1
|
Shi X, Geng S, Hou J, Shi T, Qin M, Li W, Dai Z, Zhou Z, Zhang M, Lei Z. Unveiling Novel Genetic Loci and Superior Alleles for Nickel Accumulation in Wheat via Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2025; 14:1262. [PMID: 40284150 PMCID: PMC12030696 DOI: 10.3390/plants14081262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Nickel (Ni) pollution poses significant threats to human health and crop development through the food chain. This study aimed to identify the novel genomic regions and superior alleles associated with Ni accumulation in wheat (Triticum aestivum L.) grains using genome-wide association analysis (GWAS) with a diversity panel of 207 bread wheat varieties. In total, five unique genetic loci associated with Ni accumulation were identified and they explained, on average, 8.20-11.29% of the phenotypic variation. Among them, three unique genetic loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Moreover, the highest effect quantitative trait nucleotide (QTN) AX-111126872 with a quantitative trait locus (QTL) hotspot on chromosome 6B identified in this study was not reported previously. Three putative candidate genes linked to Ni accumulation were revealed from the stable genetic loci. Among them, one gene associated with the stable genetic locus on chromosome 6B (AX-111126872) encodes the glycine-rich proteins (GRPs) as a critical factor influencing Ni accumulation in wheat grains. This study increases our understanding of the genetic architecture of Ni accumulation in wheat grains, which is potentially helpful for breeding wheat varieties without Ni toxicity.
Collapse
Affiliation(s)
- Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Taotao Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| | | | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Henan Key Laboratory of Wheat Biology, National Engineering Laboratory of Wheat Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Zhengzhou 450002, China; (X.S.); (S.G.); (J.H.); (T.S.); (M.Q.); (W.L.); (Z.D.); (Z.Z.)
| |
Collapse
|
2
|
Joukhadar R, Trethowan RM, Thistlethwaite R, Hayden MJ, Stangoulis J, Cu S, Tibbits J, Daetwyler HD. Stable pleotropic loci controlling the accumulation of multiple nutritional elements in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:95. [PMID: 40205176 PMCID: PMC11982167 DOI: 10.1007/s00122-025-04877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/08/2025] [Indexed: 04/11/2025]
Abstract
Understanding the genetic basis of nutrient accumulation in wheat is crucial for improving its nutritional content and addressing global food security challenges. Here, we identified stable pleiotropic loci controlling the accumulation of 13 nutritional elements in wheat across diverse environments using a large wheat population of 1470 individuals. Our analysis revealed significant variability in SNP-based heritability values across 13 essential elements. Genetic correlations among elements uncovered complex relations, with positive correlations observed within two distinct groups, where calcium (Ca), cobalt (Co), potassium (K), and sodium (Na) formed one group, and copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), phosphorus (P), and zinc (Zn) formed the other. Negative correlations were observed among elements across both groups. Through MetaGWAS analysis, we identified stable QTL associated with individual elements and elements with high positive correlations. We identified 67 stable QTL across environments that are independent from grain yield, of which 56 were detected using the MetaGWAS analysis indicating their pleiotropic effect on multiple elements. A major QTL on chromosome 7D that can shift the phenotype up to one standard deviation compared to the mean phenotype in the population exhibited differential effects on multiple elements belonging to both groups. Our findings offer novel insights into the genetic architecture of nutrient accumulation in wheat and have practical implications for breeding programmes aimed at enhancing multiple nutrients simultaneously. By targeting stable QTL, breeders can develop wheat varieties with improved nutritional profiles, contributing to global food security and human health.
Collapse
Affiliation(s)
- Reem Joukhadar
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia.
| | - Richard M Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia.
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Cobbitty, NSW, Australia.
| | - Rebecca Thistlethwaite
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri, NSW, Australia
| | - Matthew J Hayden
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Suong Cu
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Josquin Tibbits
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Li W, Zhang Q, Wang J, Gao Y, Zhang H, Jiang L, Wang L, Han D, Ma J. Genome-Wide Association Study of Grain Manganese Content in Bread Wheat ( Triticum aestivum L.) Under Four Environments. Food Sci Nutr 2025; 13:e70170. [PMID: 40223815 PMCID: PMC11986263 DOI: 10.1002/fsn3.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Microelements play important roles to maintain the normal metabolism of the human body, and deficiency of microelements always leads to a serious diseases. Manganese (Mn) is an essential microelement for the human body. However, the mechanism for regulating grain Manganese (Mn) content (GMnC) in wheat is rarely studied. In this study, we determined the GMnC of 477 wheat accessions in four environments. The changes in GMnC in different released years and backgrounds were analyzed, which revealed that the trait of GMnC in wheat was not indirectly selected in the selective breeding process. The 660 K single nucleotide polymorphism microarray about these 477 wheat accessions was further used for a genome-wide association study using the GMnC phenotype. Fifteen quantitative trait loci (QTLs) were identified on chromosomes 2A, 2B, 3B, 5A, 5B, 5D, 6A, 6D, 7A, and 7B for wheat GMnC, which were detected in more than two environments. Four important QTLs and some candidate genes were screened. This study will contribute to further understanding the mechanism in regulating GMnC in wheat.
Collapse
Affiliation(s)
- Wanting Li
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Qi Zhang
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Jiahao Wang
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Yanyan Gao
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Hui Zhang
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Lina Jiang
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Li Wang
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid AreasNorthwest A&F UniversityYanglingShanxiChina
| | - Jianhui Ma
- College of Life SciencesHenan Normal UniversityXinxiangHenanChina
| |
Collapse
|
4
|
Manzoor S, Altemim AB, Rakha A, Rasheed H, Ali Khan MS, Munir S, Bhat ZF, Aadil RM. Modulation of snack foods: An approach to overcome hidden hunger in children. Nutrition 2025; 135:112777. [PMID: 40300439 DOI: 10.1016/j.nut.2025.112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 03/23/2025] [Indexed: 05/01/2025]
Abstract
The global snack foods market had grown to 585 billion USD by 2022. Consumption of snacks has gained attention at a commercial level since they are liked by people of all ages, including millennials and elderly people. An increasing trend in snacking provides a potential opportunity for delivering micronutrients to minimize hidden hunger throughout the world. Various strategies are proposed in this review for modifying these snacks to improve snacking. The practical implications, including methodologies and approaches of such strategies, have also been summarized. The raw materials used for snack development can be biofortified for additional mineral content. By-products of fruits and vegetables can be used as ingredients and nutrient sources in the food industry. Organic salts, industrial fortificants, and nutritive substitutes can be used in extrusion processing as an enrichment method. Snacks can also be reformulated to contain more nutrients. Such strategies could greatly improve not only individual health but also the global market.
Collapse
Affiliation(s)
- Sana Manzoor
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan; Faculty of Medicine and Allied Health Sciences, Department of Nutrition and Dietetics, The University of Faisalabad (TUF), Punjab, Pakistan.
| | - Ammar B Altemim
- Food Science Department, College of Agriculture, University of Basrah, Basrah, Iraq; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Hina Rasheed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu Kashmir, India
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Nasim A, Hao J, Tawab F, Jin C, Zhu J, Luo S, Nie X. Micronutrient Biofortification in Wheat: QTLs, Candidate Genes and Molecular Mechanism. Int J Mol Sci 2025; 26:2178. [PMID: 40076800 PMCID: PMC11900071 DOI: 10.3390/ijms26052178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Micronutrient deficiency (hidden hunger) is one of the serious health problems globally, often due to diets dominated by staple foods. Genetic biofortification of a staple like wheat has surfaced as a promising, cost-efficient, and sustainable strategy. Significant genetic diversity exists in wheat and its wild relatives, but the nutritional profile in commercial wheat varieties has inadvertently declined over time, striving for better yield and disease resistance. Substantial efforts have been made to biofortify wheat using conventional and molecular breeding. QTL and genome-wide association studies were conducted, and some of the identified QTLs/marker-trait association (MTAs) for grain micronutrients like Fe have been exploited by MAS. The genetic mechanisms of micronutrient uptake, transport, and storage have also been investigated. Although wheat biofortified varieties are now commercially cultivated in selected regions worldwide, further improvements are needed. This review provides an overview of wheat biofortification, covering breeding efforts, nutritional evaluation methods, nutrient assimilation and bioavailability, and microbial involvement in wheat grain enrichment. Emerging technologies such as non-destructive hyperspectral imaging (HSI)/red, green, and blue (RGB) phenotyping; multi-omics integration; CRISPR-Cas9 alongside genomic selection; and microbial genetics hold promise for advancing biofortification.
Collapse
Affiliation(s)
- Adnan Nasim
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Junwei Hao
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University Larama, Peshawar 25000, Pakistan;
| | - Ci Jin
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Jiamin Zhu
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Shuang Luo
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| | - Xiaojun Nie
- Hainan Institute of Northwest A&F University, Sanya 572025, China;
- College of Agronomy and State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China; (J.H.); (C.J.); (J.Z.); (S.L.)
| |
Collapse
|
6
|
Emam AII, Kamal NM, Gorafi YSA, Tahir ISA, Balla MY, Tsujimoto H, Ishii T. Enriched grain minerals in Aegilops tauschii-derived common wheat population under heat-stress environments. Sci Rep 2025; 15:5624. [PMID: 39955356 PMCID: PMC11830024 DOI: 10.1038/s41598-025-89144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
In wheat (Triticum aestivum L.), an important source of dietary minerals, heat stress during the grain filling stage negatively affects grain yield and quality. Wheat grain mineral content has been primarily evaluated under optimum conditions; little information is available on the genetic variations and loci involved in mineral accumulation under heat stress. Therefore, this study aimed to assess the variation in 13-grain mineral concentrations and thousand kernel weight of 145 wheat multiple synthetic derivatives (MSD) genotypes harboring genes from the wild relative Aegilops tauschii Coss., evaluated under heat-stress field conditions in Sudan for two seasons, and to dissect the genomic regions associated with these mineral contents using GWAS. Our results showed sufficient variations in mineral concentrations among the MSD lines. Some MSD lines had 30-50% more minerals than the recurrent parent Norin 61. We detected 188 significant marker-trait associations (MTAs), 44 MTAs in season 2018/19, one in season 2019/20, and 143 based on BLUE. The highly significant, stable, and promising MTAs were related to Mg, Mn, P, and Ba. We identified putative candidate genes potentially involved in mineral movement (TraesCS5D03G0728800) and response to heat stress (TraesCS5D03G0723300). The findings in this study help to enhance mineral concentration and resilience in wheat under heat.
Collapse
Affiliation(s)
- Amir Ibrahim Ismail Emam
- United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
- Gricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan.
- International Platform for Dryland Research and Education (IPDRE), Tottori University, Tottori, 680-0001, Japan.
| | - Yasir Serag Alnor Gorafi
- Gricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Izzat Sidahmed Ali Tahir
- Gricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- International Platform for Dryland Research and Education (IPDRE), Tottori University, Tottori, 680-0001, Japan
| | - Mohammed Yousif Balla
- Gricultural Research Corporation, P.O. Box 126, Wad Medani, Sudan
- International Platform for Dryland Research and Education (IPDRE), Tottori University, Tottori, 680-0001, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center (ALRC), Tottori University, Tottori, Japan
| | - Takayoshi Ishii
- International Platform for Dryland Research and Education (IPDRE), Tottori University, Tottori, 680-0001, Japan.
- Arid Land Research Center (ALRC), Tottori University, Tottori, Japan.
| |
Collapse
|
7
|
Huang Y, Zhao Q, Li X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y, Cheng Y. A novel major QTL underlying grain copper concentration in common wheat (Triticum aestivum L.). BMC Genomics 2024; 25:1198. [PMID: 39695377 DOI: 10.1186/s12864-024-11132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Grain copper (Cu) concentrations represent a qualitative trait mainly controlled by genetic factors, which may differ between wheat varieties from the Sichuan Basin of China and other areas. However, the differences are poorly understood. Here, we investigated the grain Cu concentration in a remaining heterozygous line population derived from a multiparental recombinant inbred line. The grain Cu concentration varied from 4.25 to 13.44 mg/kg and 3.32 to 7.74 mg/kg over a two-year investigation, and the broad-sense heritability was 0.67. Bulked-segregation analysis revealed three quantitative trait loci on chromosomes 2A (QGr_Cu_Conc-2A), 2B (QGr_Cu_Conc-2B), and 4D (QGr_Cu_Conc-4D). QGr_Cu_Conc-2B is a novel locus, which was further narrowed between KASP-52.32 and KASP-56.57 with an interval of 52.32-56.57 Mb, explaining 17.10% of the phenotypic variation; its potential candidate gene was TraesCS2B03G0196500, encoding a chloroplast thylakoid lumen protein. KASP-52.32 successfully genotyped two common wheat populations, and the grain Cu concentration of CC genotype varieties was significantly higher than that of TT genotype varieties. Meanwhile, the concentrations of chlorophyll and the expression levels of three TaZIP8 and two TaZIP9 in flag leaves were higher in plants with high grain Cu concentration than in plants with low grain Cu concentration. These results provide guidance for understanding the genetic mechanisms underlying grain Cu concentration and may aid in wheat breeding.
Collapse
Affiliation(s)
- Yiwen Huang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qiling Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Xiaoying Li
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.
| | - Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211#, Wenjiang, Chengdu, 611130, Sichuan Province, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
8
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
9
|
Shehzadi N, Mahmood A, Kaleem M, Chishti MS, Bashir H, Hashem A, Abd-Allah EF, Shahid H, Ishtiaq A. Zinc and nitrogen mediate the regulation of growth, leading to the upregulation of antioxidant aptitude, physio-biochemical traits, and yield in wheat plants. Sci Rep 2024; 14:12897. [PMID: 38839939 PMCID: PMC11153612 DOI: 10.1038/s41598-024-63423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.
Collapse
Affiliation(s)
- Nimra Shehzadi
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | | | - Humaira Bashir
- Government Graduate College for Women Wahdat Colony, Lahore, Pakistan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | - Hina Shahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Atiqa Ishtiaq
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Khan MIR, Nazir F, Maheshwari C, Chopra P, Chhillar H, Sreenivasulu N. Mineral nutrients in plants under changing environments: A road to future food and nutrition security. THE PLANT GENOME 2023; 16:e20362. [PMID: 37480222 DOI: 10.1002/tpg2.20362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/25/2023] [Accepted: 05/20/2023] [Indexed: 07/23/2023]
Abstract
Plant nutrition is an important aspect that contributes significantly to sustainable agriculture, whereas minerals enrichment in edible source implies global human health; hence, both strategies need to be bridged to ensure "One Health" strategies. Abiotic stress-induced nutritional imbalance impairs plant growth. In this context, we discuss the molecular mechanisms related to the readjustment of nutrient pools for sustained plant growth under harsh conditions, and channeling the minerals to edible source (seeds) to address future nutritional security. This review particularly highlights interventions on (i) the physiological and molecular responses of mineral nutrients in crop plants under stressful environments; (ii) the deployment of breeding and biotechnological strategies for the optimization of nutrient acquisition, their transport, and distribution in plants under changing environments. Furthermore, the present review also infers the recent advancements in breeding and biotechnology-based biofortification approaches for nutrient enhancement in crop plants to optimize yield and grain mineral concentrations under control and stress-prone environments to address food and nutritional security.
Collapse
Affiliation(s)
| | - Faroza Nazir
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Chirag Maheshwari
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Center, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
11
|
Kaur H, Sharma P, Kumar J, Singh VK, Vasistha NK, Gahlaut V, Tyagi V, Verma SK, Singh S, Dhaliwal HS, Sheikh I. Genetic analysis of iron, zinc and grain yield in wheat-Aegilops derivatives using multi-locus GWAS. Mol Biol Rep 2023; 50:9191-9202. [PMID: 37776411 DOI: 10.1007/s11033-023-08800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Wheat is a major staple crop and helps to reduce worldwide micronutrient deficiency. Investigating the genetics that control the concentrations of iron (Fe) and zinc (Zn) in wheat is crucial. Hence, we undertook a comprehensive study aimed at elucidating the genomic regions linked to the contents of Fe and Zn in the grain. METHODS AND RESULTS We performed the multi-locus genome-wide association (ML-GWAS) using a panel of 161 wheat-Aegilops substitution and addition lines to dissect the genomic regions controlling grain iron (GFeC), and grain zinc (GZnC) contents. The wheat panel was genotyped using 10,825 high-quality SNPs and phenotyped in three different environments (E1-E3) during 2017-2019. A total of 111 marker-trait associations (MTAs) (at p-value < 0.001) were detected that belong to all three sub-genomes of wheat. The highest number of MTAs were identified for GFeC (58), followed by GZnC (44) and yield (9). Further, six stable MTAs were identified for these three traits and also two pleiotropic MTAs were identified for GFeC and GZnC. A total of 1291 putative candidate genes (CGs) were also identified for all three traits. These CGs encode a diverse set of proteins, including heavy metal-associated (HMA), bZIP family protein, AP2/ERF, and protein previously associated with GFeC, GZnC, and grain yield. CONCLUSIONS The significant MTAs and CGs pinpointed in this current study are poised to play a pivotal role in enhancing both the nutritional quality and yield of wheat, utilizing marker-assisted selection (MAS) techniques.
Collapse
Affiliation(s)
- Harneet Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Prachi Sharma
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali, Punjab, 140306, India
| | - Vikas Kumar Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, U.P., 250004, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Itanagar, India
| | - Vijay Gahlaut
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| | - Vikrant Tyagi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | | | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
- USDA-ARS, Southeast Area, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL, 33158, USA
| | - H S Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India
| | - Imran Sheikh
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, 173101, India.
| |
Collapse
|
12
|
Kamal NM, Gorafi YSA, Tomemori H, Kim JS, Elhadi GMI, Tsujimoto H. Genetic variation for grain nutritional profile and yield potential in sorghum and the possibility of selection for drought tolerance under irrigated conditions. BMC Genomics 2023; 24:515. [PMID: 37660014 PMCID: PMC10474746 DOI: 10.1186/s12864-023-09613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Increasing grain nutritional value in sorghum (Sorghum bicolor) is a paramount breeding objective, as is increasing drought resistance (DR), because sorghum is grown mainly in drought-prone areas. The genetic basis of grain nutritional traits remains largely unknown. Marker-assisted selection using significant loci identified through genome-wide association study (GWAS) shows potential for selecting desirable traits in crops. This study assessed natural variation available in sorghum accessions from around the globe to identify novel genes or genomic regions with potential for improving grain nutritional value, and to study associations between DR traits and grain weight and nutritional composition. RESULTS We dissected the genetic architecture of grain nutritional composition, protein content, thousand-kernel weight (TKW), and plant height (PH) in sorghum through GWAS of 163 unique African and Asian accessions under irrigated and post-flowering drought conditions. Several QTLs were detected. Some were significantly associated with DR, TKW, PH, protein, and Zn, Mn, and Ca contents. Genomic regions on chromosomes 1, 2, 4, 8, 9, and 10 were associated with TKW, nutritional, and DR traits; colocalization patterns of these markers indicate potential for simultaneous improvement of these traits. In African accessions, markers associated with TKW were mapped to six regions also associated with protein, Zn, Ca, Mn, Na, and DR, suggesting the potential for simultaneous selection for higher grain nutrition and TKW. Our results indicate that it may be possible to select for increased DR on the basis of grain nutrition and weight potential. CONCLUSIONS This study provides a valuable resource for selecting landraces for use in plant breeding programs and for identifying loci that may contribute to grain nutrition and weight with the hope of producing cultivars that combine improved yield traits, nutrition, and DR.
Collapse
Affiliation(s)
- Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
- Agricultural Research Corporation, PO Box 126, Wad Medani, Sudan.
| | - Yasir Serag Alnor Gorafi
- Agricultural Research Corporation, PO Box 126, Wad Medani, Sudan
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
| | - Hisashi Tomemori
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - June-Sik Kim
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | | | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
13
|
Potapova NA, Timoshchuk AN, Tiys ES, Vinichenko NA, Leonova IN, Salina EA, Tsepilov YA. Multivariate Genome-Wide Association Study of Concentrations of Seven Elements in Seeds Reveals Four New Loci in Russian Wheat Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:3019. [PMID: 37687266 PMCID: PMC10489822 DOI: 10.3390/plants12173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Wheat is a cereal grain that plays an important role in the world's food industry. The identification of the loci that change the concentration of elements in wheat seeds is an important challenge nowadays especially for genomic selection and breeding of novel varieties. In this study, we performed a multivariate genome-wide association study (GWAS) of the seven traits-concentrations of Zn, Mg, Mn, Ca, Cu, Fe, and K in grain-of the Russian collection of common wheat Triticum aestivum (N = 149 measured in two years in two different fields). We replicated one known locus associated with the concentration of Zn (IAAV1375). We identified four novel loci-BS00022069_51 (associated with concentrations of Ca and K), RFL_Contig6053_3082 (associated with concentrations of Fe and Mn), Kukri_rep_c70864_329 (associated with concentrations of all elements), and IAAV8416 (associated with concentrations of Fe and Mn)-three of them were located near the genes TraesCS6A02G375400, TraesCS7A02G094800, and TraesCS5B02G325400. Our result adds novel information on the loci involved in wheat grain element contents and may be further used in genomic selection.
Collapse
Affiliation(s)
- Nadezhda A. Potapova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, Russia
| | - Anna N. Timoshchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny S. Tiys
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia A. Vinichenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina N. Leonova
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena A. Salina
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yakov A. Tsepilov
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Sumbal S, Ali A, Nasser Binjawhar D, Ullah Z, Eldin SM, Iqbal R, Sher H, Ali I. Comparative Effects of Hydropriming and Iron Priming on Germination and Seedling Morphophysiological Attributes of Stay-Green Wheat. ACS OMEGA 2023; 8:23078-23088. [PMID: 37396271 PMCID: PMC10308549 DOI: 10.1021/acsomega.3c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023]
Abstract
Seed priming is considered to play an essential role in the overall improvement of agricultural crops. The current research work was carried out in order to investigate the comparative effects of hydropriming and iron priming on the germination behavior and morphophysiological attributes of wheat seedlings. The experimental materials consisted of three wheat genotypes including a synthetically derived wheat line (SD-194), stay-green wheat genotype (Chirya-7), and conventional wheat variety (Chakwal-50). The treatments included hydro (distilled and tap water)- and iron priming (10 and 50 mM) of wheat seeds for 12 h duration. Results indicated that both priming treatment and wheat genotypes exhibited highly different germination and seedling characteristics. These included germination percentage, root volume, root surface, root length, relative water content, chlorophyll content, membrane stability index, and chlorophyll fluorescence attributes. Furthermore, the synthetically derived line (SD-194) was the most promising in majority of the studied attributes by exhibiting a high germination index (2.21%), root fresh weight (7.76%), shoot dry weight (3.36%), relative water content (19.9%), chlorophyll content (7.58%), and photochemical quenching coefficient (2.58%) when compared with stay-green wheat (Chirya-7). The study also found that hydropriming with tap water and priming wheat seeds with low concentrations of iron yielded better results when a comparison was made with wheat seeds primed at high concentrations of iron. Therefore, wheat seed priming with tap water and iron solution for 12 h is recommended for optimum wheat improvement. Furthermore, current findings suggest that seed priming may have the prospect of an innovative and user-friendly approach for wheat biofortification with the aim of enhanced iron acquisition and accumulation in grains.
Collapse
Affiliation(s)
- Sumbal Sumbal
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Ahmad Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Dalal Nasser Binjawhar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Zahid Ullah
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 18939, Egypt
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hassan Sher
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
| | - Iftikhar Ali
- Center
for Plant Sciences and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
- School of
Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
15
|
Devate NB, Krishna H, Mishra CN, Manjunath KK, Sunilkumar VP, Chauhan D, Singh S, Sinha N, Jain N, Singh GP, Singh PK. Genetic dissection of marker trait associations for grain micro-nutrients and thousand grain weight under heat and drought stress conditions in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1082513. [PMID: 36726675 PMCID: PMC9885108 DOI: 10.3389/fpls.2022.1082513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Introduction Wheat is grown and consumed worldwide, making it an important staple food crop for both its calorific and nutritional content. In places where wheat is used as a staple food, suboptimal micronutrient content levels, especially of grain iron (Fe) and zinc (Zn), can lead to malnutrition. Grain nutrient content is influenced by abiotic stresses, such as drought and heat stress. The best method for addressing micronutrient deficiencies is the biofortification of food crops. The prerequisites for marker-assisted varietal development are the identification of the genomic region responsible for high grain iron and zinc contents and an understanding of their genetics. Methods A total of 193 diverse wheat genotypes were evaluated under drought and heat stress conditions across the years at the Indian Agricultural Research Institute (IARI), New Delhi, under timely sown irrigated (IR), restricted irrigated (RI) and late sown (LS) conditions. Grain iron content (GFeC) and grain zinc content (GZnC) were estimated from both the control and treatment groups. Genotyping of all the lines under study was carried out with the single nucleotide polymorphisms (SNPs) from Breeder's 35K Axiom Array. Result and Discussion Three subgroups were observed in the association panel based on both principal component analysis (PCA) and dendrogram analysis. A large whole-genome linkage disequilibrium (LD) block size of 3.49 Mb was observed. A genome-wide association study identified 16 unique stringent marker trait associations for GFeC, GZnC, and 1000-grain weight (TGW). In silico analysis demonstrated the presence of 28 potential candidate genes in the flanking region of 16 linked SNPs, such as synaptotagmin-like mitochondrial-lipid-binding domain, HAUS augmin-like complex, di-copper center-containing domain, protein kinase, chaperonin Cpn60, zinc finger, NUDIX hydrolase, etc. Expression levels of these genes in vegetative tissues and grain were also found. Utilization of identified markers in marker-assisted breeding may lead to the rapid development of biofortified wheat genotypes to combat malnutrition.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | | | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| |
Collapse
|
16
|
Jadon V, Sharma S, Krishna H, Krishnappa G, Gajghate R, Devate NB, Panda KK, Jain N, Singh PK, Singh GP. Molecular Mapping of Biofortification Traits in Bread Wheat ( Triticum aestivum L.) Using a High-Density SNP Based Linkage Map. Genes (Basel) 2023; 14:221. [PMID: 36672962 PMCID: PMC9859277 DOI: 10.3390/genes14010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
A set of 188 recombinant inbred lines (RILs) derived from a cross between a high-yielding Indian bread wheat cultivar HD2932 and a synthetic hexaploid wheat (SHW) Synthetic 46 derived from tetraploid Triticum turgidum (AA, BB 2n = 28) and diploid Triticum tauschii (DD, 2n = 14) was used to identify novel genomic regions associated in the expression of grain iron concentration (GFeC), grain zinc concentration (GZnC), grain protein content (GPC) and thousand kernel weight (TKW). The RIL population was genotyped using SNPs from 35K Axiom® Wheat Breeder's Array and 34 SSRs and phenotyped in two environments. A total of nine QTLs including five for GPC (QGpc.iari_1B, QGpc.iari_4A, QGpc.iari_4B, QGpc.iari_5D, and QGpc.iari_6B), two for GFeC (QGfec.iari_5B and QGfec.iari_6B), and one each for GZnC (QGznc.iari_7A) and TKW (QTkw.iari_4B) were identified. A total of two stable and co-localized QTLs (QGpc.iari_4B and QTkw.iari_4B) were identified on the 4B chromosome between the flanking region of Xgwm149-AX-94559916. In silico analysis revealed that the key putative candidate genes such as P-loop containing nucleoside triphosphatehydrolase, Nodulin-like protein, NAC domain, Purine permease, Zinc-binding ribosomal protein, Cytochrome P450, Protein phosphatase 2A, Zinc finger CCCH-type, and Kinesin motor domain were located within the identified QTL regions and these putative genes are involved in the regulation of iron homeostasis, zinc transportation, Fe, Zn, and protein remobilization to the developing grain, regulation of grain size and shape, and increased nitrogen use efficiency. The identified novel QTLs, particularly stable and co-localized QTLs are useful for subsequent use in marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Vasudha Jadon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Shashi Sharma
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopalareddy Krishnappa
- ICAR-Sugarcane Breeding Institute, Coimbatore 641007, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rahul Gajghate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
- National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
17
|
Ma J, Ye M, Liu Q, Yuan M, Zhang D, Li C, Zeng Q, Wu J, Han D, Jiang L. Genome-wide association study for grain zinc concentration in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1169858. [PMID: 37077637 PMCID: PMC10106671 DOI: 10.3389/fpls.2023.1169858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Introduction Zinc (Zn) deficiency causes serious diseases in people who rely on cereals as their main food source. However, the grain zinc concentration (GZnC) in wheat is low. Biofortification is a sustainable strategy for reducing human Zn deficiency. Methods In this study, we constructed a population of 382 wheat accessions and determined their GZnC in three field environments. Phenotype data was used for a genome-wide association study (GWAS) using a 660K single nucleotide polymorphism (SNP) array, and haplotype analysis identified an important candidate gene for GZnC. Results We found that GZnC of the wheat accessions showed an increasing trend with their released years, indicating that the dominant allele of GZnC was not lost during the breeding process. Nine stable quantitative trait loci (QTLs) for GZnC were identified on chromosomes 3A, 4A, 5B, 6D, and 7A. And an important candidate gene for GZnC, namely, TraesCS6D01G234600, and GZnC between the haplotypes of this gene showed, significant difference (P ≤ 0.05) in three environments. Discussion A novel QTL was first identified on chromosome 6D, this finding enriches our understanding of the genetic basis of GZnC in wheat. This study provides new insights into valuable markers and candidate genes for wheat biofortification to improve GZnC.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Miaomiao Ye
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qianqian Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Chunxi Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shanxi, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang, China
- *Correspondence: Lina Jiang, ; Jianhui Ma, ; Dejun Han,
| |
Collapse
|
18
|
Kamble U, Mishra CN, Govindan V, Sharma AK, Pawar S, Kumar S, Krishnappa G, Gupta OP, Singh GP, Singh G. Ensuring Nutritional Security in India through Wheat Biofortification: A Review. Genes (Basel) 2022; 13:genes13122298. [PMID: 36553565 PMCID: PMC9778289 DOI: 10.3390/genes13122298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Undernourishment of nutrients, also known as hidden hunger, affects over 2 billion populace globally. Even though stunting among children below five years of age has decreased in India in the last ten years, India is home to roughly thirty percent of the world's population of stunted pre-schoolers. A significant improvement has been witnessed in the targeted development and deployment of biofortified crops; approximately 20 million farm households from developing counties benefit from cultivating and consuming biofortified crops. There is ample scope for including biofortified varieties in the seed chain, ensuring nutritional security. Wheat is a dietary staple in India, typically consumed as wholemeal flour in the form of flatbreads such as chapatti and roti. Wheat contributes to nearly one fifth of global energy requirements and can also provide better amounts of iron (Fe) and zinc (Zn). As a result, biofortified wheat can serve as a medium for delivery of essential micronutrients such as Fe and Zn to end users. This review discusses wheat biofortification components such as Fe and Zn dynamics, its uptake and movement in plants, the genetics of their buildup, and the inclusion of biofortified wheat varieties in the seed multiplication chain concerning India.
Collapse
Affiliation(s)
- Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra Nath Mishra
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
- Correspondence: ; Tel.: +91-946-8251-294
| | | | - Amit Kumar Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sushma Pawar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | | | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | | | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
19
|
Roy C, Kumar S, Ranjan RD, Kumhar SR, Govindan V. Genomic approaches for improving grain zinc and iron content in wheat. Front Genet 2022; 13:1045955. [PMID: 36437911 PMCID: PMC9683485 DOI: 10.3389/fgene.2022.1045955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
More than three billion people worldwide suffer from iron deficiency associated anemia and an equal number people suffer from zinc deficiency. These conditions are more prevalent in Sub-Saharan Africa and South Asia. In developing countries, children under the age of five with stunted growth and pregnant or lactating women were found to be at high risk of zinc and iron deficiencies. Biofortification, defined as breeding to develop varieties of staple food crops whose grain contains higher levels of micronutrients such as iron and zinc, are one of the most promising, cost-effective and sustainable ways to improve the health in resource-poor households, particularly in rural areas where families consume some part of what they grow. Biofortification through conventional breeding in wheat, particularly for grain zinc and iron, have made significant contributions, transferring important genes and quantitative trait loci (QTLs) from wild and related species into cultivated wheat. Nonetheless, the quantitative, genetically complex nature of iron and zinc levels in wheat grain limits progress through conventional breeding, making it difficult to attain genetic gain both for yield and grain mineral concentrations. Wheat biofortification can be achieved by enhancing mineral uptake, source-to-sink translocation of minerals and their deposition into grains, and the bioavailability of the minerals. A number of QTLs with major and minor effects for those traits have been detected in wheat; introducing the most effective into breeding lines will increase grain zinc and iron concentrations. New approaches to achieve this include marker assisted selection and genomic selection. Faster breeding approaches need to be combined to simultaneously increase grain mineral content and yield in wheat breeding lines.
Collapse
Affiliation(s)
- Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University, Jodhpur, Rajasthan, India
| | - Sudhir Kumar
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Rakesh Deo Ranjan
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Sita Ram Kumhar
- Department of Genetics and Plant Breeding, Agriculture University, Jodhpur, Rajasthan, India
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| |
Collapse
|
20
|
Devate NB, Krishna H, Sunilkumar VP, Manjunath KK, Mishra CN, Jain N, Singh GP, Singh PK. Identification of genomic regions of wheat associated with grain Fe and Zn content under drought and heat stress using genome-wide association study. Front Genet 2022; 13:1034947. [PMID: 36338980 PMCID: PMC9634069 DOI: 10.3389/fgene.2022.1034947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 09/10/2023] Open
Abstract
Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - C. N. Mishra
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, India
| | - P. K. Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
21
|
Wang J, Shi X, Zhou Z, Qin M, Wang Y, Li W, Yang P, Wu Z, Lei Z. Genetic dissection of grain iron concentration in hexaploid wheat ( Triticum aestivum L.) using a genome-wide association analysis method. PeerJ 2022; 10:e13625. [PMID: 35898941 PMCID: PMC9310890 DOI: 10.7717/peerj.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Iron (Fe) is an essential micronutrient of the body. Low concentrations of bioavailable Fe in staple food result in micronutrient malnutrition. Wheat (Triticum aestivum L.) is the most important global food crop and thus has become an important source of iron for people. Breeding nutritious wheat with high grain-Fe content has become an effective means of alleviating malnutrition. Understanding the genetic basis of micronutrient concentration in wheat grains may provide useful information for breeding for high Fe varieties through marker-assisted selection (MAS). Hence, in the present study, genome-wide association studies (GWAS) were conducted for grain Fe. An association panel of 207 accessions was genotyped using a 660K SNP array and phenotyped for grain Fe content at three locations. The genotypic and phenotypic data obtained thus were used for GWAS. A total of 911 SNPs were significantly associated with grain Fe concentrations. These SNPs were distributed on all 21 wheat chromosomes, and each SNP explained 5.79-25.31% of the phenotypic variations. Notably, the two significant SNPs (AX-108912427 and AX-94729264) not only have a more significant effect on grain Fe concentration but also have the reliability under the different environments. Furthermore, candidate genes potentially associated with grain Fe concentration were predicted, and 10 candidate genes were identified. These candidate genes were related to transport, translocation, remobilization, and accumulationof ironin wheat plants. These findings will not only help in better understanding the molecular basis of Fe accumulation in grains, but also provide elite wheat germplasms to develop Fe-rich wheat varieties through breeding.
Collapse
Affiliation(s)
- Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan Province, CHINA,Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA,Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan province, CHINA
| | - Xia Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Maomao Qin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Yahuan Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Wenxu Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Pan Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Zhengqing Wu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| | - Zhensheng Lei
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, Henan Province, CHINA,Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan province, CHINA
| |
Collapse
|
22
|
Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study. Sci Rep 2022; 12:12444. [PMID: 35858934 PMCID: PMC9300641 DOI: 10.1038/s41598-022-15992-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023] Open
Abstract
Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.
Collapse
|
23
|
Juliana P, Govindan V, Crespo-Herrera L, Mondal S, Huerta-Espino J, Shrestha S, Poland J, Singh RP. Genome-Wide Association Mapping Identifies Key Genomic Regions for Grain Zinc and Iron Biofortification in Bread Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:903819. [PMID: 35845653 PMCID: PMC9280339 DOI: 10.3389/fpls.2022.903819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 05/02/2023]
Abstract
Accelerating breeding efforts for developing biofortified bread wheat varieties necessitates understanding the genetic control of grain zinc concentration (GZnC) and grain iron concentration (GFeC). Hence, the major objective of this study was to perform genome-wide association mapping to identify consistently significant genotyping-by-sequencing markers associated with GZnC and GFeC using a large panel of 5,585 breeding lines from the International Maize and Wheat Improvement Center. These lines were grown between 2018 and 2021 in an optimally irrigated environment at Obregon, Mexico, while some of them were also grown in a water-limiting drought-stressed environment and a space-limiting small plot environment and evaluated for GZnC and GFeC. The lines showed a large and continuous variation for GZnC ranging from 27 to 74.5 ppm and GFeC ranging from 27 to 53.4 ppm. We performed 742,113 marker-traits association tests in 73 datasets and identified 141 markers consistently associated with GZnC and GFeC in three or more datasets, which were located on all wheat chromosomes except 3A and 7D. Among them, 29 markers were associated with both GZnC and GFeC, indicating a shared genetic basis for these micronutrients and the possibility of simultaneously improving both. In addition, several significant GZnC and GFeC associated markers were common across the irrigated, water-limiting drought-stressed, and space-limiting small plots environments, thereby indicating the feasibility of indirect selection for these micronutrients in either of these environments. Moreover, the many significant markers identified had minor effects on GZnC and GFeC, suggesting a quantitative genetic control of these traits. Our findings provide important insights into the complex genetic basis of GZnC and GFeC in bread wheat while implying limited prospects for marker-assisted selection and the need for using genomic selection.
Collapse
Affiliation(s)
| | - Velu Govindan
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | | | | | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico, Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Chapingo, Mexico
| | - Sandesh Shrestha
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| |
Collapse
|
24
|
Muvunyi BP, Zou W, Zhan J, He S, Ye G. Multi-Trait Genomic Prediction Models Enhance the Predictive Ability of Grain Trace Elements in Rice. Front Genet 2022; 13:883853. [PMID: 35812754 PMCID: PMC9257107 DOI: 10.3389/fgene.2022.883853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-trait (MT) genomic prediction models enable breeders to save phenotyping resources and increase the prediction accuracy of unobserved target traits by exploiting available information from non-target or auxiliary traits. Our study evaluated different MT models using 250 rice accessions from Asian countries genotyped and phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and cadmium (Cd). The predictive performance of MT models compared to a traditional single trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1, CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local epistatic effects along with the main additive effect in MT models; and 3) using a selective marker panel composed of trait-associated SNPs in MT models. MT models were not statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic information was available for the accessions in the test set. After including phenotypes from auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT models significantly (p < 0.05) outperformed ST model for all the traits. The highest increases in the predictive ability of MT models relative to ST models were 11.1% (Mn), 11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects using a haplotype-based model further improved the predictive ability of MT models by 4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The predictive ability of the haplotype-based model was not improved after optimizing the marker panel by only considering the markers associated with the traits. This study first assessed the local epistatic effects and marker optimization strategies in the MT genomic prediction framework and then illustrated the power of the MT model in predicting trace element traits in rice for the effective use of genetic resources to improve the nutritional quality of rice grain.
Collapse
Affiliation(s)
- Blaise Pascal Muvunyi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhui Zhan
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sang He
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Sang He, ; Guoyou Ye,
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Philippines
- *Correspondence: Sang He, ; Guoyou Ye,
| |
Collapse
|
25
|
El-Soda M, Aljabri M. Genome-Wide Association Mapping of Grain Metal Accumulation in Wheat. Genes (Basel) 2022; 13:genes13061052. [PMID: 35741814 PMCID: PMC9222749 DOI: 10.3390/genes13061052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/28/2022] Open
Abstract
Increasing wheat grain yield while ignoring grain quality and metal accumulation can result in metal deficiencies, particularly in countries where bread wheat accounts for the majority of daily dietary regimes. When the accumulation level exceeds a certain threshold, it becomes toxic and causes various diseases. Biofortification is an effective method of ensuring nutritional security. We screened 200 spring wheat advanced lines from the wheat association mapping initiative for Mn, Fe, Cu, Zn, Ni, and Cd concentrations. Interestingly, high-yielding genotypes had high essential metals, such as Mn, Fe, Cu, and Zn, but low levels of toxic metals, such as Ni and Cd. Positive correlations were found between all metals except Ni and Cd, where no correlation was found. We identified 142 significant SNPs, 26 of which had possible pleiotropic effects on two or more metals. Several QTLs co-located with previously mapped QTL for the same or other metals, whereas others were new. Our findings contribute to wheat genetic biofortification through marker-assisted selection, ensuring nutritional security in the long run.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Maha Aljabri
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24231, Saudi Arabia;
| |
Collapse
|
26
|
Wani SH, Gaikwad K, Razzaq A, Samantara K, Kumar M, Govindan V. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches. Mol Biol Rep 2022; 49:8007-8023. [PMID: 35661970 PMCID: PMC9165711 DOI: 10.1007/s11033-022-07326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Globally, about 20% of calories (energy) come from wheat. In some countries, it is more than 70%. More than 2 billion people are at risk for zinc deficiency and even more, people are at risk of iron deficiency, nearly a quarter of all children underage group of 5 are physically and cognitively stunted, and lack of dietary zinc is a major contributing factor. Biofortified wheat with elevated levels of zinc and iron has several potential advantages as a delivery vehicle for micronutrients in the diets of resource-poor consumers who depend on cereal-based diets. The conventional breeding strategies have been successful in the introduction of novel alleles for grain Zn and Fe that led to the release of competitive Zn enriched wheat varieties in South Asia. The major challenge over the next few decades will be to maintain the rates of genetic gains for grain yield along with increased grain Zn/Fe concentration to meet the food and nutritional security challenges. Therefore, to remain competitive, the performance of Zn-enhanced lines/varieties must be equal or superior to that of current non-biofortified elite lines/varieties. Since both yield and Zn content are invisible and quantitatively inherited traits except few intermediate effect QTL regions identified for grain Zn, increased breeding efforts and new approaches are required to combine them at high frequency, ensuring that Zn levels are steadily increased to the required levels across the breeding pipelines. The current review article provides a comprehensive list of genomic regions for enhancing grain Zn and Fe concentrations in wheat including key candidate gene families such NAS, ZIP, VLT, ZIFL, and YSL. Implementing forward breeding by taking advantage of the rapid cycling trait pipeline approaches would simultaneously introgress high Zn and Fe QTL into the high Zn and normal elite lines, further increasing Zn and Fe concentrations.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192102 Khudwani, J&K India
| | - Kiran Gaikwad
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, 761211 Odisha, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, 110012 New Delhi, India
| | - Velu Govindan
- Global Wheat Program International Maize and Wheat Improvement Center Texcoco Mexico, Texcoco, Mexico
| |
Collapse
|
27
|
Xu J, Xu W, Chen X, Zhu H, Fu X, Yu F. Genome-Wide Association Analysis Reveals the Genetic Basis of Iron-Deficiency Stress Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:878809. [PMID: 35720580 PMCID: PMC9202619 DOI: 10.3389/fpls.2022.878809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is an essential trace element for almost all organisms and is often the major limiting nutrient for normal growth. Fe deficiency is a worldwide agricultural problem, which affects crop productivity and product quality. Understanding the Fe-deficiency response in plants is necessary for improving both plant health and the human diet. In this study, Fe-efficient (Ye478) and Fe-inefficient maize inbred lines (Wu312) were used to identify the genotypic difference in response to low Fe stress during different developmental stages and to further determine the optimal Fe-deficient Fe(II) supply level which leads to the largest phenotypic difference between Ye478 and Wu312. Then, genome-wide association analysis was performed to further identify candidate genes associated with the molecular mechanisms under different Fe nutritional statuses. Three candidate genes involved in Fe homeostasis of strategy II plants (strategy II genes) were identified, including ZmDMAS1, ZmNAAT1, and ZmYSL11. Furthermore, candidate genes ZmNAAT1, ZmDMAS1, and ZmYSL11 were induced in Fe-deficient roots and shoots, and the expression of ZmNAAT1 and ZmDMAS1 responded to Fe deficiency more in shoots than in roots. Beyond that, several genes that may participate in Fe homeostasis of strategy I plants (strategy I genes) were identified, which were either encoding Fe transporters (ZmIRT1 and ZmZIP4), or acting as essential ethylene signal transducers (ZmEBF1). Interestingly, ZmIRT1, ZmZIP4, and ZmEBF1 were significantly upregulated under low Fe stress, suggesting that these genes may be involved in Fe-deficiency tolerance in maize which is considered as strategy II plant. This study demonstrates the use of natural variation in the association population to identify important genes associated with Fe-deficiency tolerance and may further provide insights for understanding the molecular mechanism underlying the tolerance to Fe-deficiency stress in maize.
Collapse
Affiliation(s)
- Jianqin Xu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weiya Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xulei Chen
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Huaqing Zhu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiuyi Fu
- Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Futong Yu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Ma J, Qi S, Yuan M, Zhao D, Zhang D, Feng J, Wang J, Li W, Song C, Wang T, Zeng Q, Wu J, Han D, Jiang L. A genome-wide association study revealed the genetic variation and candidate genes for grain copper content in bread wheat ( Triticum aestivum L.). Food Funct 2022; 13:5177-5188. [PMID: 35437565 DOI: 10.1039/d1fo04173h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an essential microelement, copper plays a crucial role in the human body. However, the grains of bread wheat, a major crop food, contain a low copper content. Here, a diversity panel of 443 wheat accessions cultivated in four environments was used to analyse grain copper content by ICAP-7000, and the genetic variation in grain copper content was examined using a 660 K single nucleotide polymorphism chip. Phenotypic analysis indicated that the grain copper content varied between 2.58 mg kg-1 and 13.65 mg kg-1. A genome-wide association study identified 12 QTLs associated with grain copper content that showed significance in at least two environments on chromosomes 1A, 1D, 3D, 4A, 5A, 5D, 6B, 6D, 7A and 7D. Through haplotype analysis, the phenotypic difference between the haplotypes of three genes, TraesCS5D01G282300, TraesCS6B01G052900 and TraesCS7D01G146600, showed significance (P ⩽ 0.05) in four environments. They were considered to be important candidate genes for grain copper content in wheat. In addition, we detected that the grain copper content gradually decreased with release years among wheat accessions in China, and the percentage of favourable alleles showed a similar trend. Analysing the changes in grain copper content with yield factors, we found that the dilute effect was mainly caused by thousand kernel weight. This study provides useful information on the genetic basis for grain copper content, and thus helps in improving the wheat grain quality.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Siyuan Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China. .,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Dongyang Zhao
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Jinyuan Feng
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Jianing Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, People's Republic of China
| | - Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, People's Republic of China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| |
Collapse
|
29
|
Genome-wide association study identifies loci and candidate genes for grain micronutrients and quality traits in wheat (Triticum aestivum L.). Sci Rep 2022; 12:7037. [PMID: 35487909 PMCID: PMC9054743 DOI: 10.1038/s41598-022-10618-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Malnutrition due to micronutrients and protein deficiency is recognized among the major global health issues. Genetic biofortification of wheat is a cost-effective and sustainable strategy to mitigate the global micronutrient and protein malnutrition. Genomic regions governing grain zinc concentration (GZnC), grain iron concentration (GFeC), grain protein content (GPC), test weight (TW), and thousand kernel weight (TKW) were investigated in a set of 184 diverse bread wheat genotypes through genome-wide association study (GWAS). The GWAS panel was genotyped using Breeders' 35 K Axiom Array and phenotyped in three different environments during 2019-2020. A total of 55 marker-trait associations (MTAs) were identified representing all three sub-genomes of wheat. The highest number of MTAs were identified for GPC (23), followed by TKW (15), TW (11), GFeC (4), and GZnC (2). Further, a stable SNP was identified for TKW, and also pleiotropic regions were identified for GPC and TKW. In silico analysis revealed important putative candidate genes underlying the identified genomic regions such as F-box-like domain superfamily, Zinc finger CCCH-type proteins, Serine-threonine/tyrosine-protein kinase, Histone deacetylase domain superfamily, and SANT/Myb domain superfamily proteins, etc. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection.
Collapse
|
30
|
Jin X, Zou Z, Wu Z, Liu C, Yan S, Peng Y, Lei Z, Zhou Z. Genome-Wide Association Study Reveals Genomic Regions Associated With Molybdenum Accumulation in Wheat Grains. FRONTIERS IN PLANT SCIENCE 2022; 13:854966. [PMID: 35310638 PMCID: PMC8924584 DOI: 10.3389/fpls.2022.854966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for almost all organisms. Wheat, a major staple crop worldwide, is one of the main dietary sources of Mo. However, the genetic basis for the variation of Mo content in wheat grains remains largely unknown. Here, a genome-wide association study (GWAS) was performed on the Mo concentration in the grains of 207 wheat accessions to dissect the genetic basis of Mo accumulation in wheat grains. As a result, 77 SNPs were found to be significantly associated with Mo concentration in wheat grains, among which 52 were detected in at least two sets of data and distributed on chromosome 2A, 7B, and 7D. Moreover, 48 out of the 52 common SNPs were distributed in the 726,761,412-728,132,521 bp genomic region of chromosome 2A. Three putative candidate genes, including molybdate transporter 1;2 (TraesCS2A02G496200), molybdate transporter 1;1 (TraesCS2A02G496700), and molybdopterin biosynthesis protein CNX1 (TraesCS2A02G497200), were identified in this region. These findings provide new insights into the genetic basis for Mo accumulation in wheat grains and important information for further functional characterization and breeding to improve wheat grain quality.
Collapse
Affiliation(s)
- Xiaojie Jin
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhaojun Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Songxian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai, China
| | - Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
31
|
Singh R, Saripalli G, Gautam T, Kumar A, Jan I, Batra R, Kumar J, Kumar R, Balyan HS, Sharma S, Gupta PK. Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:637-650. [PMID: 35465199 PMCID: PMC8986950 DOI: 10.1007/s12298-022-01149-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/06/2023]
Abstract
Majority of cereals are deficient in essential micronutrients including grain iron (GFe) and grain zinc (GZn), which are therefore the subject of research involving biofortification. In the present study, 11 meta-QTLs (MQTLs) including nine novel MQTLs for GFe and GZn contents were identified in wheat. Eight of these 11 MQTLs controlled both GFe and GZn. The confidence intervals of the MQTLs were narrower (0.51-15.75 cM) relative to those of the corresponding QTLs (0.6 to 55.1 cM). Two ortho-MQTLs involving three cereals (wheat, rice and maize) were also identified. Results of MQTLs were also compared with the results of earlier genome wide association studies (GWAS). As many as 101 candidate genes (CGs) underlying MQTLs were also identified. Twelve of these CGs were prioritized; these CGs encoded proteins with important domains (zinc finger, RING/FYVE/PHD type, flavin adenine dinucleotide linked oxidase, etc.) that are involved in metal ion binding, heme binding, iron binding, etc. qRT-PCR analysis was conducted for four of these 12 prioritized CGs using genotypes which have differed for GFe and GZn. Significant differential expression in these genotypes was observed at 14 and 28 days after anthesis. The MQTLs/CGs identified in the present study may be utilized in marker-assisted selection (MAS) for improvement of GFe/GZn contents and also for understanding the molecular basis of GFe/GZn homeostasis in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01149-9.
Collapse
Affiliation(s)
- Rakhi Singh
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD-20742 College Park, MD United States
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Jitendra Kumar
- Dept. of Biotechnology, Govt. of India, National Agri-Food Biotechnology Institute (NABI), Sector 81 (Knowledge City), S.A.S. Nagar, 140306 Mohali, Punjab India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250 004 Meerut, U.P India
| |
Collapse
|
32
|
Wen Z, Juliana P, Dhugga HS, Pacheco M, Martínez UI, Aguilar A, Ibba MI, Govindan V, Singh RP, Dhugga KS. Genome-Wide Association Study of Phytic Acid in Wheat Grain Unravels Markers for Improving Biofortification. FRONTIERS IN PLANT SCIENCE 2022; 13:830147. [PMID: 35242157 PMCID: PMC8886111 DOI: 10.3389/fpls.2022.830147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 06/07/2023]
Abstract
Biofortification of cereal grains offers a lasting solution to combat micronutrient deficiency in developing countries where it poses developmental risks to children. Breeding efforts thus far have been directed toward increasing the grain concentrations of iron (Fe) and zinc (Zn) ions. Phytic acid (PA) chelates these metal ions, reducing their bioavailability in the digestive tract. We present a high-throughput assay for quantification of PA and its application in screening a breeding population. After extraction in 96-well megatiter plates, PA content was determined from the phosphate released after treatment with a commercially available phytase enzyme. In a set of 330 breeding lines of wheat grown in the field over 3 years as part of a HarvestPlus breeding program for high grain Fe and Zn, our assay unraveled variation for PA that ranged from 0.90 to 1.72% with a mean of 1.24%. PA content was not associated with grain yield. High yielding lines were further screened for low molar PA/Fe and PA/Zn ratios for increased metal ion bioavailability, demonstrating the utility of our assay. Genome-wide association study revealed 21 genetic associations, six of which were consistent across years. Five of these associations mapped to chromosomes 1A, 2A, 2D, 5A, and 7D. Additivity over four of these haplotypes accounted for an ∼10% reduction in PA. Our study demonstrates it is possible to scale up assays to directly select for low grain PA in forward breeding programs.
Collapse
|
33
|
Stanton C, Sanders D, Krämer U, Podar D. Zinc in plants: Integrating homeostasis and biofortification. MOLECULAR PLANT 2022; 15:65-85. [PMID: 34952215 DOI: 10.1016/j.molp.2021.12.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 05/24/2023]
Abstract
Zinc plays many essential roles in life. As a strong Lewis acid that lacks redox activity under environmental and cellular conditions, the Zn2+ cation is central in determining protein structure and catalytic function of nearly 10% of most eukaryotic proteomes. While specific functions of zinc have been elucidated at a molecular level in a number of plant proteins, wider issues abound with respect to the acquisition and distribution of zinc by plants. An important challenge is to understand how plants balance between Zn supply in soil and their own nutritional requirement for zinc, particularly where edaphic factors lead to a lack of bioavailable zinc or, conversely, an excess of zinc that bears a major risk of phytotoxicity. Plants are the ultimate source of zinc in the human diet, and human Zn deficiency accounts for over 400 000 deaths annually. Here, we review the current understanding of zinc homeostasis in plants from the molecular and physiological perspectives. We provide an overview of approaches pursued so far in Zn biofortification of crops. Finally, we outline a "push-pull" model of zinc nutrition in plants as a simplifying concept. In summary, this review discusses avenues that can potentially deliver wider benefits for both plant and human Zn nutrition.
Collapse
Affiliation(s)
| | - Dale Sanders
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology and Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
34
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
35
|
Kamaral C, Neate SM, Gunasinghe N, Milham PJ, Paterson DJ, Kopittke PM, Seneweera S. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. PHYSIOLOGIA PLANTARUM 2022; 174:e13612. [PMID: 34970752 DOI: 10.1111/ppl.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) is an important micronutrient in the human body, and health complications associated with insufficient dietary intake of Zn can be overcome by increasing the bioavailable concentrations in edible parts of crops (biofortification). Wheat (Triticum aestivum L) is the most consumed cereal crop in the world; therefore, it is an excellent target for Zn biofortification programs. Knowledge of the physiological and molecular processes that regulate Zn concentration in the wheat grain is restricted, inhibiting the success of genetic Zn biofortification programs. This review helps break this nexus by advancing understanding of those processes, including speciation regulated uptake, root to shoot transport, remobilisation, grain loading and distribution of Zn in wheat grain. Furthermore, new insights to genetic Zn biofortification of wheat are discussed, and where data are limited, we draw upon information for other cereals and Fe distribution. We identify the loading and distribution of Zn in grain as major bottlenecks for biofortification, recognising anatomical barriers in the vascular region at the base of the grain, and physiological and molecular restrictions localised in the crease region as major limitations. Movement of Zn from the endosperm cavity into the modified aleurone, aleurone and then to the endosperm is mainly regulated by ZIP and YSL transporters. Zn complexation with phytic acid in the aleurone limits Zn mobility into the endosperm. These insights, together with synchrotron-X-ray-fluorescence microscopy, support the hypothesis that a focus on the mechanisms of Zn loading into the grain will provide new opportunities for Zn biofortification of wheat.
Collapse
Affiliation(s)
- Chandima Kamaral
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Stephen M Neate
- School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Urrbrae, South Australia, Australia
| | - Niroshini Gunasinghe
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Paul J Milham
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David J Paterson
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, Australia
- Department of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Harnessing the Wild Relatives and Landraces for Fe and Zn Biofortification in Wheat through Genetic Interventions—A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132312975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micronutrient deficiencies, particularly iron (Fe) and zinc (Zn), in human diets are affecting over three billion people globally, especially in developing nations where diet is cereal-based. Wheat is one of several important cereal crops that provide food calories to nearly one-third of the population of the world. However, the bioavailability of Zn and Fe in wheat is inherently low, especially under Zn deficient soils. Although various fortification approaches are available, biofortification, i.e., development of mineral-enriched cultivars, is an efficient and sustainable approach to alleviate malnutrition. There is enormous variability in Fe and Zn in wheat germplasm, especially in wild relatives, but this is not utilized to the full extent. Grain Fe and Zn are quantitatively inherited, but high-heritability and genetic correlation at multiple locations indicate the high stability of Fe and Zn in wheat. In the last decade, pre-breeding activities have explored the potential of wild relatives to develop Fe and Zn rich wheat varieties. Furthermore, recent advances in molecular biology have improved the understanding of the uptake, storage, and bioavailability of Fe and Zn. Various transportation proteins encoding genes like YSL 2, IRT 1, OsNAS 3, VIT 1, and VIT 2 have been identified for Fe and Zn uptake, transfer, and accumulation at different developing stages. Hence, the availability of major genomic regions for Fe and Zn content and genome editing technologies are likely to result in high-yielding Fe and Zn biofortified wheat varieties. This review covers the importance of wheat wild relatives for Fe and Zn biofortification, progress in genomics-assisted breeding, and transgenic breeding for improving Fe and Zn content in wheat.
Collapse
|
37
|
Alomari DZ, Alqudah AM, Pillen K, von Wirén N, Röder MS. Toward identification of a putative candidate gene for nutrient mineral accumulation in wheat grains for human nutrition purposes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6305-6318. [PMID: 34145452 PMCID: PMC8483787 DOI: 10.1093/jxb/erab297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/16/2021] [Indexed: 05/21/2023]
Abstract
A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correlations were found among the minerals except for K, which showed negative correlation trends with the other minerals. Genetic association analysis detected 86 significant marker-trait associations (MTAs) underlying the natural variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was annotated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform future breeding studies in order to improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z Alomari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
- Correspondence: or
| | - Ahmad M Alqudah
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle/Saale, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
38
|
A high-resolution genome-wide association study of the grain ionome and agronomic traits in rice Oryza sativa subsp. indica. Sci Rep 2021; 11:19230. [PMID: 34584121 PMCID: PMC8478900 DOI: 10.1038/s41598-021-98573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
This study presents a comprehensive study of the genetic bases controlling variation in the rice ionome employing genome-wide association studies (GWAS) with a diverse panel of indica accessions, each genotyped with 5.2 million markers. GWAS was performed for twelve elements including B, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, and Zn and four agronomic traits including days to 50% flowering, grain yield, plant height and thousand grain weight. GWAS identified 128 loci associated with the grain elements and 57 associated with the agronomic traits. There were sixteen co-localization regions containing QTL for two or more traits. Fourteen grain element quantitative trait loci were stable across growing environments, which can be strong candidates to be used in marker-assisted selection to improve the concentrations of nutritive elements in rice grain. Potential candidate genes were revealed including OsNAS3 linked to the locus that controls the variation of Zn and Co concentrations. The effects of starch synthesis and grain filling on multiple grain elements were elucidated through the likely involvement of OsSUS1 and OsGSSB1 genes. Overall, our study provides crucial insights into the genetic basis of ionomic variations in rice and will facilitate improvement in breeding for trace mineral content.
Collapse
|
39
|
Delfini J, Moda-Cirino V, Dos Santos Neto J, Zeffa DM, Nogueira AF, Ribeiro LAB, Ruas PM, Gepts P, Gonçalves LSA. Genome-wide association study for grain mineral content in a Brazilian common bean diversity panel. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2795-2811. [PMID: 34027567 DOI: 10.1007/s00122-021-03859-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.
Collapse
Affiliation(s)
- Jessica Delfini
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Vânia Moda-Cirino
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
| | - José Dos Santos Neto
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Douglas Mariani Zeffa
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Alison Fernando Nogueira
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Luriam Aparecida Brandão Ribeiro
- Plant Breeding, Instituto de Desenvolvimento Rural do Paraná-IDR-Paraná-Emater (IDR-Paraná), Londrina, Brazil
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Paulo Maurício Ruas
- Biology Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA, USA
| | - Leandro Simões Azeredo Gonçalves
- Agronomy Department, Universidade Estadual de Londrina (UEL), Londrina, Brazil.
- Agronomy Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
40
|
Wang W, Guo H, Wu C, Yu H, Li X, Chen G, Tian J, Deng Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC PLANT BIOLOGY 2021; 21:311. [PMID: 34210282 PMCID: PMC8252321 DOI: 10.1186/s12870-021-03105-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Mineral elements are important for maintaining good human health besides heavy metals. Mining genes that control mineral elements are paramount for improving their accumulation in the wheat grain. Although previous studies have reported some loci for beneficial trace elements, they have mainly focused on Zn and Fe content. However, little information is available regarding the genetic loci differences in dissecting synchronous accumulation of multiple mineral elements in wheat grains, including beneficial and heavy elements. Therefore, a genome-wide association study (GWAS) was conducted on 205 wheat accessions with 24,355 single nucleotide polymorphisms (SNPs) to identify important loci and candidate genes for controlling Ca, Fe, Zn, Se, Cu, Mn, Cd, As, and Pb accumulation in wheat grains. RESULTS A total of 101 marker-trait associations (MTAs) (P < 10-5) loci affecting the content of nine mineral elements was identified on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6B, 7A, 7B, and 7D. Among these, 17 major MTAs loci for the nine mineral elements were located, and four MTAs loci (P < 10-5) were found on chromosomes 1B, 6B, 7B, and 7D. Eight multi-effect MTAs loci were detected that are responsible for the control of more than one trait, mainly distributed on chromosomes 3B, 7B, and 5A. Furthermore, sixteen candidate genes controlling Ca, Fe, Zn, Se, Cd, and Pb were predicted, whose functions were primarily related to ion binding, including metals, Fe, Ca, Cu, Mg, and Zn, ATP binding, ATPase activity, DNA binding, RNA binding, and protein kinase activity. CONCLUSIONS Our study indicated the existence of gene interactions among mineral elements based on multi-effect MTAs loci and candidate genes. Meanwhile this study provided new insights into the genetic control of mineral element concentrations, and the important loci and genes identified may contribute to the rapid development of beneficial mineral elements and a reduced content of harmful heavy metals in wheat grain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China
| | - Hong Guo
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China
| | - Chongning Wu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China
| | - Hui Yu
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China
| | - Xiaokang Li
- Handan Academy of Agricultural Sciences, Handan, Hebei, 056000, P.R. China
| | - Guangfeng Chen
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, Shandong, 253023, P.R. China
| | - Jichun Tian
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China
| | - Zhiying Deng
- State Key Laboratory of Crop Biology, Key Laboratory of Crop Biology of Shandong Province, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, P.R. China.
| |
Collapse
|
41
|
Maltzahn LE, Zenker SG, Lopes JL, Pereira RM, Verdi CA, Rother V, Busanello C, Viana VE, Batista BL, de Oliveira AC, Pegoraro C. Brazilian Genetic Diversity for Desirable and Undesirable Elements in the Wheat Grain. Biol Trace Elem Res 2021; 199:2351-2365. [PMID: 32797369 DOI: 10.1007/s12011-020-02338-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
Abstract
Micronutrient deficiency affects billions of people, especially in countries where the diet is low in diversity with inadequate consumption of fruits, vegetables, and animal-source foods, and higher consumption of staple food, i.e., cereals, that have low concentrations of micronutrients. Genetic biofortification is a strategy to mitigate this problem and ensure nutritional security. Wheat is a target of genetic biofortification since it contributes significantly to the caloric requirement. The biofortification process involves a screening related to the presence of genetic variability for grain mineral content. Also, the accumulation of toxic elements must be considered to ensure food safety, because if ingested above the allowed concentrations, it represents health risks. In this sense, this study aimed to quantify the micronutrients iron, zinc, copper, selenium, and manganese and toxic elements arsenic and cadmium in a Brazilian wheat panel grown in Southern Brazil. The presence of genetic variability for the accumulation of micronutrients in the grain was detected; however, we observed that only the copper and manganese accumulation meet the human daily requirements. Iron, zinc, and selenium were detected in insufficient concentration to meet the daily demand. Arsenic and cadmium accumulation were not detected in wheat grain. The wheat genotypes grown in Brazil displayed a similar profile to that found in other countries which may be due to common high-yield breeding goals and the narrowing of the genetic variability, observed worldwide. Thus, the wheat genetic biofortification success in Brazil depends on the introduction of foreign genotypes, landraces, and wild relatives.
Collapse
Affiliation(s)
- Latóia Eduarda Maltzahn
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Stefânia Garcia Zenker
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Jennifer Luz Lopes
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Rodrigo Mendes Pereira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Cezar Augusto Verdi
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vianei Rother
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Carlos Busanello
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Vívian Ebeling Viana
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Campus Santo André, Santo André, SP, 09210-580, Brazil
| | - Antonio Costa de Oliveira
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil
| | - Camila Pegoraro
- Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
42
|
Rathan ND, Sehgal D, Thiyagarajan K, Singh R, Singh AM, Govindan V. Identification of Genetic Loci and Candidate Genes Related to Grain Zinc and Iron Concentration Using a Zinc-Enriched Wheat 'Zinc-Shakti'. Front Genet 2021; 12:652653. [PMID: 34194467 PMCID: PMC8237760 DOI: 10.3389/fgene.2021.652653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The development of nutritionally enhanced wheat (Triticum aestivum L.) with higher levels of grain iron (Fe) and zinc (Zn) offers a sustainable solution to micronutrient deficiency among resource-poor wheat consumers. One hundred and ninety recombinant inbred lines (RILs) from 'Kachu' × 'Zinc-Shakti' cross were phenotyped for grain Fe and Zn concentrations and phenological and agronomically important traits at Ciudad Obregon, Mexico in the 2017-2018, 2018-2019, and 2019-2020 growing seasons and Diversity Arrays Technology (DArT) molecular marker data were used to determine genomic regions controlling grain micronutrients and agronomic traits. We identified seven new pleiotropic quantitative trait loci (QTL) for grain Zn and Fe on chromosomes 1B, 1D, 2B, 6A, and 7D. The stable pleiotropic QTL identified have expanded the diversity of QTL that could be used in breeding for wheat biofortification. Nine RILs with the best combination of pleiotropic QTL for Zn and Fe have been identified to be used in future crossing programs and to be screened in elite yield trials before releasing as biofortified varieties. In silico analysis revealed several candidate genes underlying QTL, including those belonging to the families of the transporters and kinases known to transport small peptides and minerals (thus assisting mineral uptake) and catalyzing phosphorylation processes, respectively.
Collapse
Affiliation(s)
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Ravi Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
43
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
44
|
Soto-Cerda BJ, Aravena G, Cloutier S. Genetic dissection of flowering time in flax (Linum usitatissimum L.) through single- and multi-locus genome-wide association studies. Mol Genet Genomics 2021; 296:877-891. [PMID: 33903955 DOI: 10.1007/s00438-021-01785-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile.
| | - Gabriela Aravena
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
45
|
Glutacetine ® Biostimulant Applied on Wheat under Contrasting Field Conditions Improves Grain Number Leading to Better Yield, Upgrades N-Related Traits and Changes Grain Ionome. PLANTS 2021; 10:plants10030456. [PMID: 33670931 PMCID: PMC7997451 DOI: 10.3390/plants10030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Wheat is one of the most important cereals for human nutrition, but nitrogen (N) losses during its cultivation cause economic problems and environmental risks. In order to improve N use efficiency (NUE), biostimulants are increasingly used. The present study aimed to evaluate the effects of Glutacetine®, a biostimulant sprayed at 5 L ha−1 in combination with fertilizers (urea or urea ammonium nitrate (UAN)), on N-related traits, grain yield components, and the grain quality of winter bread wheat grown at three field sites in Normandy (France). Glutacetine® improved grain yield via a significant increase in the grain number per spike and per m2, which also enhanced the thousand grain weight, especially with urea. The total N in grains and the NUE tended to increase in response to Glutacetine®, irrespective of the site or the form of N fertilizer. Depending on the site, spraying Glutacetine® can also induce changes in the grain ionome (analyzed by X-ray fluorescence), with a reduction in P content observed (site 2 under urea nutrition) or an increase in Mn content (site 3 under UAN nutrition). These results provide a roadmap for utilizing Glutacetine® biostimulant to enhance wheat production and flour quality in a temperate climate.
Collapse
|
46
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
47
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|