1
|
Tripathi G, Dutta S, Mishra A, Basu S, Gupta V, Kamaraj C. Nanomaterials impact in phytohormone signaling networks of plants - A critical review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112373. [PMID: 39725164 DOI: 10.1016/j.plantsci.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery. Nanoparticle-induced reactive oxygen species (ROS) generation plays a central role in altering secondary metabolite biosynthesis, highlighting their function as potent elicitors and stimulants in plant systems. The review underscores the significant contribution of nanoparticles in enhancing stress resilience through the modulation of phytohormonal signaling pathways, offering novel insights into their potential for improving crop health and productivity under environmental stressors.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India; Department of Biomedical Engineering, School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Shrestha Dutta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Anamika Mishra
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Soumyadeep Basu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Vishesh Gupta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Li J, Wang F, Liu J, Bashir S, Ma S, Cao M, Guo J, Gao Z, Xu Q, Liu S, Sun K. ZnO Nanofertilizer Reduced Organic Phosphorus Transformation and Altered Microbial Function in Soil for Sustainable Agriculture. ACS NANO 2025; 19:6942-6954. [PMID: 39937183 DOI: 10.1021/acsnano.4c14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The impacts of zinc oxide nanoparticles (ZnO NPs) as nanofertilizers on the transformation of phytogenic organic phosphorus (OP), specifically phytic acid (PA) and soy lecithin (LE), as well as their effects on soil microbial functions, remain insufficiently characterized. This study employed a 60-day soil microuniverse experiment to investigate microbial responses to OP under ZnO NPs exposure, focusing on soil physicochemical properties, phosphorus (P) and Zn species transformations, bacterial community and function. At low concentrations (5 and 20 mg/kg), ZnO NPs did not significantly reduce the available P content, but they reduced the transformation of OP into other P species. Synchrotron-based X-ray absorption near-edge spectroscopy revealed that ZnO NPs increased the relative abundance of PA from 0.6 to 3.5% and LE from 58.4 to 67.1%. Bacterial community composition was influenced by P species rather than ZnO NPs concentration. A coupled biogeochemical cycle among carbon, nitrogen and P was observed, with higher total phosphorus further enhancing the abundance of genes involved in P-related processes, such as OP mineralization genes, which increased 6-, 4-, and 2-fold in PAZ5, LEZ5, and PiZ5, respectively, compared to Z5. Carbon fixation genes generally increased in the P-added groups, exemplified by atoB, which encodes acetoacetyl-CoA thiolase, showing a 3.70-, 3.05-, and 3.47-fold increase compared to Z5. In contrast, denitrification genes, nirS, decreased by 0.08-, 0.10-, and 0.33-fold. These findings shed light on the fate of ZnO nanofertilizers and P, supporting the sustainable application of nanofertilizers and the improvement of soil fertility.
Collapse
Affiliation(s)
- Junhong Li
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Jiuchen Liu
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources of China, National Research Center for Geo-analysis (NRCGA), Beijing 100037, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow 83843, Idaho, United States
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Jing Guo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China
| |
Collapse
|
3
|
da Silva EF, dos Santos FAL, Pires HM, Bastos LM, Ribeiro LNDM. Lipid Nanoparticles Carrying Essential Oils for Multiple Applications as Antimicrobials. Pharmaceutics 2025; 17:178. [PMID: 40006545 PMCID: PMC11859743 DOI: 10.3390/pharmaceutics17020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Lipid nanoparticles (LNPs) are versatile delivery systems with high interest because they allow the release of hydrophobic and hydrophilic molecules, such as essential oils (EOs) and plant extracts. This review covers published works between 2019 and 2024 that have reported the use of essential EO-based LNPs with antimicrobial properties and applications in human and animal health, as well as biopesticides. In the human healthcare field, reports have addressed the effect of encapsulating EOs in lipid nanosystems with antiviral, antibacterial, antiprotozoal and antifungal activities. In animal care, this still needs to be more deeply explored while looking for more sustainable alternatives against different types of parasites that affect animal health. Overall, the antibacterial activities of LNPs carrying EOs are described as alternatives to the use of synthetic antibiotics. In the field of agriculture, studies showed that these approaches in the control of phytopathogens and other pests that affect food production. There is a growing demand for innovative and more sustainable technologies. However, there are still some challenges to be overcome in order to allow these innovations to reach the market.
Collapse
Affiliation(s)
| | | | | | - Luciana Machado Bastos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia 38405-302, Brazil;
| | | |
Collapse
|
4
|
Cao Y, Turk K, Bibi N, Ghafoor A, Ahmed N, Azmat M, Ahmed R, Ghani MI, Ahanger MA. Nanoparticles as catalysts of agricultural revolution: enhancing crop tolerance to abiotic stress: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1510482. [PMID: 39898270 PMCID: PMC11782286 DOI: 10.3389/fpls.2024.1510482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Ensuring global food security and achieving sustainable agricultural productivity remains one of the foremost challenges of the contemporary era. The increasing impacts of climate change and environmental stressors like drought, salinity, and heavy metal (HM) toxicity threaten crop productivity worldwide. Addressing these challenges demands the development of innovative technologies that can increase food production, reduce environmental impacts, and bolster the resilience of agroecosystems against climate variation. Nanotechnology, particularly the application of nanoparticles (NPs), represents an innovative approach to strengthen crop resilience and enhance the sustainability of agriculture. NPs have special physicochemical properties, including a high surface-area-to-volume ratio and the ability to penetrate plant tissues, which enhances nutrient uptake, stress resistance, and photosynthetic efficiency. This review paper explores how abiotic stressors impact crops and the role of NPs in bolstering crop resistance to these challenges. The main emphasis is on the potential of NPs potential to boost plant stress tolerance by triggering the plant defense mechanisms, improving growth under stress, and increasing agricultural yield. NPs have demonstrated potential in addressing key agricultural challenges, such as nutrient leaching, declining soil fertility, and reduced crop yield due to poor water management. However, applying NPs must consider regulatory and environmental concerns, including soil accumulation, toxicity to non-target organisms, and consumer perceptions of NP-enhanced products. To mitigate land and water impacts, NPs should be integrated with precision agriculture technologies, allowing targeted application of nano-fertilizers and nano-pesticides. Although further research is necessary to assess their advantages and address concerns, NPs present a promising and cost-effective approach for enhancing food security in the future.
Collapse
Affiliation(s)
- Yahan Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Khalid Turk
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nazeer Ahmed
- Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Muhammad Azmat
- Department of Biology, College of Science, University of Lahore, Lahore, Pakistan
| | - Roshaan Ahmed
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Imran Ghani
- College of Agriculture, Guizhou University/College of Life Sciences, Guiyang, China
| | - Muhammad Abass Ahanger
- Key Laboratory for Tropical Plant Improvement and Sustainable Use, Xishuangbanna Tropical 20 Botanical Garden, Chinese Academy of Sciences, Menglun, China
| |
Collapse
|
5
|
Venkidasamy B, Thiruvengadam M. Physiological, biochemical, and molecular mechanisms of plants towards nanopollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108990. [PMID: 39097462 DOI: 10.1016/j.plaphy.2024.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Venzhik Y, Deryabin A, Dykman L. Nanomaterials in plant physiology: Main effects in normal and under temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112148. [PMID: 38838991 DOI: 10.1016/j.plantsci.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health. Nanotechnology, which allows the production of a wide range of nanomaterials (NM), provides novel techniques in this direction. NM include structures less than 100 nm. The review presents data on the methods of NM production, their properties, pathways for arrival in plants and their use in human life. It is shown that NM, due to their unique physical and chemical properties, can cross biological barriers and accumulate in cells of live organisms. The influence of NM on plant organism can be both positive and negative, depending on the NM chemical nature, their size and dose, the object of study, and the environmental conditions. This review provides a comparative analysis of the effect of artificial metal nanoparticles (NPm), the commonly employed NMs in plant physiology, on two important aspects of plant life: photosynthetic apparatus activity and antioxidant system function. According to studies, NM affect not only the functional activity of photosynthetic apparatus, but also structural organization of chloroplats. In addition, the literature analysis reflects the dual action of NM on oxidative processes, and antioxidant status of plants. These facts considerably complicate the ideas about possible mechanisms and further use of NPm in biology. In this regard, data on the effects of NM on plants under abiotic stressors are of great interest. Separate section is devoted to the use of NM as adaptogens that increase plant stress tolerance to unfavorable temperatures. Possible mechanisms of NM effects on plants are discussed, as well as the strategies for their further use in basic science and sustainable agriculture.
Collapse
Affiliation(s)
- Yliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
7
|
Singh R, Širić I, Alhag SK, Al-Shuraym LA, Al-Shahari EA, Alsudays IM, Bachheti A, Goala M, Abou Fayssal S, Kumar P, Eid EM. Impact of titanium dioxide (TiO 2) nanoparticle and liquid leachate of mushroom compost on agronomic and biochemical response of marigold (Tagetes erecta L.) under saline stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43731-43742. [PMID: 38907815 DOI: 10.1007/s11356-024-33999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The cultivation of ornamental horticultural crops under salinity stress has been a challenge for growers all over the world. In this study, an attempt was made for pot cultivation of Marigold (Tagetes erecta L. var. Pusa Basanti Gainda) in salt-stressed (SS) soil (150 mM) with the combined use of mushroom compost leachate (CL) and foliar application of titanium dioxide nanoparticles (TiO2-NPs). For this purpose, a total of six pot treatments, i.e., borewell water (BW; control), T1 (BW with SS), T2 (BW with SS and TiO2-NPs), T3 (CL supplemented), T4 (CL with SS), and T5 (CL with SS and TiO2-NPs) were conducted in triplicate. The results of this study showed that CL supplementation significantly (p < 0.05) improved the physicochemical i.e., pH (14.5%), electrical conductivity (32.9%), total nitrogen (27.4%), total phosphorus (247.6%)), and nutrient (organic matter: 119.6%) profiles of soil which later helped in higher growth (30-35%) and yield (5.4-40.7%) of T. erecta. In CL-based treatments, the biochemical constituents were significantly (p < 0.05) higher than those in BW-irrigated ones. Also, the levels of selected stress defense enzymes were significantly increased under SS treatment but reduced under TiO2-NP application. Overall, it was observed that the combined application of CL and TiO2-NPs (T5 treatment) was the most helpful treatment for enhanced germination, growth, yield, biochemical parameters, and better plant enzymatic activities to cope with saline stress. This study provides a mechanistic understanding of T. erecta plants under saline stress which is crucial for the development of targeted interventions aimed at improving plant tolerance to saline conditions.
Collapse
Affiliation(s)
- Rattan Singh
- Department of Food Technology, Uttaranchal University, 248007, Dehradun, India
| | - Ivan Širić
- Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, 61913, Muhayl Asser, Saudi Arabia
| | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Eman A Al-Shahari
- Biology Department, College of Science and Arts, King Khalid University, 61321, Abha, Saudi Arabia
| | - Ibtisam M Alsudays
- Biology Department, College of Science, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Madhumita Goala
- Department of Environment Science, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Sami Abou Fayssal
- Department of Agronomy, Faculty of Agronomy, University of Forestry, 10 Kliment Ohridski Blvd, Sofia, 1797, Bulgaria
- Department of Plant Production, Faculty of Agriculture, Lebanese University, Beirut, 1302, Lebanon
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, India.
- Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun, 248007, India.
| | - Ebrahem M Eid
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
8
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
9
|
Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Abhilash MR, Nataraj K, Amruthesh KN, Ansari MA, Alomary MN, Murali M. Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108604. [PMID: 38608505 DOI: 10.1016/j.plaphy.2024.108604] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, 570006, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - M R Abhilash
- Department of Studies in Environmental Science, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - K N Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - M Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
10
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|