1
|
Rocher F, Bancal P, Fortineau A, Philippe G, Label P, Langin T, Bonhomme L. Unravelling ecophysiological and molecular adjustments in the photosynthesis-respiration balance during Fusarium graminearum infection in wheat spikes. PHYSIOLOGIA PLANTARUM 2025; 177:e70150. [PMID: 40091312 PMCID: PMC11911717 DOI: 10.1111/ppl.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Wheat responses to F. graminearum result in a deep and sharp reprogramming of a wide range of biological processes, including energy-associated functions and related metabolisms. Although these impacts have been thoroughly described at the molecular scale through proteomics and transcriptomics studies, phenotypic studies are still needed to fill the gap between the observed molecular events and the actual impacts of the disease on the ecophysiological processes. Taking advantage of the gas exchange method, the effects of two F. graminearum strains of contrasting aggressiveness on spike's photosynthesis and respiration-associated processes during an early infection time course were deeply characterized. Besides, an RNAseq-based expression profiling of the genes involved in the photosynthesis, respiration and stomatal movement processes was also performed when plants were challenged using the same two fungal strains. In response to Fusarium head blight, CO2 assimilation and CO2 diffusion adjustments matched transcriptomic data, showing altered photosynthetic processes and sharp gene regulations unrelated to symptom development. In contrast, although ecophysiological characterization clearly demonstrated respiration adjustments along with the F. graminearum's infection process, the gene regulations involved were not fully captured transcriptionally. We demonstrated that combining gas exchange methods with transcriptomics is especially effective in enhancing and deepening our understanding of complex physiological adjustments, providing unique and complementary insights that cannot be predicted from a single approach.
Collapse
Affiliation(s)
- Florian Rocher
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Pierre Bancal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France
| | - Alain Fortineau
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France
| | - Géraldine Philippe
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Philippe Label
- Université Clermont Auvergne, INRAE, UMR 547 PIAF, Physique et Physiologie Intégratives de l'Arbre en environnement Fluctuant, Aubière Cedex, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Université Clermont Auvergne, INRAE, UMR 1095 Génétique Diversité Ecophysiologie des Céréales, Clermont-Ferrand, France
| |
Collapse
|
2
|
Flori S, Dickenson J, Gaikwad T, Cole I, Smirnoff N, Helliwell KE, Brownlee C, Wheeler GL. Diatoms exhibit dynamic chloroplast calcium signals in response to high light and oxidative stress. PLANT PHYSIOLOGY 2024; 197:kiae591. [PMID: 39515781 DOI: 10.1093/plphys/kiae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Diatoms are a group of silicified algae that play a major role in marine and freshwater ecosystems. Diatom chloroplasts were acquired by secondary endosymbiosis and exhibit important structural and functional differences from the primary plastids of land plants and green algae. Many functions of primary plastids, including photoacclimation and inorganic carbon acquisition, are regulated by calcium-dependent signaling processes. Calcium signaling has also been implicated in the photoprotective responses of diatoms; however, the nature of calcium elevations in diatom chloroplasts and their wider role in cell signaling remains unknown. Using genetically encoded calcium indicators, we find that the diatom Phaeodactylum tricornutum exhibits dynamic calcium elevations within the chloroplast stroma. Stromal calcium ([Ca2+]str) acts independently from the cytosol and is not elevated by stimuli that induce large cytosolic calcium ([Ca2+]cyt) elevations. In contrast, high light and exogenous hydrogen peroxide (H2O2) induce large, sustained [Ca2+]str elevations that are not replicated in the cytosol. Measurements using the fluorescent H2O2 sensor roGFP2-Oxidant Receptor Peroxidase 1 (Orp1) indicate that [Ca2+]str elevations induced by these stimuli correspond to the accumulation of H2O2 in the chloroplast. [Ca2+]str elevations were also induced by adding methyl viologen, which generates superoxide within the chloroplast, and by treatments that disrupt nonphotochemical quenching (NPQ). The findings indicate that diatoms generate specific [Ca2+]str elevations in response to high light and oxidative stress that likely modulate the activity of calcium-sensitive components in photoprotection and other regulatory pathways.
Collapse
Affiliation(s)
- Serena Flori
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Jack Dickenson
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Isobel Cole
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Colin Brownlee
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
3
|
Sun M, Xiao X, Khan KS, Lyu J, Yu J. Characterization and functions of Myeloblastosis (MYB) transcription factors in cucurbit crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112235. [PMID: 39186952 DOI: 10.1016/j.plantsci.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Myeloblastosis (MYB) is one of the largest family of transcription factors (TFs) in plants. It plays a key role in plant life activities, such as metabolic regulation, stress resistant, as well as helpful for plant growth and development. In China, cucurbit is an important and nutrients rich vegetable crop, which have high medicinal and socio-economic values. In this review, we discussed the structure and characterization of MYB TFs and how do regulate flower development, fruit maturity, fruit quality, and flavonoid biosynthesis. Furthermore, we highlight the effect and contribution of MYB TFs in the regulation of biotic and abiotic stress resistance. This comprehensive review will provide a new reference for the more effective application of MYB TF in quality control, stress resistance research and molecular breeding of cucurbit crops.
Collapse
Affiliation(s)
- Mingming Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Khuram Shehzad Khan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Wdowiak A, Kryzheuskaya K, Podgórska A, Paterczyk B, Zebrowski J, Archacki R, Szal B. Ammonium nutrition modifies cellular calcium distribution influencing ammonium-induced growth inhibition. JOURNAL OF PLANT PHYSIOLOGY 2024; 298:154264. [PMID: 38744182 DOI: 10.1016/j.jplph.2024.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH4+) nutrition and calcium (Ca2+) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH4+ and nitrate, NO3-). Providing plants with NH4+ as the sole nitrogen source disrupts Ca2+ homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca2+ content in Arabidopsis leaves under NH4+ stress might result from reduced transpiration pull, which could impair root-to-shoot Ca2+ transport. Moreover, NH4+ nutrition increased the expression of genes encoding proteins responsible for exporting Ca2+ from the cytosol of leaf cells. Furthermore, overexpression of the Ca2+/H+ antiporter 1 (CAX1) gene alleviates the effects of NH4+ syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca2+ level, grew better under NH4+ stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH4+-stressed plants.
Collapse
Affiliation(s)
- Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Zebrowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35-310, Rzeszow, Poland
| | - Rafał Archacki
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
5
|
Zahid MA, Kieu NP, Carlsen FM, Lenman M, Konakalla NC, Yang H, Jyakhwa S, Mravec J, Vetukuri R, Petersen BL, Resjö S, Andreasson E. Enhanced stress resilience in potato by deletion of Parakletos. Nat Commun 2024; 15:5224. [PMID: 38890293 PMCID: PMC11189580 DOI: 10.1038/s41467-024-49584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.
Collapse
Affiliation(s)
- Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Naga Charan Konakalla
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Huanjie Yang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Sunmoon Jyakhwa
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center,-Slovak Academy of Sciences, Akademická 2, 950 07, Nitra, Slovakia
| | - Ramesh Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden.
| |
Collapse
|
6
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Khan FS, Goher F, Paulsmeyer MN, Hu CG, Zhang JZ. Calcium (Ca 2+ ) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1025-1034. [PMID: 37422725 DOI: 10.1111/plb.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Collapse
Affiliation(s)
- F S Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - F Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Paulsmeyer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - C-G Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J-Z Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Lee GH, Min CW, Jang JW, Wang Y, Jeon JS, Gupta R, Kim ST. Analysis of post-translational modification dynamics unveiled novel insights into Rice responses to MSP1. J Proteomics 2023; 287:104970. [PMID: 37467888 DOI: 10.1016/j.jprot.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, β-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.
Collapse
Affiliation(s)
- Gi Hyun Lee
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea.
| |
Collapse
|
9
|
Corti F, Festa M, Stein F, Stevanato P, Siroka J, Navazio L, Vothknecht UC, Alboresi A, Novák O, Formentin E, Szabò I. Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1228060. [PMID: 37692417 PMCID: PMC10485843 DOI: 10.3389/fpls.2023.1228060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023]
Abstract
Introduction Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. Methods In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. Results Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. Conclusions These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Collapse
Affiliation(s)
| | | | - Frank Stein
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Jitka Siroka
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ute C. Vothknecht
- Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | | | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Palacký University, Olomouc, Czechia
| | | | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Liu SY, Xie JG, Chen XW, Chen DF. Dunaliella Ds-26-16 acts as a global regulator to enhance salt tolerance by coordinating multiple responses in Arabidopsis seedlings. PLANTA 2023; 257:110. [PMID: 37149499 DOI: 10.1007/s00425-023-04149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION Based on phenotypic, physiological and proteomic analysis, the possible mechanism by which Ds-26-16 regulates salt tolerance in Arabidopsis seedlings was revealed. Functional and mechanistic characterization of salt tolerance genes isolated from natural resources is crucial for their application. In this study, we report the possible mechanism by which Ds-26-16, a gene from Dunaliella, and its point mutation gene EP-5, enhance salt tolerance in Arabidopsis seedlings. Both Ds-26-16 and EP-5 transgenic lines displayed higher seed germination rates, cotyledon-greening rates, soluble sugar contents, decreased relative conductivity and ROS accumulation when germinating under 150 mM NaCl conditions. Comparative proteomic analysis revealed that there were 470 or 391 differentially expressed proteins (DEPs) in Ds-26-16 or EP-5, respectively, compared with the control (3301) under salt stress. The GO and KEGG enrichment analyses showed the DEPs in Ds-26-16 vs. 3301 and EP-5 vs. 3301 were similar and mainly enriched in photosynthesis, regulation of gene expression, carbohydrate metabolism, redox homeostasis, hormonal signal and defense, and regulation of seed germination. Thirty-seven proteins were found to be stably expressed under salt stress due to the expression of Ds-26-16, and eleven of them contain the CCACGT motif which could be bound by the transcription factor in ABA signaling to repress gene transcription. Taken together, we propose that Ds-26-16, as a global regulator, improves salt-tolerance by coordinating stress-induced signal transduction and modulating multiple responses in Arabidopsis seedlings. These results provide valuable information for utilizing natural resources in crop improvement for breeding salt-tolerant crops.
Collapse
Affiliation(s)
- Si-Yue Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Ge Xie
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xi-Wen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - De-Fu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Photosynthetic acclimation to changing environments. Biochem Soc Trans 2023; 51:473-486. [PMID: 36892145 DOI: 10.1042/bst20211245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Plants are exposed to environments that fluctuate of timescales varying from seconds to months. Leaves that develop in one set of conditions optimise their metabolism to the conditions experienced, in a process called developmental acclimation. However, when plants experience a sustained change in conditions, existing leaves will also acclimate dynamically to the new conditions. Typically this process takes several days. In this review, we discuss this dynamic acclimation process, focussing on the responses of the photosynthetic apparatus to light and temperature. We briefly discuss the principal changes occurring in the chloroplast, before examining what is known, and not known, about the sensing and signalling processes that underlie acclimation, identifying likely regulators of acclimation.
Collapse
|
12
|
He L, Yan J, Ding X, Jin H, Zhang H, Cui J, Zhou Q, Yu J. Integrated analysis of transcriptome and microRNAs associated with exogenous calcium-mediated enhancement of hypoxic tolerance in cucumber seedlings ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 13:994268. [PMID: 36684729 PMCID: PMC9846352 DOI: 10.3389/fpls.2022.994268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Plants often suffer from hypoxic stress due to flooding caused by extreme weather. Hypoxia usually leads to restricted oxygen supply and alters metabolic patterns from aerobic to anaerobic. Cucumber roots are fragile and highly sensitive to damage from hypoxic stress. The purpose of this study was to investigate the regulatory mechanism of exogenous calcium alleviating hypoxic stress in cucumber through transcriptome and small RNAs analysis. Three treatments were performed in this paper, including untreated-control (CK), hypoxic stress (H), and hypoxic stress + exogenous calcium treatment (H + Ca2+). A large number of differentially expressed genes (DEGs) were identified, 1,463 DEGs between CK vs H, 3,399 DEGs between H vs H + Ca2+, and 5,072 DEGs between CK vs H + Ca2+, respectively. KEGG analysis of DEGs showed that exogenous calcium could activate hormone signaling pathways (ethylene, ABA, IAA and cytokinin), transcription factors (MYB, MYB-related, bHLH, bZIP, and WRKY), calcium signaling and glycolysis pathway to mitigating hypoxic stress in cucumber seedlings. Additionally, miRNA and their target genes were detected and predicted between treatments. The target genes of these miRNAs revealed that auxin, cellulose synthase, and mitochondrial ribosomal related genes (Csa2G315390, Csa6G141390, Csa4G053280, and Csa6G310480) probably play in the improvement of the hypoxic tolerance of cucumber seedlings through exogenous calcium application. In short, our data adds new information to the mechanism of exogenous calcium mitigation of hypoxic stress injury in cucumber seedlings at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Yan
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiawei Cui
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
13
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
14
|
Li Y, Zhang Y, Li B, Hou L, Yu J, Jia C, Wang Z, Chen S, Zhang M, Qin J, Cao N, Cui J, Shi W. Preliminary Expression Analysis of the OSCA Gene Family in Maize and Their Involvement in Temperature Stress. Int J Mol Sci 2022; 23:13658. [PMID: 36362446 PMCID: PMC9656168 DOI: 10.3390/ijms232113658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/01/2023] Open
Abstract
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the ZmOSCA gene family. Using bioinformatics methods, we identified twelve OSCA genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize OSCA family was classified into four groups (Ⅰ, Ⅱ, Ⅲ, and Ⅳ). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of ZmOSCA genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve ZmOSCA genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve ZmOSCA genes. We chose ZmOSCA2.2 and ZmOSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant OSCA gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wuliang Shi
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Bai R, Bai C, Han X, Liu Y, Yong JWH. The significance of calcium-sensing receptor in sustaining photosynthesis and ameliorating stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1019505. [PMID: 36304398 PMCID: PMC9594963 DOI: 10.3389/fpls.2022.1019505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium ions (Ca2+) regulate plant growth and development during exposure to multiple biotic and abiotic stresses as the second signaling messenger in cells. The extracellular calcium-sensing receptor (CAS) is a specific protein spatially located on the thylakoid membrane. It regulates the intracellular Ca2+ responses by sensing changes in extracellular Ca2+ concentration, thereby affecting a series of downstream signal transduction processes and making plants more resilient to respond to stresses. Here, we summarized the discovery process, structure, and location of CAS in plants and the effects of Ca2+ and CAS on stomatal functionality, photosynthesis, and various environmental adaptations. Under changing environmental conditions and global climate, our study enhances the mechanistic understanding of calcium-sensing receptors in sustaining photosynthesis and mediating abiotic stress responses in plants. A better understanding of the fundamental mechanisms of Ca2+ and CAS in regulating stress responses in plants may provide novel mitigation strategies for improving crop yield in a world facing more extreme climate-changed linked weather events with multiple stresses during cultivation.
Collapse
Affiliation(s)
- Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|