL-6), and expression of senescence-associated protein p21 in hAECs. DISCUSSION hsa-miR-3928-3p negatively regulates CCL3, promoting hAEC senescence through the CCL3-CCR5 axis and inducing signals for labor initiation. These findings provide novel insights for labor initiation in clinical settings.
Collapse
Affiliation(s)
- Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China
| | - Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchen Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bingshuai Yao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lequn Wang
- Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China
| | - Chenghua Wu
- Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi, Shandong, 273400, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, Shandong, 250014, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, 250117, Shandong, China.
| |
Collapse
|
10
|
Sugulle M, Fiskå BS, Jacobsen DP, Fjeldstad HE, Staff AC. Placental Senescence and the Two-Stage Model of Preeclampsia. Am J Reprod Immunol 2024; 92:e13904. [PMID: 39049670 DOI: 10.1111/aji.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
In this review, we summarize how an increasingly stressed and aging placenta contributes to the maternal clinical signs of preeclampsia, a potentially lethal pregnancy complication. The pathophysiology of preeclampsia has been conceptualized in the two-stage model. Originally, highlighting the importance of poor placentation for early-onset preeclampsia, the revised two-stage model explains late-onset preeclampsia as well, which is often preceded by normal placentation. We discuss how cellular senescence in the placenta may fit with the framework of the revised two-stage model of preeclampsia pathophysiology and summarize potential cellular and molecular mechanisms, including effects on placental and maternal endothelial function. Cellular senescence may occur in response to inflammatory processes and oxidative, mitochondrial, or endoplasmic reticulum stress and chronic stress induce accelerated, premature placental senescence. In preeclampsia, both circulating and tissue-based senescence markers are present. We suggest that aspirin prophylaxis, commonly recommended from the first trimester onward for women at risk of preeclampsia, may affect placentation and possibly mechanisms of placental senescence, thus attenuating the risk of preeclampsia developing clinically. We propose that biomarkers of placental dysfunction and senescence may contribute to altered preventive strategies, including discontinuation of aspirin at week 24-28 depending on placenta-associated biomarker risk stratification.
Collapse
Affiliation(s)
- Meryam Sugulle
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Bendik S Fiskå
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Daniel Pitz Jacobsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Heidi Elisabeth Fjeldstad
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Zhang W, Cai S, Wu F, Luo Y, Xiao H, Yu D, Zhong X, Tao P, Huang S. Combining experiments and bioinformatics to identify transforming growth factor-β1 as a key regulator in angiotensin II-induced trophoblast senescence. Placenta 2024; 152:31-38. [PMID: 38781757 DOI: 10.1016/j.placenta.2024.05.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Accelerated senescence of trophoblast may cause several diverse pregnancy outcomes; however, the cause of accelerated trophoblast senescence remains unclear. The renin-angiotensin system (RAS) is closely related to organ senescence. Therefore, in the present study, we hypothesized that angiotensin (Ang)II, one of the most important RAS family members, accelerates trophoblast senescence through the transforming growth factor β-1 (TGF-β1) pathway. METHODS AngII and Ang1-7 were used to stimulate pregnant rats. AngII and its inhibitor olmesartan were used to stimulate trophoblast. Thereafter, senescence levels were measured. Furthermore, we used AngII to stimulate trophoblast and utilized RNA-sequencing (RNAseq) to analyze the expression of differentially expressed genes (DEGs). After identifying the overlapping genes by comparing the DEGs and senescence-related genes, we employed CytoHubba software to calculate the top five hub genes and selected TGF-β1 as the target gene. We transfected the AngII-stimulated trophoblast with TGF-β1 small interfering RNA (siRNA) and measured the senescence levels. RESULTS Senescence markers were upregulated in the AngII group compared with that in the control group. Furthermore, following AngII stimulation and RNAseq measurement, we identified 607 DEGs and 13 overlapping genes. The top five hub genes were as follows: PLAU, PTGS2, PDGF-β, TGF-β1, and FOXO3. Upon knockdown of TGF-β1 expression in AngII-stimulated trophoblast using TGF-β1 siRNA, we observed a downregulation of p53 and p62 mRNA expression. DISCUSSION AngII accelerates trophoblast senescence through the TGF-β1 pathway.
Collapse
Affiliation(s)
- Wenni Zhang
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Shuangming Cai
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fei Wu
- Hospital Infection Control Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yiping Luo
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Huanshun Xiao
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Danfeng Yu
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xuan Zhong
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Pei Tao
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Shan Huang
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Bi S, Jiang X, Ji Q, Wang Z, Ren J, Wang S, Yu Y, Wang R, Liu Z, Liu J, Hu J, Sun G, Wu Z, Diao Z, Li J, Sun L, Izpisua Belmonte JC, Zhang W, Liu GH, Qu J. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA. Dev Cell 2024; 59:991-1009.e12. [PMID: 38484732 DOI: 10.1016/j.devcel.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/15/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024]
Abstract
Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Science and Engineering, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Ruoqi Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhang Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Aging Biomarker Consortium, Beijing 100101, China.
| |
Collapse
|
13
|
Jacobsen DP, Fjeldstad HE, Sugulle M, Johnsen GM, Olsen MB, Kanaan SB, Staff AC. Fetal microchimerism and the two-stage model of preeclampsia. J Reprod Immunol 2023; 159:104124. [PMID: 37541161 DOI: 10.1016/j.jri.2023.104124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Fetal cells cross the placenta during pregnancy and some have the ability to persist in maternal organs and circulation long-term, a phenomenon termed fetal microchimerism. These cells often belong to stem cell or immune cell lineages. The long-term effects of fetal microchimerism are likely mixed, potentially depending on the amount of fetal cells transferred, fetal-maternal histocompatibility and fetal cell-specific properties. Both human and animal data indicate that fetal-origin cells partake in tissue repair and may benefit maternal health overall. On the other hand, these cells have been implicated in inflammatory diseases by studies showing increased fetal microchimerism in women with autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. During pregnancy, preeclampsia is associated with increased cell-transfer between the mother and fetus, and an increase in immune cell subsets. In the current review, we discuss potential mechanisms of transplacental transfer, including passive leakage across the compromised diffusion barrier and active recruitment of cells residing in the placenta or fetal circulation. Within the conceptual framework of the two-stage model of preeclampsia, where syncytiotrophoblast stress is a common pathophysiological pathway to maternal and fetal clinical features of preeclampsia, we argue that microchimerism may represent a mechanistic link between stage 1 placental dysfunction and stage 2 maternal cardiovascular inflammation and endothelial dysfunction. Finally, we postulate that fetal microchimerism may contribute to the known association between placental syndromes and increased long-term maternal cardiovascular disease risk. Fetal microchimerism research represents an exciting opportunity for developing new disease biomarkers and targeted prophylaxis against maternal diseases.
Collapse
Affiliation(s)
- Daniel P Jacobsen
- Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål, Oslo, Norway.
| | | | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Guro M Johnsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Maria B Olsen
- Faculty of Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Chimerocyte, Inc., Seattle, WA, USA
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Obstetrics and Gynaecology, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
14
|
Tao Y, Chen W, Xu H, Xu J, Yang H, Luo X, Chen M, He J, Bai Y, Qi H. Adipocyte-Derived Exosomal NOX4-Mediated Oxidative Damage Induces Premature Placental Senescence in Obese Pregnancy. Int J Nanomedicine 2023; 18:4705-4726. [PMID: 37608820 PMCID: PMC10441661 DOI: 10.2147/ijn.s419081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Background A recent study has reported that maternal obesity is linked to placental oxidative damage and premature senescence. NADPH oxidase 4 (NOX4) is massively expressed in adipose tissue, and its induced reactive oxygen species have been found to contribute to cellular senescence. While, whether, in obese pregnancy, adipose tissue-derived NOX4 is the considerable cause of placental senescence remained elusive. Methods This study collected term placentas from obese and normal pregnancies and obese pregnant mouse model was constructed by a high fat diet to explore placental senescence. Furthermore, adipocyte-derived exosomes were isolated from primary adipocyte medium of obese and normal pregnancies to examine their effect on placenta functions in vivo and vitro. Results The placenta from the obese group showed a significant increase in placental oxidative damage and senescence. Exosomes from obese adipocytes contained copies of NOX4, and when cocultured with HTR8/SVneo cells, they induced severe oxidative damage, cellular senescence, and suppressed proliferation and invasion functions when compared with the control group. In vivo, adipocyte-derived NOX4-containing exosomes could induce placental oxidative damage and senescence, ultimately leading to adverse pregnancy outcomes. Conclusion In obesity, adipose tissue can secrete exosomes containing NOX4 which can be delivered to trophoblast resulting in severe DNA oxidative damage and premature placental senescence, ultimately leading to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Wei Chen
- Department of Emergency & Intensive Care Units, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongbing Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jiacheng Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Huan Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, 404100, People’s Republic of China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Miaomiao Chen
- Maternal and Child Health Hospital of Hubei Province, Wuhan City, Hubei Province, 430070, People’s Republic of China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yuxiang Bai
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Women and Children’s Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
15
|
LU YU, MIYAMOTO TSUTOMU, TAKEUCHI HODAKA, TSUNODA FUMI, TANAKA NAOKI, SHIOZAWA TANRI. PPARα activator irbesartan suppresses the proliferation of endometrial carcinoma cells via SREBP1 and ARID1A. Oncol Res 2023; 31:239-253. [PMID: 37305395 PMCID: PMC10229307 DOI: 10.32604/or.2023.026067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/14/2023] [Indexed: 06/13/2023] Open
Abstract
Endometrial carcinoma (EMC) is associated with obesity; however, the underlying mechanisms have not yet been elucidated. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that is involved in lipid, glucose, and energy metabolism. PPARα reportedly functions as a tumor suppressor through its effects on lipid metabolism; however, the involvement of PPARα in the development of EMC remains unclear. The present study demonstrated that the immunohistochemical expression of nuclear PPARα was lower in EMC than in normal endometrial tissues, suggesting the tumor suppressive nature of PPARα. A treatment with the PPARα activator, irbesartan, inhibited the EMC cell lines, Ishikawa and HEC1A, by down-regulating sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) and up-regulating the tumor suppressor genes p21 and p27, antioxidant enzymes, and AT-rich interaction domain 1A (ARID1A). These results indicate the potential of the activation of PPARα as a novel therapeutic approach against EMC.
Collapse
Affiliation(s)
- YU LU
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - TSUTOMU MIYAMOTO
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - HODAKA TAKEUCHI
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - FUMI TSUNODA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - NAOKI TANAKA
- Department of Global Medical Research Promotion, School of Medicine, Shinshu University Graduate, Matsumoto, Nagano, 390-8621, Japan
- International Relations Office, School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - TANRI SHIOZAWA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| |
Collapse
|
16
|
Farfán-Labonne B, Leff-Gelman P, Pellón-Díaz G, Camacho-Arroyo I. Cellular senescence in normal and adverse pregnancy. Reprod Biol 2023; 23:100734. [PMID: 36773450 DOI: 10.1016/j.repbio.2023.100734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.
Collapse
Affiliation(s)
- Blanca Farfán-Labonne
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México.
| | - Philippe Leff-Gelman
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Gabriela Pellón-Díaz
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
17
|
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023; 12:foods12050925. [PMID: 36900446 PMCID: PMC10000917 DOI: 10.3390/foods12050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.
Collapse
|
18
|
Yin L, Xu L, Chen B, Zheng X, Chu J, Niu Y, Ma T. SRT1720 plays a role in oxidative stress and the senescence of human trophoblast HTR8/SVneo cells induced by D-galactose through the SIRT1/FOXO3a/ROS signalling pathway. Reprod Toxicol 2022; 111:1-10. [PMID: 35562067 DOI: 10.1016/j.reprotox.2022.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
D-galactose (D-gal) is a reducing sugar widely distributed in food. In a pregnant animal model exposed to D-gal, D-gal was found to have toxic effects on both the mother and foetus through oxidative stress. However, little is known about the effect of D-gal exposure on the placenta and its underlying mechanism. In this study, we evaluated the effects of D-gal on HTR8/SVneo cells and the mechanisms in vitro. In the present study, the activity of HTR8/SVneo human trophoblasts decreased in a time- and concentration-dependent manner after exposure to D-gal. D-gal resulted in premature senescence of HTR8/SVneo cells, as confirmed by assessing β-galactosidase (SA-β-gal) activity and the expression of senescence-related factor p21. We also verified the damage of oxidative stress induced by D-gal by measuring the expression of reactive oxygen species (ROS), sirtuin 1 (SIRT1) and forkhead box O (FOXO) 3a. SRT1720, as a SIRT1 activator, mitigated D-gal-induced oxidative stress and senescence by upregulating SIRT1 and FOXO3a expression and reducing ROS production. Our data suggest that D-gal may induce HTR8/SVneo premature ageing through the SIRT1/FOXO3a/ROS signalling pathway mediated by oxidative stress and that SIRT1 protects cells from this damage.
Collapse
Affiliation(s)
- Lanlan Yin
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lihua Xu
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bi Chen
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiudan Zheng
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanru Niu
- Laboratory of Bone Science, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
19
|
The Autophagy-Lysosomal Machinery Enhances Cytotrophoblast–Syncytiotrophoblast Fusion Process. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Poor placentation is closely related with the etiology of preeclampsia and may impact fetal growth restriction. For placental developmental growth, we have demonstrated that dysregulation of autophagy, a key mechanism to maintain cellular homeostasis, in trophoblasts contributes to the pathophysiology of preeclampsia, a severe pregnancy complication, associated with poor placentation. It remains, however, unknown whether autophagy inhibition affects trophoblast syncytialization. This study evaluated the effect of autophagy in an in vitro syncytialization method using BeWo cells and primary human trophoblasts (PHT). In this study, we observed that autophagic activity decreased in PHT and BeWo cells during syncytialization. This decreased activity was accompanied by downregulation of the transcription factor, TFEB. Next, bafilomycin A1, an inhibitor of autophagy via suppressing V-ATPase in lysosomes, inhibited hCG production, CYP11A1 expression (a marker of differentiation), p21 expression (a senescence marker), and cell fusion in BeWo cells and PHT cells. Finally, LLOMe, an agent inducing lysosomal damage, also inhibited syncytialization and led to TFEB downregulation. Taken together, the autophagy-lysosomal machinery plays an important role in cytotrophoblast fusion, resulting in syncytiotrophoblasts. As autophagy inhibition contributed to the failure of differentiation in cytotrophoblasts, this may result in the poor placentation observed in preeclampsia.
Collapse
|
20
|
SIRT1 regulates trophoblast senescence in premature placental aging in preeclampsia. Placenta 2022; 122:56-65. [DOI: 10.1016/j.placenta.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
|
21
|
Redman CW, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol 2022; 226:S907-S927. [PMID: 33546842 DOI: 10.1016/j.ajog.2020.09.047] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022]
Abstract
Preeclampsia evolves in 2 stages: a placental problem that generates signals to the mother to cause a range of responses that comprise the second stage (preeclampsia syndrome). The first stage of early-onset preeclampsia is poor placentation, which we here call malplacentation. The spiral arteries are incompletely remodeled, leading to later placental malperfusion, relatively early in the second half of pregnancy. The long duration of the first stage (several months) is unsurprisingly associated with fetal growth restriction. The first stage of late-onset preeclampsia, approximately 80% of total cases, is shorter (several weeks) and part of a process that is common to all pregnancies. Placental function declines as it outgrows uterine capacity, with increasing chorionic villous packing, compression of the intervillous space, and fetal hypoxia, and causes late-onset clinical presentations such as "unexplained" stillbirths, late-onset fetal growth restriction, or preeclampsia. The second stages of early- and late-onset preeclampsia share syncytiotrophoblast stress as the most relevant feature that causes the maternal syndrome. Syncytiotrophoblast stress signals in the maternal circulation are probably the most specific biomarkers for preeclampsia. In addition, soluble fms-like tyrosine kinase-1 (mainly produced by syncytiotrophoblast) is the best-known biomarker and is routinely used in clinical practice in many locations. How the stress signals change over time in normal pregnancies indicates that syncytiotrophoblast stress begins on average at 30 to 32 weeks' gestation and progresses to term. At term, syncytiotrophoblast shows increasing markers of stress, including apoptosis, pyroptosis, autophagy, syncytial knots, and necrosis. We label this phenotype the "twilight placenta" and argue that it accounts for the clinical problems of postmature pregnancies. Senescence as a stress response differs in multinuclear syncytiotrophoblast from that of mononuclear cells. Syncytiotrophoblast irreversibly acquires part of the senescence phenotype (cell cycle arrest) when it is formed by cell fusion. The 2 pathways converge on the common pathologic endpoint, syncytiotrophoblast stress, and contribute to preeclampsia subtypes. We highlight that the well-known heterogeneity of the preeclampsia syndrome arises from different pathways to this common endpoint, influenced by maternal genetics, epigenetics, lifestyle, and environmental factors with different fetal and maternal responses to the ensuing insults. This complexity mandates a reassessment of our approach to predicting and preventing preeclampsia, and we summarize research priorities to maximize what we can learn about these important issues.
Collapse
|
22
|
Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, Gotsch F, Erez O. The etiology of preeclampsia. Am J Obstet Gynecol 2022; 226:S844-S866. [PMID: 35177222 PMCID: PMC8988238 DOI: 10.1016/j.ajog.2021.11.1356] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Preeclampsia is one of the "great obstetrical syndromes" in which multiple and sometimes overlapping pathologic processes activate a common pathway consisting of endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. This article reviews the potential etiologies of preeclampsia. The role of uteroplacental ischemia is well-established on the basis of a solid body of clinical and experimental evidence. A causal role for microorganisms has gained recognition through the realization that periodontal disease and maternal gut dysbiosis are linked to atherosclerosis, thus possibly to a subset of patients with preeclampsia. The recent reports indicating that SARS-CoV-2 infection might be causally linked to preeclampsia are reviewed along with the potential mechanisms involved. Particular etiologic factors, such as the breakdown of maternal-fetal immune tolerance (thought to account for the excess of preeclampsia in primipaternity and egg donation), may operate, in part, through uteroplacental ischemia, whereas other factors such as placental aging may operate largely through syncytiotrophoblast stress. This article also examines the association between gestational diabetes mellitus and maternal obesity with preeclampsia. The role of autoimmunity, fetal diseases, and endocrine disorders is discussed. A greater understanding of the etiologic factors of preeclampsia is essential to improve treatment and prevention.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI.
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Faculty of Medicine, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Adithep Jaovisidha
- Faculty of Medicine, Department of Obstetrics and Gynecology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| |
Collapse
|
23
|
Lekva T, Roland MCP, Estensen ME, Norwitz ER, Tilburgs T, Henriksen T, Bollerslev J, Normann KR, Magnus P, Olstad OK, Aukrust P, Ueland T. Dysregulated non-coding telomerase RNA component and associated exonuclease XRN1 in leucocytes from women developing preeclampsia-possible link to enhanced senescence. Sci Rep 2021; 11:19735. [PMID: 34611223 PMCID: PMC8492805 DOI: 10.1038/s41598-021-99140-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
Senescence in placenta/fetal membranes is a normal phenomenon linked to term parturition. However, excessive senescence which may be induced by telomere attrition, has been associated with preeclampsia (PE). We hypothesized that the telomerase complex in peripheral blood mononuclear cells (PBMC) and circulating telomere associated senescence markers would be dysregulated in women with PE. We measured long non-coding (nc) RNA telomerase RNA component (TERC) and RNAs involved in the maturation of TERC in PBMC, and the expression of TERC and 5′–3′ Exoribonuclease 1 (XRN1) in extracellular vesicles at 22–24 weeks, 36–38 weeks and, 5-year follow-up in controls and PE. We also measured telomere length at 22–24 weeks and 5-year follow-up. The circulating senescence markers cathelicidin antimicrobial peptide (CAMP), β-galactosidase, stathmin 1 (STMN1) and chitotriosidase/CHIT1 were measured at 14–16, 22–24, 36–38 weeks and at 5-year follow-up in the STORK study and before delivery and 6 months post-partum in the ACUTE PE study. We found decreased expression of TERC in PBMC early in pregnant women who subsequently developed PE. XRN1 involved in the maturation of TERC was also reduced in pregnancy and 5-year follow-up. Further, we found that the senescence markers CAMP and β-galactosidase were increased in PE pregnancies, and CAMP remained higher at 5-year follow-up. β-galactosidase was associated with atherogenic lipid ratios during pregnancy and at 5-year follow-up, in PE particularly. This study suggests a potential involvement of dysfunctional telomerase biology in the pathophysiology of PE, which is not restricted to the placenta.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,National Research Center for Women's Health, Oslo University Hospital, Oslo, Norway
| | - Mette E Estensen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Tamara Tilburgs
- Division of Immunobiology, Center of Inflammation and Tolerance, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tore Henriksen
- Department of Obstetrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Bollerslev
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kjersti R Normann
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole Kristoffer Olstad
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
24
|
Xiong L, Ye X, Chen Z, Fu H, Li S, Xu P, Yu J, Wen L, Gao R, Fu Y, Qi H, Kilby MD, Saffery R, Baker PN, Tong C. Advanced Maternal Age-associated SIRT1 Deficiency Compromises Trophoblast Epithelial-Mesenchymal Transition through an Increase in Vimentin Acetylation. Aging Cell 2021; 20:e13491. [PMID: 34605151 PMCID: PMC8520724 DOI: 10.1111/acel.13491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced maternal age (AMA) pregnancies are rapidly increasing and are associated with aberrant trophoblast cell function, poor placentation, and unfavorable pregnancy outcomes, presumably due to premature placental senescence. SIRT1 is an NAD+ -dependent deacetylase with well-known antiaging effects, but its connection with placental senescence is unreported. In this study, human term placentas and first-trimester villi were collected from AMA and normal pregnancies, and a mouse AMA model was established by cross breeding young and aged male and female C57 mice. SIRT1 expression and activity in HTR8/SVneo cells were genetically or pharmacologically manipulated. Trophoblast-specific Sirt1-knockout (KO) mouse placentas were generated by mating Elf5-Cre and Sirt1fl/fl mice. Trophoblast cell mobility was assessed with transwell invasion and wound-healing assays. SIRT1-binding proteins in HTR8/SVneo cells and human placental tissue were identified by mass spectrometry. We identified SIRT1 as the only differentially expressed sirtuin between AMA and normal placentas. It is downregulated in AMA placentas early in the placental life cycle and is barely impacted by paternal age. SIRT1 loss upregulates P53 acetylation and P21 expression and impairs trophoblast invasion and migration. Sirt1-KO mouse placentas exhibit senescence markers and morphological disruption, along with decreased fetal weight. In trophoblasts, SIRT1 interacts with vimentin, regulating its acetylation. In conclusion, SIRT1 promotes trophoblast epithelial-mesenchymal transition (EMT) to enhance invasiveness by modulating vimentin acetylation. AMA placentas are associated with premature senescence during placentation due to SIRT1 loss. Therefore, SIRT1 may be an antiaging therapeutic target for improving placental development and perinatal outcomes in AMA pregnancies.
Collapse
Affiliation(s)
- Liling Xiong
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Xuan Ye
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Zhi Chen
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Huijia Fu
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Sisi Li
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Ping Xu
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Jiaxiao Yu
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Li Wen
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Rufei Gao
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- Laboratory of Reproductive Biology School of Public Health and Management Chongqing Medical University Chongqing China
| | - Yong Fu
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Hongbo Qi
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| | - Mark D. Kilby
- Institute of Metabolism and System Research University of Birmingham Edgbaston UK
| | - Richard Saffery
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- Cancer, Disease and Developmental Epigenetics Murdoch Children’s Research Institute Parkville Victoria Australia
| | - Philip N. Baker
- College of Life Sciences University of Leicester Leicester UK
| | - Chao Tong
- Department of Obstetrics The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Ministry of Education‐International Collaborative Laboratory of Reproduction and Development Chongqing China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality Chongqing China
| |
Collapse
|
25
|
Hirata Y, Katsukura Y, Henmi Y, Ozawa R, Shimazaki S, Kurosawa A, Torii Y, Takahashi H, Iwata H, Kuwayama T, Shirasuna K. Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J Reprod Dev 2021; 67:257-264. [PMID: 34176822 PMCID: PMC8423608 DOI: 10.1262/jrd.2021-034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Advanced maternal age is a risk factor for female infertility, and placental dysfunction is considered one of the causes of pregnancy complications. We investigated the effects of advanced
maternal aging on pregnancy outcomes and placental senescence. Female pregnant mice were separated into three groups: young (3 months old), middle (8–9 months old), and aged (11–13 months
old). Although the body weights of young and middle dams gradually increased during pregnancy, the body weight of aged dams only increased slightly. The placental weight and resorption rate
were significantly higher, and live fetal weights were reduced in a maternal age-dependent manner. Although mRNA expression of senescence regulatory factors (p16 and p21) increased in the
spleen of aged dams, mRNA expression of p16 did not change and that of p21 was reduced in the placenta of aged dams. Using a cytokine array of proteins extracted from placental tissues, the
expression of various types of senescence-associated secretory phenotype (SASP) factors was decreased in aged dams compared with young and middle dams. The aged maternal placenta showed
reduced immune cell accumulation compared with the young placenta. Our present results suggest that models using pregnant mice older than 8 months are more suitable for verifying older human
pregnancies. These findings suggest that general cellular senescence programs may not be included in the placenta and that placental functions, including SASP production and immune cell
accumulation, gradually decrease in a maternal age-dependent manner, resulting in a higher rate of pregnancy complications.
Collapse
Affiliation(s)
- Yoshiki Hirata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yusuke Katsukura
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yuka Henmi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Sayaka Shimazaki
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Akira Kurosawa
- Laboratory of Animal Nutrition, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| |
Collapse
|
26
|
Li L, Liu ZP. Biomarker discovery for predicting spontaneous preterm birth from gene expression data by regularized logistic regression. Comput Struct Biotechnol J 2020; 18:3434-3446. [PMID: 33294138 PMCID: PMC7689379 DOI: 10.1016/j.csbj.2020.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/23/2023] Open
Abstract
In this work, we provide a computational method of regularized logistic regression for discovering biomarkers of spontaneous preterm birth (SPTB) from gene expression data. The successful identification of SPTB biomarkers will greatly benefit the interference of infant gestational age for reducing the risks of pregnant women and preemies. In recent years, various approaches have been proposed for the feature selection of identifying the subset of meaningful genes that can achieve accurate classification for disease samples from controls. Here, we comprehensively summarize the regularized logistic regression with seven effective penalties developed for the selection of strongly indicative genes of SPTB from microarray data. We compare their properties and assess their classification performances in multiple datasets. It shows that elastic net, lasso,L 1 / 2 and SCAD penalties get the better performance than others and can be successfully used to identify biomarkers of SPTB. Particularly, we make a functional enrichment analysis on these biomarkers and construct a logistic regression classifier based on them. The classifier generates an indicator of preterm risk score (PRS) for predicting SPTB. Based on the trained predictor, we verify the identified biomarkers on an independent dataset. The biomarkers achieve the AUC value of 0.933 in the SPTB classification. The results demonstrate the effectiveness and efficiency of the built-up strategy of biomarker discovery with regularized logistic regression. Obviously, the proposed method of discovering biomarkers for SPTB can be easily extended for other complex diseases.
Collapse
Affiliation(s)
- Lingyu Li
- Center for Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zhi-Ping Liu
- Center for Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
27
|
Kiyokawa E, Shoji H, Daikoku T. The supression of DOCK family members by their specific inhibitors induces the cell fusion of human trophoblastic cells. Biochem Biophys Res Commun 2020; 529:1173-1179. [PMID: 32819582 DOI: 10.1016/j.bbrc.2020.06.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Among the members of the DOCK family, DOCK1-5 function as guanine-nucleotide exchange factors for small GTPase Rac1, which regulates the actin cytoskeleton. It has been reported that in model organisms the Dock-Rac axis is required for myoblast fusion. We examined the role of DOCK1-5 in trophoblast fusion herein. METHODS We used a quantitative polymerase chain reaction (qPCR) to examine the mRNA expressions of DOCK1-5 and differentiation-related genes, i.e., fusogenic genes, in human trophoblastic cell lines, BeWo and JEG-3. We treated BeWo cells with TBOPP and C21 to inhibit DOCK1 and DOCK5. Cell dynamics and cell fusion were assessed by live imaging and immunostaining. The signaling pathways induced by DOCK1/5 inhibition were examined by western blotting. RESULTS DOCK1 and DOCK5 were expressed in BeWo cells. The inhibition of DOCK1 or DOCK5 did not prevent the cell fusion induced by forskolin (a common reagent for cell fusion); it induced cell fusion. DOCK1 inhibition induced cell death, as did forskolin. DOCK1 and DOCK5 inhibition for 24 and 48 h increased the expression of the genes ASCT2 and SYNCYTIN2, which code responsive proteins of trophoblast cell fusion, respectively. CONCLUSION DOCK1 and DOCK5 inhibition participates in BeWo cell fusion, probably via pathways independent from forskolin-mediated pathways.
Collapse
Affiliation(s)
- Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan.
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|