1
|
Liu X, Yu X, Yang L. Endogenous Hormone Regulation During Key Developmental Stages of Pinus koraiensis Siebold & Zucc. Ovules. PLANTS (BASEL, SWITZERLAND) 2025; 14:637. [PMID: 40094516 PMCID: PMC11902137 DOI: 10.3390/plants14050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025]
Abstract
In this study, the morphological and anatomical characteristics of the growth of the internal ovules and the dynamic changes in the content of endogenous hormones during the development of Korean pine (Pinus koraiensis Siebold & Zucc.) cones were investigated in detail and their interrelationships determined. In addition, morphological examinations, paraffin section, analysis and enzyme immunoassays were performed to observe the growth and development as well as the fertilization stages of the ovules of P. koraiensis from July of the pollination year to June of the following year. From July of the pollination year to May of the next year, the increase in the content of indoleacetic acid (IAA) and gibberellin and a decrease in the content of abscisic acid (ABA) in the pollination year correlated with the division of the gametophyte free nuclei. It was observed that the levels of IAA, ABA, zeatin riboside (ZR) and isopentenyl adenosine (IPA) initially decreased and then increased during overwintering, which was interpreted as a symptom of adaptation of P. koraiensis ovules to low temperatures. At the end of overwintering, the increase in IPA, ZR and ABA levels was associated with the development of the female gametophyte. The week before fertilization was identified as the stage of oocyte division, in which growth-promoting hormones dominate. During the week of fertilization, the increase in the level of growth-inhibiting hormones correlated with fertilization. After fertilization, the increase in the level of growth-promoting hormones also correlated with early embryonic development. The levels of endogenous hormones were observed to change dynamically with the development of P. koraiensis oocytes, indicating their important role. The results of this study provide the morphological and anatomical basis for related studies on the development of the ovarian strobilus in gymnosperms.
Collapse
Affiliation(s)
- Xueqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.Y.)
| | - Xiaoqian Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.L.); (X.Y.)
| | - Ling Yang
- College of Forestry, Beijing Forestry University, Beijing 100091, China
| |
Collapse
|
2
|
Huang J, Qiao Z, Yu H, Lu Z, Chen W, Lu J, Wu J, Bao Y, Shahid MQ, Liu X. OsRH52A, a DEAD-box protein, regulates functional megaspore specification and is required for embryo sac development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4802-4821. [PMID: 38642102 PMCID: PMC11350083 DOI: 10.1093/jxb/erae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The development of the embryo sac is an important factor that affects seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants; however, the function of the DEAD-box RNA helicase family genes is poorly known in rice. Here, we characterized a rice DEAD-box protein, RH52A, which is localized in the nucleus and cytoplasm and highly expressed in the floral organs. The knockout mutant rh52a displayed partial ES sterility, including degeneration of the ES (21%) and the presence of a double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores near the chalazal end in one ovule, and 3.4% of DFGs were able to fertilize via the sac near the micropylar pole in rh52a. RH52A was found to interact with MFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-sequencing identified 234 down-regulated differentially expressed genes associated with reproductive development, including two, MSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrates that RH52A is essential for the development of the rice embryo sac and provides cytological details regarding the formation of DFGs.
Collapse
Affiliation(s)
- Jinghua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengping Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weibin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Guo S, Zheng C, Wang Y, Xu Y, Wu J, Wang L, Liu X, Chen Z. OsmiRNA5488 Regulates the Development of Embryo Sacs and Targets OsARF25 in Rice ( Oryza sativa L.). Int J Mol Sci 2023; 24:16240. [PMID: 38003430 PMCID: PMC10671434 DOI: 10.3390/ijms242216240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Small RNAs are a class of non-coding RNAs that typically range from 20 to 24 nucleotides in length. Among them, microRNAs (miRNAs) are particularly important regulators for plant development. The biological function of the conserved miRNAs has been studied extensively in plants, while that of the species-specific miRNAs has been studied in-depth. In this study, the regulatory role of a rice-specific OsmiRNA5488 (OsmiR5488) was characterized with the miR5488-overexpressed line (miR5488-OE) and miR5488-silenced line (STTM-5488). The seed-setting rate was notably reduced in miR5488-OE lines, but not in STTM-5488 lines. Cytological observation demonstrated the different types of abnormal mature embryo sacs, including the degeneration of embryo sacs and other variant types, in miR5488-OE lines. The percentage of the abnormal mature embryo sacs accounted for the reduced value of the seed-setting rate. Furthermore, OsARF25 was identified as a target of OsmiR5488 via RNA ligase-mediated 3'-amplifification of cDNA ends, dual luciferase assays, and transient expression assays. The primary root length was decreased with the increases in auxin concentrations in miR5488-OE lines compared to wild-type rice. Summarily, our results suggested that OsmiR5488 regulates the seed-setting rate and down-regulates the targeted gene OsARF25.
Collapse
Affiliation(s)
- Shengyuan Guo
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Chuanjiang Zheng
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Yan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Yangwen Xu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
| | - Jinwen Wu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Wang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiong Chen
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (S.G.); (C.Z.); (Y.W.); (Y.X.); (J.W.); (L.W.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
5
|
Qin P, Gao J, Shen W, Wu Z, Dai C, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. BnaCRCs with domestication preference positively correlate with the seed-setting rate of canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1717-1731. [PMID: 35882961 DOI: 10.1111/tpj.15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Canola (Brassica napus) is an important oil crop worldwide. The seed-setting rate (SS) is a critical factor in determining its yield, and the development of pistils affects pollination and seed sets. However, research on seed-setting defects has been limited owing to difficulties in the identification of phenotypes, mutations, and complex genetic mechanisms. In this study, we found a stigma defect (sd) mutant in B. napus, which had no nectary. The SS of sd mutants in the field was approximately 93.4% lower than that of the wild type. Scanning and transmission electron microscopy imaging of sd mutants showed a low density of stigma papillary cells and stigma papillary cell vacuoles that disappeared 16 h after flowering. Genetic analysis of segregated populations showed that two recessive nuclear genes are responsible for the mutant phenotype of sd. Based on re-sequencing and map-based cloning, we reduced the candidate sites on ChrA07 (BnaSSA07) and ChrC06 (BnaSSC06) to 30 and 67 kb, including six and eight predicted genes, respectively. Gene analyses showed that a pair of CRABS CLAW (CRC) homeologous genes at BnaSSA07 and BnaSSC06 were associated with the development of carpel and nectary. BnaSSA07.CRC and BnaSSC06.CRC candidate genes were found to be expressed in flower organs only, with significant differences in their expression in the pistils of the near-isogenic lines. DNA sequencing showed transposon insertions in the upstream region and intron of the candidate gene BnaSSA07.crc. We also found that BnaSSC06.crc exists widely in the natural population and we give possible reasons for its widespread existence.
Collapse
Affiliation(s)
- Pei Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiang Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Han J, Ma Z, Chen L, Wang Z, Wang C, Wang L, Chen C, Ren Z, Cao C. Morphological Characterization and Integrated Transcriptome and Proteome Analysis of Organ Development Defective 1 ( odd1) Mutant in Cucumis sativus L. Int J Mol Sci 2022; 23:ijms23105843. [PMID: 35628653 PMCID: PMC9145247 DOI: 10.3390/ijms23105843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop with the unique growth habit and typical trailing shoot architecture of Cucurbitaceae. Elucidating the regulatory mechanisms of growth and development is significant for improving quality and productivity in cucumber. Here we isolated a spontaneous cucumber mutant organ development defective 1 (odd1) with multiple morphological changes including root, plant stature, stem, leaf, male and female flowers, as well as fruit. Anatomical and cytological analyses demonstrated that both cell size and number decreased, and the shoot apical meristem (SAM) was smaller in odd1 compared with WT. Pollen vigor and germination assays and cross tests revealed that odd1 is female sterile, which may be caused by the absence of ovules. Genetic analysis showed that odd1 is a recessive single gene mutant. Using the MutMap strategy, the odd1 gene was found to be located on chromosome 5. Integrated profiling of transcriptome and proteome indicated that the different expression genes related to hormones and SAM maintenance might be the reason for the phenotypic changes of odd1. These results expanded the insight into the molecular regulation of organ growth and development and provided a comprehensive reference map for further studies in cucumber.
Collapse
|
7
|
Li J, Yang H, Xu G, Deng K, Yu J, Xiang S, Zhou K, Zhang Q, Li R, Li M, Ling Y, Yang Z, He G, Zhao F. QTL Analysis of Z414, a Chromosome Segment Substitution Line with Short, Wide Grains, and Substitution Mapping of qGL11 in Rice. RICE (NEW YORK, N.Y.) 2022; 15:25. [PMID: 35532865 PMCID: PMC9085999 DOI: 10.1186/s12284-022-00571-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 05/17/2023]
Abstract
Most agronomic traits of rice (Oryza sativa), such as grain length, are complex traits controlled by multiple genes. Chromosome segment substitution lines (CSSLs) are ideal materials for dissecting these complex traits. We developed the novel rice CSSL 'Z414', which has short, wide grains, from progeny of the recipient parent 'Xihui 18' (an indica restorer line) and the donor parent 'Huhan 3' (a japonica cultivar). Z414 contains four substitution segments with an average length of 3.04 Mb. Z414 displays seven traits that significantly differ from those of Xihui 18, including differences in grain length, width, and weight; degree of chalkiness; and brown rice rate. We identified seven quantitative trait loci (QTL) that are responsible for these differences in an F2 population from a cross between Xihui 18 and Z414. Among these, six QTL (qPL3, qGW5, qGL11, qRLW5, qRLW11, and qGWT5) were detected in newly developed single-segment substitution lines (SSSLs) S1-S6. In addition, four QTL (qGL3, qGL5, qCD3, and qCD5) were detected in S1 and S5. Analysis of these SSSLs attributed the short, wide grain trait of Z414 to qGL11, qGL3, qGL5, and qGW5. Substitution mapping delimited qGL11 within an 810-kb interval on chromosome 11. Sequencing, real time quantitative PCR, and cell morphology analysis revealed that qGL11 might be a novel QTL encoding the cyclin CycT1;3. Finally, pyramiding qGL3 (a = 0.43) and qGL11 (a = - 0.37) led to shorter grains in the dual-segment substitution line D2 and revealed that qGL11 is epistatic to qGL3. In addition, S1 and D2 exhibited different grain sizes and less chalkiness than Z414. In conclusion, the short grain phenotype of the CSSL Z414 is controlled by qGL11, qGL3, and qGL5. qGL11 might be a novel QTL encoding CycT1;3, whose specific role in regulating grain length was previously unknown, and qGL11 is epistatic to qGL3. S1 and D2 could potentially be used in hybrid rice breeding.
Collapse
Affiliation(s)
- Juan Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hongxia Yang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guangyi Xu
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Keli Deng
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinjin Yu
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Siqian Xiang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuli Zhang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruxiang Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Miaomiao Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangming Zhao
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Gong Z, Hu H, Xu L, Zhao Y, Zheng C. Screening of Differentially Expressed Genes and Localization Analysis of Female Gametophyte at the Free Nuclear Mitosis Stage in Pinus tabuliformis Carr. Int J Mol Sci 2022; 23:ijms23031915. [PMID: 35163836 PMCID: PMC8837038 DOI: 10.3390/ijms23031915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Female sterility is a common phenomenon in the plant world, and systematic research has not been carried out in gymnosperms. In this study, the ovules of No. 28 sterile line and No. 15 fertile line Pinus tabuliformis were used as materials, and a total of 18 cDNA libraries were sequenced by the HiSeqTM 4000 platform to analyze the differentially expressed genes (DEGs) and simple sequence repeats (SSRs) between the two lines. In addition, this study further analyzed the DEGs involved in the signal transduction of plant hormones, revealing that the signal pathways related to auxin, cytokinin, and gibberellin were blocked in the sterile ovule. Additionally, real-time fluorescent quantitative PCR verified that the expression trend of DEGs related to plant hormones was consistent with the results of high-throughput sequencing. Frozen sections and fluorescence in situ hybridization (FISH) were used to study the temporal and spatial expression patterns of PtRab in the ovules of P. tabuliformis. It was found that PtRab was significantly expressed in female gametophytes and rarely expressed in the surrounding diploid tissues. This study further explained the molecular regulation mechanism of female sterility in P. tabuliformis, preliminarily mining the key factors of ovule abortion in gymnosperms at the transcriptional level.
Collapse
Affiliation(s)
- Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- College of Horticulture, Jilin Agriculture University, Changchun 130118, China
| | - Hailin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Li Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.G.); (H.H.); (L.X.)
- Correspondence: (Y.Z.); (C.Z.); Tel.: +86-10-6233-7717 (Y.Z.)
| |
Collapse
|
9
|
Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn (Zea mays L.). PLANTS 2021; 10:plants10091845. [PMID: 34579378 PMCID: PMC8466968 DOI: 10.3390/plants10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
Collapse
|
10
|
Du B, Zhang Q, Cao Q, Xing Y, Qin L, Fang K. Morphological observation and protein expression of fertile and abortive ovules in Castanea mollissima. PeerJ 2021; 9:e11756. [PMID: 34327054 PMCID: PMC8308611 DOI: 10.7717/peerj.11756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chinese chestnuts (Castanea mollissima Blume.) contain 12-18 ovules in one ovary, but only one ovule develops into a seed, indicating a high ovule abortion rate. In this study, the Chinese chestnut 'Huaihuang' was used to explore the possible mechanisms of ovule abortion with respect to morphology and proteomics. The morphology and microstructure of abortive ovules were found to be considerably different from those of fertile ovules at 20 days after anthesis (20 DAA). The fertile ovules had completely formed tissues, such as the embryo sac, embryo and endosperm. By contrast, in the abortive ovules, there were no embryo sacs, and wide spaces between the integuments were observed, with few nucelli. Fluorescence labelling of the nuclei and transmission electron microscopy (TEM) observations showed that cells of abortive ovules were abnormally shaped and had thickened cell walls, folded cell membranes, condensed cytoplasm, ruptured nuclear membranes, degraded nucleoli and reduced mitochondria. The iTRAQ (isobaric tag for relative and absolute quantitation) results showed that in the abortive ovules, low levels of soluble protein with small molecular weights were found, and most of differently expressed proteins (DEPs) were related to protein synthesis, accumulation of active oxygen free radical, energy synthesis and so on. These DEPs might be associated with abnormal ovules formation.
Collapse
Affiliation(s)
- Bingshuai Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Qing Zhang
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ling Qin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Kefeng Fang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Urban Agriculture (North China, Ministry of Agriculture P. R. China), Beijing University of Agriculture, Beijing, China
| |
Collapse
|
11
|
Chen Z, Li Y, Li P, Huang X, Chen M, Wu J, Wang L, Liu X, Li Y. MircroRNA Profiles of Early Rice Inflorescence Revealed a Specific miRNA5506 Regulating Development of Floral Organs and Female Megagametophyte in Rice. Int J Mol Sci 2021; 22:ijms22126610. [PMID: 34205521 PMCID: PMC8235126 DOI: 10.3390/ijms22126610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
The developmental process of inflorescence and gametophytes is vital for sexual reproduction in rice. Multiple genes and conserved miRNAs have been characterized to regulate the process. The changes of miRNAs expression during the early development of rice inflorescence remain unknown. In this study, the analysis of miRNAs profiles in the early stage of rice inflorescence development identified 671 miRNAs, including 67 known and 44 novel differentially expressed miRNAs (DEMs). Six distinct clusters of miRNAs expression patterns were detected, and Cluster 5 comprised 110 DEMs, including unconserved, rice-specific osa-miR5506. Overexpression of osa-miR5506 caused pleiotropic abnormalities, including over- or under-developed palea, various numbers of floral organs and spikelet indeterminacy. In addition, the defects of ovaries development were frequently characterized by multiple megasporocytes, ovule-free ovary, megasporocyte degenerated and embryo sac degenerated in the transgenic lines. osa-miR5506 targeted REM transcription factor LOC_Os03g11370. Summarily, these results demonstrated that rice-specific osa-miR5506 plays an essential role in the regulation of floral organ number, spikelet determinacy and female gametophyte development in rice.
Collapse
Affiliation(s)
- Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yajing Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Peigang Li
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Xiaojie Huang
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Mingxin Chen
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Lang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (J.W.); (L.W.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (P.L.); (X.H.); (M.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.L.); (Y.L.)
| | - Yajuan Li
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.L.); (Y.L.)
| |
Collapse
|
12
|
Wang T, Li Y, Song S, Qiu M, Zhang L, Li C, Dong H, Li L, Wang J, Li L. EMBRYO SAC DEVELOPMENT 1 affects seed setting rate in rice by controlling embryo sac development. PLANT PHYSIOLOGY 2021; 186:1060-1073. [PMID: 33734397 PMCID: PMC8195536 DOI: 10.1093/plphys/kiab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 05/16/2023]
Abstract
Seed setting rate is one of the critical factors that determine rice yield. Grain formation is a complex biological process, whose molecular mechanism is yet to be improved. Here we investigated the function of an OVATE family protein, Embryo Sac Development 1 (ESD1), in the regulation of seed setting rate in rice (Oryza sativa) by examining its loss-of-function mutants generated via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) technology. ESD1 was predominantly expressed at Stage 6 of panicle development, especially in the ovules. esd1 mutants displayed reduced seed setting rates with normal stamen development and pollen tube growth but abnormal pistil group. Investigation of embryo sacs revealed that during the mitosis of functional megaspores, some egg cells degraded during differentiation in esd1 mutants, thereby hindering subsequent fertilization process and reducing seed setting rate. In addition, the transcriptional level of O. sativa anaphase-promoting complex 6, a reported embryo sac developing gene, was significantly reduced in esd1 mutants. These results support that ESD1 is an important modulator of ESD and seed setting rate in rice. Together, this finding demonstrates that ESD1 positively regulates the seed setting rate by controlling ESD in rice and has implications for the improvement of rice yield.
Collapse
Affiliation(s)
- Tiankang Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yixing Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Shufeng Song
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Mudan Qiu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Licheng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Chengxia Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Hao Dong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Lei Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianlong Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Li Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Author for communication:
| |
Collapse
|
13
|
Combined Transcriptome Analysis Reveals the Ovule Abortion Regulatory Mechanisms in the Female Sterile Line of Pinus tabuliformis Carr. Int J Mol Sci 2021; 22:ijms22063138. [PMID: 33808669 PMCID: PMC8003466 DOI: 10.3390/ijms22063138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ovule abortion is a common phenomenon in plants that has an impact on seed production. Previous studies of ovule and female gametophyte (FG) development have mainly focused on angiosperms, especially in Arabidopsis thaliana. However, because it is difficult to acquire information about ovule development in gymnosperms, this remains unclear. Here, we investigated the transcriptomic data of natural ovule abortion mutants (female sterile line, STE) and the wild type (female fertile line, FER) of Pinus tabuliformis Carr. to evaluate the mechanism of ovule abortion during the process of free nuclear mitosis (FNM). Using single-molecule real-time (SMRT) sequencing and next-generation sequencing (NGS), 18 cDNA libraries via Illumina and two normalized libraries via PacBio, with a total of almost 400,000 reads, were obtained. Our analysis showed that the numbers of isoforms and alternative splicing (AS) patterns were significantly variable between FER and STE. The functional annotation results demonstrate that genes involved in the auxin response, energy metabolism, signal transduction, cell division, and stress response were differentially expressed in different lines. In particular, AUX/IAA, ARF2, SUS, and CYCB had significantly lower expression in STE, showing that auxin might be insufficient in STE, thus hindering nuclear division and influencing metabolism. Apoptosis in STE might also have affected the expression levels of these genes. To confirm the transcriptomic analysis results, nine pairs were confirmed by quantitative real-time PCR. Taken together, these results provide new insights into ovule abortion in gymnosperms and further reveal the regulatory mechanisms of ovule development.
Collapse
|
14
|
Dimaano NGB, Ali J, Mahender A, Sta. Cruz PC, Baltazar AM, Diaz MGQ, Pang YL, Acero BL, Li Z. Identification of quantitative trait loci governing early germination and seedling vigor traits related to weed competitive ability in rice. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2020; 216:159. [PMID: 33029032 PMCID: PMC7510932 DOI: 10.1007/s10681-020-02694-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/04/2020] [Indexed: 05/10/2023]
Abstract
Weed competitive ability (WCA) is vital for the improvement of grain yield under direct-seeded and aerobic rice ecosystems where weeds are a major limiting factor. Early seed germination (ESG) and early seedling vigor (ESV) are the crucial traits for WCA. This study attempted to map the quantitative trait loci (QTLs) and hotspot regions governing ESG and ESV traits. A total of 167 BC1F5 selective introgression lines developed from an early backcross population involving Weed Tolerant Rice 1 (WTR-1) as the recipient parent and Y-134 as the donor parent were phenotyped for ESG and ESV traits. Analysis of variance revealed significant differences in ESG-related traits except for root length and in ESV-related traits except for plant height at 7 days after sowing. A total of 677-high quality single nucleotide polymorphism (SNP) markers were used to analyze the marker-trait association from a 6 K SNP genotyping array. Forty-three QTLs were identified on all chromosomes, except on chromosomes 4 and 8. Thirty QTLs were contributed by a desirable allele from Y-134, whereas 13 QTLs were from WTR-1. Twenty-eight of the identified genetic loci associated with ESG and ESV traits were novel. Two QTL hotspot regions were mapped on chromosomes 11 and 12. The genomic regions of QTL hotspots were fine-tuned and a total of 13 putative candidate genes were discovered on chromosomes 11 and 12 collectively. The mapped QTLs will be useful in advancing the marker aided-selection schemes and breeding programs for the development of rice cultivars with WCA traits.
Collapse
Affiliation(s)
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Pompe C. Sta. Cruz
- University of the Philippines Los Baños, 4031 Los Baños, Laguna Philippines
| | - Aurora M. Baltazar
- University of the Philippines Los Baños, 4031 Los Baños, Laguna Philippines
| | | | - Yun Long Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 People’s Republic of China
| | - Bart L. Acero
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Zhikang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 People’s Republic of China
| |
Collapse
|
15
|
GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. SCIENCE CHINA-LIFE SCIENCES 2018; 62:63-75. [PMID: 29987502 DOI: 10.1007/s11427-018-9307-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/10/2018] [Indexed: 10/28/2022]
Abstract
Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L-1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.
Collapse
|
16
|
Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat. Int J Mol Sci 2018; 19:ijms19061708. [PMID: 29890696 PMCID: PMC6032135 DOI: 10.3390/ijms19061708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS) wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS) during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.
Collapse
|
17
|
Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1. G3-GENES GENOMES GENETICS 2017; 7:3621-3635. [PMID: 28877971 PMCID: PMC5677159 DOI: 10.1534/g3.117.300243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1) and a wild-type rice line (Gui99) using whole-genome bisulfite sequencing (WGBS). Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs) were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of differentially methylated genes (DMGs), we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion.
Collapse
|
18
|
Zhang M, Song X, Lv K, Yao Y, Gong Z, Zheng C. Differential proteomic analysis revealing the ovule abortion in the female-sterile line of Pinus tabulaeformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:31-49. [PMID: 28554473 DOI: 10.1016/j.plantsci.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 05/26/2023]
Abstract
Ovule abortion affects the yield and quality of Pinus tabulaeformis Carr. seeds. Research into ovule abortion has importance for improving the seed setting rate and establishing artificial seed production techniques. Fertile line (FL) ovules (FL-E) and sterile line (SL) ovules (SL-E) in the early stage of free nuclear mitosis of megagametophyte (FNMM), FL ovules (FL-L) and SL ovules (SL-L) in the late stage of FNMM of P. tabulaeformis were collected as materials. 4192 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis. Bioinformatics analysis implied that in SL ovules, substances and energy might be deficient, perhaps leading to abnormal DNA replication. Because the incomplete antioxidant system and the abnormal expression levels of enzymes involved in cell signal transduction, DNA DSBs probably occurs. Facing the abnormities of DNA replication and damage, the cell cycle was arrested and the DNA damage failed to be repaired, potentially resulting in the occurrence of PCD. Taken together, an inference can be drawn from our study - substance and energy deficiencies, reactive oxygen stress, and the failure of both cell cycle progression and DNA damage repair, which possibly hinder FNMM, leading to ovule abortion in the female-sterile line of P. tabulaeformis.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Xiaoxin Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Kun Lv
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| |
Collapse
|
19
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
20
|
Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein. Genetics 2016; 203:1439-51. [PMID: 27182946 DOI: 10.1534/genetics.115.183848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement.
Collapse
|
21
|
Characterization and fine mapping of a female fertility associated gene Ff1(t) in rice. J Genet 2015; 94:67-73. [PMID: 25846878 DOI: 10.1007/s12041-015-0490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Female-sterile line can be used as a pollinator which has a great potential for hybrid seeds production. However, reports on female fertility are fewer than male fertility. Here, we characterized a recessive female fertility weakening mutant ff1(t) from rice. The spikelet fertility was seriously affected in the mutant. Reciprocal crosses and pollen vitality assay suggest that the decreased fertility was caused by the defective female gametophytes. Further investigation indicated that the mutant ovary development was inhibited before fertilization and failed swelling after flowering. Genetic analysis and fine mapping showed that the mutant was controlled by a single recessive gene, residing on a 16.8 kb region on the long arm of chromosome 1. The gene annotation indicated that there was only one putative gene encoding lysine decarboxylase-like protein in this region, which was allelic to LOG. Further, the sequence analysis was carried out and a substitution at the splice site of intron 2 / exon 3 was revealed in ff1(t) mutant, resulting in the change of reading frame. The finding of novel allele of LOG locus will facilitate the understanding of the mechanisms of female gametophyte development.
Collapse
|
22
|
Paul P, Awasthi A, Kumar S, Verma SK, Prasad R, Dhaliwal HS. Development of multiple embryos in polyembryonic insertional mutant OsPE of rice. PLANT CELL REPORTS 2012; 31:1779-1787. [PMID: 22790320 DOI: 10.1007/s00299-012-1291-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/20/2012] [Accepted: 05/20/2012] [Indexed: 06/01/2023]
Abstract
A T-DNA insertional mutant OsPE of rice gives twin and triplet seedlings in up to 20 % of the seeds. Detailed cytological and histological analysis of OsPE indicated normal male and female gametogenesis in the OsPE mutant. Confocal laser scanning microscopic (CLSM) analysis of the developing seeds of OsPE showed multiple embryo development in up to 60 % of the ovules. The multiple embryos, mostly twins and triplets, and rarely quadruplets, developed through sequential cleavage from a single zygotic embryo in each ovule. The reduced number of multiple seedlings compared with multiple embryos observed in CLSM study may be attributed to their inability to develop further due to competition in a single embryo sac. Key message Multiple seedlings in the OsPE mutant are due to sequential proliferation and cleavage of the zygotic embryos. The nucellar tissue was not involved in multiple embryo development.
Collapse
Affiliation(s)
- Priyanka Paul
- Department of Biotechnology, Indian Institute of Technology, Roorkee, 247 667, Uttaranchal, India.
| | | | | | | | | | | |
Collapse
|