1
|
Zhao LB, Tang ZX, Zhai HF, Lai HY, Li HY, Liu S, Liao XD, Xing SC. Organic fertilizer mitigated the oxidative stress of tomato induced by nanoplastics through affecting rhizosphere soil microorganisms and bacteriophage functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138301. [PMID: 40245718 DOI: 10.1016/j.jhazmat.2025.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Nanoplastics (NPs), which are widely present in agricultural soils, are difficult to remove and are potentially harmful to plant growth and development. However, few studies have focused on how to mitigation the oxidative stress in plants induced by soil NPs exposure. Therefore, in this study, the effects of organic and chemical fertilizers on the oxidative stress of tomato under exposure to polystyrene nanoplastics (PS-NPs) in soil were investigated. Compared with chemical fertilizer under exposure to PS-NPs, the organic fertilizer reduced the reactive oxygen species (ROS) content by 25.63 % and the H2O2 content by 34.58 % in tomato stems, whereas no significant effects were observed with respect to the amount of PS-NP internalized in tomato. Additionally, organic fertilizer increased the accumulation of the phytohormones salicylic acid (SA) and abscisic acid (ABA) by 76.53 % and 22.54 %, respectively, and these factors are key for reducing the ROS and H2O2 contents in stems. In the rhizosphere microbiome of organic fertilizer group under exposure to PS-NPs, enrichment in Actinomycetes and an increased abundance of terpenoids and polyketides metabolism were the main factors affecting the accumulation of ABA and SA. Moreover, bacteriophage activity in the rhizosphere indirectly contributed to the increase in this function. These changes ultimately resulted in a reduction in oxidative stress in tomato stems and protected tomato growth. The results of this study will provide a better understanding of the interaction between plants and nanoplastics in soil and provide a new reference for alleviating the oxidative stress caused by nanoplastics in plants.
Collapse
Affiliation(s)
- Liang-Bin Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zi-Xuan Tang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Fang Zhai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Yu Lai
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Wu Y, Yan C, Yin L, Zeng Z, Li D, Xu Y, Zhang L, Gao X, Huang F, Chen G. Microplastics change the safe production ability of arsenic-stressed rice (Oryza sativa L.) by regulating the antioxidant capacity, arsenic absorption, and distribution in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109792. [PMID: 40112758 DOI: 10.1016/j.plaphy.2025.109792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) and arsenic (As) are pervasive pollutants in agricultural soils, drawing increasing attention due to their combined toxicity. While biodegradable plastics offer a potential alternative to conventional plastics, their interactions with As and subsequent effects on edible crops remain largely unexplored. Here, we investigated the combined effect of polyethylene (PE) and polylactic acid (PLA) microplastics with As on rice growth, As accumulation, and rhizosphere microbial communities in two rice genotypes. The results showed that As-PE exposure was more detrimental to rice growth than As alone, leading to biomass reductions of 21.1-39.8% in 2A roots, 32.6-54.6% in stems, and 21.9-32.7% in leaves. In contrast, PLA mitigated As-induced growth inhibition in 2119, increasing leaf biomass by 56.1-71.9% and stem biomass by 45.6-57.9%. The presence of MPs intensified As toxicity and induced oxidative stress, with the low-As-accumulating genotype exhibiting stronger detoxification mechanisms, including enhanced sequestration of As in the leaf cell wall and MPs facilitated As adsorption and desorption in the root zone, exacerbating As accumulation in the aerial part of rice, particularly during grain filling. Different degradation characteristics of MPs altered microbial composition and function, impacting rhizosphere iron plaque formation and As availability in soil. PLA decreased the As content in 2A and 2119 roots by 6.1% and 24.0%, respectively, whereas PE increased by 10.6% and 12.9%. This study provides new insights into the comprehensive toxicity of As and MPs in the soil-plant system, highlighting their effects on As uptake and accumulation in rice.
Collapse
Affiliation(s)
- Yueyi Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaorui Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Yin
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deqiang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lan Zhang
- Center of Sichuan Agricultural Ecological and Resources Protection, Chengdu, 610041, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fu Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Fan F, Liu S, Jiang Y, Zou D, Zhang Y, Zou C. Studies on the impact of aged microplastics on agricultural soil enzyme activity, lettuce growth, and oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:213. [PMID: 40382502 DOI: 10.1007/s10653-025-02529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025]
Abstract
Microplastics (MPs) represent an increasingly significant source of pollution, with their ubiquitous presence not only contaminating soil but also influencing plant growth. To elucidate the effects of MPs on soil-plant systems, this study examined the impact of exposure to aged polystyrene (PS), polyethylene, and polylactic acid (PLA) MPs at varying concentrations (0.1%, 1%, 5%, and 10%) on soil physicochemical properties, enzyme activities, lettuce growth, and oxidative stress conditions in a pot experiment. The results indicated that high concentrations (5% and 10%) of PLA increased soil urease activity by 18.27% and 23.57%, respectively, whereas PS reduced it by 12.02% and 27.15%, respectively, compared to the control. High concentrations (5% and 10%) of PLA reduced the fresh weight of lettuce leaves and roots by 58.38-61.08% and 49.20-51.68%, respectively. The addition of all three MPs increased the soluble sugar content in lettuce leaves by 34.10-65.30%. The presence of all three types of MPs significantly enhanced catalase (CAT) and superoxide dismutase (SOD) activities in lettuce leaves at concentrations of 0.1%, 1%, and 5%, with the greatest increase in SOD activity (26.06-31.34%) observed at the 5% concentration. Root CAT activity was elevated at low concentrations (0.1% and 1%), whereas 10% PLA significantly suppressed both CAT and SOD activities. Integrated biomarker response analysis showed that MPs induced oxidative stress in lettuce. The results of this study provide a theoretical basis for evaluating the potential ecological risks posed by MPs to the soil-plant system.
Collapse
Affiliation(s)
- Fan Fan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shuicao Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongfeng Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongdong Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Congyang Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
4
|
Nthunya LN, Mosai AK, López-Maldonado EA, Bopape M, Dhibar S, Nuapia Y, Ajiboye TO, Buledi JA, Solangi AR, Sherazi STH, Ndungu PN, Mahlangu OT, Mamba BB. Unseen threats in aquatic and terrestrial ecosystems: Nanoparticle persistence, transport and toxicity in natural environments. CHEMOSPHERE 2025; 382:144470. [PMID: 40378499 DOI: 10.1016/j.chemosphere.2025.144470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/24/2025] [Accepted: 05/03/2025] [Indexed: 05/19/2025]
Abstract
Although nanoparticles (NPs) are increasingly used in various industries, their uncontrolled environmental release presents a potential risk to water bodies, vegetation and human health. Although previous review studies evaluated the toxicity and bioaccumulation of NPs, their long-term ecological impacts and transport dynamics in aquatic and terrestrial systems remain unexplored. The current review examined the mechanistic bioaccumulation, transport and environmental persistence of NPs, highlighting the need for concurrent risk assessment, regulation and management strategies. The multifaceted nature of nanotechnology necessitates a balanced approach considering both the benefits of NPs and their potential environmental and health risks, requiring comprehensive risk assessment and management strategies. The complexities of NPs risk assessment, emphasizing the unique properties of NPs influencing their toxicity and environmental behavior are critically addressed. Strategies to mitigate NPs' environmental impact include advanced monitoring techniques, regulatory frameworks tailored to NPs' unique properties, promotion of green nanotechnology practices, and NP remediation technologies. Given the complexity and uncertainty surrounding NPs, integration of regulatory, technological, and research-based strategies is imperative. This involves detailed NPs characterization techniques providing basic data for environmental fate prediction models and understanding of biologically relevant risk assessment models to safeguard our environment and public health. In this study, the recent advances in NPs persistence, environmental transport modelling and toxicity mechanisms are uniquely integrated, providing a framework to ecological risk assessment and regulatory approaches.
Collapse
Affiliation(s)
- Lebea N Nthunya
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa.
| | - Alseno K Mosai
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | | | - Mokgadi Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Burdwan, 713104, WB, India
| | - Yannick Nuapia
- Pharmacy Department, School of Healthcare Sciences, University of Limpopo, Polokwane, South Africa
| | - Timothy O Ajiboye
- Chemistry Department, Nelson Mandela University, University Way, Summerstrand, 6019, Gqeberha, South Africa
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Patrick N Ndungu
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Oranso T Mahlangu
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1709, Johannesburg, South Africa
| |
Collapse
|
5
|
Liu Z, Qin M, Li R, Peijnenburg WJGM, Yang L, Liu P, Shi Q. Transport Dynamics and Physiological Responses of Polystyrene Nanoplastics in Pakchoi: Implications for Food Safety and Environmental Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10923-10933. [PMID: 40296279 DOI: 10.1021/acs.jafc.5c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nanoplastics (NPs) have become a new environmental pollutant that causes serious harm to food safety. They can be absorbed by plants, transported to edible parts, transmitted to the human body along the food chain, and can threaten human health. The research investigated the transport and accumulation pathways of polystyrene NPs (PS-NPs) at varying concentrations using red fluorescence labeling. An analysis was conducted on the response of pakchoi to PS-NPs through a combination of transcriptional and physiological experiments. PS-NPs enter the xylem vessel of the root, subsequently carried to the petiole through transpirational tension, and eventually transported from the petiole's xylem vessels to the leaf. PS-NPs induced the accumulation of reactive oxygen species (ROS), which led to oxidative damage. In addition, it also disturbed the homeostasis of endogenous hormones and affected the growth of pakchoi. These findings help people understand the adverse effects of NPs on crops and increase attention to the hazards of NPs.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
- Center for the Safety of Substances and Products, National Institute of Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
6
|
Dai Y, Han R, Yao Z, Yan H, Liu Z, Liu X, Yue T, Zhao J, Wang Z, Xing B. Intergenerational transfer of micro(nano)plastics in different organisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137404. [PMID: 39879775 DOI: 10.1016/j.jhazmat.2025.137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Micro(nano)plastics (MNPs), widely distributed in the environment, can be ingested and accumulated by various organisms. Recently, the transgenerational transport of MNPs from parental organisms to their offspring has attracted increasing attention. In this review, we summarize the patterns, specific pathways, and related mechanisms of intergenerational transfer of MNPs in plants, non-mammals (zooplankton and fish) and mammals. The knowledge gaps are also discussed. For plant, MNPs can accumulate in fruits and seeds by intercellular and cellular internalization pathways after uptake by roots or leaves. In zooplankton (e.g., Daphnia magna), MNPs are capable of maternal transfer via two different pathways: gut-ovary-egg and brood chamber-embryo. Intergenerational transfer of MNPs in egg-laying fish can occur through direct maternal transfer. However, MNPs may be transported through follicular pseudoplacenta, surface epithelia, and trophotaeniae pathways in ovoviviparous fish. In mammals, the maternal-fetal transport of MNPs primarily occurs through the placenta, amniotic fluid, and breastfeeding. The placental barrier is the main limitation to transfer, and the ability of MNPs to cross this barrier largely depends on the trophoblast cells via internalization and intercellular pathways. Additionally, we discuss the physicochemical properties (e.g., size, shape, and ageing) of MNPs and environmental factors (e.g., salinity, minerals, organic matter) that influence intergenerational transfer. Current challenges regarding the transfer pathways and related mechanisms, as well as future perspectives, are also addressed. This review provides valuable information for assessing the fate of MNPs in organisms and potential risks to population, community, ecosystems, and human health.
Collapse
Affiliation(s)
- Yanhui Dai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Rui Han
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Zhiming Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Han Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Zhuomiao Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Xia Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Puteri MN, Gew LT, Ong HC, Ming LC. Technologies to eliminate microplastic from water: Current approaches and future prospects. ENVIRONMENT INTERNATIONAL 2025; 199:109397. [PMID: 40279687 DOI: 10.1016/j.envint.2025.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 03/17/2025] [Indexed: 04/27/2025]
Abstract
Microplastic (MP) pollution has become a widespread environmental threat which must be addressed as it affects the water bodies, soil as well as air. MPs originally from synthetic textiles, tire abrasion, plastic waste, etc. pose the significant risks to both the environment and health due to its structure, ability to absorb toxins and act as carriers of harmful substances. This characteristic enables MPs to accumulate toxic substances and spread them within the food chain which leads to adverse effects on both the environment and human health including possible endocrine disruption. This problem needs to be solved in order to protect the self-regulatory systems of the environment and safeguard for human health. This review investigates various methods developed to eliminate MPs from water which each method exposes its own strengths and limitations. Conventional methods, such as filtration, coagulation-flocculation, and sedimentation serve as the primary line of defense but often struggle with smaller particles. Membrane filtration, magnetic separation, and electrochemical methods have shown better performance particularly for a wider MPs size range. However, their adoption is limited due to high costs and high energy requirement. A chemical approach focuses on the use of reactors to degrade MPs as a means of overcoming the problem posed by the persistent particles. Biological approaches, including bioremediation through bacteria, fungi, and algae offer eco-friendly alternatives by breaking down MPs into less harmful components. Future directions in MPs management involve the integration of these technologies for enhanced removal efficiency, the development of novel materials, and improved system designs to reduce costs and environmental impact. In summary, advancing research in biotechnological solutions and optimizing existing methods is critical to address the widespread and complex nature of MPs pollution to ensure healthier ecosystems and safer water supplies.
Collapse
Affiliation(s)
| | - Lai Ti Gew
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Hwai Chyuan Ong
- School of Engineering, Faculty of Engineering and Technology, Sunway University, Sunway City, Malaysia; School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Long Chiau Ming
- Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India
| |
Collapse
|
8
|
Ilyas M, Duarte CM, Xu EG, Xu G, Yang J. Ecological effects of micro/nanoplastics on plant-associated food webs. TRENDS IN PLANT SCIENCE 2025; 30:526-538. [PMID: 39732531 DOI: 10.1016/j.tplants.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Abstract
Micro/nanoplastics (MNPs) contamination is a potential threat to global biodiversity and ecosystem functions, with unclear ecological impacts on aboveground (AG) and belowground (BG) food webs in terrestrial ecosystems. Here, we discuss the uptake, ingestion, bioaccumulation, and ecotoxicological effects of MNPs in plants and associated AG-BG biota at various trophic levels. We propose key pathways for MNPs transfer between the AG-BG food webs and elaborate their impact on terrestrial ecosystem multifunctionality. We conclude that MNPs are bioaccumulated in most studied plants and associated AG-BG biota and can be transferred along AG-BG food webs, which may profoundly impact ecosystem functioning. However, most pathways are still untested. Future research on MNPs should focus on the interactions within AG-BG food webs in terrestrial ecosystems.
Collapse
Affiliation(s)
- Muhammad Ilyas
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Guorui Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - Jie Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| |
Collapse
|
9
|
Wael H, Vanessa EB, Mantoura N, Antonios DE. Tiny pollutants, big consequences: investigating the influence of nano- and microplastics on soil properties and plant health with mitigation strategies. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:860-877. [PMID: 40111751 DOI: 10.1039/d4em00688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The impact of nanoplastics (NPs) and microplastics (MPs) on ecosystems and human health has recently emerged as a significant challenge within the United Nations Agenda 2030, drawing global attention. This paper provides a critical analysis of the influence of plastic particles on plants and soils, with the majority of data collected from recent studies, primarily over the past five years. The absorption and translocation mechanisms of NPs/MPs in plants are first described, followed by an explanation of their effects-especially particles like PE, PS, PVC, PLA, and PES, as well as those contaminated with heavy metals-on plant growth, physiology, germination, oxidative stress, and nutrient uptake. The study also links the characteristics of plastics (size, shape, concentration, type, degradability) to changes in the physical, chemical, and microbial properties of soils. Various mitigation strategies, including physical, chemical, and biological processes, are explored to understand how they address these changes. However, further research, including both laboratory and field investigations, is urgently needed to address knowledge gaps, particularly regarding the long-term effects of MPs, their underlying mechanisms, ecotoxicological impacts, and the complex interactions between MPs and soil properties. This research is crucial for advancing sustainability from various perspectives and should contribute significantly toward achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- H Wael
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - E B Vanessa
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 33, 1355, Lebanon.
| | - N Mantoura
- FOE Dean's Office, Faculty of Engineering, University of Balamand, Koura Campus, Kelhat P.O. Box 100, Lebanon
| | - D Elie Antonios
- Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005 Paris, France
- Solnil, 95 Rue de la République, Marseille 13002, France
| |
Collapse
|
10
|
Gao S, Mu X, Li W, Wen Y, Ma Z, Liu K, Zhang C. Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:158. [PMID: 40202677 DOI: 10.1007/s10653-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microplastics (MPs) are a significant environmental contaminant that increasingly threaten soil health and crop productivity in agricultural systems. This review explores the origins, migration patterns, and ecological impacts of MPs within soil environments, specifically examining their influence on soil structure, microbial communities, and nutrient cycles essential for plant growth. Despite the progress in understanding Microplastic (MP) pollution, gaps remain in assessing the long-term implications on soil stability, microbial biodiversity, and crop yield. Through bibliometric and synthesis analyses of recent studies, this paper identifies how MPs disrupt soil physical and chemical processes, alter microbial dynamics, and interfere with carbon and nitrogen cycles, resulting in reduced soil fertility and compromised crop health. Key findings reveal that MPs can infiltrate plant root systems, impair water and nutrient uptake, and even accumulate in plant tissues, causing oxidative stress, cellular dysfunction, and yield reduction. This work emphasizes the urgent need for refined environmental risk assessments and sustainable agricultural practices to mitigate MP pollution. This comprehensive synthesis offers a foundational perspective to guide future research and policy efforts in addressing MPs' environmental and agricultural impacts.
Collapse
Affiliation(s)
- Shuanglong Gao
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Xiaoguo Mu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Wenhao Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China.
| | - Yue Wen
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Zhanli Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Keshun Liu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Cunhong Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
11
|
Liu H, Ciric L, Bhatti M. Effects of nanoplastics and compound pollutants containing nanoplastics on plants, microorganisms and rhizosphere systems: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118084. [PMID: 40158378 DOI: 10.1016/j.ecoenv.2025.118084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Nanoplastics (NPs) are the most widespread and least detectable type of plastic pollutant due to their extremely small particle size. The root system of plants has become an important pathway for NPs to enter the food chain from the natural environment. By combining with heavy metals or organic pollutants, NPs can exhibit greater biological toxicity compared to single pollutants. Although many studies have focused on the phytotoxicity and microbial toxicity of NPs separately, to the best of our knowledge, no review summarizes the toxicity of NPs from the perspective of the plant rhizosphere system with a combination of pollutants. By summarizing samples from 2015 to 2025, this review highlights that NPs can affect photosynthesis, gene transcription, and enzyme activity in both plants and microorganisms. NPs with large particle size can also disrupt the chemical balance of the rhizosphere environment and intensify competition for nutrients between plants and microorganisms, ultimately affecting the geochemical cycle. NPs of different particle sizes and concentrations can poison various biological structures, from surface layers to genetic material. In compound pollutants, where NPs combine with other contaminants, they can further disrupt elemental cycles in plants, reduce microbial community diversity, and increase the accumulation of other pollutants in the rhizosphere system compared to single pollutants. These findings provide new insights into the biotoxicity of NPs and the degradation of compound pollutants containing NPs. In addition, combined with the research results of this review, some research prospects on the relationship between NPs and rhizosphere systems are given.
Collapse
Affiliation(s)
- Haoran Liu
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Lena Ciric
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom
| | - Manpreet Bhatti
- UCL Department of Civil, Environmental and Geomatic Engineering, London WC1E 6BT, United Kingdom.
| |
Collapse
|
12
|
Lin Z, Xu D, Zhao Y, Sheng B, Wu Z, Wen X, Zhou J, Chen G, Lv J, Wang J, Liu G. Micro/Nanoplastics in plantation agricultural products: behavior process, phytotoxicity under biotic and abiotic stresses, and controlling strategies. J Nanobiotechnology 2025; 23:231. [PMID: 40114145 PMCID: PMC11927206 DOI: 10.1186/s12951-025-03314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
With the extensive utilization of plastic products, microplastics/nanoplastics (MPs/NPs) contamination not only poses a global hazard to the environment, but also induces a new threat to the growth development and nutritional quality of plantation agricultural products. This study thoroughly examines the behavior of MPs/NPs, including their sources, entry routes into plants, phytotoxicity under various biotic and abiotic stresses (e.g., salinity, polycyclic aromatic hydrocarbons, heavy metals, antibiotics, plasticizers, nano oxide, naturally occurring organic macromolecular compounds, invasive plants, Botrytis cinerea mycorrhizal fungi.) and controlling strategies. MPs/NPs in agricultural systems mainly originate from mulch, sewage, compost fertilizer, municipal solid waste, pesticide packaging materials, etc. They enter plants through endocytosis, apoplast pathways, crack-entry modes, and leaf stomata, affecting phenotypic, metabolic, enzymatic, and genetic processes such as seed germination, growth metabolism, photosynthesis, oxidative stress and antioxidant defenses, fruit yield and nutrient quality, cytotoxicity and genotoxicity. MPs/NPs can also interact with other environmental stressors, resulting in synergistic, antagonistic, or neutral effects on phytotoxicity. To address these challenges, this review highlights strategies to mitigate MPs/NPs toxicity, including the development of novel green biodegradable plastics, plant extraction and immobilization, exogenous plant growth regulator interventions, porous nanomaterial modulation, biocatalysis and enzymatic degradation. Finally, the study identifies current limitations and future research directions in this critical field.
Collapse
Affiliation(s)
- Zhihao Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Bin Sheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhijian Wu
- College of Horticulture, Hunan Agricultural University, Hunan, 410125, China
| | - Xiaobin Wen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jun Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, China.
| |
Collapse
|
13
|
Galahitigama H, Sandamali P, Jayapra T, Abesinghe N, Senavirathna MDHJ, Diola MBL, Tanchuling MA. Assessing the impact of micro and nanoplastics on the productivity of vegetable crops in terrestrial horticulture: a comprehensive review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:404. [PMID: 40095235 PMCID: PMC11914347 DOI: 10.1007/s10661-025-13820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Micro and nano plastics (MNPs) pollution has emerged as a significant environmental issue in recent years. Plastic contamination in the environment poses risks to both human health and other organisms within the ecosystem. This review discusses the overall impact of MNPs on the performance of vegetable crops, including a global perspective on the topic. Bibliometric analysis reveals that most research on this subject has been concentrated in a few countries, although the number of studies has notably increased in recent years. MNPs accumulate in arable lands due to human activities, often altering the soil's physical, chemical, and biological properties in the rhizosphere. Vegetable crops absorb these MNPs mainly through their roots, leading to accumulation in the edible parts of the plants. Consequently, this results in phytotoxic symptoms and poor growth and development. The phytotoxic effects of MNPs are attributed to genetic and metabolic changes within the plant's cellular structure. Current research on MNPs has been limited to a few vegetable cultivars. Future studies should encompass a broader range of vegetable crops under both laboratory and field conditions to advance this burgeoning field of research. Additionally, examining various types of plastics is essential to comprehensively understanding their impact.
Collapse
Affiliation(s)
- Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama, 338-8570, Japan
| | - Poorni Sandamali
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | - Thilini Jayapra
- Department of Agricultural Technology, Faculty of Technology, University of Colombo, Pitipana, Homagama, Sri Lanka
| | - Nandula Abesinghe
- Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya, 70140, Sri Lanka
| | | | - Ma Brida Lea Diola
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Maria Antonia Tanchuling
- Institute of Civil Engineering, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
14
|
Dainelli M, Colzi I, Giosa D, Gargiulo G, Lo Passo C, Pernice I, Falsini S, Ristori S, Pignattelli S, Miniati A, Morandi P, Buti M, Vergata C, Coppi A, Gonnelli C, Martinelli F. Coding and non-coding transcripts modulated by transparent and blue PET micro-nanoplastics in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109409. [PMID: 39826345 DOI: 10.1016/j.plaphy.2024.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025]
Abstract
To get further insights on the micro-nanoplastic (MNP) effects on plants, the aim of this study was to evaluate the response of hydroponically cultivated Arabidopsis thaliana to the presence of differentially colored polyethylene terephthalate (PET) particles. MNP impacts on the root organ were studied at a molecular level, with a special focus on the role of long non-coding RNAs (lncRNAS) in the regulation of gene expression after PET exposure. MNPs of transparent (Tr-PET) and blue (Bl-PET) material at environmentally realistic concentration caused a significant reduction in root length, while only Bl-PET significantly reduced rosette area. MNPs induced oxidative stress markers. Tr-PET upregulated genes involved in signaling of xenobiotics, whereas Bl-PET scarcely affected root transcriptomic profile, activating few gene categories for abiotic stresses. Regarding hormones, genes involved in ABA response were repressed, while brassinosteroid-related genes were differentially regulated by Tr-PET. Both MNPs, but especially Tr-PET, upregulated major latex protein-related genes. Plant molecular response to MNPs was linked to differential abundance of lncRNAs on both comparisons. Tr-PET affected the expression of much more lncRNAs than bl-PET (80 and 11 respectively). These lncRNAs were predicted to interact with several repressed protein-coding genes (i.e. glucosyltransferase UGT2, oxidative stress genes etc.), with possible effects on their regulation. A lncRNA (AT1G09297) interacted with CYP81D8, a key gene of cytochrome P450 gene family involved in xenobiotics detoxification. Two lncRNAs interacted with two members of repressed HSP (HSP90 and HSP17.4) family. Finally, genes involved in redox detoxification and stress responses were inhibited by the interaction with two microplastics-regulated lncRNAs. These data highlighted the need of investigating non-coding RNAs in the future in addition to the mostly studied protein coding transcriptome.
Collapse
Affiliation(s)
| | - Ilaria Colzi
- Department of Biology, University of Florence, Italy
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Gaetano Gargiulo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Carla Lo Passo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Ida Pernice
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Sara Falsini
- Department of Biology, University of Florence, Italy
| | - Sandra Ristori
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Alice Miniati
- Department of Biology, University of Florence, Italy
| | | | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | | | - Andrea Coppi
- Department of Biology, University of Florence, Italy
| | | | | |
Collapse
|
15
|
Urbański M, Yiğit BM, Ekner-Grzyb A, Chmielowska-Bąk J. Physiological and oxidative status of soybean seedlings exposed to short term treatment with polystyrene nanoparticles. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:241-247. [PMID: 39562398 PMCID: PMC11835988 DOI: 10.1007/s10646-024-02833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Plastic is widely used worldwide due to its durability and relatively low production costs. However, its durability also has significant drawbacks - plastic is a slowly degrading material and greatly contributes to the environmental pollution. Increasing body of evidence shows that contamination of the environment with plastic negatively affects plants and other living organisms. The aim of present research was to determine whether short-term exposure to polystyrene nanoparticles (PSNP) has toxic effect on soybean seedlings (Glycine max L). In the first stage of the research, the effect of two hour long incubation in PSNP solutions (10 and 100 mgl-1) on the germination of soybean seeds was determined. In the second part of the study, the potential cytotoxic effect of PSNP on young seedlings was measured. The results indicate that incubation in PSNP solutions inhibits the germination of soybean seeds by approx. 10% (at p = 0.05). However, this effect was only observed after 48 and 72 h of germination and by lower PSNP concentrations, 10 mgl-1. In turn, in young soybean seedlings exposure to PSNP had no effect on growth, cell viability or oxidative status by p = 0.05. The results indicate that germination is a PSNP-sensitive process. In turn, already germinated seedlings are relatively resistant to the short-term exposure to this stressor.
Collapse
Affiliation(s)
- Michał Urbański
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Burak Mete Yiğit
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Anna Ekner-Grzyb
- Department of Cell Biology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
16
|
Nazari M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109523. [PMID: 39827703 DOI: 10.1016/j.plaphy.2025.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg-1 soil). The PENP pollution led to severe changes in plant morphogenesis. The PENP treatments were associated with decreased plant biomass, reduced internode length, delayed flowering, and prolonged fruit ripening. Abnormal inflorescences, flowers, and fruits observed in the PENP-exposed seedlings support genetic changes and meristem dysfunction. Exposure of seedlings to PENP increased H2O2 accumulation and damaged membranes, implying oxidative stress. The PENP treatments induced activities of catalase (EC1.11.1.6), peroxidase (EC1.11.1.7), and phenylalanine ammonia-lyase (EC4.3.1.24) enzymes. Soil contamination with PENP also decreased the net photosynthesis, maximum photosystem efficiency, stomatal conductance, and transpiration rate. The nano-pollutant upregulated the expression of the histone deacetylase (HDA3) gene and R2R3MYB transcription factor. However, the AP2a gene was down-regulated in response to the PENP treatment. Besides, EPNP epigenetically contributed to changes in DNA methylation. The concentrations of proline, soluble phenols, and flavonoids also displayed an upward trend in response to the applied PENP treatments. The long-term exposure of seedlings to PENP influenced fruit biomass, firmness, ascorbate, lycopene, and flavonoid content. These findings raise concerns about the hazardous aspects of PENP to agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
17
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
18
|
Shekh MR, Kumar V. Impact of plastic pollution on ecosystems: a review of adverse effects and sustainable solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:264. [PMID: 39930282 DOI: 10.1007/s10661-025-13723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 03/11/2025]
Abstract
The primary source of the growing concern regarding marine, aquatic, and land pollution is plastic products, the majority of which are made of synthetic or semi-synthetic organic compounds. These combinations include materials like coal and natural gas that are obtained through petrochemical processes. As these two types of plastic-derived products are produced and disposed of, they have a major impact on the ecosystems. According to recent figures, around 400 million tons of plastic and related products derived from plastic are produced annually, and it became double in the last two decades. Plastic pollutants are introduced into ecosystems by a variety of stakeholders at different points in their daily lives, whether intentionally or accidentally. They have become a major source of adverse effects, toxicity development in natural entities, and problems. The aquatic, marine, and land ecosystems are vital to human existence, which emphasizes how difficult it is to stop pollution from it. This review highlights the adverse impacts of plastics, plastic-based products, and micro-nanoplastics on aquatic, terrestrial, and marine ecosystems while addressing advances in biodegradable plastics, recycling innovations, plastic-degrading enzymes, and sustainable solutions to reduce environmental risks.
Collapse
Affiliation(s)
| | - Vivek Kumar
- National Innovation Foundation (NIF), Grambharti, Gandhinagar, India
| |
Collapse
|
19
|
Tripathi M, Singh P, Pathak S, Manimekalai R, Garg D, Dashora K. Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges. J Xenobiot 2025; 15:30. [PMID: 39997373 PMCID: PMC11856478 DOI: 10.3390/jox15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies-including advanced biotechnological approaches-and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | | | - Diksha Garg
- Department of Microbiology, DAV University, Jalandhar 144012, Punjab, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
20
|
Osmani Z, Kulka M. Form and Function: The Factors That Influence the Efficacy of Nanomaterials for Gene Transfer to Plants. Molecules 2025; 30:446. [PMID: 39942552 PMCID: PMC11820086 DOI: 10.3390/molecules30030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Nanoparticle (NP)-mediated gene delivery offers a promising alternative to traditional methods in plant biotechnology, facilitating genetic transformations with enhanced precision and efficiency. This review discusses key factors influencing NP efficacy, including plant cell wall composition, DNA/NP ratios, exposure time, cargo loading, and post-transformation assessments. We explore the challenges of NP cytotoxicity, transformation efficiency, and regeneration while addressing environmental impacts and regulatory considerations. We emphasize the potential for stimulus-responsive NPs and scalable delivery methods to optimize gene editing in agriculture.
Collapse
Affiliation(s)
- Zhila Osmani
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Marianna Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Quantum and Nanotechnologies Research Center, National Research Council Canada, Edmonton, AB T6G 2M9, Canada
| |
Collapse
|
21
|
Jamil A, Ahmad A, Moeen-Ud-Din M, Zhang Y, Zhao Y, Chen X, Cui X, Tong Y, Liu X. Unveiling the mechanism of micro-and-nano plastic phytotoxicity on terrestrial plants: A comprehensive review of omics approaches. ENVIRONMENT INTERNATIONAL 2025; 195:109257. [PMID: 39818003 DOI: 10.1016/j.envint.2025.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
Micro-and-nano plastics (MNPs) are pervasive in terrestrial ecosystems and represent an increasing threat to plant health; however, the mechanisms underlying their phytotoxicity remain inadequately understood. MNPs can infiltrate plants through roots or leaves, causing a range of toxic effects, including inhibiting water and nutrient uptake, reducing seed germination rates, and impeding photosynthesis, resulting in oxidative damage within the plant system. The effects of MNPs are complex and influenced by various factors including size, shape, functional groups, and concentration. Recent advancements in omics technologies such as proteomics, metabolomics, transcriptomics, and microbiomics, coupled with emerging technologies like 4D omics, phenomics, spatial transcriptomics, and single-cell omics, offer unprecedented insight into the physiological, molecular, and cellular responses of terrestrial plants to MNPs exposure. This literature review synthesizes current findings regarding MNPs-induced phytotoxicity, emphasizing alterations in gene expression, protein synthesis, metabolic pathways, and physiological disruptions as revealed through omics analyses. We summarize how MNPs interact with plant cellular structures, disrupt metabolic processes, and induce oxidative stress, ultimately affecting plant growth and productivity. Furthermore, we have identified critical knowledge gaps and proposed future research directions, highlighting the necessity for integrative omics studies to elucidate the complex pathways of MNPs toxicity in terrestrial plants. In conclusion, this review underscores the potential of omics approaches to elucidate the mechanisms of MNPs-phytotoxicity and to develop strategies for mitigating the environmental impact of MNPs on plant health.
Collapse
Affiliation(s)
- Asad Jamil
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Ambreen Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yuxuan Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
22
|
Hussain K, Fox JP, Ma X, Rossi L. Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants. NANOIMPACT 2025; 37:100536. [PMID: 39617345 DOI: 10.1016/j.impact.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 03/23/2025]
Abstract
The widespread presence of plastic pollution has become a challenge for both aquatic and terrestrial plants. Notably, nanoplastics (NPs) have been found to enter the root tissues and translocate to different organs of plants; however, most previous studies were performed using crop or vegetable seedlings, and the extent NPs accumulation in fruit tree plants, particularly citrus, and their impacts remains unclear. This study was designed to fill this gap by determining the uptake and accumulation of green, fluorescent polystyrene nanoplastics (PS-NPs) of two different sizes (20 nm and 50 nm in diameter) in citrus rootstock ('US-942') in an aeroponic system and their impact on plant growth and physiological functions, nutrient uptake, and root system architectural and anatomical traits. The 20 nm PS-NPs negatively impacted the root system architecture (total root length, root surface area, number of root forks) and nutrient contents (N, P, K, Mg, S, B, Fe, Cu, Mn) at both 15 and 30 days after treatment; however, no significant differences were recorded for growth and physiological parameters. Microscopic analysis of roots revealed that under both the PS-NPs treatments, root apoplastic barriers were fully developed near the root tips. Furthermore, PS-NPs are predominantly adhered to the root surface, and no signs of uptake and translocation were recorded in root sections. However, alterations to the external root cell layers were observed. This research sheds light on the impact of PS-NPs on plant roots and their physiology and contributes to a better understanding of these emerging pollutants on tree crop horticulture.
Collapse
Affiliation(s)
- Khalid Hussain
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA; Institute of Horticultural Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - John-Paul Fox
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, TAMU 3127, College Station, TX 77843-3127, USA
| | - Lorenzo Rossi
- Indian River Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA.
| |
Collapse
|
23
|
Mandal M, Roy A, Sarkar A. Understanding the possible cellular responses in plants under micro(nano)-plastic (MNPs): Balancing the structural harmony with functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177732. [PMID: 39615174 DOI: 10.1016/j.scitotenv.2024.177732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The harmful impacts of micro(nano)-plastics (MNPs) on plants have gained significant attention in the last decades. Plants have a greater tendency to aggregate positively charged (+ve) MNPs on leaf surfaces and root tips, and it can be more challenging to enter the plant body than the negatively charged (-ve) MNPs. MNPs <20 nm can directly cross the cell wall and enter mainly via leaf stomata and root crack portion. Additionally, plants with aerenchyma tissue or higher water requirement might be more vulnerable to MNPs as well as environmental factors also affected MNPs uptake like porosity and structure (i.e. crack of soil) of soil, wind speed, etc. The subsequent translocation of MNPs hamper regular morphological, physiological, and biochemical functions by causing oxidative stress, altering several plant metabolic pathways, reducing the rate of photosynthesis and nutrient intake, etc. These induce cellular toxicity and chromosomal alteration; as a result, the total biomass and productivity reduce vigorously. However, there is a knowledge gap regarding MNPs' uptake by plants and related variables affecting phytotoxicity at the omics levels. So, the present literature review represents a comprehensive theoretical framework that includes genomics, transcriptomics, miRNAomics, proteomics, metabolomics, and ionomics/metallomics, which is established to understand the effects of MNPs on plants at the molecular level. As well as it will also help in further studies of the research community in the future because this field is still in the preliminary stages due to a lack of study.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
24
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
25
|
Ouyang X, Ma J, Feng B, Liu Y, Yin P, Zhang X, Li P, Chen Q, Zhao Y, Weng L, Li Y. Effects of nanoplastics on the growth, transcription, and metabolism of rice (Oryza sativa L.) and synergistic effects in the presence of iron plaque and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125246. [PMID: 39505096 DOI: 10.1016/j.envpol.2024.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Nanoplastics (NPs) can adversely affect living organisms. However, the uptake of NPs by plants and the physiological and molecular mechanisms underlying NP-mediated plant growth remain unclear, particularly in the presence of iron minerals and humic acid (HA). In this study, we investigated NP accumulation in rice (Oryza sativa L.) and the physiological effects of exposure to polystyrene NPs (0, 20, and 100 mg L-1) in the presence of iron plaque (IP) and HA. NPs were absorbed on the root surface and entered cells, and confocal laser scanning microscopy confirmed NP uptake by the roots. NP treatments decreased root superoxide dismutase (SOD) activity (28.9-44.0%) and protein contents (31.2-38.6%). IP and HA (5 and 20 mg L-1) decreased the root protein content (20.44-58.3% and 44.2-45.2%, respectively) and increased the root lignin content (22.3-27.5% and 19.2-29.6%, respectively) under NP stress. IP inhibited the NP-induced decreasing trend of SOD activity (19.2-29.5%), while HA promoted this trend (48.7-50.3%). Transcriptomic and metabolomic analysis (Control, 100NPs, and IP-100NPs-20HA) showed that NPs inhibited arginine biosynthesis, and alanine, aspartate, and glutamate metabolism and activated phenylpropanoid biosynthesis related to lignin. The coexistence of IP and HA had positive effects on the amino acid metabolism and phenylpropanoid biosynthesis induced by NPs. Regulation of genes and metabolites involved in nitrogen metabolism and secondary metabolism significantly altered the levels of protein and lignin in rice roots. These findings provide a scientific basis for understanding the environmental risk of NPs under real environmental conditions.
Collapse
Affiliation(s)
- Xiaoxue Ouyang
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Bingcong Feng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ping Yin
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pan Li
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Qiusheng Chen
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
26
|
Zhang Y, Hao S, Li P, Du Z, Zhou Y, Wang G, Liang Z, Dou M. Effects of Different Microplastics on Wheat's ( Triticum aestivum L.) Growth Characteristics and Rhizosphere Soil Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:3483. [PMID: 39771181 PMCID: PMC11728810 DOI: 10.3390/plants13243483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
In order to reveal the effects of microplastics (MPs) on the growth and rhizosphere soil environmental effects of wheat (Triticum aestivum L.), three microplastic types (polypropylene MPs (PP-MPs), high-density polyethylene MPs (HDPE-MPs), and polylactic acid MPs (PLA-MPs)), particle sizes (150, 1000, and 4000 μm), and concentrations (0.1, 0.5, and 1 g·kg-1) were selected for a pot experiment under natural environment conditions. The differences in germination rate (GR), germination inhibition rate (GIR), growth characteristics, physicochemical properties, and enzymatic activities of wheat in rhizosphere soil were analyzed using statistical analysis and variance analysis. The results show that the germination rate of wheat seeds decreased under different MPs, and the HDPE-MPs, medium particle size (1000 μm), and medium concentration (0.5 g·kg-1) had the greatest inhibitory effect on wheat seed germination. The effects of MPs on wheat seed growth characteristics were inconsistent; the germination potential (GP), germination index (GI), and vitality index (VI) showed a significant decreasing trend under the PLA-MPs and medium-concentration (0.5 g·kg-1) treatment, while the mean germination time (MGT) showed a significant increasing trend; the GP and MGT showed a significant decreasing and increasing trend under the high-particle-size (4000 μm) treatment, respectively, while the GI and VI showed a significant decreasing trend under the medium-particle-size (1000 μm) treatment. The growth characteristics of wheat plants showed a significant decreasing trend under different MPs, with the SPAD, nitrogen concentration of the leaves, and plant height decreasing the most under PLA-MP treatment, the SPAD and nitrogen concentration of leaves decreasing the most under low-particle-size (150 μm) and low-concentration (0.1 g·kg-1) treatments, and the decreases in plant height under the high-particle-size (4000 μm) and high-concentration (1 g·kg-1) treatments being the largest. There were significant increasing trends for ammonium nitrogen (NH4+), total phosphorus (TP), soil urease (S-UE), soil acid phosphatase (S-ACP), and soil sucrase (S-SC) under different microplastics, while the PLA-MPs had a significant increasing trend for nitrate nitrogen (NO3-) and a significant decreasing trend for pH; there was a significant decreasing trend for total nitrogen (TN) under the HDPE-MPs and PLA-MPs, and for each particle size and concentration, the PLA-MPs and low-concentration (0.1 g·kg-1) treatments showed a significant decreasing trend for soil catalase (S-CAT). The research results could provide certain data and theoretical bases for evaluating the effects of MPs on crop growth and soil ecological environments.
Collapse
Affiliation(s)
- Yan Zhang
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.Z.); (P.L.)
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China;
| | - Songze Hao
- Henan Provincial Technical Center for Ecology and Environment, Zhengzhou 450046, China; (S.H.); (G.W.)
| | - Ping Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (Y.Z.); (P.L.)
- Laboratory of Quality and Safety Risk Assessment for Agro-Products on Water Environmental Factors, Ministry of Agriculture, Xinxiang 453002, China;
| | - Zhenjie Du
- Laboratory of Quality and Safety Risk Assessment for Agro-Products on Water Environmental Factors, Ministry of Agriculture, Xinxiang 453002, China;
| | - Yuze Zhou
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China;
| | - Guohao Wang
- Henan Provincial Technical Center for Ecology and Environment, Zhengzhou 450046, China; (S.H.); (G.W.)
| | - Zhijie Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products on Water Environmental Factors, Ministry of Agriculture, Xinxiang 453002, China;
- Agricultural Water Soil Environmental Field Research Station of Xinxiang, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Ming Dou
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
27
|
Yuan Z, Nag R, Cummins E. Human exposure to micro/nano-plastics through vegetables, fruits, and grains - A predictive modelling approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135900. [PMID: 39316918 DOI: 10.1016/j.jhazmat.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The emergence of human exposure (HE) to micro/nano-plastics (MN-P) via the food chain is a significant public health concern. This study aimed to evaluate HE from ingesting vegetables, fruits, and grains using linear regression models to analyse MN-P size-concentration relationships and bioaccumulation factors (BF). For Irish adults, the Estimated Daily Intake (EDI) of MN-Ps was calculated, considering potential internalisation in these foods, with a sensitivity analysis addressing variability and uncertainty. The simulated mean (SM) root stomatal diameter in selected plants was 620 nm, indicating the potential uptake of MN-Ps smaller than this size. The SM BF for vegetables was 24.24 for nanoplastics (NP). Limited NP data led to the use of metal nanoparticle (MNP) data, yielding an overall BF of 3.22 for pooled vegetables, fruits, and grains. Potential HE levels of MN-Ps in agricultural soil were simulated at 6.05 × 104 n/kg (SM), with predicted MN-P levels in edible plants at 1.47 × 106 n/kg of food products. The simulated EDI of MN-Ps through all crops was 1.62 × 103 n/kg bw/day, with vegetables contributing the most to MN-P exposure, followed by fruits and grains. Sensitivity parameters are ranked as MN-P abundance in soil > bioaccumulation factor > food consumption.
Collapse
Affiliation(s)
- Zhihao Yuan
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Rajat Nag
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| | - Enda Cummins
- UCD School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
28
|
Liu Z, Senavirathna MDHJ, Fujino T, Kaneko Y. Translocation mechanism and the role of aerenchyma in nanoplastic translocation in Myriophyllum sp. "Roraima" and physiological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65356-65370. [PMID: 39579187 DOI: 10.1007/s11356-024-35606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Nanoplastics have become a growing concern due to their potential impact on freshwater vegetation. The uptake, translocation, and effects of 0.05-µm nanoplastics on Myriophyllum sp. "Roraima" were investigated, along with the role of aerenchyma in nanoplastic transport. Microscopic observations revealed nanoplastic particle adsorption to the plant surface and entry into the roots and stems, with higher abundance and more dispersed distribution by direct contact. Nanoplastic particles were detected in the plant stem, primarily concentrated in regions adjacent to the aerenchyma. No morphological effects were observed. Induced changes in photosynthesis, including increased maximum quantum efficiency of photosystem II (Fv/Fm), decreased non-photochemical quenching (NPQ), decreased photosynthetic pigments, and increased photoprotective pigments, were recognized. Additionally, hydrogen peroxide levels and antioxidant enzyme activities varied in response to nanoplastic exposure. This study provides insights into the impact of nanoplastics on Myriophyllum sp. "Roraima" and has reviewed the underlying mechanisms, highlighting the role of aerenchyma in nanoplastic transport within the plant. Moreover, this study contributes to the understanding of the potential impacts of nanoplastic pollution on freshwater macrophytes while acknowledging the influence of phyto-anatomical structure on nanoplastic translocation.
Collapse
Affiliation(s)
- Zhaozhi Liu
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | | | - Takeshi Fujino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | - Yasuko Kaneko
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| |
Collapse
|
29
|
Xie J, Zheng S, Wei H, Shi Z, Liu Z, Zhang J. Assessing the interactive effects of microplastics and acid rain on cadmium toxicity in rice seedlings: Insights from physiological and transcriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175533. [PMID: 39155013 DOI: 10.1016/j.scitotenv.2024.175533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
In heavy metal-contaminated areas, the simultaneous occurrence of increasing microplastic pollution and persistent acid rain poses a serious threat to food security. However, the mechanisms of combined exposure to microplastics (MP) and acid rain (AR) on the toxicity of cadmium (Cd) in rice seedlings remain unclear. Our study investigated the combined effects of exposure to polyvinyl chloride microplastics and AR (pH 4.0) on the toxicity of Cd (0.3, 3, and 10 mg/L) in rice seedlings. The results showed that at low Cd concentrations, the combined exposure had no significant effect, but at high Cd concentrations, it alleviated the effects of Cd stress. The combined application of MP and AR alleviated the inhibitory effects of Cd on seedling growth and chlorophyll content. Under high Cd concentrations (10 mg/L), the simultaneous addition of MP and AR significantly reduced the production of reactive oxygen species (ROS), the content of malondialdehyde (MDA), and the activity of the superoxide dismutase (SOD). Compared with AR or MP alone, the combination of MP and AR reduced root cell damage and Cd accumulation in rice seedlings. Transcriptomic analysis confirmed that under high Cd concentrations, the combination of MP and AR altered the expression levels of genes related to Cd transport, uptake, MAPK kinase, GSTs, MTs, and transcription factors, producing a synergistic effect on oxidative stress and glutathione metabolism. These results indicate that co-exposure to MP and AR affected the toxicity of Cd in rice seedlings and alleviated Cd toxicity under high Cd concentrations to some extent. These findings provide a theoretical basis for evaluating the toxicological effects of microplastic and acid rain pollution on crop growth in areas contaminated with heavy metals, and are important for safe agricultural production and ecological security.
Collapse
Affiliation(s)
- Jiefen Xie
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiang Liu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
31
|
Cheng L, Tao J, Lu P, Liang T, Li X, Chang D, Su H, He W, Qu Z, Li H, Mu W, Zhang W, Liu N, Zhang J, Cao P, Jin J. Manipulation in root-associated microbiome via carbon nanosol for plant growth improvements. J Nanobiotechnology 2024; 22:685. [PMID: 39516921 PMCID: PMC11549841 DOI: 10.1186/s12951-024-02971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Modulating the microbiome with nanomaterials has been proposed to improve plant growth, and reduce reliance on external inputs. Carbon Nanosol (CNS) was attracted for its potential to improve plant productivity. However, the mechanism between CNS and rhizosphere microorganisms remained largely elusive. RESULTS Here, we tried to systematically explore the effects of CNS (600 and 1200 mg/L by concentration) on tobacco growth, soil physical properties, and root-associated microbiome. The influence of CNS on soil physicochemical properties and plant growth was significant and dose-dependent, leading to a 28.82% increase in biomass accumulation by 600 mg/L CNS. Comparison between the CNS-treated and control plants revealed significant differences in microbiome composition, including 1148 distinct ASVs (923 bacteria and 225 fungi), microbiome interactions, and metabolic function of root-associated microbiomes. Fungal and bacterial communities had different response patterns for CNS treatment, with phased and dose-dependent effects, with the most significant changes in microbial community structure observed at 1200 mg/L after 10 days of treatment. Microbial networks of CNS-treated plants had more nodes and edges, higher connectivity, and more hub microorganisms than those of control plants. Compared with control, CNS significantly elevated abundances of various bacterial biomarkers (such as Sphingomonas and Burkholderia) and fungi biomarkers (including Penicillium, Myceliophthora, and Talaromyces), which were potential plant-beneficial organisms. Functional prediction based on metagenomic data demonstrated pathways related to nutrient cycling being greatly enriched under CNS treatment. Furthermore, 391 culturable bacteria and 44 culturable fungi were isolated from soil and root samples. Among them, six bacteria and two fungi strains enriched upon CNS treatment were validated to have plant growth promotion effect, and two fungi (Cladosporium spp. and Talaromyces spp.) played their roles by mediating volatile organic compounds (VOCs). To some extent, the driving and shaping of the microbiome by CNS contributed to its impact on plant growth and development. CONCLUSION Our results revealed the key role of root-associated microbiota in mediating the interaction between CNS and plants, thus providing valuable insights and strategies for harnessing CNS to enhance plant growth.
Collapse
Affiliation(s)
- Lingtong Cheng
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jiemeng Tao
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peng Lu
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xutao Li
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Dong Chang
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei He
- Fujian Tobacco Industry Co., Ltd, Xiamen, 361001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wenjun Mu
- Beijing Life Science Academy, Beijing, 102200, China
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
33
|
Fang XZ, Fang SQ, Ding Y, Ma JW, Ye ZQ, Liu D, Zhao KL. Microplastic exposure inhibits nitrate uptake and assimilation in wheat plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124626. [PMID: 39084589 DOI: 10.1016/j.envpol.2024.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Microplastic (MP) contamination in soil severely impairs plant growth. However, mechanisms underlying the effects of MPs on plant nutrient uptake remain largely unknown. In this study, we revealed that NO3- content was significantly decreased in shoots and roots of wheat plants exposed to high concentrations (50-100 mg L-1) of MPs (1 μm and 0.1 μm; type: polystyrene) in the hydroponic solution. Isotope labeling experiments demonstrated that MP exposure led to a significant inhibition of NO3- uptake in wheat roots. Further analysis indicated that the presence of MPs markedly inhibited root growth and caused oxidative damage to the roots. Additionally, superoxide dismutase and peroxidase activities in wheat roots decreased under all MP treatments, whereas catalase and ascorbate peroxidase activities significantly increased under the 100 mg L-1 MP treatment. The transcription levels of most nitrate transporters (NRTs) in roots were significantly downregulated by MP exposure. Furthermore, exposure to MPs distinctly suppressed the activity of nitrate reductase (NR) and nitrite reductase (NiR), as well as the expression levels of their coding genes in wheat shoots. These findings indicate that a decline in root uptake area and root vitality, as well as in the expression of NRTs, NR, and NiR genes caused by MP exposure may have adverse effects on NO3- uptake and assimilation, consequently impairing normal growth of plants.
Collapse
Affiliation(s)
- Xian Zhi Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China.
| | - Shu Qin Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Yue Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Jia Wei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Zheng Qian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Ke Li Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
34
|
Virachabadoss VRA, Appavoo MS, Paramasivam KS, Karthikeyan SV, Govindan D. The addition of humic acid into soil contaminated with microplastics enhanced the growth of black gram (Vigna mungo L. Hepper) and modified the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63343-63359. [PMID: 39482414 DOI: 10.1007/s11356-024-35441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
Microplastics have polluted agricultural soils, posing a substantial risk to crop productivity. Moreover, the presence of microplastic pollution has caused a disturbance in the composition of the microbial community in the soil surrounding plant roots, therefore impacting the growth of beneficial bacteria. A study was conducted to examine if humic acid (HA) can counteract the harmful effects of microplastics (MPs) on the growth of black gram crops and the composition of the rhizosphere soil microbial community, to reduce the negative impacts of microplastics on these microorganisms and crops. The research was carried out using mud pots and the plastic utilized for the experiment consisted of 60% high-density polyethylene (HDPE) and 40% polypropylene (PP). The soil was enriched with lignite-based potassium humate, which had a pH range of 8.0-9.5 and with 65% humic acid. The experiment consisted of six treatments: T1, which served as the control without HA and MP; T2, which involved the use of HA at a concentration of 0.15% w/w; T3, which involved the use of MP at a concentration of 0.2% w/w; T4, which involved the use of MP at a concentration of 0.4% w/w; T5, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.2% w/w; and T6, which involved the combination of HA at a concentration of 0.15% w/w and MP at a concentration of 0.4% w/w. The plant growth characteristics, including germination percentage, nodule number, and chlorophyll content, were measured. In addition, the DNA obtained from the rhizosphere soil was analyzed using metagenomics techniques to investigate the organization of the microbial population. Seedlings in soil polluted with MP exhibited delayed germination compared to seedlings in uncontaminated soil. Following 60 days of growth, the soil samples treated with T5 (0.2% MP and 0.15% HA w/w) had the highest population of bacteria and rhizobium, with counts 5.58 ± 0.02 and 4.90 ± 0.02 CFU g-1 soil. The plants cultivated in T5 had the most elevated chlorophyll-a concentration (1.340 ± 0.06 mg g-1), and chlorophyll-b concentration (0.62 ± 0.02 mg g-1) while those cultivated in T3 displayed the lowest concentration of chlorophyll-a (0.59 ± 0.02 mg g-1) and chlorophyll-b (0.21 ± 0.04 mg g-1). Within the phylum, Proteobacteria had the highest prevalence in all treatments. However, when the soil was polluted with MPs, its relative abundance was reduced by 8.4% compared to the control treatment (T1). Conversely, treatment T5 had a 3.76% rise in relative abundance when compared to treatment T3. The predominant taxa found in soil polluted with MP were Sphingomonas and Bacillus, accounting for 19.3% of the total. Sphingomonas was the predominant genus (21.2%) in soil polluted with MP and supplemented with humic acid. Humic acid can be used as a soil amendment to mitigate the negative effects of MPs and enhance their positive advantages. Research has demonstrated that incorporating humic acid into soil is a viable method for maintaining the long-term integrity of soil's physical, chemical, and biological characteristics.
Collapse
Affiliation(s)
| | - Merline Sheela Appavoo
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India.
| | - Kumara Sashidara Paramasivam
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Sri Vishnu Karthikeyan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Dhinagaran Govindan
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| |
Collapse
|
35
|
He X, Wang Q, Qian Y, Li Z, Feng C. Microplastic accumulation and oxidative stress in sweet pepper (Capsicum annuum Linn.): Role of the size effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124652. [PMID: 39094999 DOI: 10.1016/j.envpol.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Microplastics (MPs), which are widely dispersed in terrestrial environments, threaten crop growth and human food security. However, plant accumulation and phytotoxicity related to the size effects of MPs remain insufficiently explored. This study investigated the accumulation and toxicity of two sizes of MPs on Capsicum annuum Linn. (C. annuum) through fluorescence tracing and antioxidant defense system assessment. The results revealed that the size of MPs significantly impacts their accumulation characteristics in C. annuum roots, leading to variations in toxic mechanisms, including oxidative stress and damage. Smaller MPs and higher exposure concentrations result in more pronounced growth inhibition. C. annuum roots have a critical size threshold for the absorption of MPs of approximately 1.2 μm. MPs that enter the root tissue exhibit an aggregated form, with smaller-sized MPs displaying a greater degree of aggregation. MP exposure induces oxidative stress in root tissues, with high concentrations of smaller MPs causing lipid peroxidation. Analysis of the IBR values revealed that C. annuum roots utilize ascorbic acid (ASA) to prevent oxidative damage caused by larger MPs. Conversely, smaller MPs primarily induce superoxide dismutase (SOD) and glutathione (GSH). These results emphasize the significant impact of MP size on plant antioxidant defense response mechanisms, laying the foundation for further investigating the implications for human health.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
36
|
Alghofaili F, Tombuloglu H, Almessiere MA, Akhtar S, Tombuloglu G, Turumtay EA, Turumtay H, Baykal A. Fine-tuning the element dose in nanoparticle synthesis is the critical factor determining nanoparticle's impact on plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109110. [PMID: 39250843 DOI: 10.1016/j.plaphy.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study elucidates the impact of element dose during nanoparticle (NPs) synthesis on plant growth indices. Novel NPs containing two essential micro-nutrients, zinc (Zn) and manganese (Mn), were co-doped on cerium oxide (CeO2) (ZnMnCe) with different ratios (1, 2, and 3%). The synthesized NPs were characterized by advanced analytical techniques (EDX, TEM, SEM, XPS, and XRD) and hydroponically applied to barley (Hordeum vulgare L.). The impact of ZnMnCe NPs on growth indices and plant nutrients was examined. SEM, HRTEM, and confocal microscopy were used to show the morphological and structural influences of ZnMnCe NPs. Results showed that the plant growth indices (root/leaf length, chlorophyll fluorescence, pigmentation, and biomass) were remarkably improved with a 1% Mn/Zn addition. Conversely, growth retardation, cell membrane damage, root morphology deformation, and genotoxicity were apparent by 3% of Mn/Zn addition. Overall, a significant improvement in growth was revealed when Mn and Zn were included at 1%. However, increasing concentrations (2% and 3%) impaired the growth. These results show that the element ratio used in NPs synthesis is essential in the plant's physiological response. Precise adjustment of element dosage during NPs synthesis determines whether the NPs are beneficial or harmful. This must be well-balanced for nanofertilizer production and plant applications.
Collapse
Affiliation(s)
- Fatimah Alghofaili
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Department of Physics, College of Science, Qassim University, 52571, Buraydah, Saudi Arabia; Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Munirah A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia; Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Emine Akyuz Turumtay
- Department of Chemistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey; Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey; Join BioEnergy Institute, Feedstock Division, Emeryville, CA, 94608, USA
| | - Halbay Turumtay
- Department of Energy System Engineering, Karadeniz Technical University, 61830, Trabzon, Turkey; Join BioEnergy Institute, Feedstock Division, Emeryville, CA, 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, 34295, Istanbul, Turkey
| |
Collapse
|
37
|
Alonso-Crespo IM, Mateos-Cárdenas A. Exposure of Bromus hordeaceus to fossil- and plant-based micro- and nanoplastics: Impacts and plant-plastic interactions vary depending on polymer type and growth phase. CHEMOSPHERE 2024; 368:143715. [PMID: 39521290 DOI: 10.1016/j.chemosphere.2024.143715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Plastic pollution, especially pollution by micro- and nanoplastics, is now considered a potential threat to all ecosystems, including terrestrial ecosystems such as grassland habitats. This study investigated the impacts of micro- and nano-sized plastics on Bromus hordeaceus, a common grass species in European grasslands. The micro and nanoparticles were fossil-based polyethylene (PE) or plant-based polybutylene adipate terephthalate (PBAT), and these two plastics were used at two different concentrations. Here, we report data on plant development and plastic-plant interactions from two different experiments, (1) an in vitro experiment to test seed germination and establishment and (2) a soil experiment to test plant development and plastic-plant interactions specifically investigated as a form of perforation. Results from the in vitro experiment indicate that while seed germination success was unaffected by plastic type, the presence of all plastic particle types acted as a stimulant, increasing the total length of radicles and sprouts of germinated seeds. Conversely, results from the soil experiment showed that the growth of Bromus hordeaceus was negatively affected by the presence of microPBAT in the soil during the pot assay. Microscopic analysis confirmed that seed and plant structures interacted with all plastic particles via adsorption or perforation. This study demonstrates for the first time the ability of roots to penetrate plastics, especially microPBAT particles. Overall, our study concludes that both fossil-based and plant-based micro- and nano-plastics can influence plant growth, with effects varying based on plastic type, concentration, and plant growth phase. Further research is crucial to fully understand the intricate interactions between microplastics, soil properties, and plant development.
Collapse
Affiliation(s)
- Inés María Alonso-Crespo
- Institute of Ecology, Leuphana University Lüneburg, Lüneburg, Germany; Departamento de Ecoloxía, Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, Vigo, Spain.
| | - Alicia Mateos-Cárdenas
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland; Environmental Research Institute, Lee Road, Cork, Ireland
| |
Collapse
|
38
|
Osmani Z, Islam MA, Wang F, Meira SR, Kulka M. Optimization of a rapid, sensitive, and high throughput molecular sensor to measure canola protoplast respiratory metabolism as a means of screening nanomaterial cytotoxicity. PLANT METHODS 2024; 20:165. [PMID: 39472941 PMCID: PMC11523603 DOI: 10.1186/s13007-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
Nanomaterial-mediated plant genetic engineering holds promise for developing new crop cultivars but can be hindered by nanomaterial toxicity to protoplasts. We present a fast, high-throughput method for assessing protoplast viability using resazurin, a non-toxic dye converted to highly fluorescent resorufin during respiration. Protoplasts isolated from hypocotyl canola (Brassica napus L.) were evaluated at varying temperatures (4, 10, 20, 30 ˚C) and time intervals (1-24 h). Optimal conditions for detecting protoplast viability were identified as 20,000 cells incubated with 40 µM resazurin at room temperature for 3 h. The assay was applied to evaluate the cytotoxicity of silver nanospheres, silica nanospheres, cholesteryl-butyrate nanoemulsion, and lipid nanoparticles. The cholesteryl-butyrate nanoemulsion and lipid nanoparticles exhibited toxicity across all tested concentrations (5-500 ng/ml), except at 5 ng/ml. Silver nanospheres were toxic across all tested concentrations (5-500 ng/ml) and sizes (20-100 nm), except for the larger size (100 nm) at 5 ng/ml. Silica nanospheres showed no toxicity at 5 ng/ml across all tested sizes (12-230 nm). Our results highlight that nanoparticle size and concentration significantly impact protoplast toxicity. Overall, the results showed that the resazurin assay is a precise, rapid, and scalable tool for screening nanomaterial cytotoxicity, enabling more accurate evaluations before using nanomaterials in genetic engineering.
Collapse
Affiliation(s)
- Zhila Osmani
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Muhammad Amirul Islam
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Feng Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Sabrina Rodrigues Meira
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada
| | - Marianna Kulka
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9, Canada.
| |
Collapse
|
39
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
40
|
Zhang S, Zhang F, Cai L, Xu N, Zhang C, Yadav V, Zhou X, Wu X, Zhong H. Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135550. [PMID: 39173388 DOI: 10.1016/j.jhazmat.2024.135550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Lu Cai
- College of grass industry, Xinjiang Agricultural University, Urumqi, China.
| | - Na Xu
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
41
|
Jiang M, Zhao W, Liang Q, Cai M, Fan X, Hu S, Zhu Y, Xie H, Peng C, Liu J. Polystyrene microplastics enhanced the toxicity of cadmium to rice seedlings: Evidence from rice growth, physiology, and element metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173931. [PMID: 38885718 DOI: 10.1016/j.scitotenv.2024.173931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 μm, 50-150 μm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.
Collapse
Affiliation(s)
- Menglei Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Zhao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qiulian Liang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shiyu Hu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yunhua Zhu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongyan Xie
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
42
|
da Silva LM, de Souza RC, Santos TAC, Palmieri MJ, Vieira LFA. Eco(geno)toxicity of an acaricidal formulation containing chlorpyrifos, cypermethrin, and fenthion on different plant models and Artemia salina L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58928-58945. [PMID: 39317902 DOI: 10.1007/s11356-024-35019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The mixture of pesticides is widely employed in cattle farming to combat ectoparasite resistance, such as ticks. The commercial formulation COLOSSO FC30, which contains three active ingredients (Cypermethrin, Chlorpyrifos, and Fenthion), stands out due to its efficiency. However, animals exposed to this product may become vectors of potentially toxic molecules, possibly causing contamination in aquatic and terrestrial ecosystems. In light of this, this study evaluated the eco(geno)toxic potential of the commercial formulation COLOSSO FC30, using plants (Allium cepa L., Lactuca sativa L., Raphanus sativus L., Pennisetum glaucum L., and Triticum aestivum L.) and Artemia salina L. as model organisms. In the phytotoxicity test, the species were ranked in order of sensitivity to the commercial formulation as follows: P. glaucum > L. sativa > T. aestivum > R. sativus. The most sensitive parameters were root length (RL) and shoot length (SL) of seedlings. In the cytogenotoxicity test with A. cepa, cell division was decreased at concentrations from 0.351 mL L-1 in the meristematic region and root F1. Chromosomal aberrations and micronucleus were observed at all concentrations. In the test with A. salina, the IC50 after 24 h of exposure was 0.01207 mL L-1 of the commercial formulation. The results highlight the need for further research and regulations to understand and minimize the potential environmental impacts of COLOSSO FC30.
Collapse
Affiliation(s)
| | | | | | - Marcel José Palmieri
- Departament of Ecology, Federal University of Lavras, Lavras, MG, 37200-000, Brazil
| | | |
Collapse
|
43
|
Giri S, Debroy A, Nag A, Mukherjee A. Evaluating the role of soil EPS in modifying the toxicity potential of the mixture of polystyrene nanoplastics and xenoestrogen, Bisphenol A (BPA) in Allium cepa L. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135252. [PMID: 39047567 DOI: 10.1016/j.jhazmat.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The coexistence of emerging pollutants like nanoplastics and xenoestrogen chemicals such as Bisphenol A (BPA) raises significant environmental concerns. While the individual impacts of BPA and polystyrene nanoplastics (PSNPs) on plants have been studied, their combined effects are not well understood. This study examines the interactions between eco-corona formation, physicochemical properties, and cyto-genotoxic effects of PSNPs and BPA on onion (Allium cepa) root tip cells. Eco-corona formation was induced by exposing BPA-PSNP mixtures to soil extracellular polymeric substances (EPS), and changes were analyzed using 3D-EEM, TEM, FTIR, hydrodynamic diameter, and contact angle measurements. Onion roots were treated with BPA (2.5, 5, and 10 mgL-1) combined with plain, aminated, and carboxylated PSNPs (100 mgL-1), with and without EPS interaction. Toxicity was assessed via cell viability, oxidative stress markers (superoxide radical, total ROS, hydroxyl radical), lipid peroxidation, SOD and catalase activity, mitotic index, and chromosomal abnormalities. BPA alone increased cytotoxic and genotoxic parameters in a dose-dependent manner. BPA with aminated PSNPs exhibited the highest toxicity among the pristine mixtures, revealing increased chromosomal abnormalities, oxidative stress, and cell mortality with rising BPA concentrations. In-silico experiments demonstrated the relationship between superoxide dismutase (SOD), catalase enzymes, PSNPs, BPA, and their mixtures. EPS adsorption notably reduced cyto-genotoxic effects, lipid peroxidation, and ROS levels, mitigating the toxicity of BPA-PSNP mixtures.
Collapse
Affiliation(s)
- Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central campus, CHRIST (Deemed to be University), Bangalore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
44
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
45
|
Miao H, Zhang S, Gao W, Zhou J, Cai H, Wu L, Liu J, Wang Z, Liu T. Microplastics occurrence and distribution characteristics in mulched agricultural soils of Guizhou province. Sci Rep 2024; 14:21505. [PMID: 39277645 PMCID: PMC11401850 DOI: 10.1038/s41598-024-72829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024] Open
Abstract
Microplastics pollution in agricultural soil is increasingly recognized, but the specific situation varies with geography, climate conditions, and farming practices. The karst landscape, a typical geomorphology in China, demands a deeper understanding of microplastics pollution in such areas. This research zeroes in on Guizhou, a province known for its karst formations, by collecting soil samples from the mulched cultivation layer in ten counties and cities. The study employed metallographic microscopy, scanning electron microscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FT-IR) to analyze the presence and distribution of microplastics. Results show that polyethylene is the predominant component of microplastics in the mulched agricultural soils of Guizhou, primarily existing as irregular fragments in black, transparent, and translucent forms, with diameters of 40 ~ 120 μm and rough surfaces marked by significant erosion. The concentration of microplastics varies from 143.28 to 3,283.46 items/kg, averaging 1,150.60 ± 647.86 items/kg. The majority of particles accounting for 64.79% are sized between 10 ~ 100 μm. A highly significant positive correlation (p < 0.001) is found between mulching duration and microplastics concentration, indicating that prolonged mulching increases microplastics accumulation in farmlands. Additionally, crop type, irrigation method, and soil type also influence microplastics concentration. This study highlights the escalating issue of microplastics pollution in China's karst regions, underscoring the need for attention.
Collapse
Affiliation(s)
- Haiying Miao
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuyi Zhang
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weichang Gao
- Upland Flue-cured Tobacco Quality & Ecology Key Laboratory of CNTC, Guizhou Academy of Tobacco Science, Guiyang, 550081, China.
| | - Jianyun Zhou
- Guiyang Tobacco Company of Guizhou Province, Guiyang, 550001, China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, 551700, China
| | - Linjing Wu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Juncong Liu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhanghong Wang
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China
- Research Center of Solid Waste Pollution Control and Recycling, Guizhou Minzu University, Guiyang, 550025, China
| | - Taoze Liu
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, 550025, China.
- Engineering Research Center of Green and Low-carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang, 550025, China.
| |
Collapse
|
46
|
Jadhav B, Medyńska-Juraszek A. Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. PLANTS (BASEL, SWITZERLAND) 2024; 13:2526. [PMID: 39274010 PMCID: PMC11397527 DOI: 10.3390/plants13172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles (<100 nm) can be taken up by the root system and transferred to aboveground plant parts. Furthermore, the presence of microplastic in soil affects plant growth disturbing metabolic processes in plants, thus reducing yields and crop quality. Some of the adverse effects of microplastic on plants have been already described in the meta-analysis; however, this review provides a comprehensive overview of the latest findings about possible adverse effects and risks related to wide microplastic occurrence in soil on crop production safety, including topics related to changes of pesticides behavior and plant pathogen spreading under the presence MP and possibly threaten to human health.
Collapse
Affiliation(s)
- Bhakti Jadhav
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| |
Collapse
|
47
|
Dong J, Kang Y, Wang Y, Wu H, Hu Z, Guo Z, Zhang J. Critical role of benthic fauna in enhancing nanoplastics removal in constructed wetland: Performance, fate and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134962. [PMID: 38905985 DOI: 10.1016/j.jhazmat.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The presence of nanoplastics (NPs) in wastewater poses a considerable risk to ecosystems. Although constructed wetlands (CWs) have the potential to removal NPs, their efficiency is limited by insufficient consideration of ecosystem integrity. Herein, three typical benthic fauna (Corbicula fluminea, Chironomus riparius and Tubifex tubifex) were added to CWs to improve the ecological integrity of CWs, and further enhance the ecological benefits. Results indicated that the addition of C. fluminea, C. riparius and T. tubifex increased NPs removal by 19.14 %, 17.02 %, and 15.76 % than that without benthic faunas, respectively. Based on fluorescence signal analysis, the presence of benthic fauna could intake NPs, and enhanced the adsorption of NPs by plants. The addition of C. fluminea significantly increased catalase (1541.82 ± 41.35 U/g), glutathione S-transferase (0.34 ± 0.02 U/g), and superoxide dismutase (116.33 ± 6.91 U/g) activities (p < 0.05) as a defense mechanism against NPs-induced oxidative stress. Metagenomic analysis revealed that the abundances of key enzymes involved in glycolysis, the tricarboxylic acid cycle, and polystyrene metabolism pathways were increased when C. fluminea was added, corresponding to the microbial degradation of NPs. Overall, the results of this study implied that the benthic fauna can efficiently remove NPs from wastewater in CWs.
Collapse
Affiliation(s)
- Jiahao Dong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
48
|
Bottega S, Fontanini D, Ruffini Castiglione M, Spanò C. The impact of polystyrene nanoplastics on plants in the scenario of increasing temperatures: The case of Azolla filiculoides Lam. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108946. [PMID: 39032448 DOI: 10.1016/j.plaphy.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
There are great concerns for the accumulation in the environment of small dimension plastics, such as micro- and nanoplastics. Due to their small size, which facilitates their uptake by organisms, nanoplastics are of particular concern. The toxic effects of nanoplastics on plants are already reported in the literature, however nothing is known, to date, about the possible effects of climate change, in particular of increasing temperatures, on their toxicity for plants. To address this issue, plants of the water fern Azolla filiculoides were grown at optimal (25 °C) or high (35 °C) temperature, with or without polystyrene nanoplastics, and the effects of these stressors were assessed using a multidisciplinary approach. Green fluorescent polystyrene nanoplastics were used to track their possible uptake by A. filiculoides. The development and physiology of our model plant was adversely affected by both nanoplastics and high temperatures. Overall, histological, morphological, and photosynthetic parameters worsened under co-treatment, in accordance with the increased uptake of nanoplastics under higher temperature, as observed by fluorescence images. Based on our findings, the concern regarding the potential for increased toxicity of pollutants, specifically nanoplastics, at high temperatures is well-founded and warrants attention as a potential negative consequence of climate change. Additionally, there is cause for concern regarding the increase in nanoplastic uptake at high temperatures, particularly if this phenomenon extends to food and feed crops, which could lead to greater entry into the food chain.
Collapse
Affiliation(s)
- Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | - Debora Fontanini
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy.
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| |
Collapse
|
49
|
Yuan W, Xu EG, Shabaka S, Chen P, Yang Y. The power of green: Harnessing phytoremediation to combat micro/nanoplastics. ECO-ENVIRONMENT & HEALTH 2024; 3:260-265. [PMID: 39234422 PMCID: PMC11372594 DOI: 10.1016/j.eehl.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 09/06/2024]
Abstract
Plastic pollution and its potential risks have been raising public concerns as a global environmental issue. Global plastic waste may double by 2030, posing a significant challenge to the remediation of environmental plastics. In addition to finding alternative products and managing plastic emission sources, effective removal technologies are crucial to mitigate the negative impact of plastic pollution. However, current remediation strategies, including physical, chemical, and biological measures, are unable to compete with the surging amounts of plastics entering the environment. This perspective lays out recent advances to propel both research and action. In this process, phytoaccumulation, phytostabilization, and phytofiltration can be applied to reduce the concentration of nanoplastics and submicron plastics in terrestrial, aquatic, and atmospheric environments, as well as to prevent the transport of microplastics from sources to sinks. Meanwhile, advocating for a more promising future still requires significant efforts in screening hyperaccumulators, coupling multiple measures, and recycling stabilized plastics from plants. Phytoremediation can be an excellent strategy to alleviate global micro/nanoplastic pollution because of the cost-effectiveness and environmental sustainability of green technologies.
Collapse
Affiliation(s)
- Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Peng Chen
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
50
|
Li X, Shi F, Zhou M, Wu F, Su H, Liu X, Wei Y, Wang F. Migration and accumulation of microplastics in soil-plant systems mediated by symbiotic microorganisms and their ecological effects. ENVIRONMENT INTERNATIONAL 2024; 191:108965. [PMID: 39167856 DOI: 10.1016/j.envint.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The coexistence of microorganisms in complex soil environments greatly affects the environmental behavior and ecological effects of microplastics (MPs). However, relevant studies are sparse, and internal mechanisms remain unclear. Herein, arbuscular mycorrhizal fungi (AMF), a common symbiotic microorganism in the soil-plant system, was proved to significantly affect MPs absorption and migration with a "size effect". Specifically, the existence of AMF accelerated small-sized MPs (0.5 μm) uptake but slowed large-sized MPs (2 μm) uptake in lettuce. The content of 0.5 μm MPs absorbed by plants with AMF was 1.26 times that of the non-AMF group, while the content of 2 μm MPs was only 77.62 % that of non-AMF group. Additionally, the different effects of microorganisms on the intake content of MPs with different particle sizes in plants also led to different toxic effects of MPs on lettuce, that is, AMF exacerbated small-size MPs toxicity in lettuce (e.g., reduced plant biomass, photosynthesis, etc), and it weakened large-sized MPs toxicity (e.g., increased plant height, antioxidant enzyme activity, etc). The above phenomenon mainly because of the change in AMF on the plant root structure, which can be visually observed through the intraradical and extraradical hyphae. The symbiotic structure (hyphae) formed by AMF and host plants root could enhance the absorption pathway for small-sized MPs in lettuce, although not for large-sized MPs. Additionally, the effects of AMF varied with the soil environment of differently sized MPs, which promoted the migration of small-particle MPs to plants but aggravated large-particle MPs fixation at the soil interface. These findings could deepen the understanding of MPs pollution in terrestrial systems and provide theoretical basis and technical support to accurately assess soil MPs pollution.
Collapse
Affiliation(s)
- Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feng Shi
- National Center for Science & Technology Evaluation, Beijing 100081, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|