1
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
2
|
Tong M, Xia W, Zhao B, Duan Y, Zhang L, Zhai K, Chu J, Yao X. Silicon alleviates the toxicity of microplastics on kale by regulating hormones, phytochemicals, ascorbate-glutathione cycling, and photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135971. [PMID: 39342841 DOI: 10.1016/j.jhazmat.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Kale is rich in various essential trace elements and phytochemicals, including glucosinolate and its hydrolyzed product isothiocyanate, which have significant anticancer properties. Nowadays, new types of pollutant microplastics (MP) pose a threat to global ecosystems due to their high bioaccumulation and persistent degradation. Silicon (Si) is commonly used to alleviate abiotic stresses, offering a promising approach to ensure safe food production. However, the mechanisms through which Si mitigates MP toxicity are unknown. In this study, a pot culture experiments was conducted to evaluate the morphogenetic, physiological, and biochemical responses of kale to Si supply under MP stress. The results showed that MP caused the production of reactive oxygen species, inhibited the growth and development of kale, and reduced the content of phytochemicals by interfering with the photosynthetic system, antioxidant defense system, and endogenous hormone regulation network. Si mitigated the adverse effects of MP by enhancing the photosynthetic capacity of kale, regulating the distribution of substances between primary and secondary metabolism, and strengthening the ascorbate-glutathione (AsA-GSH) cycling system.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
3
|
Irshad MK, Ansari JR, Noman A, Javed W, Lee JC, Aqeel M, Waseem M, Lee SS. Seed priming with Fe 3O 4-SiO 2 nanocomposites simultaneously mitigate Cd and Cr stress in spinach (Spinacia oleracea L.): A way forward for sustainable environmental management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117195. [PMID: 39447293 DOI: 10.1016/j.ecoenv.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jamilur R Ansari
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
4
|
Khanizadeh P, Mumivand H, Morshedloo MR, Maggi F. Application of Fe 2O 3 nanoparticles improves the growth, antioxidant power, flavonoid content, and essential oil yield and composition of Dracocephalum kotschyi Boiss. FRONTIERS IN PLANT SCIENCE 2024; 15:1475284. [PMID: 39450081 PMCID: PMC11500079 DOI: 10.3389/fpls.2024.1475284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Dracocephalum kotschyi Boiss., an endemic and endangered medicinal and aromatic plant in Iran, showcases distinct botanical characteristics and therapeutic promise. According to the IUCN grouping criteria, this plant is facing challenges due to overcollection from its natural habitats. To address this issue, there is an increasing inclination towards cultivating this species within agricultural systems. This study aimed to evaluate the impact of applying Fe2O3 nanoparticles (NPs) at varying concentrations (50, 100, and 200 mg L-1), as well as bulk Fe2O3 at the same concentrations, on the growth, essential oil production, antioxidant capacity, total phenol, and flavonoid content of D. kotschyi. The foliar application of 100 and/or 200 mg L-1 of Fe2O3 NPs resulted in the greatest leaf length and dry weight, while Fe2O3 NPs at the level of 100 mg L-1 led to the highest leaf/stem ratio. Additionally, spraying 200 mg L-1 of Fe2O3 NPs and all concentrations of bulk Fe2O3 positively impacted chlorophyll and carotenoid levels. Both nano and bulk Fe2O3 supplements stimulated H2O2 production and subsequently enhanced enzymatic antioxidant activity. The use of 50 mg L-1 of Fe2O3 NPs resulted in the highest flavonoid content and non-enzymatic antioxidant activity. Meanwhile, the highest essential oil content and yield was achieved by the application of 50 and/or 100 mg L-1 Fe2O3 NPs. The addition of low concentration of Fe2O3 NPs (50 mg L-1) resulted in a significant increase in the concentration of geranial, while a higher supply of Fe2O3 NPs (200 mg L-1) significantly decreased the percentage of neral in the essential oil. Overall, the application of Fe2O3 NPs demonstrated significant potential for increased biomass, enhanced yield, essential oil production, and phytochemical attributes. The findings highlight the versatility of Fe2O3 NPs at optimal concentrations, acting as both a nano-fertilizer and a nano-inducer, promoting the production and accumulation of valuable secondary metabolites in plants.
Collapse
Affiliation(s)
- Parisa Khanizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohamad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Rahmatizadeh R, Jamei R, Arvin MJ. Silicon nanoparticles (SiNPs) mediate GABA, SOD and ASA-GSH cycle to improve cd stress tolerance in Solanum lycopersicum. Sci Rep 2024; 14:21948. [PMID: 39304700 PMCID: PMC11415500 DOI: 10.1038/s41598-024-72908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Contamination of agricultural products with Cadmium (Cd) is a global problem that should be considered for minimizing the risks to human health. Considering the potential effects of SiNPs in decreasing abiotic stress, a study was conducted to investigate the effect of SiNPs in the reduction of Cd stress on Solanum lycopersicum. SiNPs was used at 0, 25, 50 and 100 mg/l and CdCl2 at 0, 100 and 200 µM concentrations. The results showed that Cd stress caused a significant decrease in dry weight, content of GSH, ASA, significently increasing the activity of GR, APX, GST, SOD, as well as content of H2O2, MDA, proline, and GABA in shoots and roots compared to the control. SiNPs significantly increased shoot and root dry weight compared to the control. As a coenzyme, SiNPs induced the activity of antioxidant enzymes and significantly increased GST and GR gene expression compared to the control. SiNPs also caused a substantial increase in the content of ASA, GSH, proline and GABA compared to the control. By inducing the activity of antioxidant enzymes and metabolites of the ascorbate-glutathione (ASA-GSH) cycle, SiNPs removed a large content of H2O2 and significantly reduced the MDA content, and as a result led to the stability of cell membrane under Cd stress. Induction of ASA-GSH, GABA and SOD cycle by SiNPs clearly showed that SiNPs could be a potential tool to alleviate Cd stress in plants cultivated in areas contaminated with this heavy metal.
Collapse
Affiliation(s)
| | - Rashid Jamei
- Biology Department, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Javad Arvin
- Horticulture Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Liu Z, Hou L, Yan J, Ahmad P, Qin M, Li R, El-Sheikh MA, Deshmukh R, Sudhakaran SS, Ali B, Zhang L, Yang L, Liu P. Aquaporin mediated silicon-enhanced root hydraulic conductance is benefit to cadmium dilution in tobacco seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134905. [PMID: 38941827 DOI: 10.1016/j.jhazmat.2024.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Sreeja S Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan 64200, Pakistan
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China.
| |
Collapse
|
7
|
Jia X, He J, Yan T, Lu D, Xu H, Li K, Ren Y. Copper oxide nanoparticles mitigate cadmium toxicity in rice seedlings through multiple physiological mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34412-5. [PMID: 39042189 DOI: 10.1007/s11356-024-34412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Heavy metal pollution poses a serious threat to crops growth and yield. Recently, nanoparticles (NPs) have emerged as a promising strategy to mitigate the negative effect of heavy metal on crop growth. This study investigated the beneficial effects of copper oxide nanoparticles (CuO NPs) on the morphological and physiological-biochemical traits of rice seedlings (Oryza sativa L.) under cadmium (Cd) stress. The results demonstrated that the application of CuO NPs increased the contents of nutrition elements in shoots and roots as well as photosynthetic pigments, consequently improving the growth of rice seedlings under Cd stress, especially at low level of Cd stress. Meanwhile, CuO NPs obviously decreased the Cd accumulation in the rice seedlings and immobilized Cd in less toxic chemical forms and subcellular compartments. Moreover, CuO NPs modulated the antioxidant system, ameliorating oxidative damage and membrane injury caused by Cd. Multivariate analysis established correlations between physio-biochemical parameters and further revealed the mitigation of Cd damage to rice seedlings by CuO NPs was associated with inhibition Cd accumulation, altering Cd chemical form and subcellular distribution, increasing the contents of mineral nutrients, photosynthetic pigments and secondary metabolites and antioxidant enzyme activities, and reducing oxidative damage. Overall, the present study indicated that CuO NPs could effectively reduce the Cd toxicity to rice seedlings, demonstrating their potential application in agricultural production.
Collapse
Affiliation(s)
- Xiangwei Jia
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou, 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Haojie Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Ke Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China.
- Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
8
|
Koohi A, Rahdari P, Babakhani B, Asadi M. Foliar-applied melatonin and titanium nanoparticles modulate cadmium (Cd) toxicity through minimizing Cd accumulation and optimizing physiological and biochemical properties in sage (Salvia officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45370-45382. [PMID: 38965106 DOI: 10.1007/s11356-024-34126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 μM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, β-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 μM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.
Collapse
Affiliation(s)
- Atefeh Koohi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Parvaneh Rahdari
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
| | - Babak Babakhani
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Mahmoud Asadi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| |
Collapse
|
9
|
Khanchi S, Hashemi Khabir SH, Hashemi Khabir SH, Golmoghani Asl R, Rahimzadeh S. The role of magnesium oxide foliar sprays in enhancing mint (Mentha crispa L.) tolerance to cadmium stress. Sci Rep 2024; 14:14823. [PMID: 38937645 PMCID: PMC11211327 DOI: 10.1038/s41598-024-65853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
This study investigates using magnesium foliar spray to enhance mint plants' growth and physiological performance under cadmium toxicity. It examines the effects of foliar application of magnesium oxide (40 mg L-1), in both nano and bulk forms, on mint plants exposed to cadmium stress (60 mg kg-1 soil). Cadmium stress reduced root growth and activity, plant biomass (32%), leaf hydration (19%), chlorophyll levels (27%), magnesium content (51%), and essential oil yield (35%), while increasing oxidative and osmotic stress in leaf tissues. Foliar application of magnesium increased root growth (32%), plant biomass, essential oil production (17%), leaf area (24%), chlorophyll content (10%), soluble sugar synthesis (33%), and antioxidant enzyme activity, and reduced lipid peroxidation and osmotic stress. Although the nano form of magnesium enhanced magnesium absorption, its impact on growth and physiological performance was not significantly different from the bulk form. Therefore, foliar application of both forms improves plants' ability to withstand cadmium toxicity. However, the study is limited by its focus on a single plant species and specific environmental conditions, which may affect the generalizability of the results. The long-term sustainability of such treatments could provide a more comprehensive understanding of magnesium's role in mitigating heavy metal stress in plants.
Collapse
Affiliation(s)
- Soheil Khanchi
- Department of Agronomy, Islamic Azad University of Sanandaj, Sanandaj, Iran
| | | | | | - Reza Golmoghani Asl
- Department of Agronomy and Plant Breeding, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Saeedeh Rahimzadeh
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
10
|
Ashraf H, Ghouri F, Liang J, Xia W, Zheng Z, Shahid MQ, Fu X. Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1715. [PMID: 38931146 PMCID: PMC11207486 DOI: 10.3390/plants13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters' expression levels.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiabin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiming Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Tajik Khademi H, Khodadadi M, Hassanpanah D, Hajainfar R. Changes in fruit yield, biochemical attributes, and leaf minerals of different cucumber (Cucumis sativus L.) cultivars under foliar application of silicon nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42012-42022. [PMID: 38853231 DOI: 10.1007/s11356-024-33890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 06/11/2024]
Abstract
Silicon nanoparticles (Si NPs) have an eminent role in improving plant yield through improving yield. The present study was conducted to find the effect of Si NPs on plant yield, biochemical attributes, and minerals of different cucumber cultivars. The greenhouse experiment with foliar application of Si NPs (100, 200, and 300 mg L-1) was carried out on cucumber cultivars (Emilie, Mirsoltan, Mitio, and Viola). The application of Si NPs at 300 mg L-1 led to the highest fruit yield, with a 17% increase in fruit production compared to the control. Fruit firmness differed by 31% between Emilie and Si NPs at 100 mg L-1 and Mito at 300 mg L-1. Plants experiencing Si NPs at 300 mg L-1 had the greatest chlorophyll (Chl) a+b. Compared to the other cultivars, Mito had a greater fruit yield and Chl content. The Si NPs increased TSS by 11% while lowering TA by 24% when compared to the control at 300 mg L-1. Foliar application of Si NPs reduced the value of TSS/TA. The largest value of K was reached in the Mito cultivar with Si NPs at 200 mg L-1, with a 22% increase in comparison to the control, indicating that Si NPs considerably boosted the K content. The Si NPs at 200 mg L-1 significantly increased leaf N and P in the Mito cultivar by 16 and 50%, respectively. By using agglomerative hierarchy clustering (AHC), Emilie and Mito were located in two separate clusters, whilst Viola and Mirsoltan were grouped in one cluster. In conclusion, Si NPs at 200-300 mg L-1 enhanced fruit yield, and Mito showed the highest yield when compared to other cultivars.
Collapse
Affiliation(s)
- Hossein Tajik Khademi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Khodadadi
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran.
| | - Davoud Hassanpanah
- Horticulture Crops Research Department, Ardabil Agricultural and Natural Resources, Agricultural Research, Education & Extension Organization (AREEO), Ardabil, Iran
| | - Ramin Hajainfar
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|
12
|
Rajput P, Singh A, Agrawal S, Ghazaryan K, Rajput VD, Movsesyan H, Mandzhieva S, Minkina T, Alexiou A. Effects of environmental metal and metalloid pollutants on plants and human health: exploring nano-remediation approach. STRESS BIOLOGY 2024; 4:27. [PMID: 38777953 PMCID: PMC11111642 DOI: 10.1007/s44154-024-00156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Metal and metalloid pollutants severely threatens environmental ecosystems and human health, necessitating effective remediation strategies. Nanoparticle (NPs)-based approaches have gained significant attention as promising solutions for efficient removing heavy metals from various environmental matrices. The present review is focused on green synthesized NPs-mediated remediation such as the implementation of iron, carbon-based nanomaterials, metal oxides, and bio-based NPs. The review also explores the mechanisms of NPs interactions with heavy metals, including adsorption, precipitation, and redox reactions. Critical factors influencing the remediation efficiency, such as NPs size, surface charge, and composition, are systematically examined. Furthermore, the environmental fate, transport, and potential risks associated with the application of NPs are critically evaluated. The review also highlights various sources of metal and metalloid pollutants and their impact on human health and translocation in plant tissues. Prospects and challenges in translating NPs-based remediation from laboratory research to real-world applications are proposed. The current work will be helpful to direct future research endeavors and promote the sustainable implementation of metal and metalloid elimination.
Collapse
Affiliation(s)
- Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia.
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Hasmik Movsesyan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
13
|
Farnoosh S, Masoudian N, Safipour Afshar A, Nematpour FS, Roudi B. Foliar-applied iron and zinc nanoparticles improved plant growth, phenolic compounds, essential oil yield, and rosmarinic acid production of lemon balm (Melissa officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36882-36893. [PMID: 38758440 DOI: 10.1007/s11356-024-33680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.
Collapse
Affiliation(s)
- Samaneh Farnoosh
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | | | - Bostan Roudi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
14
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
17
|
Jalil S, Nazir MM, Al-Huqail AA, Ali B, Al-Qthanin RN, Asad MAU, Eweda MA, Zulfiqar F, Onursal N, Masood HA, Yong JWH, Jin X. Silicon nanoparticles alleviate cadmium toxicity in rice (Oryza sativa L.) by modulating the nutritional profile and triggering stress-responsive genetic mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115699. [PMID: 37979353 DOI: 10.1016/j.ecoenv.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad A U Asad
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A Eweda
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nilgün Onursal
- Faculty of Education, Department of Science Education, Siirt University, Siirt, Turkey
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden.
| | - Xiaoli Jin
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
19
|
Yan J, Wu X, Li T, Fan W, Abbas M, Qin M, Li R, Liu Z, Liu P. Effect and mechanism of nano-materials on plant resistance to cadmium toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115576. [PMID: 37837699 DOI: 10.1016/j.ecoenv.2023.115576] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Cadmium (Cd), one of the most toxic heavy metals, has been extensively studied by environmental scientists because of its detrimental effects on plants, animals, and humans. Increased industrial activity has led to environmental contamination with Cd. Cadmium can enter the food chain and pose a potential human health risk. Therefore, reducing the accumulation of Cd in plant species and enhancing their detoxification abilities are crucial for remediating heavy metal pollution in contaminated areas. One innovative technique is nano-phytoremediation, which employs nanomaterials ranging from 1 to 100 nm in size to mitigate the accumulation and detrimental effects of Cd on plants. Although extensive research has been conducted on using nanomaterials to mitigate Cd toxicity in plants, it is important to note that the mechanism of action varies depending on factors such as plant species, level of Cd concentration, and type of nanomaterials employed. This review aimed to consolidate and organize existing data, providing a comprehensive overview of the effects and mechanisms of nanomaterials in enhancing plant resistance to Cd. In particular, its deep excavation the mechanisms of detoxification heavy metals of nanomaterials by plants, including regulating Cd uptake and distribution, enhancing antioxidant capacity, regulating gene expression, and regulating physiological metabolism. In addition, this study provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China.
| |
Collapse
|
20
|
Ahmed T, Masood HA, Noman M, Al-Huqail AA, Alghanem SM, Khan MM, Muhammad S, Manzoor N, Rizwan M, Qi X, Abeed AHA, Li B. Biogenic silicon nanoparticles mitigate cadmium (Cd) toxicity in rapeseed (Brassica napus L.) by modulating the cellular oxidative stress metabolism and reducing Cd translocation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132070. [PMID: 37478591 DOI: 10.1016/j.jhazmat.2023.132070] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Nano-enabled strategies have emerged as promising alternatives to resolve heavy metals (HMs) related harms in an eco-friendly manner. Here, we explored the potential of biogenic silicon nanoparticles (SiNPs) in alleviating cadmium (Cd) stress in rapeseed (Brassica napus L.) plants by modulating cellular oxidative repair mechanisms. Biogenic SiNPs of spherical shapes with size ranging between 14 nm and 35 nm were synthesized using rice straw extract and characterized through advanced characterization techniques. A greenhouse experiment results showed that SiNPs treatment at 250 mg kg-1 significantly improved growth parameters, including fresh weight (33.3 %) and dry weight (32.6 %) of rapeseed plants than Cd-treated control group. Photosynthesis and leaf gas exchange parameters were also positively influenced by SiNPs treatment, indicating enhanced photosynthetic efficiency. Additionally, SiNPs treatment at 250 mg kg-1 increased the activities of antioxidant enzymes such as superoxide dismutase (19.1 %), peroxidase (33.4 %), catalase (14.4 %), and ascorbate peroxidase (33.8 %), which may play a crucial role in ROS scavenging and reduction in Cd-induced oxidative stress. TEM analysis revealed that SiNPs treatment effectively mitigated Cd-induced damage to leaf ultrastructure, while qPCR analysis showed that SiNPs treatment changed the expressions of the antioxidant defense and stress related genes. Moreover, SiNPs treatment significantly influenced the Cd accumulation and Si contents in plants. Overall, our findings revealed that biogenic SiNPs have great potential to serve as a sustainable, eco-friendly, and non-toxic alternative for the remediation of Cd toxicity in rapeseed plants.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.; Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Suliman Ms Alghanem
- Department of Biology, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China..
| |
Collapse
|
21
|
Ayub MA, Ahmad HR, Zia Ur Rehman M, Waraich EA. Cerium oxide nanoparticles alleviates stress in wheat grown on Cd contaminated alkaline soil. CHEMOSPHERE 2023; 338:139561. [PMID: 37478990 DOI: 10.1016/j.chemosphere.2023.139561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The cadmium contamination of soil is an alarming issue worldwide and among various mitigation strategies, nanotechnology mediated management of Cd contamination has become a well-accepted approach. The Cerium Oxide Nanoparticles (CeO2-NPs) are widely being explored for their novel works in Agro-Industry and Environment, including stress mitigation in crops. Very little work is reported regarding role of CeO2-NPs in management of Cd contamination in cereal crops like wheat. Present work was planned to check efficacy of CeO2-NPs in Cd stress mitigation of wheat under alkaline calcareous soil conditions. In this experiment, 4 sets of Cd contamination (Uncontaminated control-UCC, 10, 20, and 30 mg Cd per kg soil) and 5 sets of CeO2-NPs NPs (0, 200, 400, 600, and 1000 mg NP per kg soil) were applied in pots following completely randomized design (CRD) and wheat crop was grown. The growth, physiology, yield and Cd and Ce accumulation by wheat root, shoot and grain was monitored. The maximum Cd spiking level (30 mg kg-1) was found to be most toxic for plant growth. The results showed that the nanoparticles were overall beneficial for wheat growth and maximum level (1000 mg kg-1) being the most significant one under all Cd spiking sets. In Cd-30 sets, 1000 mg kg-1 NPs application resulted in decreased soil bioavailable Cd concentration (49.63% decrease compared to 30 mg kg-1 Cd spiked sets termed as Cd-30 Control), decreased Cd accumulation in all three tissues: root (58.36% decrease), shoot (52.30% decrease) and grain (55.56% decrease) while increased root dry weight (62.14%), shoot dry weight (89.32%), total grain yield (80.08%) and improved plant physiology with respect to Cd-30 control. Nanoparticles application substantially increased wheat root, shoot and grain Ce concentrations as well. The further prospects of these nanoparticles in relation to various biotic and abiotic stresses are advised to be explored.
Collapse
Affiliation(s)
- Muhammad Ashar Ayub
- Institute of Soil and Environmental Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, 38000, Faisalabad, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, 38000, Faisalabad, Pakistan.
| | - Ejaz Ahmad Waraich
- Department of Agronomy, Faculty of Agriculture, University of Agriculture Faisalabad, 38000, Faisalabad, Pakistan
| |
Collapse
|
22
|
Ahmed T, Noman M, Qi Y, Xu S, Yao Y, Masood HA, Manzoor N, Rizwan M, Li B, Qi X. Dynamic crosstalk between silicon nanomaterials and potentially toxic trace elements in plant-soil systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115422. [PMID: 37660529 DOI: 10.1016/j.ecoenv.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | | | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | | |
Collapse
|
23
|
Yadav M, George N, Dwibedi V. Emergence of toxic trace elements in plant environment: Insights into potential of silica nanoparticles for mitigation of metal toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122112. [PMID: 37392865 DOI: 10.1016/j.envpol.2023.122112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Emergence of trace elements at potentially toxic concentrations in the environment has become a global issue in recent times. Owing to the rapid population growth, unregulated industrialisation, intensive farming practices and excessive mining activities, these elements are accumulating in environment at high toxic concentrations. The exposure of plants to metal-contaminated environments severely influences their reproductive and vegetative growth, eventually affecting crop performance and production. Hence, it is crucial to find alternatives to mitigate the stress caused by toxic elements, in plants of agricultural importance. In this context, silicon (Si) has been widely recognized to alleviate metal toxicity and promote plant growth during various stress conditions. Amending soil with silicates has shown to ameliorate the lethal effects of metals and stimulates crop development. However, in comparison to silicon in bulk form, nano-sized silica particles (SiNPs) have been demonstrated to be more efficient in their beneficial roles. SiNPs can be used for various technological applications, viz. Improving soil fertility, agricultural yield, and remediating heavy metal-polluted soil. The research outcomes of studies focussing on role of silica nanoparticles to specifically mitigate the metal toxicity in plants have not been reviewed earlier in depth. The aim of this review is to explore the potential of SiNPs in alleviating metal stress and improving plant growth. The benefits of nano-silica over bulk-Si fertilizers in farming, their performance in diverse plant varieties, and the possible mechanisms to mitigate metal toxicity in plants have been discussed in detail. Further, research gaps are identified and future prospects are envisioned for advanced investigations in this field. The growing interest towards nano-silica related research will facilitate exploration of the true prospective of these nanoparticles for mitigation of metal stress in crops and in other fields of agriculture as well.
Collapse
Affiliation(s)
- Mohini Yadav
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
24
|
Mahawar L, Ramasamy KP, Suhel M, Prasad SM, Živčák M, Brestic M, Rastogi A, Skalicky M. Silicon nanoparticles: Comprehensive review on biogenic synthesis and applications in agriculture. ENVIRONMENTAL RESEARCH 2023:116292. [PMID: 37276972 DOI: 10.1016/j.envres.2023.116292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Recent advancements in nanotechnology have opened new advances in agriculture. Among other nanoparticles, silicon nanoparticles (SiNPs), due to their unique physiological characteristics and structural properties, offer a significant advantage as nanofertilizers, nanopesticides, nanozeolite and targeted delivery systems in agriculture. Silicon nanoparticles are well known to improve plant growth under normal and stressful environments. Nanosilicon has been reported to enhance plant stress tolerance against various environmental stress and is considered a non-toxic and proficient alternative to control plant diseases. However, a few studies depicted the phytotoxic effects of SiNPs on specific plants. Therefore, there is a need for comprehensive research, mainly on the interaction mechanism between NPs and host plants to unravel the hidden facts about silicon nanoparticles in agriculture. The present review illustrates the potential role of silicon nanoparticles in improving plant resistance to combat different environmental (abiotic and biotic) stresses and the underlying mechanisms involved. Furthermore, our review focuses on providing the overview of various methods exploited in the biogenic synthesis of silicon nanoparticles. However, certain limitations exist in synthesizing the well-characterized SiNPs on a laboratory scale. To bridge this gap, in the last section of the review, we discussed the possible use of the machine learning approach in future as an effective, less labour-intensive and time-consuming method for silicon nanoparticle synthesis. The existing research gaps from our perspective and future research directions for utilizing SiNPs in sustainable agriculture development have also been highlighted.
Collapse
Affiliation(s)
- Lovely Mahawar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | | | - Mohammad Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, Slovakia.
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Czech Republic
| |
Collapse
|
25
|
Bidast S, Golchin A, Mohseni A. The beneficial effects of bare and CMC-supported α-FeOOH, Fe 3O 4, and α-Fe 2O 3 nanoparticles on growth, nutrient content, and essential oil of summer savory (Satureja hortensis L.) under Cd, Pb and Zn stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28008-8. [PMID: 37266774 DOI: 10.1007/s11356-023-28008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
This research studies the impacts of iron oxide nanoparticles (FeONPs) on alleviating the toxic effects of cadmium (Cd), lead (Pb), and zinc (Zn) on summer savory (Satureja hortensis L.). Different types of soil additives, including bare and carboxymethylcellulose (CMC)-supported hematite (α-Fe2O3), goethite (α-FeOOH), and magnetite (Fe3O4), were applied at three rates (0, 0.25, and 0.5% w/w) to a Cd, Pb, and Zn-contaminated soil sample. The experimental results showed that the application of FeONPs increased plant height, dry weights of shoot and root, and yield and content of essential oil. Bare and CMC-supported FeONPs increased the content of K, P, and Fe in the aerial parts of summer savory. However, these soil additives reduced the contents of Cd, Pb, and Zn in plant tissues. CMC-supported FeONPs proved to be more efficient additives in diminishing the toxic effects of Cd, Pb, and Zn in summer savory compared to their bare forms. Bare and CMC-supported goethite NPs were able to restrict the uptake of Cd, Pb, and Zn by summer savory roots in the metal-contaminated soil. The application of CMC-supported goethite at an application dose of 0.5% (w/w) increased shoot dry weight, shoot concentrations of K, P, and Fe, and yield of essential oil by about 62.6, 76.6, 77.1, 210, and 230%, respectively. Conversely, they reduced shoot concentrations of Cd, Pb, and Zn by about 64.6, 68.7, and 40.6%, respectively, compared to the control. These are significant results and indicate that CMC-supported goethite is likely to be the most effective soil additive in diminishing the toxicity of Cd, Pb, and Zn to metal-stressed summer savory.
Collapse
Affiliation(s)
- Solmaz Bidast
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Ahmad Golchin
- Soil Science Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Amir Mohseni
- Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Ma C, Liu F, Yang J, Liu N, Zhang K, Berrettoni M, Zhang H. The newly absorbed atmospheric lead by wheat spike during filling stage is the primary reason for grain lead pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161965. [PMID: 36737026 DOI: 10.1016/j.scitotenv.2023.161965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Wheat spikes could directly absorb lead (Pb) from atmospheric depositions. However, the mechanism by which the spikes contribute to Pb accumulation in the grain remains unclear. To investigate this mechanism, a field experiment was conducted using three comparative spikes shading treatments: 1) exposed to atmospheric deposition and light (CK), 2) non-exposed to atmospheric deposition and light (T1), and 3) non-exposed to atmospheric deposition but light-transmitting (T2). Spikes shading treatments reduced the average rate and peak value of the accumulation of Pb in grains, which significantly decreased the grain Pb concentration by 57.44 % and 50.26 % in T1 and T2 treatments, respectively. Moreover, Pb isotopic analysis shows that the Pb in spike and grain was mainly from atmospheric deposition, and the percentage of the grain Pb originated from atmospheric Pb decreased from 85.98 % in CK to 72.87 % and 79.59 % in T1 and T2, respectively. In addition, the spikes, rather than the leaves/roots, were the largest wheat tissue source of Pb in grains, and the relative contribution of spikes to grain Pb accumulation increased to 65.57 % at the maturity stage, of which the stored Pb re-translocation of spikes and the newly absorbed Pb by spikes during the filling stage contributed 13.37 % and 52.20 % to the grain Pb, respectively. Thus, the contribution of the spike to the grain Pb was mainly from the newly absorbed Pb from the atmospheric deposition during the grain filling phase, and grain filling phase is the key stage for the absorption of Pb by the grain. In brief, the newly absorbed atmospheric Pb by wheat spike during filling stage is the primary cause of grain Pb contamination, which provided a new insight for effective control of wheat Pb pollution.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China; University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Mario Berrettoni
- University of Camerino, School of Science and Technology, ChIP, via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| |
Collapse
|
27
|
Bakhtiari M, Raeisi Sadati F, Raeisi Sadati SY. Foliar application of silicon, selenium, and zinc nanoparticles can modulate lead and cadmium toxicity in sage (Salvia officinalis L.) plants by optimizing growth and biochemical status. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54223-54233. [PMID: 36872405 DOI: 10.1007/s11356-023-25959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Different techniques have been used to alleviate metal toxicity in medicinal plants; accordingly, nanoparticles (NPs) have a noticeable interest in modulating oxidative stresses. Therefore, this work aimed to compare the impacts of silicon (Si), selenium (Se), and zinc (Zn) NPs on the growth, physiological status, and essential oil (EO) of sage (Salvia officinalis L.) treated with foliar application of Si, Se, and Zn NPs upon lead (Pb) and cadmium (Cd) stresses. The results showed that Se, Si, and Zn NPs decreased Pb accumulation by 35, 43, and 40%, and Cd concentration by 29, 39, and 36% in sage leaves. Shoot plant weight showed a noticeable reduction upon Cd (41%) and Pb (35%) stress; however, NPs, particularly Si and Zn improved plant weight under metal toxicity. Metal toxicity diminished relative water content (RWC) and chlorophyll, whereas NPs significantly enhanced these variables. The noticeable raises in malondialdehyde (MDA) and electrolyte leakage (EL) were observed in plants exposed to metal toxicity; however, they were alleviated with foliar application of NPs. The EO content and EO yield of sage plants decreased by the heavy metals but increased by the NPs. Accordingly, Se, Si, and Zn NPS elevated EO yield by 36, 37, and 43%, respectively, compared with non-NPs. The primary EO constituents were 1,8-cineole (9.42-13.41%), α-thujone (27.40-38.73%), β-thujone (10.11-12.94%), and camphor (11.31-16.45%). This study suggests that NPs, particularly Si and Zn, boosted plant growth by modulating Pb and Cd toxicity, which could be advantageous for cultivating this plant in areas with heavy metal-polluted soils.
Collapse
Affiliation(s)
- Mitra Bakhtiari
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Fereshteh Raeisi Sadati
- Department of Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyede Yalda Raeisi Sadati
- Department of Plant Genetics and Production Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
28
|
Hou L, Ji S, Zhang Y, Wu X, Zhang L, Liu P. The mechanism of silicon on alleviating cadmium toxicity in plants: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1141138. [PMID: 37035070 PMCID: PMC10076724 DOI: 10.3389/fpls.2023.1141138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cadmium is one of the most toxic heavy metal elements that seriously threaten food safety and agricultural production worldwide. Because of its high solubility, cadmium can easily enter plants, inhibiting plant growth and reducing crop yield. Therefore, finding a way to alleviate the inhibitory effects of cadmium on plant growth is critical. Silicon, the second most abundant element in the Earth's crust, has been widely reported to promote plant growth and alleviate cadmium toxicity. This review summarizes the recent progress made to elucidate how silicon mitigates cadmium toxicity in plants. We describe the role of silicon in reducing cadmium uptake and transport, improving plant mineral nutrient supply, regulating antioxidant systems and optimizing plant architecture. We also summarize in detail the regulation of plant water balance by silicon, and the role of this phenomenon in enhancing plant resistance to cadmium toxicity. An in-depth analysis of literature has been conducted to identify the current problems related to cadmium toxicity and to propose future research directions.
Collapse
|
29
|
Huang X, Fan C, Xie D, Chen H, Zhang S, Chen H, Qin S, Fu T, He T, Gao Z. Synergistic Effects of Water Management and Silicon Foliar Spraying on the Uptake and Transport Efficiency of Cadmium in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1414. [PMID: 36987102 PMCID: PMC10053962 DOI: 10.3390/plants12061414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
To study the synergistic effects of water management and silicon (Si) foliar spraying on the uptake and transport of cadmium (Cd) in rice, we designed four treatments: conventional intermittent flooding + no Si foliar spraying (CK), continuous flooding throughout the growth stage + no Si foliar spraying (W), conventional intermittent flooding + Si foliar spraying (Si) and continuous flooding throughout the growth stage + Si foliar spraying (WSi). The results show that WSi treatment reduced the uptake and translocation of Cd by rice and significantly reduced the brown rice Cd content, with no effect on rice yield. Compared with CK, the Si treatment increased the net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of rice by 6.5-9.4%, 10.0-16.6% and 2.1-16.8%, respectively. The W treatment decreased these parameters by 20.5-27.9%, 8.6-26.8% and 13.3-23.3%, respectively, and the WSi treatment decreased them by 13.1-21.2%, 3.7-22.3% and 2.2-13.7%, respectively. The superoxide dismutase (SOD) and peroxidase (POD) activity decreased by 6.7-20.6% and 6.5-9.5%, respectively, following the W treatment. Following the Si treatment, SOD and POD activity increased by 10.2-41.1% and 9.3-25.1%, respectively, and following the WSi treatment, they increased by 6.5-18.1% and 2.6-22.4%, respectively. Si foliar spraying ameliorated the detrimental effects of continuous flooding throughout the growth stage on photosynthesis and antioxidant enzyme activity. We conclude that synergistic continuous flooding throughout the growth stage, combined with Si foliar spraying, can significantly block Cd uptake and translocation and is therefore an effective means of reducing the accumulation of Cd in brown rice.
Collapse
Affiliation(s)
- Xiaoyun Huang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Chengwu Fan
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricutural Science, Guiyang 550025, China
| | - Dongyi Xie
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Hongxing Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Song Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Hui Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Song Qin
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricutural Science, Guiyang 550025, China
| | - Tianling Fu
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Zhenran Gao
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Zeng P, Liu J, Zhou H, Wei B, Gu J, Liao Y, Liao B, Luo X. Co-application of combined amendment (limestone and sepiolite) and Si fertilizer reduces rice Cd uptake and transport through Cd immobilization and Si-Cd antagonism. CHEMOSPHERE 2023; 316:137859. [PMID: 36649896 DOI: 10.1016/j.chemosphere.2023.137859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Limestone and sepiolite combined amendment (LS) and silicon (Si) fertilizers are commonly applied for the remediation of Cd-polluted paddy soil. However, it is difficult to further decrease cadmium (Cd) accumulation in rice grains by the individual application of LS or Si fertilizer to heavily Cd-polluted paddy fields. Two seasons of continuous field experiments were conducted in heavily Cd-polluted soil to study how the co-application of LS and Si fertilizer (namely soil-applied Si and foliar-sprayed Si) influences Cd and Si bioavailability in soil and Cd uptake and transport in rice. The results indicated that LS co-applied with soil-applied Si fertilizer treatments can enhance pH, cation exchange capacity (CEC), and available Si content in soil by 0.56-1.26 units, 19.3%-57.2%, and 14.7%-58.9% (p < 0.05), respectively, and reduce the toxicity characteristic leaching procedure (TCLP) extractable Cd content in soil by 26.5%-49.8% (p < 0.05) relative to the control. Furthermore, the co-application of LS and soil and foliar-sprayed Si fertilizer treatments reduced the Cd content in brown rice by 18.8%-70.6% (p < 0.05) compared with the control. Particularly, the brown rice Cd content under the co-application treatment (4500 kg/ha of soil applied LS, 90 kg/ha of Si fertilizer, and 0.4 g/L of foliar-sprayed Si fertilizer) was below 0.20 mg/kg in both seasons. Meanwhile, the Si content in rice was considerably enhanced by LS co-applied with Si fertilizer and negatively (p < 0.05) correlated with the rice Cd content. Therefore, the reduction of Cd bioavailability in soil and the antagonistic effect between Cd and Si in rice might be the key factors regulating Cd accumulation in rice via the co-application of LS and Si fertilizer.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Jiawei Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Binyun Wei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Ye Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Xufeng Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
31
|
Dong R, Liu R, Xu Y, Liu W, Sun Y. Effect of foliar and root exposure to polymethyl methacrylate microplastics on biochemistry, ultrastructure, and arsenic accumulation in Brassica campestris L. ENVIRONMENTAL RESEARCH 2022; 215:114402. [PMID: 36167108 DOI: 10.1016/j.envres.2022.114402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Despite the serious risk of microplastic pollution in the roots and leaves of crops, the phytotoxicity of microplastics (introduced via different exposure routes) in leafy vegetables remain insufficiently understood. Here, the effects of the root and foliar exposure of polymethyl methacrylate microplastic (PMMAMPs) on phytotoxicity, As accumulation, and subcellular distribution were investigated in rapeseed (Brassica campestris L). The relative chlorophyll content under PMMAMPs treatment decreased with time, and the 0.05 g L-1 root exposure decreased it significantly (by 9.97-20.48%, P < 0.05). In addition, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX) activities in rapeseed were more sensitive to PMMAMPs introduced through root exposure than through foliar exposure. There was dose-dependent ultrastructural damage, and root exposure had a greater impact than foliar exposure on root tip cells and chloroplasts. PMMAMPs entered the shoots and roots of rapeseed through root exposure. Under foliar exposure, PMMAMPs promoted As accumulation in rapeseed by up to 75.6% in shoots and 68.2% in roots compared to that under control (CK). As content in cell wall under PMMAMP treatments was 3.6-5.3 times higher than that of CK, as indicated by subcellular component results. In general, root exposure to PMMAMPs resulted in a stronger physiological impact and foliar exposure led to increased As accumulation in rapeseed.
Collapse
Affiliation(s)
- Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Rongle Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Weitao Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
32
|
Sarkar MM, Mukherjee S, Mathur P, Roy S. Exogenous nano-silicon application improves ion homeostasis, osmolyte accumulation and palliates oxidative stress in Lens culinaris under NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:143-161. [PMID: 36242906 DOI: 10.1016/j.plaphy.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Lentil is one of the highly nutritious legumes but is highly susceptible to salinity stress. Silicon has been known to reduce the effect of various environmental stresses including salinity. Moreover, silicon when applied in its nano-form is expected to augment the beneficial attributes of silicon. However, very little is known regarding the prospect of nano-silicon (nSi) application for alleviating the effect of salinity stress in non-silicified plants like lentil. In this study, the primary objective was to evaluate the efficacy of nSi in the alleviation of NaCl stress during germination and early vegetative stages. In this context, different concentrations of nSi (0, 1, 5, 10 g L-1) was applied along with four different concentrations of NaCl (0, 100, 200, 300 mM). The results indicated the uptake of nSi which was confirmed by the better accumulation of silica in the plant tissues. Most importantly, the enhanced accumulation of silica increased the K+/Na+ ratio of the NaCl-stressed seedlings. Moreover, nSi efficiently improved germination, growth, photosynthetic pigments, and osmotic balance. On the other hand, the relatively reduced activities of antioxidative enzymes were surmounted by the higher activity of non-enzymatic antioxidants which mainly scavenged the increased ROS. Reduced ROS accumulation in return ensured better membrane integrity and reduced electrolyte leakage up on nSi application. Therefore, it can be concluded that the application of nSi (more specifically at 10 g L-1) facilitated the uptake of silica and improved the K+/Na+ ratio to reclaim the growth and physiological status of NaCl-stressed seedlings.
Collapse
Affiliation(s)
- Mahima Misti Sarkar
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, Kalyani University, West Bengal, 742213, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
33
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
34
|
Yin Z, Yu J, Han X, Wang H, Yang Q, Pan H, Lou Y, Zhuge Y. A novel phytoremediation technology for polluted cadmium soil: Salix integra treated with spermidine and activated carbon. CHEMOSPHERE 2022; 306:135582. [PMID: 35803376 DOI: 10.1016/j.chemosphere.2022.135582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
A variety of plants have been used as phytoremediation materials to remove Cd from polluted soil. However, the disadvantages of using plants for decontamination include low biomass, low uptake, and inefficiency. We conducted experiments to determine the effects of spermidine and activated carbon treatments of Salix integra on Cd removal. The results showed that exogenous spermidine and activated carbon increased plant growth and root development compared with the CK. The increased dry mass (39.65-92.95%) with the combined spermidine and activated carbon treatments was higher than that with either single treatment (14.79-62.80%). The root length, surface area, root volume, and root diameter with the combined spermidine and activated carbon treatments (53.51-189.35%, 113.08-207.62%, 111.71-499.27%, and 32.51-106.62%, respectively) were higher than those of the lone application treatments (19.35-132.23%, 52.33-111.57%, 35.08-297.07%, and 24.22-81.38%, respectively). In addition, spermidine and activated carbon application reduced the toxicity of Cd to S. integra by improving the antioxidant capacity, thereby increasing the accumulation of Cd. The application of spermidine and activated carbon also changed the distribution of Cd in each part of S. integra. There was increased accumulation of Cd in the shoots and better absorption by the S. integra shoots, thereby improving their Cd remediation efficiency. The combined 0.8 mM spermidine and 0.5 g kg-1 activated carbon were most effective on removing Cd from the soil. The Cd removal efficiency was 78.11-120.86% higher than that of the CK. Our results may provide foundational information for understanding the mechanisms for the sustainable remediation of Cd-contaminated soil using a combination of spermidine and activated carbon.
Collapse
Affiliation(s)
- Zerun Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China; Hunan Agricultural University, Changsha, 410125, Hunan Province, China
| | - Jinpeng Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Xinran Han
- Hunan Agricultural University, Changsha, 410125, Hunan Province, China
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| |
Collapse
|
35
|
Babashpour-Asl M, Farajzadeh-Memari-Tabrizi E, Yousefpour-Dokhanieh A. Foliar-applied selenium nanoparticles alleviate cadmium stress through changes in physio-biochemical status and essential oil profile of coriander (Coriandrum sativum L.) leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80021-80031. [PMID: 35397029 DOI: 10.1007/s11356-022-19941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Since large areas of agricultural soils around the world are contaminated by Cd, a cost-effective and practical method is needed for the safe production of edible plants. The effective role of many nanomaterials to improve plant yield by mitigating environmental pollutions is addressed; however, the impacts of selenium nanoparticles (Se-NPs) have not been well-known yet. The aim of this work was to investigate foliar application of Se-NPs on yield, water content, proline concentration, phenolic content, lipid peroxidation, and essential oil (EO) attributes of coriander (Coriandrum sativum L.) under Cd stress. The plants were exposed to Cd contamination (0, 4, and 8 mg L-1) and foliar application of Se-NPs (0, 20, 40, and 60 mg L-1). The results showed increased Cd accumulation in roots and shoots of coriander plants upon Cd stress; however, Se-NPs alleviated the uptake of Cd. Cd toxicity, particularly 8 mg L-1, decreased shoot and root weight, chlorophyll (Chl), and relative water content (RWC), while Se-NPs improved these attributes. The Cd concentration at 4 mg L-1 and Se-NPs at 40 or 60 mg L-1 increased phenolic and flavonoid contents as well as EO yield. Proline concentration and malondialdehyde (MDA) increased by enhancing Cd stress, but Se-NPs decreased MDA. The GC/MS analysis showed that the main EO constitutes were n-decanal (18.80-29.70%), 2E-dodecanal (14.23-19.87%), 2E-decanal (12.60-19.40%), and n-nonane (7.23-12.87%), representing different amounts under Cd pollution and Se-NPs. To sum up, Se-NPs at 40-60 mg L-1 are effective in alleviating Cd stress.
Collapse
Affiliation(s)
- Marzieh Babashpour-Asl
- Department of Horticultural Science, Maragheh Branch, Islamic Azad University, Maragheh, Iran.
| | | | | |
Collapse
|
36
|
Gu J, Hu C, Jia X, Ren Y, Su D, He J. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:104-114. [PMID: 36081232 DOI: 10.1016/j.plaphy.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.
Collapse
Affiliation(s)
- Jinyu Gu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Chunmei Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Xiangwei Jia
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| | - Dongming Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| |
Collapse
|
37
|
Mehmood S, Mahmood M, Núñez-Delgado A, Alatalo JM, Elrys AS, Rizwan M, Weng J, Li W, Ahmed W. A green method for removing chromium (VI) from aqueous systems using novel silicon nanoparticles: Adsorption and interaction mechanisms. ENVIRONMENTAL RESEARCH 2022; 213:113614. [PMID: 35710023 DOI: 10.1016/j.envres.2022.113614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In the present study, we used the horsetail plant (Equisetum arvense) as a green source to synthesize silicon nanoparticles (GS-SiNPs), considering that it could be an effective adsorbent for removing chromium (Cr (VI)) from aqueous solutions. The characterization of GS-SiNPs was performed via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photo electron spectroscopy (XPS) techniques. The batch test results of Cr (VI) adsorption on GS-SiNPs showed a high adsorption capacity, reaching 87.9% of the amount added. The pseudo-second order kinetic model was able to comprehensively explain the adsorption kinetics and provided a maximum Cr (VI) adsorption capacity (Qe) of 3.28 mg g-1 (R2 = 90.68), indicating fast initial adsorption by the diffusion process. The Langmuir isotherm model fitted the experimental data, and accurately simulated the adsorption of Cr (VI) on GS-SiNPs (R2 = 97.79). FTIR and XPS spectroscopy gave further confirmation that the main mechanism was ion exchange with Cr and surface complexation through -OH and -COOH. Overall, the results of the research can be of relevance as regards a green and new alternative for the removal of Cr (VI) pollution from affected environments.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Univ. Santiago de Compostela, Spain
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, 571126, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570100, China; College of Ecology and Environment, Hainan University, Haikou City, 570100, China.
| |
Collapse
|
38
|
Ghasemzadeh N, Iranbakhsh A, Oraghi-Ardebili Z, Saadatmand S, Jahanbakhsh-Godehkahriz S. Cold plasma can alleviate cadmium stress by optimizing growth and yield of wheat (Triticum aestivum L.) through changes in physio-biochemical properties and fatty acid profile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35897-35907. [PMID: 35064506 DOI: 10.1007/s11356-022-18630-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Cold plasma (CP) application has increasing interest due to its environmental-friendly, high efficient, and low cost aspects to mitigate deletion effects of heavy metals on plants. A pot experiment was carried out to evaluate the CP application on yield, physiological, and fatty acid profile of wheat (Triticum aestivum L.) in a completely randomized design (CRD) with five replicates. Cadmium (Cd) was applied at four levels (0, 50, 100, and 150 μM), and CP were used on germinated seeds at three levels (0, 60, and 120 s) in a hydroponic system. The results showed CP alleviated the Cd accumulation in roots, shoots, and grains. The significant reduction of grain yield (GY) and thousand grain yield (TGY) was observed in plants exposed to 100 and 150 μM compared with the control plants; however, CP improved GY and TGY particularly at severe Cd stress. The minimum chlorophyll (Chl) and relative water content (RWC) were observed in plants exposed in 100 μM Cd and non-CP treatments. Proline increased by Cd stress but decreased with CP in most treatments. Unlike proline, methionine showed significant reduction under Cd stress. The fatty acid profile of wheat represented that severe Cd stress decreased monounsaturated fatty acid (MUFA) but increased polyunsaturated fatty acid (PUFA). Heat map (HM) showed that GY and methionine were the most sensitive traits under treatments of Cd and CP. Totally, we suggest the use of 120 s of CP to mitigate Cd stress on wheat plants.
Collapse
Affiliation(s)
- Nasim Ghasemzadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
39
|
Zeng P, Wei B, Zhou H, Gu J, Liao B. Co-application of water management and foliar spraying silicon to reduce cadmium and arsenic uptake in rice: A two-year field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151801. [PMID: 34801493 DOI: 10.1016/j.scitotenv.2021.151801] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Water management is an effective measure for the control of cadmium (Cd) and arsenic (As) in situ uptake and transport in rice. In this study, the effects of the co-application of foliar spraying silicon (Si) and water management on Cd and As uptake and transport in rice were studied under paddy soils that were seriously co-contaminated with Cd and As with a two-year field experiment. The results showed that the co-application of water management and foliar spraying Si could effectively decrease the bioavailability of Cd and As in soil and reduce the uptake and transport of Cd and As in rice. The co-application of water management and foliar spraying Si treatments decreased the exchangeable and TCLP extractable Cd and As contents in the soil. Especially for moisture at the maturing stage combined with foliar spraying Si treatment (MMS), the exchangeable and TCLP extractable Cd and As contents were significantly decreased by 48.49%-55.14% and 45.50%-54.67%, and 41.95%-56.73% and 37.80%-46.76% in the two seasons, respectively. The moisture at the maturing stage treatment significantly decreased the Cd and As contents in brown rice by 44.26%-48.59% and 23.90%-38.16% in the two seasons relative to the control, respectively. Furthermore, MMS treatment simultaneously inhibited Cd and As transport and accumulation in rice among all co-application treatments. The translocation factor (TF)stem-brown rice of Cd, TFstem-leaf of As, and TFstem-brown rice of As values in the MMS treatment were significantly decreased as compared with the MM treatment. Furthermore, both the Cd and As contents in brown rice under the MMS treatment significantly decreased by 15.33%-30.74% and 33.84%-40.80%, respectively, in the two seasons. The results suggested that foliar spraying Si combined with moisture at the maturing stage might be a promising measure to synchronously inhibit the transport and accumulation of Cd and As in rice.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China
| | - Binyun Wei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
40
|
Sun T, Ouyang H, Sun P, Zhang W, Wang Y, Cheng S, Chen G. Postharvest UV-C irradiation inhibits blackhead disease by inducing disease resistance and reducing mycotoxin production in 'Korla' fragrant pear (Pyrus sinkiangensis). Int J Food Microbiol 2022; 362:109485. [PMID: 34823080 DOI: 10.1016/j.ijfoodmicro.2021.109485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Blackhead disease is a major fungal disease causing the quality deterioration of postharvest 'Korla' fragrant pear. In this study, the relationships of resistance to blackhead disease with the enzyme activity, phenolic compounds, and mycotoxin metabolism of 'Korla' fragrant pear were investigated, through UV-C irradiation of 0.12, 0.24, 0.36, 0.48, 0.72 and 1.08 kJ/m2 on 'Korla' fragrant pear inoculated with Alternaria alternata (Fries) Keissler (A. alternata). The results showed that the low-dose UV-C irradiation (0.36 kJ/m2) effectively controlled blackhead disease. The activities of chitinase (CHI), β-1,3-glucanase (GLU), peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia-lyase (PAL), and the content of phenolic compounds in fruit were enhanced, whereas the activities of lipoxygenase (LOX), polyphenol oxidase (PPO), and the contents of hydrogen peroxide (H2O2) and mycotoxins (including AOH, AME, and TeA) were decreased. Therefore, the low-dose UV-C irradiation could improve the resistance to blackhead disease and reduce the production of mycotoxins in 'Korla' fragrant pear. This study proves that UV-C irradiation may be a potentially effective strategy for the control of blackhead disease and the improvement of quality of postharvest 'Korla' fragrant pear.
Collapse
Affiliation(s)
- Tongrui Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Hui Ouyang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Pengcheng Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Weida Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Yue Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Shaobo Cheng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| | - Guogang Chen
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
41
|
Capatina L, Napoli EM, Ruberto G, Hritcu L. Origanum vulgare ssp. hirtum (Lamiaceae) Essential Oil Prevents Behavioral and Oxidative Stress Changes in the Scopolamine Zebrafish Model. Molecules 2021; 26:7085. [PMID: 34885665 PMCID: PMC8659137 DOI: 10.3390/molecules26237085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography-mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| |
Collapse
|
42
|
Rajput VD, Minkina T, Feizi M, Kumari A, Khan M, Mandzhieva S, Sushkova S, El-Ramady H, Verma KK, Singh A, van Hullebusch ED, Singh RK, Jatav HS, Choudhary R. Effects of Silicon and Silicon-Based Nanoparticles on Rhizosphere Microbiome, Plant Stress and Growth. BIOLOGY 2021; 10:791. [PMID: 34440021 PMCID: PMC8389584 DOI: 10.3390/biology10080791] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Silicon (Si) is considered a non-essential element similar to cadmium, arsenic, lead, etc., for plants, yet Si is beneficial to plant growth, so it is also referred to as a quasi-essential element (similar to aluminum, cobalt, sodium and selenium). An element is considered quasi-essential if it is not required by plants but its absence results in significant negative consequences or anomalies in plant growth, reproduction and development. Si is reported to reduce the negative impacts of different stresses in plants. The significant accumulation of Si on the plant tissue surface is primarily responsible for these positive influences in plants, such as increasing antioxidant activity while reducing soil pollutant absorption. Because of these advantageous properties, the application of Si-based nanoparticles (Si-NPs) in agricultural and food production has received a great deal of interest. Furthermore, conventional Si fertilizers are reported to have low bioavailability; therefore, the development and implementation of nano-Si fertilizers with high bioavailability could be crucial for viable agricultural production. Thus, in this context, the objectives of this review are to summarize the effects of both Si and Si-NPs on soil microbes, soil properties, plant growth and various plant pathogens and diseases. Si-NPs and Si are reported to change the microbial colonies and biomass, could influence rhizospheric microbes and biomass content and are able to improve soil fertility.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Morteza Feizi
- Department of Soil Science, University of Kurdistan, Sanandaj 66177-15175, Iran;
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Masudulla Khan
- School of Life and Basic Sciences, SIILAS, Jaipur National University, Jaipur 302017, India;
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; (T.M.); (A.K.); (S.M.); (S.S.)
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | | | - Abhishek Singh
- Department of Agricultural Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Eric D. van Hullebusch
- CNRS, Institut de Physique du Globe de Paris, Université de Paris, F-75005 Paris, France;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Hanuman Singh Jatav
- Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur 303329, India;
| | - Ravish Choudhary
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|