1
|
Zavala-Mazariegos FJ, Cruz-Esteban S, Álvarez-Solís JD, Rojas JC. Mycorrhizal fungus colonization on maize seedlings diminishes oviposition of fall armyworm females and affect larval performance. ENVIRONMENTAL ENTOMOLOGY 2025:nvaf045. [PMID: 40339063 DOI: 10.1093/ee/nvaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
Arbuscular mycorrhizal fungi are key components of the soil microbiota and are characterized by their symbiosis with terrestrial plants. In addition to providing nutrients to plants during symbiosis, arbuscular mycorrhizal fungi can enhance plant defenses against herbivorous insects and pathogens, including induced systemic resistance. Previous studies have demonstrated that Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae perform better in maize plants colonized by arbuscular mycorrhizal fungi, which generally exhibit greater growth and higher nitrogen and phosphorus contents. However, these studies were limited to a small number of maize varieties. Additionally, prior research has not considered the host preference of S. frugiperda females for noncolonized versus arbuscular mycorrhizal fungi-colonized maize plants, although female choice can significantly influence progeny performance. In this study, we evaluated the effects of Rhizophagus irregularis (Blaszk, Wubet, Renker, & Buscot) C. Walker & A. Schüßler (Glomerales: Glomeraceae) inoculation on 4 maize inbred lines (CML 124, CML 343, CML 122, and CML 126) susceptible to S. frugiperda on female oviposition preference and larval performance of S. frugiperda. Overall, females preferred ovipositing on uncolonized seedlings to arbuscular mycorrhizal fungi-colonized seedlings, independent of the inbred lines. Larval performance was affected by inbred lines and arbuscular mycorrhizal fungi colonization. Larvae feeding on noncolonized maize seedlings exhibited significantly higher weights than those feeding on arbuscular mycorrhizal fungi-colonized seedlings. Among the inbred lines, larvae fed CML 122 performed better than those fed CML 126 and CML 343 seedlings. The weight of the larvae fed on CML 124 seedlings was similar to that of the larvae fed on CML 122, CML 126, and CML 343 seedlings.
Collapse
Affiliation(s)
- Francisco Javier Zavala-Mazariegos
- Departamento de Ecología y Manejo de Artrópodos, Grupo de Ecología Química, El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico
| | | | - José David Álvarez-Solís
- Departamento de Agricultura, Sociedad y Ambiente, Grupo de Agroecología, El Colegio de la Frontera Sur (ECOSUR), San Cristobal de las Casas, Chiapas, Mexico
| | - Julio C Rojas
- Departamento de Ecología y Manejo de Artrópodos, Grupo de Ecología Química, El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico
| |
Collapse
|
2
|
Castillo-Novales D, Vega-Celedón P, Larach A, Seeger M, Besoain X. Native Bacteria Are Effective Biocontrol Agents at a Wide Range of Temperatures of Neofusicoccum parvum, Associated with Botryosphaeria Dieback on Grapevine. PLANTS (BASEL, SWITZERLAND) 2025; 14:1043. [PMID: 40219111 PMCID: PMC11990564 DOI: 10.3390/plants14071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Botryosphaeria dieback, a significant grapevine trunk disease (GTD) caused by various pathogens, represents a serious threat to viticulture. Biocontrol emerges as a promising sustainable alternative to chemical control, aligning toward environmentally friendly viticultural practices. This study evaluated the in vitro, in vivo, and in situ biocontrol potential of Chilean native bacteria isolated from wild flora and endophytic communities of grapevine against Neofusicoccum parvum. In vitro biocontrol assays screened 15 bacterial strains at 10, 22, and 30 °C, identifying four Pseudomonas strains with >30% mycelial growth inhibition. In diffusible agar and double plate assays, plant growth-promoting bacteria AMCR2b and GcR15a, which were isolated from native flora, achieved significant inhibition of N. parvum growth, with reductions of up to ~50% (diffusible agar) and up to ~46% (double plate). In vivo experiments on grapevine cuttings revealed that strains AMCR2b and GcR15a inhibited mycelial growth (17-90%); younger grapevines (1-5 years) were more susceptible to N. parvum. In situ trials using Vitis vinifera L. cv. Cabernet Sauvignon and Sauvignon Blanc demonstrated higher fungal susceptibility in Sauvignon Blanc. These results highlight the potential of Pseudomonas sp. AMCR2b and GcR15a to be effective biocontrol agents against GTDs at a wide range of temperatures, contributing to sustainable viticulture.
Collapse
Affiliation(s)
- Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (P.V.-C.); (A.L.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Ximena Besoain
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
3
|
Rashidi S, Yousefi AR, Mastinu A. Mycorrhizal Symbiosis Can Change the Composition of Secondary Metabolites in Fruits of Solanum nigrum L. Chem Biodivers 2024; 21:e202400208. [PMID: 38713365 DOI: 10.1002/cbdv.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Solanum nigrum is a common weed in arable land, while being used in traditional medicine around the world due to its remarkable levels of valuable secondary metabolites. Agronomic and biological techniques can alter the production of a specific metabolite by influencing plant growth and metabolism. The effects of colonization with three arbuscular mycorrhizal fungi (AMF), including Funneliformis mosseae, Rhizoglomus intraradices, and Rhizoglomus fasciculatum, on the chemical composition of S. nigrum fruits were evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. More than 100 different chemical constituents were evaluated by GC-MS. Our study revealed that the levels of phenols (quinic acid), benzenes (hydroquinone), sulfur-containing compounds, lactone and carboxylic acids were improved by R. intraradices. In contrast, hydroxymethylfurfural increased by 68 % in R. fasciculatum inoculated with uninoculated S. nigrum plants, and this species was also the most efficient in inducing sugar compounds (D-galactose, lactose, and melezitose). Our results suggest that AMF colonization is an effective biological strategy that can alter the chemical composition and improve the medicinal properties of S. nigrum.
Collapse
Affiliation(s)
- Sakineh Rashidi
- Department of Plant Production & Genetics, University of Zanjan, Zanjan, Iran
| | - Ali Reza Yousefi
- Department of Plant Production & Genetics, University of Zanjan, Zanjan, Iran
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
4
|
Sillo F, Neri L, Calvo A, Zampieri E, Petruzzelli G, Ferraris I, Delledonne M, Zaldei A, Gioli B, Baraldi R, Balestrini R. Correlation between microbial communities and volatile organic compounds in an urban soil provides clues on soil quality towards sustainability of city flowerbeds. Heliyon 2024; 10:e23594. [PMID: 38205296 PMCID: PMC10776942 DOI: 10.1016/j.heliyon.2023.e23594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Soil functionality is critical to the biosphere as it provides ecosystem services relevant for a healthy planet. The soil microbial composition is significantly impacted by anthropogenic activities, including urbanization. In this context, the study of soil microorganisms associated to urban green spaces has started to be crucial toward sustainable city development. Microbes living in the soil produce and degrade volatile organic compounds (VOCs). The VOC profiles may be used to distinguish between soils with various characteristics and management practices, reflecting variations in the activity of soil microbes that use a variety of metabolic pathways. Here, a combined approach based on DNA metabarcoding and GC-MS analysis was used to evaluate the soil quality from urban flowerbeds in Prato (Tuscany, Italy) in terms of microbial biodiversity and VOC emission profiles, with the final aim of evaluating the possible correlation between composition of microbial community and VOC patterns. Results showed that VOCs in the considered soil originated from anthropic and biological activity, and significant correlations between specific microbial taxa and VOCs were detected. Overall, the study demonstrated the feasibility of the use of microbe-VOC correlation as a proxy for soil quality assessment in urban soils.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luisa Neri
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Alice Calvo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Elisa Zampieri
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| | - Gianniantonio Petruzzelli
- National Research Council, Institute of Research on Terrestrial Ecosystems (IRET), Via Moruzzi 1, 56124 Pisa, Italy
| | - Irene Ferraris
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alessandro Zaldei
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Beniamino Gioli
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Rita Baraldi
- National Research Council, Institute of BioEconomy, Via P. Gobetti 101, 40129 Bologna and Via G. Caproni 8, 50145 Firenze, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
5
|
Meesters C, Weldegergis BT, Dicke M, Jacquemyn H, Lievens B. Limited effects of plant-beneficial fungi on plant volatile composition and host-choice behavior of Nesidiocoris tenuis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322719. [PMID: 38235197 PMCID: PMC10791865 DOI: 10.3389/fpls.2023.1322719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Biological control using plant-beneficial fungi has gained considerable interest as a sustainable method for pest management, by priming the plant for enhanced defense against pathogens and insect herbivores. However, despite promising outcomes, little is known about how different fungal strains mediate these beneficial effects. In this study, we evaluated whether inoculation of tomato seeds with the plant-beneficial fungi Beauveria bassiana ARSEF 3097, Metarhizium brunneum ARSEF 1095 and Trichoderma harzianum T22 affected the plant's volatile organic compound (VOC) profile and the host-choice behavior of Nesidiocoris tenuis, an emerging pest species in NW-European tomato cultivation, and the related zoophytophagous biocontrol agent Macrolophus pygmaeus. Results indicated that fungal inoculation did not significantly alter the VOC composition of tomato plants. However, in a two-choice cage assay where female insects were given the option to select between control plants and fungus-inoculated plants, N. tenuis preferred control plants over M. brunneum-inoculated plants. Nearly 72% of all N. tenuis individuals tested chose the control treatment. In all other combinations tested, no significant differences were found for none of the insects. We conclude that inoculation of tomato with plant-beneficial fungi had limited effects on plant volatile composition and host-choice behavior of insects. However, the observation that N. tenuis was deterred from the crop when inoculated with M. brunneum and attracted to non-inoculated plants may provide new opportunities for future biocontrol based on a push-pull strategy.
Collapse
Affiliation(s)
- Caroline Meesters
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | | | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Razo-Belmán R, Ángeles-López YI, García-Ortega LF, León-Ramírez CG, Ortiz-Castellanos L, Yu H, Martínez-Soto D. Fungal volatile organic compounds: mechanisms involved in their sensing and dynamic communication with plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1257098. [PMID: 37810383 PMCID: PMC10559904 DOI: 10.3389/fpls.2023.1257098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are mixtures of gas-phase hydrophobic carbon-based molecules produced by microorganisms such as bacteria and fungi. They can act as airborne signals sensed by plants being crucial players in triggering signaling cascades influencing their secondary metabolism, development, and growth. The role of fungal volatile organic compounds (FVOCs) from beneficial or detrimental species to influence the physiology and priming effect of plants has been well studied. However, the plants mechanisms to discern between FVOCs from friend or foe remains significantly understudied. Under this outlook, we present an overview of the VOCs produced by plant-associate fungal species, with a particular focus on the challenges faced in VOCs research: i) understanding how plants could perceive FVOCs, ii) investigating the differential responses of plants to VOCs from beneficial or detrimental fungal strains, and finally, iii) exploring practical aspects related to the collection of VOCs and their eco-friendly application in agriculture.
Collapse
Affiliation(s)
- Rosario Razo-Belmán
- Departamento de Alimentos, División de Ciencias de la Vida, Universidad de Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Mexico
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
7
|
Sarkar AK, Sadhukhan S. Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e13845. [PMID: 36546667 DOI: 10.1111/ppl.13845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants produce a large range of structurally varied low molecular weight secondary metabolites, which evaporate, known as volatile organic compounds (VOCs). Several of them are emitted in response to biotic stress as a defensive measure against pathogen attacks. Arbuscular Mycorrhizal Fungi (AMFs) can change the VOC pattern in parts of the plant and may promote plant defense via direct or indirect mechanisms. Mycorrhization of plants positively affects plant immunization along with growth and yield. The presence of AMF may raise the concentration of phenolic compounds and the activity of critical defense-related enzymes. AMF-induced changes in plant chemistry and associated volatile emissions lead to stronger immunity against pathogenic microorganisms. Despite substantial research into the origins of diversity in VOC-mediated plant communication, very little is known about the mechanism of influence of several AMFs on plant VOC emissions and modulation of plant immunization. Moreover, the molecular mechanism for VOC sensing in plants and mycorrhizal association is still unclear. In the present review, we have presented an up-to-date understanding of the cross-talk of AMF and VOC patterns in plants and the subsequent modulation of resistance against microbial pathogens.
Collapse
Affiliation(s)
- Anup Kumar Sarkar
- Department of Botany, Dukhulal Nibaran Chandra College, Murshidabad, West Bengal, India
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| | - Sanjoy Sadhukhan
- Plant Molecular Biology Laboratory, Department of Botany, Raiganj University, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
8
|
Zeni V, Grassi A, Santin M, Ricciardi R, Pieracci Y, Flamini G, Di Giovanni F, Marmugi M, Agnolucci M, Avio L, Turrini A, Giovannetti M, Castiglione MR, Ranieri A, Canale A, Lucchi A, Agathokleous E, Benelli G. Leaf UV-B Irradiation and Mycorrhizal Symbionts Affect Lettuce VOC Emissions and Defence Mechanisms, but Not Aphid Feeding Preferences. INSECTS 2022; 14:insects14010020. [PMID: 36661948 PMCID: PMC9866836 DOI: 10.3390/insects14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 05/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and ultraviolet-B radiation (UV-B) play important roles in plant-insect interactions by altering plant physiology and histology. We hypothesized that UV-B-induced oxidative stress was mitigated by AMF symbiosis. In this study, we conducted a multifactorial experiment to explore lettuce plant response to AMF inoculation and UV-B exposure (0.4 W m-2; 16 h d-1; 2 weeks), either together or individually, as well as the interaction with the polyphagous insect pest Myzus persicae (Sulzer). Lettuce plants subjected to UV-B radiation showed an increase in callose and oxidative stress indicators, as well as a decrease in stomatal density. Mycorrhizal colonization cancelled out the effect of UV-B on stomatal density, while the symbiosis was not affected by UV-B treatment. The plant volatile emission was significantly altered by UV-B treatment. Specifically, the non-terpene 1-undecene abundance (+M/+UVB: 48.0 ± 7.78%; -M/+UVB: 56.6 ± 14.90%) was increased, whereas the content of the non-terpene aldehydes decanal (+M/+UVB: 8.50 ± 3.90%; -M/+UVB: 8.0 ± 4.87%) and undecanal (+M/+UVB: 2.1 ± 0.65%; -M/+UVB: 1.20 ± 1.18%) and the sesquiterpene hydrocarbons (+M/+UVB: 18.0 ± 9.62 %; -M/+UVB: 19.2 ± 5.90%) was decreased. Mycorrhization, on the other hand, had no significant effect on the plant volatilome, regardless of UV-B treatment. Aphid population was unaffected by any of the treatments, implying a neutral plant response. Overall, this study provides new insights about the interactions among plants, UV-B, and AMF, outlining their limited impact on a polyphagous insect pest.
Collapse
Affiliation(s)
- Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Filippo Di Giovanni
- Department of Life Science, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Margherita Marmugi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Monica Ruffini Castiglione
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6141
| |
Collapse
|
9
|
Duc NH, Vo HTN, van Doan C, Hamow KÁ, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1046685. [PMID: 36561453 PMCID: PMC9763900 DOI: 10.3389/fpls.2022.1046685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| | - Ha T. N. Vo
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Cong van Doan
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDIV), Leipzig, Germany
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Khac Hoang Le
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Katalin Posta
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| |
Collapse
|
10
|
Jindo K, Goron TL, Pizarro-Tobías P, Sánchez-Monedero MÁ, Audette Y, Deolu-Ajayi AO, van der Werf A, Goitom Teklu M, Shenker M, Pombo Sudré C, Busato JG, Ochoa-Hueso R, Nocentini M, Rippen J, Aroca R, Mesa S, Delgado MJ, Tortosa G. Application of biostimulant products and biological control agents in sustainable viticulture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:932311. [PMID: 36330258 PMCID: PMC9623300 DOI: 10.3389/fpls.2022.932311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Travis L. Goron
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Paloma Pizarro-Tobías
- Faculty of Computer Sciences, Multimedia and Telecommunication, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Miguel Ángel Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Agencia Estatal CSIC, Murcia, Spain
| | - Yuki Audette
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- Chitose Laboratory Corp., Kawasaki, Japan
| | | | - Adrie van der Werf
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Moshe Shenker
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Brazil
| | - Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, Agroalimentario, Campus del Rio San Pedro, University of Cádiz, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marco Nocentini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi Firenze, Firenze, Italy
| | | | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - María J. Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| |
Collapse
|
11
|
Early identification of fungal leaf blight disease (Alternaria alternate) on Platycladus orientalis plants by using gas chromatography-ion mobility spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chen QL, Hu HW, Zhu D, Zhu YG, He JZ. Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. TRENDS IN PLANT SCIENCE 2022; 27:793-801. [PMID: 35351359 DOI: 10.1016/j.tplants.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and soil invertebrates represent a large proportion of total soil biomass and biodiversity and are vital for plant performance, soil structure, and biogeochemical cycling. However, the role of soil invertebrates in AM fungi development remains elusive. In this opinion article, we summarize the ecological importance of AM fungi and soil invertebrates in the plant-soil continuum and highlight the effects of soil invertebrates on AM fungal hyphae development and functioning. In a context of global change, we envision that better mechanistic understanding of the complex feedback via chemical signaling pathways across the interactions between soil invertebrates and AM fungi is critical to predict their ecological consequences and will open new avenues for promoting ecosystem resilience and sustainability.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
Zhang W, Yu L, Han B, Liu K, Shao X. Mycorrhizal Inoculation Enhances Nutrient Absorption and Induces Insect-Resistant Defense of Elymus nutans. FRONTIERS IN PLANT SCIENCE 2022; 13:898969. [PMID: 35712553 PMCID: PMC9194685 DOI: 10.3389/fpls.2022.898969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 05/26/2023]
Abstract
The majority of terrestrial plants can form symbiotic associations on their roots with arbuscular mycorrhizal fungi (AMF) in the soil to stimulate the growth and nutrient uptake of the host plant and to improve plant resistance to insects and disease. However, the use of AMF for insect control on gramineous forages requires further study. Here, we evaluated the effects of AMF (Funneliformis mosseae) inoculation on the defense against Locusta migratoria attack in Elymus nutans. Inoculation assays showed that mycorrhizal plants had a higher resistance than non-inoculated plants, as evidenced by plants having more plant biomass, a higher nitrogen and phosphorus content, and greater lipoxygenase (LOX) activity. The results of insect damage showed that in addition to a decrease in the enzyme phenylalanine-ammonia-lyase, the activities of other plant defense-related enzymes (including polyphenol oxidase and β-1,3-glucanase) were increased. A key enzyme, LOX, belonging to the jasmonic acid (JA) signaling pathway was notably increased in mycorrhizal treatment. Volatile organic compounds (VOCs) were identified using gas chromatography mass spectrometry and the results showed that several metabolites with insect-resistant properties, including D-Limonene, p-Xylene, 1,3-Diethylbenzene were detected in mycorrhizal plants. These findings suggest that mycorrhizal inoculation has potential applications in insect management on forage grasses and demonstrates that the JA signaling pathway is essential for insect resistance in Elymus nutans.
Collapse
|
14
|
Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front Microbiol 2022; 13:826571. [PMID: 35317261 PMCID: PMC8934398 DOI: 10.3389/fmicb.2022.826571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The crop Vitis vinifera (L.) is of great economic importance as Chile is one of the main wine-producing countries, reaching a vineyard area of 145,000 ha. This vine crop is usually very sensitive to local condition changes and agronomic practices; therefore, strategies to counteract the expected future decrease in water level for agricultural irrigation, temperature increase, extreme water stress (abiotic stress), as well as increase in pathogenic diseases (biotic stress) related to climate change will be of vital importance for this crop. Studies carried out in recent years have suggested that arbuscular mycorrhizal fungi (AMF) can provide key ecosystem services to host plants, such as water uptake implementation and enhanced absorption of nutrients such as P and N, which are key factors for improving the nutritional status of the vine. AMF use in viticulture will contribute also to sustainable agronomic management and bioprotection against pathogens. Here we will present (1) the current status of grapevines in Chile, (2) the main problems in grapevines related to water stress and associated with climate change, (3) the importance of AMF to face water stress and pathogens, and (4) the application of AMF as a biotechnological and sustainable tool in vineyards.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Patricia Silva-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Talca, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ana Aguilar-Paredes
- Programa de Restauración Biológica de Suelos, Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Karlo Romero
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|
15
|
Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:529-554. [PMID: 34409450 DOI: 10.1093/jxb/erab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of volatile organic compounds (VOCs) in plants is triggered in response to external stimuli, and these compounds can migrate to distal tissues and neighbouring receivers. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, functional properties of VOCs produced in response to phytopathogens, beneficial microorganisms, resistance inducers, and abiotic factors have been less studied. In this review, we focused on the emission patterns and potential biological functions of VOCs produced by grapevines in response to stimuli. Specific grapevine VOCs are emitted in response to the exogenous stimulus, suggesting their precise involvement in plant defence response. VOCs with inhibitory activities against pathogens and responsible for plant resistance induction are reported, and some of them can also be used as biomarkers of grapevine resistance. Likewise, VOCs produced in response to beneficial microorganisms and environmental factors are possible mediators of grapevine-microbe communications and abiotic stress tolerance. Although further functional studies may improve our knowledge, the existing literature suggests that VOCs have an underestimated potential application as pathogen inhibitors, resistance inducers against biotic or abiotic stresses, signalling molecules, membrane stabilizers, and modulators of reactive oxygen species. VOC patterns could also be used to screen for resistant traits or to monitor the plant physiological status.
Collapse
Affiliation(s)
- Valentina Lazazzara
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Sara Avesani
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), 39040 Auer (Ora), Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
- Center for Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
16
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|
17
|
Chebet ON, Omosa LK, Subramanian S, Nchiozem-Ngnitedem VA, Mmari JO, Akutse KS. Mechanism of Action of Endophytic Fungi Hypocrea lixii and Beauveria bassiana in Phaseolus vulgaris as Biopesticides against Pea Leafminer and Fall Armyworm. Molecules 2021; 26:5694. [PMID: 34577165 PMCID: PMC8471441 DOI: 10.3390/molecules26185694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungal isolates Hypocrea lixii F3ST1 and Beauveria bassiana G1LU3 were evaluated for their potential to endophytically colonize and induce active compounds in Phaseolus vulgaris, as a defense mechanism against pea leafminer (Liriomyza huidobrensis) and fall armyworm (Spodoptera frugiperda). Endophytic colonization was achieved through seed inoculation with the volatile emissions from P. vulgaris plants being analyzed using GC-MS. The crude extracts of P. vulgaris obtained using methanol and dichloromethane were assayed against leafminer and fall armyworm larvae using leaf dipping and topical application, respectively. The two isolates successfully colonized the entire host plant (roots, stems, and leaves) with significant variation (p < 0.001) between fungal isolates and the controls. The results showed qualitative differences in the volatile profiles between the control plants, endophytically colonized and insect-damaged plants attributed to fungal inoculation and leafminer damage. The crude methanol extracts significantly reduced the percentage pupation of 2nd instar leafminer larvae (p < 0.001) and adult-flies emergence (p < 0.05). The survival of the 1st instar fall armyworm larvae was also significantly reduced (p < 0.001) compared to the controls. This study demonstrated the high potential of endophytic fungi H. lixii and B. bassiana in inducing mainly specific defense compounds in the common bean P. vulgaris that can be used against pea leafminer and fall armyworm.
Collapse
Affiliation(s)
- Olivia Ngeno Chebet
- Department of Chemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (O.N.C.); (V.-A.N.-N.); (J.O.M.)
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| | - Leonidah Kerubo Omosa
- Department of Chemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (O.N.C.); (V.-A.N.-N.); (J.O.M.)
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| | | | - John Onyari Mmari
- Department of Chemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (O.N.C.); (V.-A.N.-N.); (J.O.M.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
18
|
Goddard ML, Belval L, Martin IR, Roth L, Laloue H, Deglène-Benbrahim L, Valat L, Bertsch C, Chong J. Arbuscular Mycorrhizal Symbiosis Triggers Major Changes in Primary Metabolism Together With Modification of Defense Responses and Signaling in Both Roots and Leaves of Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2021; 12:721614. [PMID: 34512700 PMCID: PMC8424087 DOI: 10.3389/fpls.2021.721614] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 06/01/2023]
Abstract
Grapevine (Vitis vinifera L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants. Indeed, it is well established that mycorrhization improves grapevine nutrition and resistance to stresses, especially water stress and resistance to root pathogens. Thus, it appears essential to understand the effect of mycorrhization on grapevine metabolism and defense responses. In this study, we combined a non-targeted metabolomic approach and a targeted transcriptomic study to analyze changes induced in both the roots and leaves of V. vinifera cv. Gewurztraminer by colonization with Rhizophagus irregularis (Ri). We showed that colonization of grapevine with AMF triggers major reprogramming of primary metabolism in the roots, especially sugar and fatty acid metabolism. On the other hand, mycorrhizal roots had decreased contents of most sugars and sugar acids. A significant increase in several fatty acids (C16:1, linoleic and linolenic acids and the C20 arachidonic and eicosapentaenoic acids) was also detected. However, a downregulation of the JA biosynthesis pathway was evidenced. We also found strong induction of the expression of PR proteins from the proteinase inhibitor (PR6) and subtilase (PR7) families in roots, suggesting that these proteins are involved in the mycorrhiza development but could also confer higher resistance to root pathogens. Metabolic changes induced by mycorrhization were less marked in leaves but involved higher levels of linoleic and linolenic acids and decreased sucrose, quinic, and shikimic acid contents. In addition, Ri colonization resulted in enhanced JA and SA levels in leaves. Overall, this study provides a detailed picture of metabolic changes induced by AMF colonization in a woody, economically important species. Moreover, stimulation of fatty acid biosynthesis and PR protein expression in roots and enhanced defense hormone contents in leaves establish first insight in favor of better resistance of grapevine to various pathogens provided by AMF colonization.
Collapse
Affiliation(s)
- Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Lorène Belval
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Isabelle R. Martin
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Lucie Roth
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
- Laboratoire d'Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Hélène Laloue
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Laurence Deglène-Benbrahim
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Laure Valat
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, Colmar, France
| |
Collapse
|