1
|
Kang H, Thomas HR, Xia X, Shi H, Zhang L, Hong J, Shi K, Zhou J, Yu J, Zhou Y. An integrative overview of cold response and regulatory pathways in horticultural crops. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1028-1059. [PMID: 40213955 DOI: 10.1111/jipb.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Global climate change challenges agricultural production, as extreme temperature fluctuations negatively affect crop growth and yield. Low temperature (LT) stress impedes photosynthesis, disrupts metabolic processes, and compromises the integrity of cell membranes, ultimately resulting in diminished yield and quality. Notably, many tropical or subtropical horticultural plants are particularly susceptible to LT stress. To address these challenges, it is imperative to understand the mechanisms underlying cold tolerance in horticultural crops. This review summarizes recent advances in the physiological and molecular mechanisms that enable horticultural crops to withstand LT stress, emphasizing discrepancies between horticultural crops and model systems. These mechanisms include C-repeat binding factor-dependent transcriptional regulation, post-translational modifications, epigenetic control, and metabolic regulation. Reactive oxygen species, plant hormones, and light signaling pathways are integrated into the cold response network. Furthermore, technical advances for improving cold tolerance are highlighted, including genetic improvement, the application of light-emitting diodes, the utility of novel plant growth regulators, and grafting. Finally, prospective directions for fundamental research and practical applications to boost cold tolerance are discussed.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Hannah Rae Thomas
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Huanran Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Limeng Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jiachen Hong
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Zhang J, Ouyang S, Cai X, Yang S, Chen Q, Yang J, Song Z, Zhang W, Wang Y, Zhu Y, Nan P. Phenotypic adaptation and genomic variation of Kandelia obovata associated with its northern introduction along southeastern coast of China. FRONTIERS IN PLANT SCIENCE 2025; 16:1512620. [PMID: 40206876 PMCID: PMC11980879 DOI: 10.3389/fpls.2025.1512620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Introduction Mangroves play a crucial role within coastal wetland ecosystems, with Kandelia obovata frequently utilized for introduction studies and cultivation research. Investigating the rapid adaptability of K. obovata across diverse environmental conditions offers valuable insights into how mangroves can effectively acclimate to global climate fluctuations. Methods In this study, following a common gardenexperiment, we investigated variations in morphological traits between twodistinct populations of K. obovata, Quanzhou (QZ) and Wenzhou (WZ),originating from the same introduction site Zhangzhou (ZZ). Then we performed the whole-genome resequencing on multiple populations along the southern coast of China to assess genetic divergence and diversity patterns in response to environmental factors. Results Our findings have uncovered divergent growth-defense trade-off mechanisms employed by these two populations when exposed to varying minimal temperatures in the coldest month within their respective habitats. Moreover, our observations have revealed discernible genetic divergence during the process of environmental acclimatization. Subsequent whole-genome re-sequencing have unveiled a significant decrease in genetic diversity within the northernmost population, suggesting that temperature plays a primary role in shaping genetic variability within the K. obovata species. Discussion These findings present new evidence for the rapid adaptation of K. obovata and contributes to our understanding of environmental adaptation characteristics during its introduction to northern regions, which holds significant implications for the conservation and sustainable development of mangroves.
Collapse
Affiliation(s)
- Jiaqi Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Sheng Ouyang
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Xingxing Cai
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Sheng Yang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang, China
| | - Ji Yang
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Zhiping Song
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Wenju Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Yuguo Wang
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| | - Yan Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Nan
- School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco-Chongming, Shanghai, China
| |
Collapse
|
3
|
Kita Y, Suzuki T, Jitsuyama Y. Relationships between freezing resistance and biochemicals in grapevine buds and canes: Different soluble carbohydrates accumulate in several cultivars during cold acclimation. PLANT STRESS 2024; 14:100639. [DOI: 10.1016/j.stress.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wang N, Zhu Y, Zhou Y, Gao F, Cui S. Transcriptome Analysis Reveals the Crucial Role of Phenylalanine Ammonia-Lyase in Low Temperature Response in Ammopiptanthus mongolicus. Genes (Basel) 2024; 15:1465. [PMID: 39596665 PMCID: PMC11593641 DOI: 10.3390/genes15111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Ammopiptanthus mongolicus is a rare temperate evergreen shrub with high tolerance to low temperature, and understanding the related gene expression regulatory network can help advance research on the mechanisms of plant tolerance to abiotic stress. Methods: Here, time-course transcriptome analysis was applied to investigate the gene expression network in A. mongolicus under low temperature stress. Results: A total of 12,606 differentially expressed genes (DEGs) were identified at four time-points during low temperature stress treatment, and multiple pathways, such as plant hormones, secondary metabolism, and cell membranes, were significantly enriched in the DEGs. Trend analysis found that the expression level of genes in cluster 19 continued to upregulate under low temperatures, and the genes in cluster 19 were significantly enriched in plant hormone signaling and secondary metabolic pathways. Based on the transcriptome data, the expression profiles of the genes in abscisic acid, salicylic acid, and flavonoid metabolic pathways were analyzed. It was found that biosynthesis of abscisic acid and flavonoids may play crucial roles in the response to low temperature stress. Furthermore, members of the phenylalanine ammonia-lyase (PAL) family in A. mongolicus were systematically identified and their structures and evolution were characterized. Analysis of cis-acting elements showed that the PAL genes in A. mongolicus were closely related to abiotic stress response. Expression pattern analysis showed that PAL genes responded to various environmental stresses, such as low temperature, supporting their involvement in the low temperature response in A. mongolicus. Conclusions: Our study provides important data for understanding the mechanisms of tolerance to low temperatures in A. mongolicus.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
| | - Yilin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Haidian District, Beijing 100081, China; (Y.Z.); (Y.Z.)
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China;
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing 100048, China
| |
Collapse
|
5
|
Wang H, Kovaleski AP, Londo JP. Physiological and transcriptomic characterization of cold acclimation in endodormant grapevine under different temperature regimes. PHYSIOLOGIA PLANTARUM 2024; 176:e14607. [PMID: 39489599 DOI: 10.1111/ppl.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
It is essential for the survival of grapevines in cool climate viticultural regions where vines properly acclimate in late fall and early winter and develop freezing tolerance. Climate change-associated abnormities in temperature during the dormant season, including oscillations between prolonged warmth in late fall and extreme cold in midwinter, impact cold acclimation and threaten the sustainability of the grape and wine industry. We conducted two experiments in controlled environment to investigate the impacts of different temperature regimes on cold acclimation ability in endodormant grapevine buds through a combination of freezing tolerance-based physiological and RNA-seq-based transcriptomic monitoring. Results show that exposure to a constant temperature, whether warm (22 and 11°C), moderate (7°C), or cool (4 and 2°C) was insufficient for triggering cold acclimation and increasing freezing tolerance in dormant buds. However, when the same buds were exposed to temperature cycling (7±5°C), acclimation occurred, and freezing tolerance was increased by 5°C. We characterized the transcriptomic response of endodormant buds to high and low temperatures and temperature cycling and identified new potential roles for the ethylene pathway, starch and sugar metabolism, phenylpropanoid regulation, and protein metabolism in the genetic control of endodormancy maintenance. Despite clear evidence of temperature-responsive transcription in endodormant buds, our current understanding of the genetic control of cold acclimation remains a challenge when generalizing across grapevine tissues and phenological stages.
Collapse
Affiliation(s)
- Hongrui Wang
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| | - Al P Kovaleski
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason P Londo
- School of Integrative Plant Science, Horticulture Section, Cornell University-Cornell AgriTech, Geneva, NY, USA
| |
Collapse
|
6
|
Song Y, He J, Guo J, Xie Y, Ma Z, Liu Z, Niu C, Li X, Chu B, Tahir MM, Xu J, Ma F, Guan Q. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1-mediated H3K27me3 in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:617-634. [PMID: 37874929 PMCID: PMC10893944 DOI: 10.1111/pbi.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- Shenzhen Research InstituteNorthwest A&F UniversityShenzhenChina
| |
Collapse
|
7
|
Fan Y, Peng F, Cui R, Wang S, Cui Y, Lu X, Huang H, Ni K, Liu X, Jiang T, Feng X, Liu M, Lei Y, Chen W, Meng Y, Han M, Wang D, Yin Z, Chen X, Wang J, Li Y, Guo L, Zhao L, Ye W. GhIMP10D, an inositol monophosphates family gene, enhances ascorbic acid and antioxidant enzyme activities to confer alkaline tolerance in Gossypium hirsutum L. BMC PLANT BIOLOGY 2023; 23:447. [PMID: 37736713 PMCID: PMC10515029 DOI: 10.1186/s12870-023-04462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Inositol monophosphates (IMP) are key enzymes in the ascorbic acid (AsA) synthesis pathways, which play vital roles in regulating plant growth and development and stresses tolerance. To date, no comprehensive analysis of the expression profile of IMP genes and their functions under abiotic stress in cotton has been reported. RESULTS In this study, the genetic characteristics, phylogenetic evolution, cis-acting elements and expression patterns of IMP gene family in cotton were systematically analyzed. A total of 28, 27, 13 and 13 IMP genes were identified in Gossypium hirsutum (G. hirsutum), Gossypium barbadense (G. barbadense), Gossypium arboreum (G. arboreum), and Gossypium raimondii (G. raimondii), respectively. Phylogenetic analysis showed that IMP family genes could cluster into 3 clades. Structure analysis of genes showed that GhIMP genes from the same subgroup had similar genetic structure and exon number. And most GhIMP family members contained hormone-related elements (abscisic acid response element, MeJA response element, gibberellin response element) and stress-related elements (low temperature response element, defense and stress response element, wound response element). After exogenous application of abscisic acid (ABA), some GhIMP genes containing ABA response elements positively responded to alkaline stress, indicating that ABA response elements played an important role in response to alkaline stress. qRT-PCR showed that most of GhIMP genes responded positively to alkaline stress, and GhIMP10D significantly upregulated under alkaline stress, with the highest up-regulated expression level. Virus-induced gene silencing (VIGS) experiment showed that compared with 156 plants, MDA content of pYL156:GhIMP10D plants increased significantly, while POD, SOD, chlorophyII and AsA content decreased significantly. CONCLUSIONS This study provides a thorough overview of the IMP gene family and presents a new perspective on the evolution of this gene family. In particular, some IMP genes may be involved in alkaline stress tolerance regulation, and GhIMP10D showed high expression levels in leaves, stems and roots under alkaline stress, and preliminary functional verification of GhIMP10D gene suggested that it may regulate tolerance to alkaline stress by regulating the activity of antioxidant enzymes and the content of AsA. This study contributes to the subsequent broader discussion of the structure and alkaline resistance of IMP genes in cotton.
Collapse
Affiliation(s)
- Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Yujun Li
- Hunan Institute of Cotton Science, Hunan, 415101, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang Institute of Technology, Henan, 455000, China.
| |
Collapse
|
8
|
Yang C, Li X, Zhang Y, Jin H. Transcriptome analysis of Populus × canadensis 'Zhongliao1' in response to low temperature stress. BMC Genomics 2023; 24:77. [PMID: 36803355 PMCID: PMC9936654 DOI: 10.1186/s12864-023-09187-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Low temperatures are known to limit the growth and geographical distribution of poplars. Although some transcriptomic studies have been conducted to explore the response of poplar leaves to cold stress, only a few have comprehensively analyzed the effects of low temperature on the transcriptome of poplars and identified genes related to cold stress response and repair of freeze-thaw injury. RESULTS We exposed the Euramerican poplar Zhongliao1 to low temperatures; after stems were exposed to - 40℃, 4℃, and 20℃, the mixture of phloem and cambium was collected for transcriptome sequencing and bioinformatics analysis. A total of 29,060 genes were detected, including 28,739 known genes and 321 novel genes. Several differentially expressed genes (n = 36) were found to be involved in the Ca2+ signaling pathway, starch-sucrose metabolism pathway, abscisic acid signaling pathway, and DNA repair. They were functionally annotated; glucan endo-1,3-beta-glucosidase and UDP-glucuronosyltransferase genes, for instance, showed a close relationship with cold resistance. The expression of 11 differentially expressed genes was verified by qRT-PCR; RNA-Seq and qRT-PCR data were found to be consistent, which validated the robustness of our RNA-Seq findings. Finally, multiple sequence alignment and evolutionary analysis were performed, the results of which suggested a close association between several novel genes and cold resistance in Zhongliao1. CONCLUSION We believe that the cold resistance and freeze-thaw injury repair genes identified in this study are of great significance for cold tolerance breeding.
Collapse
Affiliation(s)
- Chengchao Yang
- Liaoning Provincial Institute of Poplar, 115213, Gaizhou, China.
| | - Xiaoyu Li
- Liaoning Provincial Institute of Poplar, 115213 Gaizhou, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, 115213 Gaizhou, China
| | - Hua Jin
- grid.440687.90000 0000 9927 2735College of Environment and Bioresources, Dalian Minzu University, 116600 Dalian, China
| |
Collapse
|
9
|
Dami I, Zhang Y. Variations of freezing tolerance and sugar concentrations of grape buds in response to foliar application of abscisic acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1084590. [PMID: 36875602 PMCID: PMC9981962 DOI: 10.3389/fpls.2023.1084590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to explore the mechanism of ABA-induced freezing tolerance increase in grapevines. The specific objectives were to evaluate the impact of ABA treatment on soluble sugar concentration in grape buds and determine the correlations between freezing tolerance and ABA-affected soluble sugar concentration. Vitis spp 'Chambourcin' and Vitis vinifera 'Cabernet franc' were treated with 400 and 600 mg/L ABA in the greenhouse and field. The freezing tolerance and soluble sugar concentration of grape buds were measured monthly during the dormant season in the field and at 2wk, 4wk, and 6wk after ABA application in the greenhouse. It was observed that fructose, glucose, and sucrose are the main soluble sugars that correlate with freezing tolerance of grape buds and the synthesis of these sugars can be enhanced by ABA treatment. This study also found that ABA application can promote raffinose accumulation, however, this sugar may play a more important role in the early acclimation stage. The preliminary results suggest that raffinose accumulated first in buds, then its decrease in mid-winter corresponded with the increase of smaller sugars, such as sucrose, fructose, and glucose, which in turn, corresponded with reaching maximum freezing tolerance. It is concluded that ABA is a cultural practice tool that can be used to enhance freezing tolerance of grapevines.
Collapse
Affiliation(s)
- Imed Dami
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| | - Yi Zhang
- Grapery, Shafter, CA, United States
| |
Collapse
|
10
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
11
|
Liu X, Lu X, Yang S, Liu Y, Wang W, Wei X, Ji H, Zhang B, Xin W, Wen J, Wang J, Chen Q. Role of exogenous abscisic acid in freezing tolerance of mangrove Kandelia obovata under natural frost condition at near 32 °N. BMC PLANT BIOLOGY 2022; 22:593. [PMID: 36529723 PMCID: PMC9762092 DOI: 10.1186/s12870-022-03990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mangroves possess substantial ecological, social, and economic functions in tropical and subtropical coastal wetlands. Kandelia obovata is the most cold-resistance species among mangrove plants, with a widespread distribution in China that ranges from Sanya (18° 12' N) to Wenzhou (28° 20' N). Here, we explored the temporal variations in physiological status and transcriptome profiling of K. obovata under natural frost conditions at ~ 32oN, as well as the positive role of exogenous abscisic acid (ABA) in cold resistance. RESULTS The soluble sugar (SS) and proline (Pro) functioned under freezing stress, of which SS was more important for K. obovata. Consistently, up-regulated DEGs responding to low temperature were significantly annotated to glycometabolism, such as starch and sucrose metabolism and amino sugar and nucleotide sugar metabolism. Notably, the top 2 pathways of KEGG enrichment were phenylpropanoid biosynthesis and flavonoid biosynthesis. For the antioxidant system, POD in conjunction with CAT removed hydrogen peroxide, and CAT appeared to be more important. The up-regulated DEGs responding to low temperature and ABA were also found to be enriched in arginine and proline metabolism, starch and sucrose metabolism, and peroxisome. Moreover, ABA triggered the expression of P5CS and P5CR, but inhibited the ProDH expression, which might contribute to Pro accumulation. Interestingly, there was no significant change in malondialdehyde (MDA) content during the cold event (P > 0.05), suggesting foliar application of ABA effectively alleviated the adverse effects of freezing stress on K. obovata by activating the antioxidant enzyme activity and increasing osmolytes accumulation, such as Pro, and the outcome was proportional to ABA concentration. CONCLUSIONS This study deepened our understanding of the physiological characters and molecular mechanisms underlying the response of K. obovata to natural frost conditions and exogenous ABA at the field level, which could provide a sound theoretical foundation for expanding mangroves plantations in higher latitudes, as well as the development coastal landscape.
Collapse
Affiliation(s)
- Xing Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Xiang Lu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Sheng Yang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Yu Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xin Wei
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
| | - Hongjiu Ji
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, Jiangsu, China
| | - Bo Zhang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang, China
| | - Wenzhen Xin
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Junxiu Wen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325000, Zhejiang, China
| | - Jinwang Wang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China.
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
12
|
Goswami AK, Maurya NK, Goswami S, Bardhan K, Singh SK, Prakash J, Pradhan S, Kumar A, Chinnusamy V, Kumar P, Sharma RM, Sharma S, Bisht DS, Kumar C. Physio-biochemical and molecular stress regulators and their crosstalk for low-temperature stress responses in fruit crops: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:1022167. [PMID: 36578327 PMCID: PMC9790972 DOI: 10.3389/fpls.2022.1022167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Low-temperature stress (LTS) drastically affects vegetative and reproductive growth in fruit crops leading to a gross reduction in the yield and loss in product quality. Among the fruit crops, temperate fruits, during the period of evolution, have developed the mechanism of tolerance, i.e., adaptive capability to chilling and freezing when exposed to LTS. However, tropical and sub-tropical fruit crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by inducing the expression of LTS related genes, which is for climatic acclimatization. The activation of the stress-responsive gene leads to changes in physiological and biochemical mechanisms such as photosynthesis, chlorophyll biosynthesis, respiration, membrane composition changes, alteration in protein synthesis, increased antioxidant activity, altered levels of metabolites, and signaling pathways that enhance their tolerance/resistance and alleviate the damage caused due to LTS and chilling injury. The gene induction mechanism has been investigated extensively in the model crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-repeat binding factor expression 1) and the CBF (C-repeat binding factor) transcriptional cascade are involved in transcriptional control. The functions of various CBFs and aquaporin genes were well studied in crop plants and their role in multiple stresses including cold stresses is deciphered. In addition, tissue nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc., also play a significant role in alleviating the LTS and chilling injury in fruit crops. However, these physiological, biochemical and molecular understanding of LTS tolerance/resistance are restricted to few of the temperate and tropical fruit crops. Therefore, a better understanding of cold tolerance's underlying physio-biochemical and molecular components in fruit crops is required under open and simulated LTS. The understanding of LTS tolerance/resistance mechanism will lay the foundation for tailoring the novel fruit genotypes for successful crop production under erratic weather conditions.
Collapse
Affiliation(s)
- Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naveen Kumar Maurya
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Satyabrata Pradhan
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amarjeet Kumar
- Multi Testing Technology Centre and Vocational Training Centre, Selesih, Central Agricultural University, Imphal, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prabhat Kumar
- Department of Agriculture and Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Govt. of India, Krishi Bhavan, New Delhi, India
| | - Radha Mohan Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Stuti Sharma
- Department of Plant Breeding and Genetics, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | | | - Chavlesh Kumar
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Noriega X, Rubio S, Pérez FJ. Sucrose accumulation and endodormancy are synchronized events induced by the short-day photoperiod in grapevine buds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:101-108. [PMID: 36108354 DOI: 10.1016/j.plaphy.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
At the end of the summer season, grapevine buds (Vitis vinifera L) grown in temperate climates enter a state of winter recess or endodormancy (ED), which is induced by the shortening of the photoperiod, and during this period, the buds accumulate sucrose. In this study, we investigated whether the shortening of the photoperiod regulates the accumulation of sucrose in the buds in the same way as it regulates its entry into the ED. Because sucrose accumulation is regulated by genes that control its transport and degradation, the effect of the SD photoperiod and the transition of buds from paradormancy (PD) to ED on the expression of sucrose transporter (VvSUTs) and invertase genes (VvINVs) was studied. To analyze the possible role of sucrose during ED development, its effect on bud swelling and sprouting was studied on dormant and nondormant buds under forced growth conditions. The results showed that the SD photoperiod upregulates the expression of the VvSUT genes and downregulates that of the VvINV genes in grapevine buds. Additionally, during the transition of buds from PD to ED, the sucrose content increased, the expression of the VvINV genes decreased, and the expression of the VvSUT genes did not change significantly. Sucrose delayed bud swelling and sprouting when applied to dormant buds but had no effect when applied to nondormant buds. Therefore, we concluded that ED development and sucrose accumulation were synchronized events induced by the SD photoperiod and that a sucrose peak marks the end of ED development in grapevine buds.
Collapse
Affiliation(s)
- Ximena Noriega
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile
| | - Sebastián Rubio
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile
| | - Francisco J Pérez
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile.
| |
Collapse
|
14
|
Tang X, Fei X, Sun Y, Shao H, Zhu J, He X, Wang X, Yong B, Tao X. Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:973665. [PMID: 36119590 PMCID: PMC9478517 DOI: 10.3389/fpls.2022.973665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Drought restricts the growth of alpine grassland vegetation. This study aimed to explore a new technical system to improve the drought resistance of forage grass. Qinghai cold-land Poa pratensis seedlings were used in the drought stress experiment. A combination of abscisic acid (ABA) and polyacrylamide (PAM) were used to affect the growth, leaf physiology, soil enzyme activity, and rhizosphere microbial diversity of P. pratensis. The fresh leaf weight and root surface area were significantly increased after ABA-PAM combined treatment, while root length was significantly reduced. Besides, the leaf catalase (CAT) and superoxide dismutase (SOD) enzyme activity, proline and chlorophyll content, increased after the treatment, while malondialdehyde (MDA) content decreased. The treatment also increased sucrase, urease, and alkaline protease activities in rhizosphere soil, while decreasing acid phosphatase and neutral phosphatase enzyme activities. ABA-PAM combined treatment enhanced the rhizosphere microbial community and forage drought resistance by altering the abundance of various dominant microorganisms in the rhizosphere soil. The relative abundances of Actinobacteria, Chloroflexi, and Acidobacteria decreased, while Proteobacteria, Firmicutes, and Ascomycota increased. Unlike the relative abundance of Gibberella that decreased significantly, Komagataeibacter, Lactobacillus, Pichia, and Dekkera were significantly increased. Single-factor collinearity network analysis revealed a close relationship between the different rhizosphere microbial communities of forage grass, after ABA-PAM treatment. This study implies that ABA-PAM combined treatment can improve the drought resistance of forages. Therefore, it provides a theoretical and practical basis for restoring drought-induced grassland degradation.
Collapse
Affiliation(s)
- Xue Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xueting Fei
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Leshan Haitang Experimental Middle School, Leshan, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Jinyu Zhu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xinyi He
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoyan Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
15
|
Yang J, Ling C, Liu Y, Zhang H, Hussain Q, Lyu S, Wang S, Liu Y. Genome-Wide Expression Profiling Analysis of Kiwifruit GolS and RFS Genes and Identification of AcRFS4 Function in Raffinose Accumulation. Int J Mol Sci 2022; 23:ijms23168836. [PMID: 36012101 PMCID: PMC9408211 DOI: 10.3390/ijms23168836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The raffinose synthetase (RFS) and galactinol synthase (GolS) are two critical enzymes for raffinose biosynthesis, which play an important role in modulating plant growth and in response to a variety of biotic or abiotic stresses. Here, we comprehensively analyzed the RFS and GolS gene families and their involvement in abiotic and biotic stresses responses at the genome-wide scale in kiwifruit. A total of 22 GolS and 24 RFS genes were identified in Actinidia chinensis and Actinidia eriantha genomes. Phylogenetic analysis showed that the GolS and RFS genes were clustered into four and six groups, respectively. Transcriptomic analysis revealed that abiotic stresses strongly induced some crucial genes members including AcGolS1/2/4/8 and AcRFS2/4/8/11 and their expression levels were further confirmed by qRT-PCR. The GUS staining of AcRFS4Pro::GUS transgenic plants revealed that the transcriptionlevel of AcRFS4 was significantly increased by salt stress. Overexpression of AcRFS4 in Arabidopsis demonstrated that this gene enhanced the raffinose accumulation and the tolerance to salt stress. The co-expression networks analysis of hub transcription factors targeting key AcRFS4 genes indicated that there was a strong correlation between AcNAC30 and AcRFS4 expression under salt stress. Furthermore, the yeast one-hybrid assays showed that AcNAC30 could bind the AcRFS4 promoter directly. These results may provide insights into the evolutionary and functional mechanisms of GolS and RFS genes in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Yunyan Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Songhu Wang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| |
Collapse
|
16
|
Integrative Comparative Assessment of Cold Acclimation in Evergreen and Deciduous Iris Species. Antioxidants (Basel) 2022; 11:antiox11050977. [PMID: 35624841 PMCID: PMC9137773 DOI: 10.3390/antiox11050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cold acclimation (CA) is a strategy which plants have evolved to increase freezing tolerance. Global climate change could obstruct CA and raise the probability of winter injury, especially for evergreens. Hence, understanding the regulatory mechanism of CA is crucial to improve freezing tolerance in evergreen plants. A comparative study on a pair of closely related evergreen and deciduous iris species in response to cold through CA was conducive to uncovering and complementing the knowledge of CA. We investigated morphological, physiological and biochemical changes, as well as the expression of associated genes in the functional leaves of both iris species from natural CA to deacclimation. Briefly, fast and strong CA in the evergreen iris might cause early expressions of BAM1, NCED3, GPX6, etc., which leads to strong enzyme activity of starch degradation, abscisic acid biosynthesis and reactive oxygen species scavenging. Additionally, genes belonging to the antioxidant system were mainly induced during deacclimation. These results suggest that interspecies differences in the leaf freezing tolerance of irises are associated with the rate and degree of CA, which activates multiple signaling networks with complex interactions and induces the transcription of cold-responsive genes. Moreover, the ICE–CBF–COR signaling cascade may integrate and initiate diverse cold-responsive pathways during CA of the evergreen iris. The findings of this study provide valuable insight to further research on CA mechanisms and implicate genes which could support breeding strategies in herbaceous perennials under climate changes.
Collapse
|
17
|
Tian J, Ma Y, Chen Y, Chen X, Wei A. Plant Hormone Response to Low-Temperature Stress in Cold-Tolerant and Cold-Sensitive Varieties of Zanthoxylum bungeanum Maxim. FRONTIERS IN PLANT SCIENCE 2022; 13:847202. [PMID: 35574137 PMCID: PMC9102381 DOI: 10.3389/fpls.2022.847202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and survival in nature, its growth process, will be affected by various factors from the environment, among which temperature has a greater impact. In recent years, extreme weather has frequently appeared, and the growth of crops has been increasingly affected by the environment. As an important flavoring and Chinese herbal medicine crop, Zanthoxylum bungeanum is also facing the harm of low-temperature stress. Plant hormones play a vital role in the response of plants to low temperatures. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the hormone components of cold-tolerant and cold-sensitive varieties of Z. bungeanum. Combined with chemometric analysis and weighted gene co-expression network analysis (WGCNA), the hormone component differences and hormone response strategies of Z. bungeanum under low-temperature stress were comprehensively studied. The results showed that 45 hormones were detected in Z. bungeanum. Among them, there were 7 kinds of components with high content and were detected in both two varieties. At the late stage of low-temperature stress, the contents of abscisic acid (ABA) and ABA-glucosyl ester (ABA-GE) in Fuguhuajiao (FG) were significantly increased, and the latter served as the storage of the former to supplement the active ABA. Orthogonal partial least squares discriminant analysis (OPLS-DA) found that indole-3-carboxylic acid (ICA), indole-3-carboxaldehyde (ICAld), meta-Topolin riboside (mTR), cis-Zeatin-O-glucoside riboside (cZROG), and N6-isopentenyladenosine (IPR) in FG were the upregulated important difference components, and IPR and 2-methylthio-cis-zeatin riboside (2MeScZR) in Fengxiandahongpao (FX) were the upregulated important difference components. There were common crossing points and independent response pathways in response to low temperature in two varieties. WGCNA analysis found that the main hormone components were associated with multiple metabolic pathways including carbon, fatty acid, amino acid, and sugar metabolism, indicating that hormone regulation plays an important role in the response of Z. bungeanum to low temperature. This study clarified the hormone response mechanism of Z. bungeanum under low-temperature stress and provided a reference and basis for further improving the cold resistance of Z. bungeanum and cultivating new varieties.
Collapse
Affiliation(s)
- Jieyun Tian
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Yao Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yabing Chen
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Xue Chen
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
18
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
19
|
Liu T, Li CX, Zhong J, Shu D, Luo D, Li ZM, Zhou JY, Yang J, Tan H, Ma XR. Exogenous 1',4'- trans-Diol-ABA Induces Stress Tolerance by Affecting the Level of Gene Expression in Tobacco ( Nicotiana tabacum L.). Int J Mol Sci 2021; 22:2555. [PMID: 33806336 PMCID: PMC7961390 DOI: 10.3390/ijms22052555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
1',4'-trans-diol-ABA is a key precursor of the biosynthesis of abscisic acid (ABA) biosynthesis in fungi. We successfully obtained the pure compound from a mutant of Botrytis cinerea and explored its function and possible mechanism on plants by spraying 2 mg/L 1',4'-trans-diol-ABA on tobacco leaves. Our results showed that this compound enhanced the drought tolerance of tobacco seedlings. A comparative transcriptome analysis showed that a large number of genes responded to the compound, exhibiting 1523 genes that were differentially expressed at 12 h, which increased to 1993 at 24 h and 3074 at 48 h, respectively. The enrichment analysis demonstrated that the differentially expressed genes (DEGs) were primarily enriched in pathways related to hormones and resistance. The DEGs of transcription factors were generally up-regulated and included the bHLH, bZIP, ERF, MYB, NAC, WRKY and HSF families. Moreover, the levels of expression of PYL/PYR, PP2C, SnRK2, and ABF at the ABA signaling pathway responded positively to exogenous 1',4'-trans-diol-ABA. Among them, seven ABF transcripts that were detected were significantly up-regulated. In addition, the genes involved in salicylic acid, ethylene and jasmonic acid pathways, reactive oxygen species scavenging system, and other resistance related genes were primarily induced by 1',4'-trans-diol-ABA. These findings indicated that treatment with 1',4'-trans-diol-ABA could improve tolerance to plant abiotic stress and potential biotic resistance by regulating gene expression, similar to the effects of exogenous ABA.
Collapse
Affiliation(s)
- Teng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
- College of Life Sciences, Sichuan University, Chengdu 610041, China
- University of Chinese Academy of sciences, Beijing 100049, China
| | - Cai-Xia Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Juan Zhong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Dan Shu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Di Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Zhe-Min Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Jin-Yan Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Jie Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Hong Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| | - Xin-Rong Ma
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Innovation Academy for Seed Design, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.L.); (C.-X.L.); (J.Z.); (D.S.); (D.L.); (Z.-M.L.); (J.-Y.Z.); (J.Y.)
| |
Collapse
|
20
|
Effect of exogenously-applied abscisic acid, putrescine and hydrogen peroxide on drought tolerance of barley. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00644-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
The objective of this study was to identify the effect of abscisic acid (ABA), putrescine (Put) and hydrogen peroxide (H2O2) foliar pre-treatment on drought tolerance of barley. Despite water limitation, ABA-sprayed plants preserved increased water content, photosynthetic efficiency of PSII (ΦPSII) and CO2 assimilation rate (Pn) compared to untreated stressed plants. The ABA-treated plants presented also the lowest rate of lipid peroxidation (MDA), lowered the rate of PSII primary acceptor reduction (1 – qP) and increased the yield of regulated energy dissipation (NPQ) with higher accumulation of PGRL1 (PROTON GRADIENT REGULATION LIKE1) protein. These plants preserved a similar level of photochemical efficiency and the rate of electron transport of PSII (ETRII) to the well-watered samples. The significantly less pronounced response was observed in Put-sprayed samples under drought. Additionally, the combined effects of drought and H2O2 application increased the 1 – qP and quantum yield of non-regulated energy dissipation in PSII (ΦNO) and reduced the accumulation of Rubisco activase (RCA). In conclusion, ABA foliar application allowed to balance water retention and preserve antioxidant capacity resulting in efficient photosynthesis and the restricted risk of oxidative damage under drought. Neither hydrogen peroxide nor putrescine has been able to ameliorate drought stress as effectively as ABA.
Collapse
|